苔黑酚葡萄糖苷地衣二醇

仪器信息网苔黑酚葡萄糖苷地衣二醇专题为您提供2024年最新苔黑酚葡萄糖苷地衣二醇价格报价、厂家品牌的相关信息, 包括苔黑酚葡萄糖苷地衣二醇参数、型号等,不管是国产,还是进口品牌的苔黑酚葡萄糖苷地衣二醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苔黑酚葡萄糖苷地衣二醇相关的耗材配件、试剂标物,还有苔黑酚葡萄糖苷地衣二醇相关的最新资讯、资料,以及苔黑酚葡萄糖苷地衣二醇相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

苔黑酚葡萄糖苷地衣二醇相关的资料

苔黑酚葡萄糖苷地衣二醇相关的论坛

  • 葡萄糖基甜菊糖苷基线波动大

    单一的甜菊糖苷与瑞鲍迪A或者是纯度高的葡萄糖基甜菊糖苷的基线波动小,分离也不错。但是有时候做比较杂的葡萄糖基甜菊糖苷,会有小杂峰密集出现并带着基线波动。是按照国标方法做的,求方法解决

苔黑酚葡萄糖苷地衣二醇相关的方案

苔黑酚葡萄糖苷地衣二醇相关的资讯

  • 我国科学家实现二氧化碳到葡萄糖和油脂的人工合成
    此前,我国科学家在国际上首次实现了二氧化碳到淀粉的从头合成。那么,二氧化碳除了可以“变”淀粉,还能“变”其他东西吗? 答案是肯定的! 4月28日,《自然催化》以封面文章的形式发表了一项最新研究成果。经过一年半的努力,我国科研人员通过电催化结合生物合成的方式,将二氧化碳高效还原合成高浓度乙酸,并进一步利用微生物合成葡萄糖和脂肪酸(油脂)。 这一成果由电子科技大学夏川课题组、中国科学院深圳先进技术研究院于涛课题组与中国科学技术大学曾杰课题组共同完成。 先把二氧化碳变成“食醋” 或许有人会问,人造的葡萄糖和油脂可以直接吃吗?好吃吗? 对此,曾杰回应:“经过后续纯化处理,可以食用。” 那么,二氧化碳究竟是如何变成葡萄糖和油脂的? “首先,我们需要把二氧化碳转化为可供微生物利用的原料,方便微生物发酵。”曾杰说,在常温常压条件下,清洁、高效的电催化技术是实现这个过程的理想选择,他们就此已经发展了成熟的电催化剂体系。 至于要转化为哪种原料,研究人员将目光瞄准了乙酸。因为它不仅是食醋的主要成分,也是一种优秀的生物合成碳源,可以转化为葡萄糖等其他生物物质。 “二氧化碳直接电解可以得到乙酸,但效率不高,所以我们采取‘两步走’策略——先高效得到一氧化碳,再从一氧化碳到乙酸。”曾杰说。 研究人员发现,一氧化碳通过脉冲电化学还原工艺形成的晶界铜催化合成乙酸的效率可高达52%。 不过,常规电催化装置生产出的乙酸混合着很多电解质盐,无法直接用于生物发酵。 所以,为了“喂饱”微生物,不仅要提升转化效率,保证“食物”的数量,还要得到不含电解质盐的纯乙酸,保证“食物”的质量。 “我们利用新型固态电解质反应装置,使用固态电解质代替传统电催化技术中的电解质盐溶液,直接得到了无需进一步分离的纯乙酸水溶液。”夏川介绍。 微生物“吃醋”产葡萄糖 得到乙酸后,研究人员尝试利用酿酒酵母这一微生物来合成葡萄糖。 “酿酒酵母主要用于奶酪、馒头、酿酒等发酵行业,同时也因其优秀的工业属性,常被用作微生物制造与细胞生物学研究的模式生物。”于涛说,利用酿酒酵母通过乙酸来合成葡萄糖的过程,就像是微生物在“吃醋”,酿酒酵母通过不断地“吃醋”来合成葡萄糖。 “然而,在这过程中,酿酒酵母本身也会代谢掉一部分葡萄糖,所以产量并不高。”于涛表示。 对此,研究团队通过敲除酿酒酵母中代谢葡萄糖的三个关键酶元件,废除了酿酒酵母代谢葡萄糖的能力。之后,实验中的工程酵母菌株在摇瓶发酵的条件下,合成的葡萄糖产量达到1.7g/L。 “我们利用这种生物酿酒酵母‘从无到有’地在克级水平合成了葡萄糖,这代表了该策略较高的生产水平与发展潜力。”于涛说,为进一步提升合成葡萄糖的产量,不仅要废除酿酒酵母的能力,还要加强它本身积累葡萄糖的能力。 于是,研究人员又敲除了两个疑似具备代谢葡萄糖能力的酶元件,同时插入来自泛菌属和大肠杆菌的葡萄糖磷酸酶元件。 于涛表示,泛菌属和大肠杆菌的葡萄糖磷酸酶元件可以“另辟蹊径”,将酵母体内其他通路中的磷酸分子转化为葡萄糖,增加了酵母菌积累葡萄糖的能力。经过改造后的工程酵母菌株的葡萄糖产量达到2.2g/L,产量提高了30%。 新型催化方式有坚实根基 更重要的是,近年来,随着新能源发电的迅速崛起,电力成本下降,二氧化碳电还原技术已经具备与依赖化石能源的传统化工工艺竞争的潜力。 同时,微生物作为活细胞工厂,其优点是产物多样性很高,能够合成许多无法通过人工生产或人工生产效率很低的化合物,是非常丰富的“物质合成工具箱”。比如,在人们常见的白酒、馒头、抗生素等食品药品的加工中,微生物就发挥着重要作用。 “这样,合成葡萄糖和油脂所需要的电力和微生物就有了保障,通过电催化结合生物合成的新型催化方式就有了坚实的根基。”夏川说。 对此,中国科学院院士、中国催化专业委员会主任李灿研究员评价,这项工作耦合了人工电合成与生物合成,发展了一条由水和二氧化碳到含能化学小分子乙酸,然后经工程改造的酵母微生物催化合成葡萄糖和游离的脂肪酸等高附加值产物的新途径,为人工和半人工合成“粮食”提供了新的技术。 “该工作开辟了电化学结合活细胞催化制备葡萄糖等粮食产物的新策略,为进一步发展基于电力驱动的新型农业与生物制造业提供了新范例,是二氧化碳利用方面的重要发展方向。”中国科学院院士、上海交通大学教授邓子新说道。 同时,曾杰也强调,这项成果尚处于实验室的基础研究阶段,如果要推向实用,还需要进一步提高能量效率和产率,降低生产成本。 曾杰表示,接下来,研究团队将进一步研究电催化与生物发酵这两个平台的同配性和兼容性。未来,如果要合成淀粉、制造色素、生产药物等,只需保持电催化设施不改变,更换发酵使用的微生物就能实现。
  • 欧盟发布氢化葡萄糖浆作为食品添加剂的科学意见
    近日,应欧盟委员会的要求,欧盟食品安全局食品添加剂和营养源科学专家组(ANS Panel)发布氢化葡萄糖浆作为食品添加剂的安全性评估意见。  氢化葡萄糖浆属于氢化淀粉水解产物,主要由麦芽糖醇、山梨糖醇和更高分子量的多羟基化合物组成。对所有年龄段的人来说,早餐的谷物食品、饼干和糕点是氢化葡萄糖浆最重要的潜在来源。对此,专家组进行了一系列的小鼠饲喂试验和人体学试验研究。以个人体重级别来分类,专家组评估了来源于所有推荐的食物中氢化葡萄糖浆的每日最高暴露量。其中,成人对氢化葡萄糖浆的暴露最少。  专家组指出,氢化葡萄糖浆饮食暴露的最高水平小于13周小鼠试验得到的无害作用剂量,其所评估的暴露水平是基于氢化葡萄糖浆应用于所有食物中后存在的假设。专家组认为,从推荐的食物用法和用量水平的角度来说,人体试验中服用的剂量和案例中报道的剂量的暴露水平已经接近于肠胃紊乱的剂量。因此,应该考虑添加其他允许使用的多羟基化合物类食品添加剂来起到通便作用。另外,氢化葡萄糖浆现有的毒理学数据不足以建立其每日允许摄入量(ADI),但是基于现有的资料,可以断定氢化葡萄糖浆目前所推荐的用法和用量不存在安全方面的担忧。
  • 离子色谱-积分脉冲安培法检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖
    目的:建立了离子色谱-积分脉冲安培法同时检测黄酒中的阿拉伯糖、半乳糖、甘露糖、葡萄糖、核糖、乳糖,并对这几种糖的含量进行探讨。方法:色谱分离选用CarboPacTM10(250 mm×4 mm)分析柱,以氢氧化钠和无水乙酸钠为淋洗液进行梯度洗脱,流速为 1.0 mLmin-1,柱温为30℃的色谱条件,在20 min内实现6种糖的分离,利用建立的方法对26个黄酒样品中的单糖含量进行了测定。结果:该方法的重现性(RSD)≤3.70%,相关系数R2≥0.9990,加标回收率为91.6%~109.1%,最低检出限为2.99×10-3 ~1.38×10-3 μgmL-1。结论:黄酒中主要存在的单糖是葡萄糖,阿拉伯糖、半乳糖、甘露糖、核糖和乳糖的含量较低;半甜型黄酒中单糖的含量高于加饭酒,其含量的差异可能与酿造工艺有关。 离子色谱_积分脉冲安培法检测黄酒_省略_乳糖_甘露糖_葡萄糖_核糖_乳糖_徐诺.pdf

苔黑酚葡萄糖苷地衣二醇相关的仪器

  • FTIR 葡萄酒分析仪:Lyza 5000 Wine葡萄酒分析的优选Lyza 5000 Wine 是用于葡萄酒生产、葡萄酒实验室和灌装工厂进行快速葡萄酒分析的高级解决方案。将傅里叶变换红外 (FTIR) 光谱与化学统计模型结合使用,可同时测定葡萄酒必要参数,包括酒精含量、糖和有机酸。与现有测量系统连接、自动化和短测量时间可保证立即得到结果。通过创新型集成软件,可立即操作 Lyza 5000 Wine,无需经过任何培训。Lyza 5000 Wine:安东帕专为葡萄酒市场定制的 FTIR 仪器。安东帕是您在葡萄酒行业可信赖的仪器提供商。创新点:适用于葡萄酒的FTIR多参数分析仪——测量参数包括乙醇,葡萄糖+果糖,果糖,葡萄糖,滴定酸度,酒石酸,挥发性酸,苹果酸,乳酸,甘油,浸出物,密度,pH,酵母可吸收氮,葡萄汁重量等葡萄酒市场上的高精度测量仪器——经过12次反射的ATR测量池(高强度,受浊度影响小);密封的测量单元;精确的测量池温度控制(± 0.03°C)连接自动进样器——通过Xsample520(可选24位进样盘)实现自动化,测量过程中样品顺序可调主要特点Lyza 5000 Wine 兼具操作简单和功能强大的特点直观设置和不到 1 分钟的最短测量时间,可获得即时结果使用受现代智能手机界面外观启发的用户界面浏览您的日常操作通过最直观的 Xsample 设置复杂测量程序参考值测量和仪器运行状况综合测定的指导工作流程可确保结果始终可靠Lyza 5000 Wine 配备 10.1 英寸高分辨率触摸屏,无需外部电脑,可自动执行所有数据分析用途最广的葡萄酒分析系统手动进样使其可以在小型葡萄酒实验室快速轻松地进行独立操作。通过 Xsample 进样器实现的自动化,提高样品处理量。Lyza 5000 Wine 可连接到葡萄酒实验室的基准仪器上:从 DMA M 密度计到全套 Alcolyzer Wine 分析系统。由于这些设置可同时进行测量,因此可获得超过 15 个参数,而不延长总体测量时间。将一份显示所有连接仪器结果的综合报告导出到 LIMS 或直接从 Lyza 5000 Wine 中打印出来。专为葡萄酒市场设计Lyza 5000 Wine 的 ATR 样品槽专为葡萄酒市场进行的质量控制而量身定制。与常用的传输单元相比,12 跳设计提供的信号强度较少受到混浊或气体样品的影响,可达到理想状态。对任何葡萄酒分析仪均可实现最准确的测量池温度控制 (±0.03 K),为您提供优佳再现性。密封的 FTIR 光谱仪核心将环境影响降低,实现无与伦比的重复性。检查和校正只需要水和二元乙醇溶液 – 无需专门的专用参考标准物质。通过遵循指导工作流程,可将全球实施的有效葡萄酒模型轻松适应于您的本地需求 – 这使所有用户组都可进行模型校正。
    留言咨询
  • 西尔曼葡萄糖分析仪 400-860-5168转4017
    葡萄糖分析仪葡萄糖浓度高效液相与葡萄糖分析仪数据对比原理:采用特殊设计的葡萄糖氧化酶膜电化学传感器对葡萄糖浓度进行检测。仪器自动采集样本并导入至测试区域。样本中所含的葡萄糖在固化的葡萄糖氧化酶的催化下发生酶解反应,反应产物为葡萄糖酸和过氧化氢。通过电极检测过氧化氢的含量从而计算出葡萄糖含量。仪器通过对已知浓度的标准品进行定标,标准品的电压值是衡量样本葡萄糖浓度的尺度。未知浓度可与标准品的电压信号相比较而获得。每次测定完毕后,系统缓冲液会自动清洗传感器电极,清洗完成后即可进行下一次测试。仪器参数参数指标M100S10检测范围0.05~30g/L(0~3%)*0.05~5g/L分辨率0.01g/L0.01g/L系统误差<2%<2%(操作水平有关)检测时间20秒20秒定标方式自动手动进样方式自动手动数据导出支持优盘Excel形式支持优盘Excel形式通讯接口RJ45 、RS232RJ45 、RS232酶膜检测次数60006000单次检测成本0.03元0.03元检测结果输出打印、数据库查询打印、数据库查询储存容量4000组4000组显示屏幕8寸电容触摸屏8寸电容触摸屏操作方式交互式界面,触摸式交互式界面,触摸式检测结果单位模式g/L、mmol/L、mg/dl、%可选g/L、mmol/L、mg/dl、%可选样品盘15个样品位无应用领域:1.严格的生物工艺过程和发酵控制2.生物燃料生产和研究3.临床血液化学研究4.食品饮料加工5.生理学研究6.细胞培养7.酿酒工程过程分析是一个高维多元的动态体系,该体系的建立及其理论研究对生物过程的模拟、预测、 优化和监控起着重要作用。中间产物的检测是过程分析的关键,它为发酵机理研究提供了必不可少的依据,有利于发酵操作条件的及时调控,在研究生化反应规律、优化生产过程和提高生化产品产率方面是十分必要的。一、优化补料策略以金霉素为例;近年的研究发现,在生物系统中存在混沌现象,发酵初期的微小变化可能使发酵过程呈现出多态性和不稳定性。所以,通过控制前期适宜的菌体生长速率( 即比生长速率 μ = 1/X dX / dt) 对整个发酵过程是至关重要的。若μ太小,将会使菌体生长缓慢,对数生长期过长,菌体不能良好生长,酶活力不强,产物产率低;若μ太大 , 菌体生长快,使代谢过于激烈,在中前期使氧耗过大以及因菌浓很高使发酵液粘稠导致氧传递能力下降,易产生溶氧降至临界氧浓度以下,影响菌体的正常代谢和产物形成,同时菌体活力过早减弱, 也使金霉素效价偏低。因此优化培养基的成分,控制补料速率及其它有关工艺参数,是金霉素发酵过程的一个关键因素。利用葡萄糖生物传感器可以随时监测发酵液中糖浓度,为优化补料流加策略提供详实的数据支撑。二、食品质量控制食品行业已经将酶电极和酶比色纳入GB/T 16285-2008作为标准的检测葡萄糖浓度的方法。现在测定葡萄糖的生物传感器己广泛应用于医疗、食品及发酵工业中。在食品工业中生物传感器不仅能测定食品及原料的含糖量,更重要的是能对多种食品工业过程进行监测,为食品安全追溯提供保障。三、发酵过程控制多年来已知当培养基中有葡萄糖存在时,微生物利用乳糖的能力即受抑制。葡萄糖能够干扰乳糖降解酶—一半乳糖苷酶的形成。这种“葡萄糖效应”不仅影响半乳糖 苷酶,而且对细菌、酵母与霉菌中其它碳源的分解所涉及的分解代谢酶亦有普遍的影响,例如葡萄糖对盐霉素生物合成有严重的阻遏效应,利用葡萄糖生物传感器分析仪可以快速准确稳定的检测葡萄糖浓度,很好的控制抗生素代谢过程中的阻遏效应,提高单位效价。四、节省检测时间加快实验进度传统的检测方法无论采用DNS比色,菲林滴定或者高效液相色谱都需要花费大量的时间才能完成一次检测,一个样品往往需要三次左右的重复,一天能够进行的实验组数十分有限。并且化学方法具有灵敏度差,专一性不强的特点,容易给实验数据造成假阳性的后果导致实验重复性差。科技的创新和提升让检测人员从繁琐的样本分装、样本录入、结果记录等等工作中解放出来,提高效率,降低错误;采用葡萄糖生物传感器分析仪一个小时可以分析25个样品,不需要复杂的前处理过程,只需要简单的离心或过滤即可检测,并且对葡萄糖专一性识别。
    留言咨询
  • 产品名称:紫檀茋糖苷产品别名:紫檀茋-4-b-D-葡萄糖苷英文名称:Trans-3,5-dimethoxystilbene-4′-O-β-D-glucopyranoside, pterostilbene 4′-O-β-D-glucoside, (2S,3R,4S,5S,6R)-2-{4-[(E)-2-(3,5-dimethoxy-phenyl)-vinyl]-phenoxy}-6-hydroxymethyl-tetrahydro-pyran-3,4,5-triolCAS:50450-35-6, 38967-99-6分子式:C22H26O8分子量:418.44纯度:98%外观:白色粉末用途:膳食补充原料
    留言咨询

苔黑酚葡萄糖苷地衣二醇相关的耗材

  • β -Gone β -葡萄糖苷酸酶去除
    快速净化水解尿样β-Gone β-葡萄糖苷酸酶去除产品经过专门设计, 可去除水解尿样中的β-葡萄糖苷酸酶, 无需额外花费时间或开发方法。只需一个步骤, 不到1分钟, 即可开始分析您的水解样品。? 延长HPLC/UHPLC色谱柱使用寿命? 减少质谱维护? 保持HPLC/UHPLC色谱柱的选择性公司承诺如果β-Gone β-葡萄糖苷酸酶去除产品不能提供与您当前使用的β-葡萄糖苷酸酶去除方法至少相当的性能,请在45天内提供对比数据并退回产品,您将获得全额退款。上样将水解尿样加载到β-Gone β-葡萄糖苷酸酶去除柱或96孔板上。施加真空、正压或离心。1收集净化样品供HPLC/UHPLC分析使用2提高灵敏度:β-Gone与稀释后直接进样色谱柱:Kinetex2.6 μm Biphenyl规格:50 x 2.1 mm流动相:A:0.1% 甲酸的水溶液B:0.1% 甲酸的乙腈溶液梯度:时间 (min) % B 0 5 3 95 4 95 4.1 5流速:500 μm/min温度:室温检测:MS/MS (SCIEX API 4000™ )
  • β -Gone™ β -葡萄糖苷酸酶去除产品
    快速净化水解尿样β-Gone β-葡萄糖苷酸酶去除产品经过专门设计,可去除水解尿样中的 β-葡萄糖苷酸酶,无需额外花费时间或开发方法。只需一个步骤,不到 1 分钟,即可开始分析您的水解样品。? 延长 HPLC/UHPLC 色谱柱使用寿命? 减少质谱维护? 保持 HPLC/UHPLC 色谱柱的选择性色谱柱: Kinetex 2.6 μm Biphenyl规格: 50 x 2.1 mm流动相: A:0.1 % 甲酸的水溶液 B:0.1 % 甲酸的乙腈溶液流速: 500 μL/min温度: 室温检测: MS/MS (SCIEX API 4000™ )
  • RCX-10阴离子交换HPLC色谱柱二糖单糖乙二醇乙酰氨基葡萄糖朝鲜蓟
    RCX-10阴离子交换色谱柱二糖单糖乙二醇乙酰氨基葡萄糖朝鲜蓟HPLC产品品牌哈美顿Hamilton汉密尔顿产品型号Hamilton RCX-10糖柱产品货号各种型号规格Hamilton RCX-10阴离子交换色谱柱Hamilton RCX-10阴离子交换色谱柱应用:糖类的等度或梯度分离pH稳定范围:pH 1-13二糖或单糖的等度分离低聚物的梯度分离到DP8与PAD,电导率和RI检测器兼容1种粒子尺寸:7 μm3种柱子内径:2.1-4.6 mm2种柱子材料:316L不锈钢和PEEK不锈钢和PEEK保护柱Hamilton RCX-10阴离子交换色谱柱分离效果:水中的乙二醇&乙酰氨基葡萄糖&朝鲜蓟Hamilton RCX-10阴离子交换色谱柱订货信息:HPLC色谱柱I.D.×长度7 μm2.1×250 mm793994.1×250 mm794404.6×250 mm79388

苔黑酚葡萄糖苷地衣二醇相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制