纳秒级动力学仪

仪器信息网纳秒级动力学仪专题为您提供2024年最新纳秒级动力学仪价格报价、厂家品牌的相关信息, 包括纳秒级动力学仪参数、型号等,不管是国产,还是进口品牌的纳秒级动力学仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳秒级动力学仪相关的耗材配件、试剂标物,还有纳秒级动力学仪相关的最新资讯、资料,以及纳秒级动力学仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

纳秒级动力学仪相关的厂商

  • 上海迪纳声智能仪器有限公司,座落于国家级开发区—上海市松江工业区东部新区,是上海计量协会流量专业委员会成员单位。公司主要从事超声流量计及相关技术产品的深入研发、专门制造、营销传播和专业服务,在许多领域可为用户提供成熟而卓越甚至定制的流量测量解决方案和产品。 公司具有多普勒式和时差式超声流量计“国家计量器具制造许可证”,是目前国内该领域产品系列最丰富的企业之一。公司通过了ISO9001:2008质量管理体系认证,产品通过了CE认证、国内防爆产品合格证,及国际权威的ATEX防爆认证等,是2006年度美中国际合作交流促进会中国重点合作企业 公司建有流量标定中心,配有国际先进的传感器老化室和高低温试验系统等设施。与国内同行相比,具有标定口径范围大(DN10-600mm)、精度高(0.1%%R)、技术领先(德国赛多利斯进口称重系统)等特点,确保为国内、外客户提供一流的产品。 公司的产品广泛应用于石油、化工、电力、冶金、供水及水处理、科研、核电、计量测试等行业,特别在各行业的水流量测量方面应用突出、经验丰富。 “迪纳声”人在防爆、高温、小管径、低流速、在线插入安装、中心插入式在线安装、超声水表、热量表、矿浆、煤浆、污水测量、明渠、非满管应用及微小流量测量等方面刻苦钻研、大胆创新,使自己始终处于国内、外先进水平,解决人所不能,不断构建企业的核心竞争力,并取得11项国家专利和多项软件著作权。公司自有研发中心,还与国内外高等院校、科研院所、技术公司等开展多方面的研究与合作,率先在国内创造性地开展流量计的计算流体动力学的研究,一些研究成果已经跨入世界先进水平并融入产品之中。 矢志进取,把每一个进步作为新的一个起点,正如迪纳声品牌所赋予的意义,“迪启智慧,纳才报国,声扬国际”,上海迪纳声DYNAMETERS已经成为中国超声流量计制造行业的著名品牌。据2009年《流程工业》杂志开展的对3000名各大行业用户的超声流量计市场调查报告中,居国内、外(外资十三个品牌、内资五个品牌)“用户最熟悉的品牌”前五位,2009年以来每年连续60%%以上产品出口欧美亚等70多个国家,上海迪纳声正成为世界该领域的知名品牌。
    留言咨询
  • 400-860-5168转5092
    大连创锐光谱科技有限公司 依托自主知识产权的核心超快时间分辨光谱技术,专注于开发和生产应用于科学研究和教学领域的高科技时间分辨光谱仪器和设备。公司主营业务包括稳态、瞬态荧光(寿命)光谱仪、超快到纳秒瞬态吸收光谱系统、超快显微镜、时间分辨荧光成像系统等高端科研级仪器设备的研发、生产销售以及时间分辨光谱系统集成、技术开发和检测服务。客户覆盖国内外各大高校、科研院所及知名企业。我们精准把握科学研究发展的需求,与国内外著名高校研究机构建立广泛的技术合作,结合自身的技术优势,积极开发国产化的世界一流光谱科技产品,为我国光电材料、纳米材料、光谱学、动力学等领域科学事业的发展贡献一份力量。我们期待与您携手并进,通过光谱技术,助力您的科研事业不断创新。系列产品:超快瞬态光谱系统、纳秒瞬态吸收光谱系统、闪光光解系统、超快瞬态显微镜系统、时间分辨荧光系统、TCSPC、模块化稳态/瞬态荧光光谱系统、时间分辨显微镜荧光光谱系统。技术服务:客户定制化时间分辨光谱技术解决方案、样品检测服务、技术培训。
    留言咨询
  • 400-860-5168转6143
    极瞳生命科技(苏州)有限公司坐落在“金鸡湖数智云谷”,占地面积近3000平米,拥有办公、研发、生产、应用实验室、培训中心等多功能分区,其中包括500平米满足临床转化要求的GMP 洁净生产车间。极瞳专注的第一条管线是基于SPR(表面等离子激元共振)技术路线的分子互作仪的产业化。非标记分子互作仪是可以直接检测生物分子之间相互作用的高精密科学仪器,用于生物分子间结合特异性的分析、浓度定量、结合动力学和亲和力分析。SPR技术凭借其灵敏度高、动力学测量可靠等优点成为分子互作的金标准,在16年被列入美国、日本药典,2020年又被列入中国药典,其应用贯穿药物发现、研发、生产的整个生命周期。秉承“见微知萌,极致之瞳(Deep view, Deeper vision)”的初心,构建高灵敏度分析和高灵敏度检测的核心竞争力,极瞳致力于成为生物医药产业的赋能者,让每一个生物实验室都用上极瞳的科学仪器。
    留言咨询

纳秒级动力学仪相关的仪器

  • 布鲁克Hysitron PI 88是布鲁克公司生产的新一代原位纳米力学测试系统,其特点是系统设计高度模块化,后期可在已有系统上自行配置并拓展其他功能。该系统通过视频接口将材料的力学数据(载荷-位移曲线)与相应SEM视频之间实现时间同步,允许研究者在整个测试过程中极其精确地定位压头并对变形过程成像。解决了传统纳米压痕方法,只能通过光学显微镜或原位扫描成像观察压痕前后的形貌变化,因无法监测中间过程,而最终对载荷-位移曲线上的一些突变无法给出解释甚至错误解释的问题。PI 88安装于SEM,可以精确施加载荷,检测位移,在电镜下进行压痕、压缩、弯曲、划痕、拉伸和疲劳等力学性能测试;此外,通过升级电学、加热模块,还可研究材料在力、电、热等多场耦合条件下结构与性能的关系。
    留言咨询
  • 背景介绍—瞬态吸收光谱和瞬态吸收成像的应用基于泵浦探测(Pump-Probe)原理的瞬态吸收光谱,在频率维度和时间维度上提供了丰富的光谱和动力学信息,过去的几十年应用于物理、化学、材料、能源、生物等广泛领域。当今,许多领域科学研究的范式和需求都在不断更新。尤其是随着钙钛矿光伏、二维材料、量子器件、高温超导等前沿领域的发展,科学家迫亟需在空间维度上揭示载流子等微观离子的迁移和演化规律,研究微纳米材料的物理态在空间分布上的异质性。瞬态吸收成像,可在空间和时间维度上研究微观粒子和能量的运动和演化,是研究微观粒子和能量的时空演化、阐释微观机制的重要工具。瞬态吸收成像,一般有两种实现方式,点扫描成像和宽场成像。相对点扫描成像,宽场成像模式具有速度快、通量高,成像质量更加细腻的特点。Omni-TAM900为北京卓立汉光仪器有限公司全新推出的一款宽场飞秒瞬态吸收成像系统。该系统集成像和动力学于一体,联合飞秒泵浦-探测技术和显微技术,通过自主知识产权的干涉放大技术增强图像信噪比,可获得高质量的成像效果并大幅度缩短测试时间。仪器基本功能和性能:仪器具有点泵浦-宽场探测,和宽场泵浦-宽场探测两种工作模式。分点泵浦模式可用于测量载流子迁移和热导率等;宽场泵浦模式可用于测量载流子分布和物理态的空间异质性等。仪器特点和创新高灵敏、高通量,可测量到单个纳米颗粒、单层石墨烯乃至单层分子晶体的瞬态吸收信号。仪器原理和实现方式Omni-TAM900宽场飞秒瞬态吸收成像系统原理如下图所示,经过飞秒激光器和光学参量放大器(OPA)之后出来的飞秒激光,通过显微镜的光学系统进入,并作为泵浦光源激发样品,而另一束经过空间调制的探测光在一定的时间延迟之后也经过显微系统到达样品,样品在激发态对探测光产生的吸收情况会被显微镜上的sCMOS 相机记录下来。通过调节光学延迟线(Optical Delay Line),得到样品在不同延迟时间下的sCMOS图像。Omni-TAM900 可以有两种成像模式(如下图所示): 聚焦泵浦光模式(点泵浦,宽场探测)和宽场泵浦光模式(宽场泵浦、宽场探测),前者主要用于研究载流子的迁移,后者用于检测载流子的空间分布状况。软件软件可进行同步采集,自动控制和处理,载流子的寿命、载流子的迁移速率、载流子的分布、动力学等信息均可以通过软件得到。应用方向及实测数据 Omni-TAM900宽场飞秒瞬态吸收成像系统是测量载流子时空演化的强大工具,可广泛应用于物理、材料及器件的前沿研究,比如:太阳能电池、低维材料、量子器件、超导材料、新型半导体、纳米催化、生物传感等,对纳米尺度和飞秒时空尺度中的超快的物理、化学及生物过程进行监测。 金属镀膜中的载流子迁移和热扩散10 nm厚金属薄膜上的超快热载流子和热扩散,采用仪器的点激发,宽场探测模式。半导体中的载流子迁移和热扩散同时监测Si基半导体中的载流子迁移和热扩散(可测量半导体材料的热导率),采用仪器的点激发,宽场探测模式。光伏材料中的载流子迁移和演化钙钛矿CsPbBr3载流子成像,迁移动力学及边缘态动力学研究。采用仪器的宽场激发,宽场探测模式催化材料中的热载流子分布和“热点”局部热电子密度高、寿命长,可能具有更高的催化活性。采用仪器的宽场激发,宽场探测模式。新型二维材料中的边缘物理态研究二维WS2中激子分布情况,激子寿命研究。可以看到,多层的边缘具有更高激子密度和更长激子寿命技术参数 光源飞秒激光 +OPA,激光波长范围取决于应用场景检测器sCMOS成像空间分辨率500 nm载流子迁移定位精度30nm时间分辨率500 fs (100 fs 激光脉冲条件下)时间延迟线0-4 ns/0-8 ns显微镜模块倒置显微镜,上方为开放空间,后期可兼容低温模块、探针台、电学调控、磁场等特殊实验场景。测量模式点泵浦 + 宽场探测(载流子迁移)宽场泵浦 + 宽场探测(载流子分布)仪器工作模式反射 / 散射已发表文献:J. Am. Chem. Soc. 2022, 144, 13928专利:202110510123.X(以上展示的所有实测数据均为本型号仪器测得,并已公开发表,更多细节请查阅以上文献)。更多参考文献:(为了方便用户参考研究前沿,如下列出一些国际上利用瞬态吸收成像方法的研究案例。这些数据并非用该型号仪器获得,但是卓立Omni-TAM900仪器可实现这些应用场景中的绝大多数功能。如有特殊需求,欢迎与卓立汉光联系。)Science 2017, 356, 59 (钙钛矿超长热载流子)Nat. Mater. 2020, 19, 617 (转角二维量子异质结)Science 2021, 371, 371 (超导材料电荷密度波)Science 2022, 377, 437 (立方砷化硼超高载流子)Nat. Mater. 2020 , 9, 56 (材料中的携能载流子)
    留言咨询
  • 产品描述 空气动力学粒径谱仪TSI33213321型空气动力学粒度仪是TSI公司开发出的专利仪器,其测定气溶胶颗粒的空气动力学粒径,并给出气溶胶数量浓度、表面积浓度、体积浓度及质量浓度随粒径的分布情况。对气溶胶粒子而言,测定它的空气动力学直径具有重要意义。因为,它可以帮助您了解气溶胶粒子的特性,粒子是否能穿过某一滤材,是否能被旋风分离器分离,以及是否能沉积在肺中,这一切都与粒子的空气动力学直径有关。3321具有宽阔的动力学粒径范围、很高的分辨率,测量结果受颗粒物折射率、密度、形状等因素较小,准确度和稳定性高于同类的激光散射颗粒度仪,为当今应用最广泛的粒子分析仪器之一。 3321-APS型空气动力学粒度仪的前身(3300-APS、3310-APS、3320-APS)早已在实验室及工业生产等各个领域成功地应用了30年,被公认为具有突出的测量精度。3321-APS型在继承原有机型的优点后,更加入了全新的设计。它可提供两种测量数据(空气动力学粒径和光散射强度)。仪器可精确、实时对空气动力学粒径在0.5~20μm的粒子进行测定,也可测量相应光学粒径范围(0.37~20μm)的光散射强度。由于可对每一粒子同时提供两种测量数据,因此该仪器为那些对气溶胶生成机理感兴趣的科学家提供了令人兴奋的工具!该仪器测定每一粒子通过两束近距离激光束的飞行时间,以此换算粒子的动力学粒径。它是一种可提供真实粒子浓度的单粒子计数装置。配套的AIM 3321软件可在Windows环境下提供数据分析。 3321-APS还可配以3302A型气溶胶稀释器、 3306型冲击器和3433扩散器共同工作。 3302A型稀释器可进行100:1和20:1两种稀释,如二稀释器串联,便可提供高达10000:1的稀释。3306型冲击器可收集2.5或4.7微米的样品,以便进一步重量和化学分析。3433扩散器可对粉末进行扩散,使3321-APS能更方便对粉末进行粒径分析。 产品特点 空气动力学粒径谱仪TSI33211.空气动力学原理(飞行时间) 2.同时提供两种粒径数据 (空气动力学粒径和光散射强度)3.分辨率高 3.准确度和稳定性高 技术参数 空气动力学粒径谱仪TSI3321检测技术 使用单独的高速处理器在加速气流中检测单颗粒的飞行时间粒径范围 0.5~20μm(空气动力直径) 0.37~20μm(光散射直径)空气动力学直径解析率 0.02μm(1μm),0.03μm(10μm)分辨率 粒径分辨率:32通道/10倍粒径,52通道,非相关模式1024位原始飞行时间数据(4ns/位) 光散射强度分辨率:16通道光散射强度,64通道原始光散射强度数据检测粒子种类 悬浮的颗粒物和不挥发性液体大颗粒物检测浓度 1000个/cm3在0.5μm时,重叠事件发生概率5% 1000个/cm3在10μm时,重叠事件发生概率10% 可用数据上限为10000个/cm3小颗粒物检测浓度 0.001个/cm3浓度量程 ±10%读数值加上统计计数偏差空气动力学粒径 大速度 200,000个/s总采样流量 5.0L/min鞘气流量 4.0L/min样气流量 1.0L/min操作温度 10~40℃大气压力校正 在400到1030mbar内自动校正(在700到1030mbar内完全校正)激光源 30mV,655nm二极管激光器检测器 雪崩式光电倍增管(APD)前显示面板 320×240象素工作温度 10~40℃工作湿度 10~90%电源电压 110~240VAC,50/60Hz,100W或24VDC通讯方式 RS~232(9针)接口输出方式 数字I/O: 配置模拟输出:BNC(0~10V) 脉冲模拟输出:BNC 飞行时间数字输出:BNC外置控制器用15针接口(3个输入/3个输出)2个模拟输入接口外形尺寸 气溶胶进样口:外径3/4英寸 机箱尺寸(LWH):38cm×30cm×18cm重量 10kg 应用领域 空气动力学粒径谱仪TSI3321吸入毒理学吸入式制剂研究大气研究 环境空气监测室内空气质量监测滤料和空气清洁器测试测试气溶胶特性粉尘粒径检测 The only way to determine a particle’s true airborne behavior is to measure its aerodynamic diameter.Aerodynamic measurements account for differences in particle size, shape, and density. This is crucial when determining if a particle will penetrate a filter, be removed by a cyclone, or be deposited in the lung. The Aerodynamic Particle Sizer (APS™ ) spectrometer has been used successfully for over 20 years in laboratory and field applications to provide high-resolution, real time aerodynamic measurements in the range from 0.5 to 20 μm. Our latest models also measure light-scattering intensity in the equivalent optical size range of 0.37 to 20 μm. By providing paireddata for each particle, the APS opens up exciting new possibilities for aerosol scientists interested in studying the makeup of an aerosol.The Model 3321 APS spectrometer uses a patented, double-crest optical system for unmatched sizing accuracy. It also includes a redesigned nozzle configuration and improved signal processing.The result is greater small-particle sizing efficiency, improved accuracy of mass-weighted distributions, and near elimination of false background counts. The Aerosol Instrument Managersoftware provides advanced data-handling capabilities.
    留言咨询

纳秒级动力学仪相关的资讯

  • 新型扫描隧道显微镜助力材料超快动力学研究
    扫描隧道显微镜 (STM) 基于量子隧穿效应能够以亚埃的纵向精度和真实原子分辨率对样品表面成像。无论是金属还是半导体,甚至到衬底上沉积的有机分子材料,均可直接可视化测量。然而,STM 的时间分辨率仅限于亚毫秒范围,不利于材料超快动力学的研究。 为了克服上述障碍,日本筑波大学的研究人员开发了一种新型 STM 系统,它采用基于激光的泵浦探针方法将时间分辨率从皮秒提高到数十飞秒(ACS Photonics,doi:10.1021/acsphotonics.2c00995)。该系统可以将极短时间尺度内发生的物理现象可视化,例如相变期间原子的重排或电子的快速激发。中红外电场驱动的扫描隧道显微镜系统示意图光泵浦探针法一般经常被用于一些超快现象测试。泵浦激光脉冲首先激发样品,然后经过一段时间延迟后,探测激光脉冲撞击样品并测量其透射率或反射率。测量的时间分辨率仅受激光脉冲持续时间的限制。研究人员将这种方法与电场驱动的 STM 相结合,后者使用载波包络相位控制的光源产生近场,从而在 STM 尖端和样品之间施加瞬时电场,从而捕捉到非平衡状态下的超快动力学现象。团队强调,他们的新型STM显微镜可广泛应用于包括太阳能电池或纳米级电子设备在内的各种各样的材料研究。该研究的主要负责人Hidemi Shigekawa 表示,在凝聚态物质中,动力学通常不是空间均匀的,而是受到原子缺陷等局部结构的强烈影响,这些结构可以在很短的时间内发生变化。在实验中,他们将经过一个近红外 (NIR) 波长范围和 8.1 fs 脉冲宽度的啁啾脉冲放大器后的光束分离,其中一束光束被转换为中红外 (MIR)。 NIR 光束通过一个光学延迟级,并与 MIR 光束以同轴排列,用于泵浦探针测量。它们被聚焦在容纳样品的超高真空室中的 STM 尖端顶点上。为了验证系统性能,研究人员使用 NIR 脉冲光作为激发,MIR 光作为探针进行了时间分辨 STM 测量。碲化钼作为被观察的样品,这是一种过渡金属二硫化物,它具有重要的非平衡动力学。实验结果显示,MIR 电场驱动显微镜(具有高于 30 fs 的增强时间分辨率)在 0 到 1 ps 的时间范围内成功可视化了样品中的光诱导超快非平衡动力学。观察结果与载波动力学相关的能带结构的变化一致。STM 系统还解析了具有原子分辨率的快照图像,可以跟随激发的影响。正如团队主要成员Yusuke Arashida 在新闻稿提到的那样,“虽然我们新型STM的放大倍数不以为奇,但却是在时间分辨率上的一重大进步”。
  • 极端反应“探索者”—— 微秒级时间分辨超灵敏红外光谱仪助力高温反应动力学研究
    高温、高压和快速反应相关的高能反应系统常常依赖于吸收光谱学进行反应动力学基础研究及在线监控。对于这样的端环境,高带宽的吸收光谱测量可以为非平衡环境中的物质形成、温度测量和量子态种群的研究提供丰富的信息。通常此类反应时间短,且经常伴随复杂的热化学反应,因此在高带宽基础上,光谱测量速度至关重要。然而在如此端的条件下直接进行快速光谱测量是一个具挑战的技术难题。现有的宽带测量技术,例如傅立叶变换红外光谱仪或快速调谐的宽扫描外腔量子联激光光谱,虽然能提供令人满意的光谱覆盖范围,达到宽光谱的测量要求,但由于其原理上低时间分辨率的特点,无法达到快速测量的目的。通常,快速测量解决方法是使用一系列激光测量系统在特定范围波长下获取物质的光谱信息,然后组合形成混合的光谱信息。这种方法虽然可以较快速地实现光谱测量,但其所能提供的频谱信息十分有限,限制了其在相关高能反应系统体系下进行反应动力学研究的应用。针对这一技术难题,IRsweep公司基于快速发展的量子联激光(QCL)双频率梳技术开发了红外固态快速双光梳红外光谱仪 (DCS)。DCS突破了传统傅里叶红外光谱仪受其工作原理和光源限制所带来的时间分辨率低、高的分辨率下信噪比低、红外透射方法难以测量厚度大及毫米尺度的样品等缺点。可同时满足高测量速度(微秒时间分辨率, 1 μs)、高光谱分辨率(3x10-4 cm-1)和宽光谱范围的要求,能够成功用于高温、高压、快速反应的端条件下的快速红外光谱研究。因此,该双光梳光谱仪在相关应用和文献报道中引起了研究者的广泛关注。近期,斯坦福大学的NICOLAS H. PINKOWSKI研究团队与IRsweep公司合作成功利用微秒时间分辨超灵敏双光梳红外光谱仪-IRis-F1(Dual-comb spectrometer, DCS)为我们演示了中红外QCL的双梳状光谱仪在高能气相反应中的微秒分辨单次测量的应用。实验中配备了两个频率梳和多套立的验证测量系统,在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应 (图1)。具体而言,作者在1225 K,2.8 大气压和2%p-C3H4 / 18%O2的预点火条件下,测量了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱(图2)。实验所采用的量子联激光的双梳状光谱仪(DCS)是由两个立运行的,非固定频率的频率梳组成,其发射波长带宽为179 cm-1 (1174 cm-1-1233 cm-1), 具有9.86 GHz的自由频谱范围和5 MHz的频梳间距,可实现实测4 μs的时间分辨率(理论时间分辨率 2 μs)。同时,作者使用另一套立的带间联激光(ICL)光谱仪对DCS测量的精度做了仔细的对比研究,确认了DCS测量的准确性。研究结果表明,单脉冲DCS可以以4 μs时间分辨测量速率解析丙炔氧化动力学(图3),DCS数据清楚显示:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。在剧烈的高温高压反应中(1 ms 内约2500K和60倍的温度和压力变化)DCS数据显示了出良好的信噪比,其信号的自然噪声抑制和时间分辨率在高焓测试环境中显示出明显优势。同时,立的辅助激光测量光谱(ICL)结果与DCS系统测量结果具有良好的一致性(图4)。此外,DCS能够解析与温度直接相关的量子态信息。并且,随着光谱模型和高温截面数据库的改进,将来DCS系统的测量准确性会进一步提升。 随着中红外双梳光谱技术的出现,为超灵敏双光梳红外光谱仪在高焓反应和非平衡环境的反应动力学研究中提供了广阔的研究机遇。研究者坚信超灵敏双光梳红外光谱仪在高能反应动力学研究中将会有更多应用前景。图1 高能反应系统实验装置示意图A:QCL双光梳快速红外光谱系统(DCS)包括相应的探测器;B:立的ICL激光系统用于探测p-C3H4反应;C:立的ICL激光探测系统,用于探测反应中水的变化 图2 2% p-C3H4 / 18% O2/ 80% Ar 在1225 K,2.8 大气压条件下丙炔氧化反应动力学研究结果(a)测量和模拟反应的热力学条件;(b)DCS测量的吸收光谱随时间的变化关系。 白色虚线区域表示具有高信噪比的两个区域 图3 丙炔氧化反应动力学DCS研究结果( 1215 cm-1-1225 cm-1)图4 p-C3H4 / Ar在 1120 K、3大气压条件下的高温扫描QCL激光(ICL, 灰色)和DCS(蓝色)光谱对比 参考文献:[1] Nicolas H. Pinkowski et al., Dual-comb spectroscopy for high-temperature reaction kinetics, 2020, Meas. Sci. Technol. 31 055501, https://doi.org/10.1088/1361-6501/ab6ecc.
  • 药代动力学领域新突破——小动物活体自由基检测系统助力体内自由基分布和药代动力学研究
    自由基是具有非偶电子的基团或原子,它具有非常强的化学反应活性。在生物体内,自由基高度的化学活性使得它可以与各类生物大分子反应使其变性,这使它成为了一把生物体的“双刃剑”:在炎症反应中自由基可以攻击外来病原体来保护生物体自身,而过度的自由基又会导致DNA变性甚至细胞坏死和凋亡。因此检测自由基的含量,尤其是在体内检测尤为重要。以一氧化氮为代表的自由基药物一直是药物学研究的重点。传统的药代动力学自由基测量,需要从生物体的不同部位提取体液,然后再使用电子顺磁共振波谱仪(electron paramagnetic resonance,EPR)来测量体液样品内的自由基含量。然而如何在生物体内定点、定时、定量地检测释放自由基药物,以及如何在时间、空间、剂量上测量生物体内的自由基药物,一直是药代动力学领域的难题。波兰Novilet公司新推出的小动物活体自由基检测系统ERI TM 600,是一款可对小鼠与大鼠等动物进行活体顺磁成像的商业化仪器。ERI TM 600突破了传统电子顺磁共振波谱仪仅能对体外提取物进行定量分析的局限,实现了对小鼠体内的自由基药物进行长时间的3D/2D实时成像观测。同时ERI TM 600配置了温度控制与呼吸监测仪,有效保证小动物在成像时维系正常的生理活动。ERI TM 600成像原理图ERI TM 600成像非常简单,仅需将小鼠麻醉之后,对荷瘤小鼠与对照小鼠注射OX063自旋探针即可。ERI TM 600在2分钟内可对小鼠进行255个投影扫描(25 cm2,精度500 μm),获得一系列的2D图像,然后通过软件对这些2D图像进行重构,获得小鼠的实时3D图像。ERI TM 600成像结果 近期发表于J. Phys. Chem.C的工作“Dynamic Electron Paramagnetic Resonance Imaging: Modern Technique for Biodistribution and Pharmacokinetic Imaging”表明与荷瘤小鼠相比,对照组小鼠探针(尤其在肿瘤部位)分布均匀。荷瘤小鼠探针的信号强度、峰值时间、流入流出比等药代动力学参数与对照小鼠差异明显。将3D成像图与小鼠体表照片相拟合,可以明显观察到肿瘤部位的ERI探针成像表征的药代动力学参数异常。ERI TM 600所得3D图像可以更加直观、准确、长时间地展现自由基药物在小鼠体内的药代动力学分布。 作为中国与进行先进技术、先进仪器交流的重要桥头堡,Quantum Design中国于2020年初引进了波兰Novilet公司的先进产品小动物活体自由基检测系统——ERI TM 600,欢迎感兴趣的老师咨询!

纳秒级动力学仪相关的方案

  • 利用微秒时间分辨超灵敏红外光谱仪研究高温反应动力学
    近期,斯坦福大学的NICOLAS H. PINKOWSKI研究团队与IRsweep公司合作成功利用微秒时间分辨超灵敏双光梳红外光谱仪-IRis-F1(Dual-comb spectrometer, DCS)演示了中红外QCL的双梳状光谱仪在高能气相反应中的微秒分辨单次测量的应用。实验中配备了两个频率梳和多套立的验证测量系统,在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应 。具体而言,作者在1225 K,2.8 大气压和2%p-C3H4 / 18%O2的预点火条件下,测量了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱。实验所采用的量子联激光的双梳状光谱仪(DCS)是由两个立运行的,非固定频率的频率梳组成,其发射波长带宽为179 cm-1 (1174 cm-1-1233 cm-1), 具有9.86 GHz的自由频谱范围和5 MHz的频梳间距,可实现实测4 μ s的时间分辨率(理论时间分辨率 2 μ s)。同时,作者使用另一套立的带间联激光(ICL)光谱仪对DCS测量的精度做了仔细的对比研究,确认了DCS测量的准确性。研究结果表明,单脉冲DCS可以以4 μ s时间分辨测量速率解析丙炔氧化动力学,DCS数据清楚显示:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。在剧烈的高温高压反应中(1 ms 内约2500K和60倍的温度和压力变化)DCS数据显示了出良好的信噪比,其信号的自然噪声抑制和时间分辨率在高焓测试环境中显示出明显优势。同时,立的辅助激光测量光谱(ICL)结果与DCS系统测量结果具有良好的一致性。此外,DCS能够解析与温度直接相关的量子态信息。并且,随着光谱模型和高温截面数据库的改进,将来DCS系统的测量准确性会进一步提升。 随着中红外双梳光谱技术的出现,为超灵敏双光梳红外光谱仪在高焓反应和非平衡环境的反应动力学研究中提供了广阔的研究机遇。研究者坚信超灵敏双光梳红外光谱仪在高能反应动力学研究中将会有更多应用前景。
  • FluorCam叶绿素荧光成像技术:OJIP快速荧光动力学曲线与QA-再氧化动力学曲线成像分析
    PAM荧光淬灭动力学曲线、OJIP快速荧光动力学曲线和QA-再氧化动力学曲线分析是叶绿素荧光技术的三大主要测量技术路线,分别对应光系统运行机理的不同方面。与PAM荧光淬灭分析主要针对光系统运行中较慢的光合稳态与荧光淬灭不同,OJIP快速荧光动力学曲线和QA-再氧化动力学曲线分析都需要非常高的检测速度。目前,能够同时完成这三种荧光动力学曲线测量的仪器只有FL6000双调制叶绿素荧光仪、 FluorCam封闭式荧光成像系统和FKM多光谱荧光动态显微成像系统。而由于OJIP快速荧光动力学曲线和QA-再氧化动力学曲线对技术的特殊要求,对这两种曲线的成像分析更是只有FluorCam封闭式荧光成像系统和FKM多光谱荧光动态显微成像系统能够实现。
  • 热动力学研究方案
    化学动力学研究化学反应的速率和反应的机理以及温度、压力、催化剂等外界因素对反应速率的影响,把热力学的反应可能性变为现实性,通过动力学研究:•给出有关反应机理的信息 (反应步骤、基元反应和限制 )•对反应速率的全方位描述 (告诉我们反应进行得如何之快 )•模拟研究 (例如其它条件下的反应预测,如不同的Phi因子) (免除规模放大、安全性和稳定性的反复试验 )•预测: -过程最优化(反应速率) -安全性(热生成速率) -稳定性(储存时间)

纳秒级动力学仪相关的资料

纳秒级动力学仪相关的论坛

  • 好书推荐: 《电化学动力学》

    好书推荐 《电化学动力学》 pdf格式书 名 电化学动力学 作 者 吴浩青 李永舫 出 版 社 高等教育出版社 出版时间 1998年6月第1版 内容提要 本书主要介绍电化学动力学的基本知识、研究方法及其最新进展。全书内容分为三部分:前三章介绍电极/溶液界面双电层的结构以及电化学反应动力学和扩散过程的理论;第四至七章介绍几种重要电化学研究方法(电位阶跃、电位扫描、控制电流、交流阻抗)中的电化学动力学 最后两章介绍电化学动力学在半导体光电化学和电化学嵌入反应中的应用和发展。  本书可供物理化学(电化学)专业研究生作教材,也可作为化学系高年级学生、从事电化学和物理化学的研究和教学人员以及从事电化学实际工作的工程技术人员的参考书。目录: 第一章电极-电解质溶液界面上的双电层第二章电化学反应动力学第三章扩散第四章电位阶跃下的电化学反应第五章电位扫描下的电化学反应第六章控制电流下的电化学反应第七章电极交流阻抗第八章半导体光电化学基础第九章电化学嵌入反应 [img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=14587]《电化学动力学》 [/url][em17]

  • 【分享】量子电动力学

    量子电动力学(Quantum Electrodynamics,简写为QED),是量子场论中最成熟的一个分支,它研究的对象是电磁相互作用的量子性质(即光子的发射和吸收)、带电粒子的产生和湮没、带电粒子间的散射、带电粒子与光子间的散射等等。它概括了原子物理、分子物理、固体物理、核物理和粒子物理各个领域中的电磁相互作用的基本原理。  量子电动力学是从量子力学发展而来。量子力学可以用微扰方法来处理光的吸收和受激发射,但却不能处理光的自发射。电磁场的量子化会遇到所谓的真空涨落问题。在用微扰方法计算高一级近似时,往往会出现发散困难,即计算结果变成无穷大,因而失去了确定意义。后来,人们利用电荷守恒消去了无穷大,并证明光子的静止质量为零。量子电动力学得以确立。量子电动力学克服了无穷大困难,理论结果可以计算到任意精度,并与实验符合得很好,量子电动力学的理论预言也被实验所证实。到20世纪40年代末50年代初,完备的量子电动力学理论被确立,并大获全胜。  量子电动力学认为,两个带电粒子(比如两个电子)是通过互相交换光子而相互作用的。这种交换可以有很多种不同的方式。最简单的,是其中一个电子发射出一个光子,另一个电子吸收这个光子。稍微复杂一点,一个电子发射出一个光子后,那光子又可以变成一对电子和正电子,这个正负电子对可以随后一起湮灭为光子,也可以由其中的那个正电子与原先的一个电子一起湮灭,使得结果看起来像是原先的电子运动到了新产生的那个电子的位置。更复杂的,产生出来的正负电子对还可以进一步发射光子,光子可以在变成正负电子对……而所有这些复杂的过程,最终表现为两个电子之间的相互作用。量子电动力学的计算表明,不同复杂程度的交换方式,对最终作用的贡献是不一样的。它们的贡献随着过程中光子的吸收或发射次数呈指数式下降,而这个指数的底,正好就是精细结构常数。或者说,在量子电动力学中,任何电磁现象都可以用精细结构常数的幂级数来表达。这样一来,精细结构常数就具有了全新的含义:它是电磁相互作用中电荷之间耦合强度的一种度量,或者说,它就是电磁相互作用的强度。

纳秒级动力学仪相关的耗材

  • 生物动力学附件 L2250145
    生物动力学附件这种生物动力学附件包括一个磁力搅拌式单样品池支架以及一个内置式温度传感器(0-100°C)的事件标记器。恒温效果通过外部水浴(不包括在产品套装内)而实现。本品包括6个搅拌棒。用于LS-45时需要辅助性PCB套件(L2250162)。订货信息:产品描述部件编号适用于LS50/45/55L2250145
  • ElectroForce 生物动力学软件 | 337536-0010
    订货信息:ElectroForce BioDynamic Software337536-0010Dynamic Link LibraryNote: Functionality to allow user-written programs using external programsto access test system data and functions. Example compatible programs areLabView, MatLab,Visual Basic.337534-0010External WaveformNote: Allows users to program custom waveforms, time histories, or extendedfunction generation sequences to use in tests where a nonstandard or morecomplex drive function is required337537-0010A/D MoverNote: Optional input channel for user-supplied external function (+/-10V high level analog input typical), Includes interface cable and project file.
  • ElectroForce 生物动力学其他配件 | 335138-0070
    订货信息:ElectroForceBioDynamic Other Accessories335138-0070UPS 1500VA 120V, Power Failure Backup for BioDynamic Pulsatile and 5100335168-0080UPS 1500VA 230V,Power Failure Backup for BioDynamic Pulsatile and 5100335168-0090UPS 2200VA 120V,Power Failure Backup for BioDynamic 5200335168-0100UPS 2200VA 230V,Power Failure Backup for BioDynamic 5200752960-0010System StatusIndicator (SSI) Light Kit
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制