当前位置: 仪器信息网 > 行业主题 > >

纳秒级动力学仪

仪器信息网纳秒级动力学仪专题为您提供2024年最新纳秒级动力学仪价格报价、厂家品牌的相关信息, 包括纳秒级动力学仪参数、型号等,不管是国产,还是进口品牌的纳秒级动力学仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳秒级动力学仪相关的耗材配件、试剂标物,还有纳秒级动力学仪相关的最新资讯、资料,以及纳秒级动力学仪相关的解决方案。

纳秒级动力学仪相关的资讯

  • 新型扫描隧道显微镜助力材料超快动力学研究
    扫描隧道显微镜 (STM) 基于量子隧穿效应能够以亚埃的纵向精度和真实原子分辨率对样品表面成像。无论是金属还是半导体,甚至到衬底上沉积的有机分子材料,均可直接可视化测量。然而,STM 的时间分辨率仅限于亚毫秒范围,不利于材料超快动力学的研究。 为了克服上述障碍,日本筑波大学的研究人员开发了一种新型 STM 系统,它采用基于激光的泵浦探针方法将时间分辨率从皮秒提高到数十飞秒(ACS Photonics,doi:10.1021/acsphotonics.2c00995)。该系统可以将极短时间尺度内发生的物理现象可视化,例如相变期间原子的重排或电子的快速激发。中红外电场驱动的扫描隧道显微镜系统示意图光泵浦探针法一般经常被用于一些超快现象测试。泵浦激光脉冲首先激发样品,然后经过一段时间延迟后,探测激光脉冲撞击样品并测量其透射率或反射率。测量的时间分辨率仅受激光脉冲持续时间的限制。研究人员将这种方法与电场驱动的 STM 相结合,后者使用载波包络相位控制的光源产生近场,从而在 STM 尖端和样品之间施加瞬时电场,从而捕捉到非平衡状态下的超快动力学现象。团队强调,他们的新型STM显微镜可广泛应用于包括太阳能电池或纳米级电子设备在内的各种各样的材料研究。该研究的主要负责人Hidemi Shigekawa 表示,在凝聚态物质中,动力学通常不是空间均匀的,而是受到原子缺陷等局部结构的强烈影响,这些结构可以在很短的时间内发生变化。在实验中,他们将经过一个近红外 (NIR) 波长范围和 8.1 fs 脉冲宽度的啁啾脉冲放大器后的光束分离,其中一束光束被转换为中红外 (MIR)。 NIR 光束通过一个光学延迟级,并与 MIR 光束以同轴排列,用于泵浦探针测量。它们被聚焦在容纳样品的超高真空室中的 STM 尖端顶点上。为了验证系统性能,研究人员使用 NIR 脉冲光作为激发,MIR 光作为探针进行了时间分辨 STM 测量。碲化钼作为被观察的样品,这是一种过渡金属二硫化物,它具有重要的非平衡动力学。实验结果显示,MIR 电场驱动显微镜(具有高于 30 fs 的增强时间分辨率)在 0 到 1 ps 的时间范围内成功可视化了样品中的光诱导超快非平衡动力学。观察结果与载波动力学相关的能带结构的变化一致。STM 系统还解析了具有原子分辨率的快照图像,可以跟随激发的影响。正如团队主要成员Yusuke Arashida 在新闻稿提到的那样,“虽然我们新型STM的放大倍数不以为奇,但却是在时间分辨率上的一重大进步”。
  • 极端反应“探索者”—— 微秒级时间分辨超灵敏红外光谱仪助力高温反应动力学研究
    高温、高压和快速反应相关的高能反应系统常常依赖于吸收光谱学进行反应动力学基础研究及在线监控。对于这样的端环境,高带宽的吸收光谱测量可以为非平衡环境中的物质形成、温度测量和量子态种群的研究提供丰富的信息。通常此类反应时间短,且经常伴随复杂的热化学反应,因此在高带宽基础上,光谱测量速度至关重要。然而在如此端的条件下直接进行快速光谱测量是一个具挑战的技术难题。现有的宽带测量技术,例如傅立叶变换红外光谱仪或快速调谐的宽扫描外腔量子联激光光谱,虽然能提供令人满意的光谱覆盖范围,达到宽光谱的测量要求,但由于其原理上低时间分辨率的特点,无法达到快速测量的目的。通常,快速测量解决方法是使用一系列激光测量系统在特定范围波长下获取物质的光谱信息,然后组合形成混合的光谱信息。这种方法虽然可以较快速地实现光谱测量,但其所能提供的频谱信息十分有限,限制了其在相关高能反应系统体系下进行反应动力学研究的应用。针对这一技术难题,IRsweep公司基于快速发展的量子联激光(QCL)双频率梳技术开发了红外固态快速双光梳红外光谱仪 (DCS)。DCS突破了传统傅里叶红外光谱仪受其工作原理和光源限制所带来的时间分辨率低、高的分辨率下信噪比低、红外透射方法难以测量厚度大及毫米尺度的样品等缺点。可同时满足高测量速度(微秒时间分辨率, 1 μs)、高光谱分辨率(3x10-4 cm-1)和宽光谱范围的要求,能够成功用于高温、高压、快速反应的端条件下的快速红外光谱研究。因此,该双光梳光谱仪在相关应用和文献报道中引起了研究者的广泛关注。近期,斯坦福大学的NICOLAS H. PINKOWSKI研究团队与IRsweep公司合作成功利用微秒时间分辨超灵敏双光梳红外光谱仪-IRis-F1(Dual-comb spectrometer, DCS)为我们演示了中红外QCL的双梳状光谱仪在高能气相反应中的微秒分辨单次测量的应用。实验中配备了两个频率梳和多套立的验证测量系统,在压力驱动下的高温、高压反应釜中研究了一种剧烈的丙炔氧化化学反应 (图1)。具体而言,作者在1225 K,2.8 大气压和2%p-C3H4 / 18%O2的预点火条件下,测量了丙炔与氧气之间1.0 毫秒高温反应的详细动力学光谱(图2)。实验所采用的量子联激光的双梳状光谱仪(DCS)是由两个立运行的,非固定频率的频率梳组成,其发射波长带宽为179 cm-1 (1174 cm-1-1233 cm-1), 具有9.86 GHz的自由频谱范围和5 MHz的频梳间距,可实现实测4 μs的时间分辨率(理论时间分辨率 2 μs)。同时,作者使用另一套立的带间联激光(ICL)光谱仪对DCS测量的精度做了仔细的对比研究,确认了DCS测量的准确性。研究结果表明,单脉冲DCS可以以4 μs时间分辨测量速率解析丙炔氧化动力学(图3),DCS数据清楚显示:在反应早期(0-0.6 ms)能观察到宽带丙炔吸收特征峰,而在0.75 ms之后可以观察到水的精细特征光谱。在剧烈的高温高压反应中(1 ms 内约2500K和60倍的温度和压力变化)DCS数据显示了出良好的信噪比,其信号的自然噪声抑制和时间分辨率在高焓测试环境中显示出明显优势。同时,立的辅助激光测量光谱(ICL)结果与DCS系统测量结果具有良好的一致性(图4)。此外,DCS能够解析与温度直接相关的量子态信息。并且,随着光谱模型和高温截面数据库的改进,将来DCS系统的测量准确性会进一步提升。 随着中红外双梳光谱技术的出现,为超灵敏双光梳红外光谱仪在高焓反应和非平衡环境的反应动力学研究中提供了广阔的研究机遇。研究者坚信超灵敏双光梳红外光谱仪在高能反应动力学研究中将会有更多应用前景。图1 高能反应系统实验装置示意图A:QCL双光梳快速红外光谱系统(DCS)包括相应的探测器;B:立的ICL激光系统用于探测p-C3H4反应;C:立的ICL激光探测系统,用于探测反应中水的变化 图2 2% p-C3H4 / 18% O2/ 80% Ar 在1225 K,2.8 大气压条件下丙炔氧化反应动力学研究结果(a)测量和模拟反应的热力学条件;(b)DCS测量的吸收光谱随时间的变化关系。 白色虚线区域表示具有高信噪比的两个区域 图3 丙炔氧化反应动力学DCS研究结果( 1215 cm-1-1225 cm-1)图4 p-C3H4 / Ar在 1120 K、3大气压条件下的高温扫描QCL激光(ICL, 灰色)和DCS(蓝色)光谱对比 参考文献:[1] Nicolas H. Pinkowski et al., Dual-comb spectroscopy for high-temperature reaction kinetics, 2020, Meas. Sci. Technol. 31 055501, https://doi.org/10.1088/1361-6501/ab6ecc.
  • 药代动力学领域新突破——小动物活体自由基检测系统助力体内自由基分布和药代动力学研究
    自由基是具有非偶电子的基团或原子,它具有非常强的化学反应活性。在生物体内,自由基高度的化学活性使得它可以与各类生物大分子反应使其变性,这使它成为了一把生物体的“双刃剑”:在炎症反应中自由基可以攻击外来病原体来保护生物体自身,而过度的自由基又会导致DNA变性甚至细胞坏死和凋亡。因此检测自由基的含量,尤其是在体内检测尤为重要。以一氧化氮为代表的自由基药物一直是药物学研究的重点。传统的药代动力学自由基测量,需要从生物体的不同部位提取体液,然后再使用电子顺磁共振波谱仪(electron paramagnetic resonance,EPR)来测量体液样品内的自由基含量。然而如何在生物体内定点、定时、定量地检测释放自由基药物,以及如何在时间、空间、剂量上测量生物体内的自由基药物,一直是药代动力学领域的难题。波兰Novilet公司新推出的小动物活体自由基检测系统ERI TM 600,是一款可对小鼠与大鼠等动物进行活体顺磁成像的商业化仪器。ERI TM 600突破了传统电子顺磁共振波谱仪仅能对体外提取物进行定量分析的局限,实现了对小鼠体内的自由基药物进行长时间的3D/2D实时成像观测。同时ERI TM 600配置了温度控制与呼吸监测仪,有效保证小动物在成像时维系正常的生理活动。ERI TM 600成像原理图ERI TM 600成像非常简单,仅需将小鼠麻醉之后,对荷瘤小鼠与对照小鼠注射OX063自旋探针即可。ERI TM 600在2分钟内可对小鼠进行255个投影扫描(25 cm2,精度500 μm),获得一系列的2D图像,然后通过软件对这些2D图像进行重构,获得小鼠的实时3D图像。ERI TM 600成像结果 近期发表于J. Phys. Chem.C的工作“Dynamic Electron Paramagnetic Resonance Imaging: Modern Technique for Biodistribution and Pharmacokinetic Imaging”表明与荷瘤小鼠相比,对照组小鼠探针(尤其在肿瘤部位)分布均匀。荷瘤小鼠探针的信号强度、峰值时间、流入流出比等药代动力学参数与对照小鼠差异明显。将3D成像图与小鼠体表照片相拟合,可以明显观察到肿瘤部位的ERI探针成像表征的药代动力学参数异常。ERI TM 600所得3D图像可以更加直观、准确、长时间地展现自由基药物在小鼠体内的药代动力学分布。 作为中国与进行先进技术、先进仪器交流的重要桥头堡,Quantum Design中国于2020年初引进了波兰Novilet公司的先进产品小动物活体自由基检测系统——ERI TM 600,欢迎感兴趣的老师咨询!
  • 马尔文帕纳科:创新GCI、ITC技术,打造动力学与热力学分析一体化分子互作平台
    近年来,分子互作分析仪市场涌现出很多新品牌、新产品参与市场竞争,技术多元化,“百花齐放”。目前国内外分子互作分析仪厂商已涌现近20余家,为帮助广大科研工作者了解前沿分子互作分析技术、增强业界相关人员之间的信息交流,同时也为用户提供更丰富的分子互作分析产品与技术解决方案,仪器信息网特别策划了《“百舸争流”,谁将成为下一代金标准?——分子互作技术与应用进展》专题。本期,我们特别邀请到马尔文帕纳科生命科学业务发展经理、微量热技术&分子互作技术产品经理韩佩韦谈一谈马尔文帕纳科的创新分子互作分析技术及他对该技术应用及市场的看法。仪器信息网:贵司在分子互作分析领域主推的仪器产品是什么?请您谈谈该产品的核心竞争力。韩佩韦:马尔文帕纳科公司不断致力于为基础科研与药物研发领域提供更先进的分析仪器和解决方案,在分子互作分析领域我们公司主推的产品是一种将动力学分析与热力学分析整合为一体的非标记分子互作平台,包括Creoptix WAVE系列分子相互作用仪和MicroCal PEAQ-ITC系列等温滴定量热仪等。众所周知,深入全面研究分子间相互作用需要借用多种原理互补的技术进行多角度分析,其中,动力学分析技术能够准确描述分子间的识别能力与结合的稳定性和半衰期,是一种实时、动态检测的手段;而热力学分析则深入探究分子互作的能量学本质,即分子间互作的机理,包括特异性相互作用驱动、疏水相互作用以及构象变化驱动。我们Creoptix WAVE分子相互作用仪拥有基于光栅耦合干涉技术(Grating-Coupled Interferometry,GCI)的光学生物传感器,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据,帮助药物和生物科学研究人员加快新药发现和开发的进程。另外,Creoptix WAVE产品采用了waveRAPID动力学检测方式和创新性微流控技术。不同于传统力学的检测方式,只需一个浓度的样品,无需稀释,能够更快地得到动力学数据(waveRAPID 比传统动力学检测约快10倍),解决了市面部分分子互作技术的低灵敏度、无法捕获快速动力学、表观亲和力偏离、流路易堵塞以及动力学分析中需要配制大量浓度梯度等问题。Creoptix WAVE 分子相互作用仪MicroCal PEAQ-ITC 是一款高灵敏度、低容量的等温滴定量热仪,可用于生物分子相互作用的无标记溶液内研究。它可以在单次实验中直接测量所有结合参数,并且可使用低至10μg容量的样品对无论是高亲和力还是低亲和力的结合剂进行分析。MicroCal PEAQ-ITC可用于多种应用,包括表征小分子、蛋白质、抗体、核酸、脂质和其他生物分子的分子间相互作用等。MicroCal PEAQ-ITC 等温滴定量热仪仪器信息网:请回顾一下贵公司分子互作分析仪技术的发展历程。韩佩韦:分子间相互作用的生物物理表征是研究分子互作的重要环节,马尔文帕纳科一直致力于帮助用户从不同角度阐述分子互作的机理和特征。其中,采用热力学代表技术的MicroCal ITC系列成立于1977年,是最早商业化的微量热技术品牌,在业界拥有众多粉丝,其先后多款经典产品如VP-ITC, ITC200以及PEAQ-ITC都有众多的用户群和文献支持;动力学代表技术Creoptix WAVE系列则成立于其他技术如SPR/BLI等相对成熟的时期,正是在发现了现有技术的某些局限和不足后,Creoptix开发并成功商业化了新一代动力学分析技术——光栅耦合干涉技术(Grating-Coupled Interferometry,GCI)。目前,MicroCal和Creoptix品牌都是马尔文帕纳科旗下分子互作分析的中坚力量,与MicroCal DSC和Light Scattering一起打造了从样品质量控制直至动力学与热力学全面分析的Label-Free分析平台。仪器信息网:贵公司分子互作分析仪的主要应用领域有哪些?韩佩韦:马尔文帕纳科旗下的非标记分子互作平台几乎应用于分子互作相关研究的各个领域:在药物研发领域包括药靶确认,片段药物、小分子药物、肽段和核酸药物的筛选、表征与优化,抗体药物筛选、表位分析、结构改造,制剂开发、稳定性、可比性和生物相似性研究等;诊断试剂开发与优化、生理条件下(如血清、血浆等复杂体系)测试等等;在基础科研中则包括癌症、神经科学、免疫科学、膜蛋白、环境科学等领域。目前,研究者应用我们的技术和产品组合来研究分子互作相关的定性与定量信息,包括有无结合、结合特异性和选择性、结合强弱、结合快慢与稳定性以及部分非生物和非水相体系,如超分子组装、有机溶剂环境等。比如在冠状病毒(COVID-19)疫苗研发过程中,Creoptix WAVE system为病毒蛋白和抗体的结合动力学研究提供了有力支持。WAVE system系统将高信号和高时间分辨率与ELISA(酶联免疫吸附测定)才能实现的样品稳定性结合起来。实时分析广泛的生物流体样品的相互作用,提供完整的动力学数据,包括亲和力和高精度的结合和解离常数。由于整个微流体都包含在外置的传感器芯片WAVEchip中,可将实验中交叉污染的风险降至最低。WAVE system可用于表征病毒样颗粒(VLPs)的动力学,为研发疫苗的诱导免疫反应提供一个有效的平台。一种单克隆抗体结合嵌入VLPs中的蛋白质仪器信息网:您如何看待当前分子互作分析仪市场及前景?未来看好哪些细分领域?韩佩韦:我未来更看好分子互作技术在医学临床分析、食品分析、细胞与基因治疗领域等领域的应用。我的个人观点是当今的分子互作分析市场百花争艳,百家争鸣。各种不同原理的技术和产品层出不穷,研究者可以更好的根据自己的需求和问题来找到适合的技术,这对于技术发展和研究者而言都无疑是件好事,无论是进口的还是国产的技术,每种技术都有其各自的优点和局限,能够解决自己问题的才是最好的。随着市场的竞争,我未来更看好分子互作技术在医学临床分析、食品分析、细胞与基因治疗领域等领域的应用。马尔文帕纳科 韩佩韦韩佩韦,中科院生物物理所生物物理学博士,马尔文帕纳科生命科学业务发展经理、微量热技术和分子互作技术产品经理。长期负责蛋白质稳定性以及分子间相互作用技术如DSC,ITC,SPR等的技术支持和市场拓展。在2014年加入马尔文帕纳科之前,多年任职于通用电气(中国)医疗集团生命科学部(现Cytiva),曾任技术经理、Biacore & MicroCal产品经理和Label-Free技术资深应用科学家等职位。韩佩韦博士长期活跃于生命科学领域和生物制药行业,组织和举办过相关的几百场技术交流会和培训班,并在多个大型会议上做分会技术报告,在分子相互作用领域和微量热应用领域具有丰富的经验。
  • 第三届全国热分析动力学与热动力学学术会议(第二轮通知)
    中国化学会第三届全国热分析动力学与热动力学学术会议暨江苏省第三届热分析技术研讨会(第二轮通知)  The 3rd National Symposium on Thermal Analysis Kinetics and Thermokinetics of Chinese Chemical Society(3rd TAKT)& The 3rd National Symposium on Thermal Analysis of Jiangsu Province(3rd JTA)  受中国化学会的委托,由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办的“中国化学会第三届全国热分析动力学与热动力学学术会议(3rd TAKT)”将于2011年10月20-22日在江苏省南京市召开,会议期间同时召开“江苏省第三届热分析技术研讨会(3rd JTA)”。本次会议将就近两年来热分析、热分析动力学和热动力学在理论研究、新仪器设计与分析技术方面的进展以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。会议将邀请国内、外热分析、热分析动力学、热动力学研究领域内的著名专家领衔主讲,同时,会议期间还将展示一批国内外最新热分析仪器及相关产品,提供大量的最新技术、最新测试方法等资料。热忱邀请相关领域的科研、教学工作者和研究生踊跃投稿、与会参加研讨交流。  另外,为配合“国际化学年在中国”活动,会议期间,我们还将举办“国际先进热分析技术讲习班”,特邀请德国Rostock大学物理系、Thermochimica Acta副主编Christoph Schick教授,比利时天主教Lueven大学化学系、前欧洲热分析协会主席Vincent Mathot教授等人进行讲座,为会议参加者提供一个专业的培训学习和增长见闻的机会,同时也为热分析领域的研究骨干提供一个国际交流与合作的平台。讲习班开班授课时间为:2011年10月20日下午1:30。讲习班结束我们将颁发培训证书,并设立“Mettler-Toledo优秀学员奖”若干名,奖品为500G移动硬盘。  一、会议组织委员会  主 席:陈国祥,韩布兴,尉志武  副主席:赵厚民,张建军,魏少华,张明明,王昉  秘书长:汤伟  二、会议学术委员会  主 任 委员:韩布兴  副主任委员(以姓氏拼音为序):  陈启元,高胜利,刘义,沈伟国,孙立贤,王键吉,尉志武  委 员(以姓氏拼音为序):  安学勤,白同春,陈健,陈三平,成一,杜为红,杜勇,顾敏芬,关伟,胡文兵,李浩然,李小云,李武,刘洪来,刘育,陆昌伟,卢雁,孟祥光,孙建平,谭卫红,檀亦兵,王保怀,汪存信,王昉,吴昊,王金本,王琦,王晓东,王毅琳,杨家振,杨腊虎,郁清,袁钻如,张洪林,张建军,张建玲,张堃,朱立忠,张同来,赵凤起  三、大会主题:展现热分析动力学与热动力学以及热分析领域的主要研究成果。  大会专题学术报告题目及主讲人:  1、 热分析动力学和热动力学进展 西安近代化学研究所 胡荣祖 教授  2、 生命体系中的热动力学 武汉大学化学与分子科学学院 刘义 教授  3、 含能配合物的热动力学研究 西北大学化学与材料科学学院 高胜利 教授  4、 热分析动力学的研究与应用 南京理工大学化学化工学院 成一教授  5、 新型储氢材料的纳米限域及其热化学研究 中国科学院大连化学物理研究所航天催化与新材料研究室 孙立贤教授  6、 脂质体相平衡与药物释放 南京师范大学化学与材料科学学院 安学勤教授  7、 热分析在药物研究中的作用 中国食品药品检定研究院 杨腊虎教授  8、 一些复杂软物质的热分析研究 北京大学化学与分子工程学院 陈尔强教授  9、 聚合物结晶热分析的现状和挑战 南京大学化学化工学院 胡文兵教授  10、高速扫描高灵敏量热仪的研制与应用 南京大学化学化工学院 周东山教授  11、国内外知名仪器厂商热分析新产品、新技术及其应用报告  四、会议交流形式:出版大会论文集、大会特邀报告、专题报告与讨论、墙报展讲。  五、征文内容:A. 热分析动力学理论与研究进展 热分析动力学的仪器功能、实验方法和数据处理软件的开发等 热分析动力学在无机、有机、高分子、材料、生物等各个领域中的应用 B. 热动力学理论与研究进展 热动力学的仪器功能、实验方法和数据处理软件的开发等 热动力学在无机、有机、高分子、材料、生物等各个领域中的应用 C.热分析与量热学领域内的研究工作。D.其他  六、论文要求: 1、应征论文应未在国内外公开发行的学术刊物上发表过。2、应征论文详细摘要将装订成集。论文摘要格式要求如下:以中文或英文提供论文摘要2页。中文摘要内容包括:题目(三号黑体居中)、作者(四号仿宋居中)、作者单位(五号宋体居中,含城市名称,邮政编码和E-mail地址并用逗号分开)、关键词(自版芯左起顶格)、摘要(五号宋体)及主要参考文献(自版芯左起顶格)。英文摘要使用Times New Roman字体,字号、格式同中文摘要。会议论文以A4版面编排,上下页边距2.5 cm,左右页边距3.0 cm。论文摘要需在右上角注明论文类别字母(按征文范围:A、B、C、D)。论文电子版请发至TAKT2011 @126.com信箱,论文征集截稿日期:2011年9月1日。3、作者中如有学生,请在第一页左下角脚注处说明清楚。4、特别提示:大会论文特设“Mettler-Toledo优秀学生论文奖”,包括在职研究生,论文第一作者要求为学生。分设特等奖(奖品ipad),一等奖(奖品itouch),二等奖(500G移动硬盘),三等奖。  七、会议日期 : 2011年10月20-22日  八、会议地点:南京古南都饭店江南春厅(三楼)。(南京市广州路208号)  九、会议注册:650元/人(2011年8月30日前汇款),750元/人(现场注册)   学生:450元/人(2010年8月30日前汇款),550元/人(现场注册) 陪同:450元/人   论文审理费:60元/篇。讲习班: 200元/人  邮局汇款:南京市龙蟠路189号 江苏省分析测试协会 汤伟 收 (汇款附言中请注明“TAKT2011”)  银行汇款:汇款单位:江苏省分析测试协会 汇款帐号:320006610010149002047  开 户 行:江苏南京交行玄武支行  十、联系方式:  联系人:江苏省分析测试协会 汤伟(电话:025-85485940, 13912996398 传真:025-85404940)   南京师范大学 王昉(手机:13851614122)   河北师范大学 张建军(手机:15533995800)  Email:TAKT2011@126.com  中国化学会第十五届全国化学热力学和热分析专业委员会  江苏省分析测试协会  南京师范大学  河北师范大学  二○一一年四月十八日
  • 做世界一流的药代动力学研究平台——访药代动力学重点实验室王广基院士
    p span style="FONT-FAMILY: times new roman" 药代动力学在我国和世界上发展的很快,是创新药物研发中不可或缺的重要研究内容,甚至决定了药物开发的命运。药代动力学是一门多交叉学科,定量研究药物在体内的吸收、分布、代谢、排泄(ADME),也融合了药理学、药物分析、药剂学、中药学、细胞生物学、分子生物学、实验动物学等多门学科的相关知识。药代动力学的应用研究主要包括创新药物临床前的评价和申报、新药的临床药动学研究及评价、中药与生物大分子药物的药代动力学研究等。/span/ppspan style="FONT-FAMILY: times new roman"  中国工程院院士王广基所带领的江苏省药代动力学重点实验室的研究团队在国内的创新药物药代动力学、中药药代动力学和细胞药代动力学等方面取得了令人瞩目的成就。日前,仪器信息网编辑在中国药科大学药代动力学重点实验室采访了王广基院士。/span/ppspan style="FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: rgb(112,48,160)"strong  王广基所带领的药代动力学实验室在国内外取得了令人瞩目的成就/strong/span/ppspan style="FONT-FAMILY: times new roman"  王广基所带领的药代动力学实验室先后成为了江苏省药物代谢动力学重点实验室、国家科技部临床前药物代谢动力学技术平台建设牵头单位、国家中医药管理局“中药复方药代动力学方法重点研究室”, 天然药物活性组分与药效国家重点实验室核心单元;先后承担了包括国家“863”计划、“973”计划、“国家自然科学基金”重点项目、国家“重大新药创制”科技重大专项、“国家科技支撑计划”等重大研究项目30余项。在国内外核心期刊发表科研论文320余篇,申请发明专利30多项。/span/pp style="TEXT-ALIGN: center"img title="IMG_1417_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/0696db27-0b35-48a5-b151-d8e91f690cc0.jpg"//pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong王广基院士/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  王广基带领的药代动力学重点实验室是国内领先的药代动力学研究实验室,同时在该研究领域也是世界一流的。王广基对国内的药代动力学研究很有信心,他表示:“我国的药代动力学研究水平已经与发达国家接轨。”该实验室的很多研究成果都处于国际领先水平,据介绍该团队撰写了国际上第一篇细胞药代动力学研究综述,并发表于国际药代动力学权威杂志DMR,此文章属国际首次系统提出细胞PK/PD研究理论与技术方法,推动了药代动力学研究从“血浆”到“细胞”、从“宏观”到“微观”的突破。中药药代动力学研究的技术体系也得到了国内、国际上的广泛认可,如国际著名分析化学家Dr.Brack(德国)在Trends AC(国际化学分析顶级期刊)上将他们建立的“诊断离子桥联网络”策略评为复杂基质中未知成分分析的九大创新策略之一。/span/ppspan style="FONT-FAMILY: times new roman"  药代动力学的基础研究主要包括针对ADME环节的各种体内外模型的建立及优化,药物吸收/代谢机制、调控途径,PK/PD(药动/药效结合研究)模型及由此衍生出来的各类数学模型的建立及评价等。如何将药代动力学的研究理论与技术应用到创新药物研究中是王广基所带领团队一直在深入研究的内容。/span/ppspan style="FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: rgb(112,48,160)"strong  探索中药多成分药代动力学研究新技术,实现药代动力学研究从“单成分”向“多成分”的突破/strong/span/ppspan style="FONT-FAMILY: times new roman"  中药现代化的研究中,需要对中药的一锅汤进行系统研究,包括“汤”里面究竟有哪些成分、成分的比例和量是多少 人服用以后,有多少成分吸收进入体内、有哪些成分进入体内后发生转化、起效的成分是哪些等。/span/ppspan style="FONT-FAMILY: times new roman"  针对中药成分构成复杂、代谢多样、体内浓度低等难题,王广基及其团队创建了高效普适的中药复杂成分体内过程研究方法学体系。如:“诊断离子桥联网络”、“相对曝露法”、“物质组-代谢组关联网络”等策略。/span/ppspan style="FONT-FAMILY: times new roman"  王广基介绍说:“诊断离子桥联网络技术即采用多级质谱对复杂组分碎裂分析,得到各成分的多级碎片离子,根据碎片离子进行各组分的桥接,从而实现化合物的快速归属” 。这一技术使得复杂组分,尤其是完全未知的成分的鉴定具有重要意义。目前我们发表的有关该技术的论文在国际期刊上已被引用47次。此技术也被用于多种中药方剂及环境污染物的分析中。”质量亏损过滤技术很早就被提出,并一直被应用于单个西药成分的代谢物鉴定中。对于适用于中药多组分的质量亏损过滤技术,王广基说:“质量亏损过滤用于去除基质相关的大量的背景离子,缩小假阳性的数目,使得目标化合物从背景噪音脱颖而出。这一技术的应用使得中药复杂成分中同一类化合物可以快速同时被检出,分析效率大幅度提高。”/span/ppspan style="FONT-FAMILY: times new roman"  在突破核心技术难题的基础上,王广基带领团队探索中药整体效应,取得了很多成果。例如,在人参皂苷的抗抑郁作用研究方面,该团队发现人参皂苷难以透过血脑屏障,但可调节免疫细胞及内源性神经递质的代谢转运,阻断炎症因子向脑部的传递,发挥脑神经保护作用。/span/ppspan style="FONT-FAMILY: times new roman"  中药药代相关的研究成果获2009年国家科技进步二等奖、2012年江苏省科技进步一等奖 完成的“十一五”重大专项项目“中药复方药代动力学研究关键技术”获评全国第一。/span/ppspan style="FONT-FAMILY: times new roman"  对于药效明确、机制不明的中药,可以通过分析内源性小分子物质群的改变等代谢研究手段来考察其药物机制和作用效果。王广基以人参对血压双向的调节作用为例,介绍了有关中药药效和作用机制的研究内容。对于高血压而言,很多西药的降压作用很明显,降压效果很快体现,但是,一旦停药后血压又反弹回原有的水平。人参降压作用比较温和,但是降压作用持久,在停药后反弹速率显著低于西药。王广基说:“通过代谢组学的研究,检测体内的内源性小分子代谢物群,发现高血压与正常人体内的代谢组的分群区分很明显。这说明高血压患者体内的生理生化代谢等机体的功能状态发生了偏移,偏离了正常状态。而人参皂苷具有一定的”纠偏“作用,高血压患者给予人参以后,偏离正常状态的代谢组有向正常状态恢复的趋势。/span/ppspan style="FONT-FAMILY: times new roman"  /spanspan style="FONT-SIZE: 20px FONT-FAMILY: times new roman COLOR: rgb(112,48,160)"strong质谱技术是药代动力学研究的重要手段/strong/span/ppspan style="FONT-FAMILY: times new roman"  质谱技术、细胞与分子生物学模型、PK/PD模型等都是药代动力学研究的常规手段。质谱主要用于测定血液、尿液、组织等生物样品中的微量药物浓度、代谢物鉴定和内源性成分的分离分析。/span/ppspan style="FONT-FAMILY: times new roman"  该实验室质谱仪器非常多,其中大多数还是单级四极杆和三重四极杆质谱。王广基说:“定量分析是药物代谢研究的基础,也是我们做的最多的工作。我们目前的药物和代谢物的定量工作主要还是采用四极杆质谱分析。”/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_1361_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/17acd960-08dd-4f10-b7e2-3de02104dfd3.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong正在运行的岛津四极杆质谱仪/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  IT-TOF主要用于代谢物分析及其中药多组分的体内外物质基础的鉴定。王广基说:“2007年,我们开始将岛津LC-IT-TOF/MS(离子阱-飞行时间串联质谱)用于中药复杂未知成分定性和定量分析、中药体内复杂代谢产物分析与体内外物质关联网络分析等新领域。” 通过对中药复杂成分分析研究,王广基团队先后在Anal Chem,J Mass Spectrom, Talanta等国际化学分析领域权威期刊发表论文30余篇。“这些文章在国际上充分展示了LC-IT-TOF/MS在复杂未知成分定性分析中的卓越性能和广阔的应用前景。”王广基说。/span/ppspan style="FONT-FAMILY: times new roman"  王广基及其实验室的研究者曾多次在国内外学术会议上报告了相关研究成果,基于IT-TOF的研究成果已经产生了深远的影响。马来西亚、新加坡和国内的制药企业正在寻求与王广基带领的药代动力学重点实验室在IT-TOF应用中的合作。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_1382_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/c4879eec-d7a5-47a6-acbc-35382f3c351e.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong正在运行的岛津LCMS-IT-TOF/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  在参观实验室时,王广基告诉编者,实验室在使用MALDI-TOF进行生物大分子生物药物的药代动力学研究及基于质谱成像技术的组织分布研究。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="IMG_1380_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/266ad761-b4b7-4a09-b8a5-9e350479ac83.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong正在运行的岛津MALDI-TOF质谱/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  王广基认为质谱技术特别是液质联用技术对于药代动力学研究有着非常重要的意义。他说:“首先,对药物的动力学特征研究一般分为定性研究和定量研究两个方面,对于定性来说,随着各种杂交质谱技术的出现,液质联用可以给出多级碎裂信息和准确分子量,对于化合物及其代谢物的结构推断提供了强有力的工具。此外,定量研究更加需要质谱,由于生物样本中干扰大、药物浓度低,而质谱的专属性强、灵敏度高,目前,大部分药物的药代动力学研究都是用质谱完成的。”/span/ppspan style="FONT-FAMILY: times new roman"  编者看到该实验室岛津的仪器非常多,大部分质谱仪出自岛津。时逢岛津公司成立140周年,在编者问是否对岛津有何期待时,王广基代表中国药科大学祝愿岛津创新不止、扬帆起航,朝着更高的目标不断迈进,取得更加辉煌的成就!王广基说“岛津以科学技术向社会做贡献,愿其早日实现‘为了人类和地球的健康’之愿望!”/span/pp style="TEXT-ALIGN: center"img title="DSC_7100_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/7df496f6-f064-4d2a-b9e8-901a67b8a3c4.jpg"//pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-SIZE: 14px FONT-FAMILY: times new roman COLOR: rgb(0,32,96)"strong药代动力学实验室合影/strong/span/span/pp style="TEXT-ALIGN: right"span style="FONT-FAMILY: times new roman"采访编辑:郭浩楠/spanbr//p
  • 一文了解材料热动力学概念
    pstrong1.热、动力学概述/strong/pp  自然界中发生的一切物理、化学和生物代谢反应,通常都伴随着热效应的变化,人们对热本质的认识经历了漫长曲折的探索历程。/pp  20世纪初,Planck、Poincare、Gibbs等科学家以宏观系统为研究对象,基于热力学第一、二定律,并定义了焓、熵、亥姆霍兹和吉布斯等函数,加上P、V、T等可以直接测定的客观性质,经过归纳与演绎推理,得到一系列热力学公式和结论,用来解决能量、相和反应平衡问题,这便是经典热力学的基本框架。经典热力学研究的对象是系统中的物质和能量的交换,它是不断逼近极限的科学,只讨论变化前后的平衡状态,不涉及物质内部粒子的微观结构。/pp  Boltzmann等人将量子力学与经典热力学相结合,形成了统计热力学。统计热力学属于从微观到宏观的方法,它从微观粒子的性质出发,通过求统计概率,定义出系统或粒子的配分函数,以此为桥梁建立起与宏观性质的联系。/pp  时间是热力学中非常重要的独立变量,怎样处理时间变量是区别不同层次热力学的标志,在物理学中利用熵增来描述时间的单向性。热力学研究可能性,动力学研究现实性,即变化速率和变化机理。动力学是反应进度与时间的函数关系,系统的行为状态和输出只取决于起始状态和随后的输入。/pp  自然界中发生的好多现象都是在非平衡态进行的不可逆过程,这就推动了热力学由平衡态向非平衡态发展。20世纪50年代,Prigogine I、Onsager L等人形成了非平衡态热力学(Non-equilibrium Thermodynamics),局域平衡假设是非平衡态热力学的中心假设。其中,Onsager L于1931年确立了唯象系数的倒易关系,Prigogine 在1945年提出了非平衡定态的最小熵增原理,适用于接近平衡状态的线性非平衡体系。对于远离平衡态的系统,以Progogine为首的布鲁塞尔学派经过多年的努力,建立了著名的耗散结构理论,后来通过云街、贝纳德对流实验等一些自组织现象(见图1)得以证实,耗散结构理论指出远离平衡的开放系统可以形成有序状态,打开了物理科学通向生命科学的窗口。br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201809/uepic/436c0be6-c410-4216-9391-914804187287.jpg" title="图1 一些自组织现象.png" alt="图1 一些自组织现象.png" width="400" height="313" border="0" vspace="0" style="width: 400px height: 313px "//pp style="text-align: center "strong图1 一些自组织现象/strong/pp  目前,热动力学不再仅仅是研究热现象基本规律的科学,它和系统理论、非线性科学、生命科学、宇宙起源等密切相关,其应用涉及物理学、化学、生物、工程技术,以及宇宙学和社会学科[1]。/ppstrong2.材料热力学的形成和发展/strong/pp  现代材料科学的进步和发展一直受到热力学的支撑和帮助,材料热力学是经典热力学与统计热力学理论在材料科学领域的应用,其形成和发展正是材料科学走向成熟的标志之一。/pp  从1876年Gibbs相律的出现,1899年H. Roozeboom把相律应用到多组元系统,1900年,Roberts-Austen构建了Fe-Fe3C相图的最初形式,为钢铁材料的研究提供了理论支撑 再到20世纪初,G. Tamman等通过实验建立了大量金属系相图,有力推地动了合金材料的开发 50年代初R. Kikuchi提出了关于熵描述的现代统计理论,为热力学理论和第一性原理结合起来创造了条件 60年代初M. Hillert等对于非平衡系统热力学的研究,导致了失稳分解领域的出现,丰富了材料组织形成规律的认识 70年代由L. Kaufman、M. Hillert等倡导的相图热力学计算(CALPHAD),使材料研究逐渐进入到根据实际需要进行材料设计的时代[2]。/pp  2011年6月,美国宣布了一项超过5亿美元的“先进制造业伙伴关系”计划,核心内容之一是“材料基因组计划(materials genome initiative, MGI)”,其目的是为新材料的发展提供必要的工具集,通过强大的计算分析减少对物理实验的依赖,加上实验与表征方面的进步,显著加快新材料投入市场的种类与速度,开发周期可从目前的10~20年缩短至2~3年,图2比较了传统材料设计与现代材料设计的流程。br//pp style="text-align:center"img src="https://img1.17img.cn/17img/images/201809/uepic/1f972848-2ff1-4a22-9f2f-766750dfbfc7.jpg" title="图2 传统材料设计与现代材料设计流程对比.png" alt="图2 传统材料设计与现代材料设计流程对比.png" width="400" height="371" border="0" vspace="0" style="width: 400px height: 371px "//pp style="text-align: center "strong图2 传统材料设计与现代材料设计流程对比/strong/pp  材料热力学研究固态材料的熔化与凝固、固态相变、相平衡关系与成分、微观结构稳定性、相变的方向与驱动力等。为了描述各种不同类型物相的自由能、焓、熵等,曾提出过各种唯象的或统计的热力学模型,比如,理想溶体模型、正规溶体模型、亚正规溶体模型、准化学模型、原子缔和模型、中心原子模型、双亚点阵模型、集团变分模型(CVM)、Bragg-Williams近似、Bethe近似、Ising近似、Miedema近似等。扩散是动力学研究的主要内容,包括凝固过程中晶核的形成和长,以及在热处理过程中合金的均匀化、溶质原子的分布与再分配,可通过菲克第一、二定律推导。/pp  热力学计算的涵盖范围很广,分析和理解材料学问题的重要工具有:Gm-x图、相图、TTT曲线、CCT曲线等。其中,最成功的核心应用是相图计算。相图依据获得的方法可以分为三类:/pp  1、实验相图:利用实验手段(DSC、DTA、TG、X射线衍射、电子探针微区成分分析等),以二、三元系为主。/pp  2、理论相图,也称第一性原理计算相图,不需要任何参数,利用Ab initio method实现的理论计算相图,只在个别二元和三元体系材料设计方面有少量报道。/pp  3、计算相图,其核心是理论模型与热力学数据库的计算机耦合。目前国际上流行的软件多采用CALPHAD模式,包括Thermo-Calc、Pandat、FactSage、Mtdata、JMatPro等。CALPHAD模式中对溶体自由能的描述大部分采用亚正规溶体模型,流程如图3所示,它是根据体系中各相的特点,集热力学性质、相平衡数据、晶体结构等信息于一体,建立热力学模型和自由能表达式,然后基于多元多相平衡的热力学条件计算相图,最终获得体系的具有热力学自洽性的相图和描述各相热力学性质的优化参数。/pp style="text-align: center "  例如,王翠萍,刘兴军,大沼郁雄等人利用CALPHAD方法评估了Cu-Ni-Sn三元系各相的热力学参数,其计算结果与实验值吻合得很好,如图4所示,他们还计算了该三元系中bcc相的有序无序转变及fcc相的溶解度间隙,对利用析出强化以及Spinodal分解开发高强度和高导电性的新型Cu基合金的组织设计具有一定的指导意义[3]。br/strongimg src="https://img1.17img.cn/17img/images/201809/uepic/a0a89f13-1022-49a1-9fd6-5604b5b5b379.jpg" title="图3 CALPHAD方法流程图.png" alt="图3 CALPHAD方法流程图.png" width="400" height="401" border="0" vspace="0" style="width: 400px height: 401px "//strong/pp style="text-align: center "strong图3 CALPHAD方法流程图/strong/pp style="text-align: center "strongimg src="https://img1.17img.cn/17img/images/201809/uepic/bae8d53e-6ea5-4648-881d-ddedb81a12f2.jpg" title="图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3].png" alt="图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3].png"/br/图4 Cu-Ni-Sn三元系中液相在1580K时的混合焓的计算结果与实验值[3]/strong/pp  动力学计算以热力学计算为基础,引入以时间为变量的扩散动力学模型和原子移动性数据库,通过大量的迭代运算,获得材料热力学状态随时间的变化关系。/ppstrong3.在材料各领域的应用/strong/pp  任何一个体系,热力学、动力学和物质结构三方面是密切联系的。金属材料的微观结构和热力学性质影响凝固和热处理过程中的生成相和微观组织演变。例如,对于Al-Cu系合金,溶质原子在固溶时过饱和析出,造成球对称畸变 在时效硬化时,首先形成G.P. Zone,接着溶质原子在低指数晶面上发生聚集、有序化,最终生成非共格θ(Al2Cu)平衡相。在凝固或均匀化过程中生成的相尺寸大于0.5μm时,受载时界面出现位错塞积,成为裂纹源 当尺寸介于0.005~0.05μm,并且呈细小弥散分布时,可阻碍再结晶和晶粒长大。当然,热、动力学理论目前已经渗透到了材料各个领域,成为一种有效的理论指导和必要的分析手段。/ppstrong(1)传统钢铁行业/strong/pp  钢铁研究总院作为国内最大的专业钢铁材料研发机构,是最早引入热力学计算方法和软件的单位之一,先后在节镍型不锈钢设计、V-N 微合金化技术、LNG 用 9 Ni 低温钢等方面都取得了丰硕的研究成果[4]。/ppstrong(2)金属基复合材料/strong/pp  范同祥、李建国、孙祖庆等人采用热力学、动力学模型,在复合材料增强相与基体界面反应控制、反应自生增强相种类选择、复合材料体系设计以及制备工艺等方面做了大量研究[5]。/ppstrong(3)纳米材料/strong/pp  2000年,美国亚利桑那州立大学的Chamberlin在研究铁磁体的临界行为时用到纳米热力学(Nanothermodynamics)一词,Giebultowica、Hill等人证明了纳米热力学在处理纳米体系的生长和物理化学性能时的巨大作用,中国科学院大连化学物理研究所的谭志诚团队在纳米材料低温热容方面也做了大量研究[6]。/ppstrong(4)形状记忆合金/strong/pp  Lidija GOMIDZELOVIC等人采用Muggianu模型并结合实验,使用Thermo-Calc软件计算了形状记忆合金Cu-Al-Zn在293K时的相图,并探讨了组织性能[7]。/pp  此外,在Mg基储氢材料、石墨烯界面及其吸附性能都有热力学计算机模拟的相关应用。/ppstrong4.热动力学的发展趋势/strong/pp  几乎没有一种实用材料的结构在热力学上是稳定的,扩散、相变、位错的产生和运动,以及材料的形变和断裂都涉及各种非平衡,这就需要在实际应用中将CALPHAD模式与其他理论相结合,使其更加逼真地模拟现实情形,比如:与第一性原理(First-Principles)、密度泛函理论(Density functional theory,DFT)、相场理论(Multiphase Field Method)相结合 与材料物理冶金模型相结合,对材料硬度、强度、延伸率等做出预测 引入晶胞和析出相的形核、长大、粗化模型,计算材料的CCT、TTT相变曲线、晶粒尺寸、形核率等物性参数。/pp  在未来,包括热力学和动力学在内的多尺度集成计算模拟配合专业数据库,实现材料设计阶段、模拟材料生产制备和服役的全流程,从而预测材料的组织演变和宏观性能,并在制备过程中对组织性能进行精确调控,是材料热、动力学发展的主要趋势[8,9]。/ppstrong参考文献/strong/pp[1]徐祖耀,材料热力学,高等教育出版社,2009/pp[2]戴占海,卢锦堂,孔纲. 相图计算的研究进展[J]. 材料研究导报,2006,4(20):94-97/pp[3]王翠萍,刘兴军,马云庆,大沼郁雄,貝沼亮介,石田清仁. Cu-Ni-Sn三元系相平衡的热力学计算[J]. 中国有色金属学报, 2005(11): 202-207./pp[4]董恩龙,朱莹光,潘涛. LNG用9Ni低温压力容器钢板的研制[C],全国低合金钢年会论文集. 北戴河:中国金属学会低合金钢分会,2008:741-749/pp[5]范同祥,张从发,张荻.金属基复合材料的热力学与动力学研究进展[J]. 中国材料进展, 2010, 29(04): 23-27/pp[6]姜俊颖,黄在银,米艳,李艳芬,袁爱群. 纳米材料热力学的研究现状及展望[J].化学进展,2010,22(06):1058-1067./pp[7]Lidija GOMIDZELOVIC, Emina POZEGA,Ana KOSTOV,Nikola VUKOVIC,Thermodynamics and characterization of shape memory Cu-Al-Zn Alloy [J].Transactions of Nonferrous Metals Society of China, 2015, 25(08): 2630-2636/pp[8]Liux J, Takaku Y, Ohnuma I, et al. Design of Pb-free solders in electronic packing by computational thermodynamics and kinetics [J]. Journal of Materials and Metallurgy, 2005, 4(2): 122-125/pp[9]Chen Q, Jeppsson J, Agren J. Analytical treatment of diffusion during precipitate growth in multicomponent systems [J]. Acta Materialia, 2008, 56:1890-1896br/br//p
  • 第三届全国热分析动力学与热动力学学术会议第一轮通知
    中国化学会第三届全国热分析动力学与热动力学学术会议暨江苏省第三届热分析技术研讨会 (第一轮通知)  The 3rd National Symposium on Thermal Analysis Kinetics and Thermokinetics of Chinese Chemical Society(3rd TAKT)& The 3rd National Symposium on Thermal Analysis of Jiangsu Province(3rd JTA)   受中国化学会的委托,由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办的“中国化学会第三届全国热分析动力学学术会议(3rd TAKT)”将于2011年10月20-22日在江苏省南京市召开,会议期间同时召开“江苏省第三届热分析技术研讨会(3rd JTA)”。本次会议将就近两年来热分析、热分析动力学和热动力学在理论研究、新仪器设计与分析技术方面的进展以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。本次会议将邀请国内、外热分析、热分析动力学、热动力学研究领域内的著名专家领衔主讲,同时,会议期间还将展示一批国内外最新热分析仪器及相关产品,提供大量的最新技术、最新测试方法等资料。热忱邀请相关领域的科研、教学的科学工作者和研究生踊跃投稿、与会参加研讨交流。  一、会议组织委员会  主 席:陈国祥,韩布兴,尉志武  副主席:赵厚民,张建军,魏少华,张明明,胡卫东,王昉  秘书长:汤伟  二、会议学术委员会  主 任 委员:韩布兴 (中国科学院化学研究所)  副主任委员(以姓氏拼音为序):  陈启元(中南大学) 高胜利(西北大学) 刘义 (武汉大学)  沈伟国(华东理工大学) 孙立贤(中国科学院大连化学物理研究所)  王键吉(河南师范大学) 尉志武(清华大学)  委 员(以姓氏拼音为序):  安学勤(华东理工大学),白同春(苏州大学),陈健(清华大学),陈三平(西北大学),成一(南京理工大学),杜为红(中国人民大学),杜勇(中南大学粉末冶金国家重点实验室),  顾敏芬(南京师范大学),关伟(辽宁大学),李浩然(浙江大学),刘义(武汉大学),李小云(南京工业大学),李武(中国科学院青海盐湖所),刘洪来(华东理工大学),刘义(武汉大学),刘育(南开大学),陆昌伟(中科院上海硅酸盐研究所),卢雁(河南师范大学),孟祥光(四川大学),孙建平(苏州大学),谭卫红(南京林化所),檀亦兵(江南大学食品学院),王保怀(北京大学),汪存信(武汉大学),王昉(南京师范大学),吴昊(扬州大学),王金本(中科院化学研究所),王琦(浙江大学),王晓东(中科院大连化学物理研究所),王毅琳(中国科学院化学研究所),杨家振(辽宁大学),杨腊虎(中国药品生物制品检定所),郁清(南京大学),袁钻如(南京大学),张洪林(曲阜师范大学),张建军(河北师范大学),张建玲(中国科学院化学研究所),张堃(中山大学),朱立忠(南化集团研究院物化检测中心),张同来(北京理工大学),赵凤起(西安近代化学研究所),祝昱(中国药科大学)  三、大会主题:展现热分析动力学与热动力学以及热分析领域的主要研究成果。  四、会议交流形式:出版大会论文集、大会特邀报告、专题报告与讨论、墙报展讲。  五、征文内容:A. 热分析动力学理论与研究进展 热分析动力学的仪器功能、实验方法和数据处理软件的开发等 热分析动力学在无机、有机、高分子、材料、生物等各个领域中的应用 B. 热动力学理论与研究进展 热动力学的仪器功能、实验方法和数据处理软件的开发等 热动力学在无机、有机、高分子、材料、生物等各个领域中的应用 C.热分析与量热学领域内的研究工作。D.其他  六、论文要求: 1、应征论文应未在国内外公开发行的学术刊物上发表过。2、应征论文详细摘要将装订成集。论文摘要格式要求如下:以中文或英文提供论文摘要2页。中文摘要内容包括:题目(三号黑体居中)、作者(四号仿宋居中)、作者单位(五号宋体居中,含城市名称,邮政编码和E-mail地址并用逗号分开)、关键词(自版芯左起顶格)、摘要(五号宋体)及主要参考文献(自版芯左起顶格)。英文摘要使用Times New Roman字体,字号、格式同中文摘要。会议论文以A4版面编排,上下页边距2.5 cm,左右页边距3.0 cm。论文摘要需在右上角注明论文类别字母(按征文范围:A、B、C、D)。论文电子版请发至TAKT2011 @126.com信箱,论文征集截稿日期:2011年9月1日。  七、会议日期、地点:会议将于2011年10月20-22日在江苏省南京市召开(具体地址与日程将在以后的通知中发布)。  八、会议注册:650元/人(2011年8月30日前汇款),750元/人(现场注册)   学生:450元/人(2010年8月30日前汇款),550元/人(现场注册) 陪同:350元/人   论文审理费:60元/篇。  九、联系方式:  联系人:江苏省分析测试协会 汤伟(电话:025-85485940, 13912996398 传真:025-85404940)   南京师范大学 王昉(手机:13851614122)   河北师范大学 张建军(手机:15533995800)  Email:TAKT2011@126.com  中国化学会第十五届全国化学热力学和热分析专业委员会  江苏省分析测试协会  南京师范大学  河北师范大学  二○一○年十一月八日  为了便于我们很好地组织此次会议,请抽空填写本会议回执。谢谢!  中国化学会第三届全国热分析动力学与热动力学学术会议暨江苏省第三届热分析技术研讨会议参会回执  我单位选派下列同志参加:单位名称 详细地址 联 系 人 手 机 电 话 传 真 姓 名性别职 务 手 机E-mail 参会总人数:( )人是否提交会议论文:是否拟做会议报告:提交会议论文总篇数:( )篇,拟做会议报告总数:( )个报告是否参加会后考察:参加( ) 不参加( ) 注:  *为了便于我们更好地组织此次会议,请抽空填写本会议回执并请于2011年1月15日前用电子邮件发到TAKT2011@126.com信箱,谢谢合作!
  • 刘舜维、汪根欉、胡斌:延伸发光偶极各向异性动力学实现34.01%外量子效率
    本文重点:1. 平面定向的发光偶极必须在时域和能量域上都展现延伸的各向异性动力学,这是研发高效OLEDs的必要条件。2. 通过在平面定向的Exitplex杂合体中引入Ir(ppy)2(acac),可以抑制主宾体散射,使发光偶极的各向异性动力学延伸 至微秒量级。3. 采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。明志科技大学有机电子研究中心主任兼工程学院副院长刘舜维教授、中国台湾大学化学系汪根欉教授以及美国田纳西大学先进材料与制造工程研究所材料科学系胡斌教授三方研究团队,近日共同在《先进光学材料》(Advanced Optical Materials)期刊发表研究报告。该研究基于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体,使用包括时间解析和稳态两种光聚合物各向异性度量方法,全面研究了发光偶极在时间和能量两个维度的各向异性动力学特征。研究结果发现,相较于随机定向的发光偶极,设计能够形成平面定向的发光偶极是研发高效OLEDs的关键方法之一,这可以显著提高光的提取效率。但是,平面定向的发光偶极必须同时在时域和能量域都展现足够的偏振记忆效应,使各向异性动力学延伸至整个发光寿命时间范围,这才能大程度地增强OLED的光提取率。该研究充分证明,这种延伸的各向异性动力学是研发高效OLEDs的必要条件。研究团队将平面配置的红色磷光体Ir(ppy)2(acac)以很低的摩尔浓度分散于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体之中,构建了发光层。结果发现,平面定向的杂合体主体可以通过抑制主宾体之间的库仑散射,显著延长磷光体发光偶极的各向异性动力学,使其从纳秒量级延伸到微秒量级,与磷光寿命时间范围相当。这满足了采用Ir(ppy)2(acac):杂合体系统来提高OLED光提取效率的必要时域条件。更重要的是,研究还发现,在抑制主宾体库仑散射的情况下,高能态的发光偶极也可在杂合体主体的作用下维持延伸的各向异性动力学,而不会随着热电子从高能态松弛至LUMO而随机化。这是由于杂合体主体的偏振记忆效应不仅影响低能态,也可维持高能态发光偶极的平面定向分布。综合时域和能量域两个维度的研究结果可以看出,发光偶极延伸的各向异性动力学是研发高效OLEDs的必要条件。最终,采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。该成果为进一步提升OLED性能提供了有力指导,将促进高效OLED显示技术的进一步研发。本次研究,团队采用了光焱科技Enlitech所设计生产的超低光源光致发光量子产率高校量测设备LQ-100X-PL,Enlitech所设计的LQ-100X-PL采整合型设计,精心严选高档用料材质,设备寿命长,且拥有软、硬件整合与调校,凭借光焱科技多年量测PLQY经验,出场即校正完成,即装即用,可大幅免除自行搭建设备的难度与光强不足等扰人问题。LQ-100X-PL采用LED光源设计,整体结构紧凑,尺寸仅502.4mm(L) x 322.5mm(W) x 352mm(H),可整合手套箱,并在搭配定制样品盒下,不论研究产品是薄膜、粉末、液体型态,让研究人员十秒内完成待测物量测装载,超快速精准且方便进行PLQY量测,无须烦恼样品尺寸与积分球开口尺寸两难问题,整体量测结果精准、重复性高,更可以进行原位时间光谱解析,量测数据经得起投稿审查时高品质要求,且加上光焱科技Enlitech专业服务与销售团队服务,更能为PLQY量测进行把脉,让客户将心力专注于研究。
  • 超快光谱:让皮秒/飞秒时间尺度的动力学过程可视化——访南方科技大学陈熹翰副教授
    相关报道显示,超快光谱测试技术在Nature、Science及子刊上频频出现,吸引越来越多科研工作者的青睐。也有专家评价说,超快光谱的出现,给相关科学领域带来了一场新的革命。那么什么是超快光谱?超快光谱有多快?又能解决哪些关键问题……为了进一步了解超快光谱的技术及应用现状,仪器信息网编辑特别走进了南方科技大学机械与能源工程系,邀请在超快光谱研究应用方面颇有建树的陈熹翰副教授给大家分享他心目中的超快光谱技术。南方科技大学 陈熹翰 副教授超快光谱:向时间更快、空间分辨率更高方向发展据悉,早期的超快光谱空间分辨率没有很高,只有大概几微米或者几百微米的空间,现如今,随着各种显微技术的快速发展,超快光谱的空间分辨率可以达到几百纳米。同时,超快光谱时间分辨率非常高,近年来,发展迅速的超快光谱成为了研究皮秒和飞秒时间尺度内的分子结构与超快动力学行为的强有力手段。通俗来比喻,超快光谱类似超快摄像机一样,让人们能通过一帧一帧的“慢动作”观察到处于化学反应过程中原子与分子的转变状态。当前,超快光谱已被越来越广泛的应用在物理、化学、生物、材料、医疗、能源及环境等众多领域。其中,在物理领域,超快光谱可以应用于半导体磁性材料、超导体、绝缘体、复杂材料、量子结构、纳米和表面体系、太阳能电池等研究领域。对于超快光谱技术当前的研究进展,陈熹翰表示,总体来讲,国内外发展比较均衡,目前主要有两个重要的发展方向:一个是时间更快,即在超快的基础上提出新的概念——阿秒(10-18秒),以便了解更多分子、原子里电子的动力学过程;另一个是空间分辨率更高,以便可以看到更小、更加清楚的动态过程。除此之外,国内外的相关人员也在尝试把超快光谱拓展到不同的波长,例如从X光到太赫兹甚至微波,以持续推动超快光谱前沿技术的应用拓展。“虽然当前在科研研究中得到大家的青睐,但超快光谱更多的情况下是一种研究方法,未来在成为一种通用技术的道路上还有许多局限性。” 陈熹翰在采访中分享了制约超快光谱应用的三个因素:一是采集数据的时间较长。采集一次的时间约10~30分钟,如果需要更高的数据信噪比,则需要一个小时甚至两个小时;二是需要专业人员分析数据。在分析光谱时,要赋予其物理意义,将实验与实际结合,这需要一定的知识背景和经验积累;三是激光器成本较高。飞秒激光器费用可高达百万元以上,加上搭建激光器、光路和探测仪器等费用,一套仪器设备的投入可能需要300万元左右。这些问题在一定程度上限制了当前超快光谱更大规模地应用于市场。超快光谱在光电材料领域的应用优势显著都说热爱源于兴趣,陈熹翰就是如此,他喜欢研究事物背后的机理,特别是物理化学的转化过程。据介绍,陈熹翰在读本科时,就发现常用的化学手段没有办法非常清楚的展现反应的进行过程,例如太阳能的转化过程。之后,他接触到了超快光谱,发现超快光谱能够契合他的想法,并对其产生了极大的兴趣,由此踏入了超快光谱研究领域,并于2017年在美国取得化学博士学位(超快光谱方向),2021年加入南方科技大学,目前主要从事太阳能光电转化材料(如太阳能电池)以及机理研究工作。据介绍,当前,陈熹翰研究团队共有6~7人,在超快光谱技术及应用的相关研究中已经取得了一系列的研究进展。在光电转换材料方面,基于超快光谱的研究方法,陈熹翰团队自己搭建并设计了一些光路、功能、模型和方法,比如与反射光谱、太赫兹光谱等联用,用来研究太阳能转化材料的表界面性质,进而分析表界面动力学和转化效率的关系;在光电化学材料方面,陈熹翰团队在超快光谱技术的基础上开发了原位全反射光谱的方法,直接研究光电化学分解水的过程,他介绍说:“通过超快光谱,就像照相一样可以直接看到制约分解过程的两种反应中间体,并且可以通过pH或者其它方法来调控这两种中间体,进而控制水分解反应的速度。”2022年陈熹翰在《先进功能材料》期刊发布了一篇关于钝化钙钛矿界面处缺陷的文章,受到了极大的关注。特别值得一提的是,在这项成果的研究过程中,陈熹翰应用了大连创锐光谱科技有限公司(以下简称创锐光谱)的超快瞬态吸收光谱系统。对于为何会选择该国产仪器设备,陈熹翰表示:“我个人选择仪器的标准,第一点就是它的稳定性要好;第二点是可以定制化,我们可以做自己的改进;第三点就是售后服务一定要及时。”其实,陈熹翰一直在关注国内外相关的仪器产品,也做了很多调研对比,他表示,相比进口品牌,国产超快光谱仪器在国内科研应用中会更有优势。其评价说,以创锐光谱超快瞬态吸收光谱系统为例,相比进口品牌,这套系统的性能参数、稳定性可以完全对标,同时创锐还针对不同需求提供了定制服务,这是进口设备做不到的。系统交付后,双方在设备培训和沟通十分及时高效。系统可靠性也很优秀,投入使用至今未发生过异常。 创锐光谱超快瞬态吸收光谱系统技术亟待推广,多领域发展值得期待随着科学研究的不断深入,超快光谱也迎来了发展机遇。陈熹翰对于超快光谱的应用潜力信心满满,他分析道,从国家发展战略的角度出发,有三个方面的发展值得期待:首先,国家正在大力发展半导体产业,超快光谱对于研究半导体系统缺陷、提升其工艺水平十分重要;其次,在可再生能源领域,特别是太阳能电池、光催化分解水等方面,应用超快光谱可有助于研发出更高效的太阳能电池和催化剂,更快地完成从传统能源到新能源的转型;另外,国家也在积极推动生物制药等领域的发展,超快光谱可以用来研究生物体系中的一些能量转换模式,为之后的生物制药相关过程分析提供指导。机遇意味着拥有无限可能,对于超快光谱未来发展的可能性,陈熹翰也分享了自己的观点。他表示:未来,超快光谱在科研、工业两个方向都会有比较大的发展。科研方向上,超快光谱除了朝着时间更快,空间利用率更高的趋势发展之外,波长范围也将会更广,这样超快光谱将在任意波段都可以进行相关的研究;工业方向上,超快光谱将更多的与软件相结合,通过预设模型既可使采集数据更快,又可直接通过软件进行大数据分析,直接给出大家想要的结果。采访中,陈熹翰特别表示,虽然目前超快光谱的发展还处于起步阶段,但潜力非常大,亟需向大众宣传推广,以推动其在相关前沿基础科学研究及工业中的应用拓展。陈熹翰表示:“除了像我们一样的专业人士之外,希望能让更多的人了解、使用超快光谱技术。当然,实际应用中需要操作者有一定的材料学、物理学技术背景,确实有一些难度,不过随着我们国家的发展,理工科人才越来越多,大家的知识背景越来越强,这项技术就可以进行更多、更广泛的推广。”同时,对于未来的推广方式,陈熹翰也给出了自己的想法,“在我看来,超快光谱想要推广应用,一是需要在高校、科研院所、产线上刷存在感,吸引更多的用户去了解它,应用推广的机会也就越多;二是通过相关网站、各大平台等做更多的科普宣传,向大家普及超快光谱如何使用,有何优势,可以帮助解决何种问题等;三是超快光谱若能够作为国家战略层面上的一项技术或者一项储备来宣传的话,将会达到事半功倍的效果。”
  • 中国化学会第七届全国热分析动力学与热动力学学术会议于合肥开幕
    pstrong仪器信息网讯/strong  2019年4月20日,中国化学会第七届全国热分析动力学与热动力学学术会议于合肥开幕。本次会议由中国化学会主办,中国化学会热力学与热分析专业委员会、合肥微尺度物质科学国家研究中心和中国科学技术大学理化科学实验中心联合承办。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/4f08b216-cd0f-4748-a3eb-0af93ce157c6.jpg" title="huichang.jpg" alt="huichang.jpg" style="width: 600px height: 147px " width="600" vspace="0" height="147" border="0"//pp style="text-align: center "  大会现场/pp  本次会议的主旨是就近些年来热分析动力学和热动力学以及热分析与量热在理论研究、新仪器设计与分析技术方面的进展,以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。此次会议邀请到了来自清华大学、北京大学、南京大学、中国科学技术大学、西北工业大学、中科院研究所等多所知名高校及科研院所长期从事热分析动力学和热动力学的著名专家、中青年学者,以及珀金埃尔默、梅特勒-托利多、日立高新等多家仪器生产厂商,会议盛况空前,4百多位学者注册参会。仪器信息网作为报道媒体出席了本次会议。/pp  大会组委会主席、合肥微尺度科学国家实验室教授罗毅主持了本次开幕式。中国科学技术大学副校长罗喜胜和大会主席王键吉在开幕式上致辞。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/3bfb1960-feae-4474-a5f0-70a30ed6e48e.jpg" title="罗毅.jpg" alt="罗毅.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"//pp style="text-align: center "  中国科学技术大学教授罗毅主持会议/pp  罗喜胜首先作开幕致辞,从中国科学技术大学创新立项的办学理念,谈到办学60年的丰硕成果 同时强调了本次会议的基础性意义和战略性意义,并坚信热力学作为基础学科将对科学界做出巨大的贡献,希望通过本次会议促进学者之间的沟通和交流 并预祝大会圆满成功。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/30acd465-5a7c-4bf7-9722-e4ebbdb229c0.jpg" title="罗喜胜.jpg" alt="罗喜胜.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"/  /pp style="text-align: center "中国科学技术大学副校长罗喜胜致辞/pp  王键吉在开幕致辞中强调了热分析和热动力学在环境、能源、化学化工和生命科学等领域具有不可替代的重要意义。王键吉教授表示,本次大会有三个方面的重要意义:(1)有助于青年学者更好地相互交流 (2)有助于多学科之间的学科交叉互动 (3)希望在热力学研究方面,年轻学者后继有人。作为大会主席,王键吉教授感谢主办单位中国科学技术大学会务组的辛勤付出,感谢为大会做出贡献的老师、同学,并预祝大会召开圆满成功。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/08e905b2-27f1-448a-b4c0-e45f0b4cca18.jpg" title="王键吉.jpg" alt="王键吉.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"/  /pp style="text-align: center "大会主席王键吉致辞/pp  随后开始的大会报告环节,武汉大学教授刘义、大会主席王键吉、清华大学教授尉志武先后主持了会议。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/8b410aa4-9c55-41c7-a7d0-fde1b9d2edba.jpg" title="刘义.jpg" alt="刘义.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"//pp style="text-align: center "  武汉大学教授刘义/pp  中国化学会理事、中国化学会化学热力学专业委员会主任王键吉作题为“CO2响应离子液体的设计和性能调控”的主题报告。王键吉由溶剂/催化剂引出了成本、效率和环境问题,分别介绍了CO2响应离子液体的设计和性能调控的研究方向,即从功能化的离子液体转变成智能化的离子液体,从而实现多功能介质及材料的制备以及产物分离、催化剂和介质循环利用。接着,介绍了通过特定基团嫁接离子液体,实现低浓度CO2的捕集、可逆相分离、可逆相转移、可逆乳化和破乳、光电化学转化等应用。最后,王键吉展望了该研究在酸性气体的选择性吸收、CO2捕集/转化的耦合、离子液体相转移催化和CO2响应离子液体性能强化四个方面新的发展。/pp  清华大学化学系、生命有机磷重点实验室教授尉志武作题为“关于热分析动力学的思考与若干生物分子体系相变研究进展”的主题报告。报告中,主要谈到了DSC技术在蛋白质变性二态性问题、混合磷脂相变、离子液体杀菌机理和构筑不对称囊泡等研究中的应用。尉志武教授认为,热分析动力学和热动力学内容丰富、应用广泛,特别是在化学反应和物理变化机理研究方面有重要的应用 在做热动力学和热分析动力学时,定量分析一定要考虑对原始数据进行校正。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/df5e6910-bbae-41d2-b89b-18eece44918d.jpg" title="尉志武.jpg" alt="尉志武.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"/  /pp style="text-align: center "清华大学教授尉志武/pp  华南理工大学材料科学与工程学院教授张广照作题为“溶液中高分子的单链构象变化热力学”的主题报告。报告中主要介绍了热分析与热动力学在多种单链高分子构象变化中的应用,提出了通过外推法得到热力学平衡状态下高分子单链的相关参数的新方法。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/8c1765fe-aea8-475b-8228-aae8da2b5df8.jpg" title="张广照.jpg" alt="张广照.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"/  /pp style="text-align: center "华南理工大学教授张广照/pp  西北工业大学教授刘峰作题为“金属材料非平衡相变的热动力学协同效应与调控”的主题报告。报告中提出,传统研究缺乏对转变过程的研究,忽略了加工工艺的重要性,希望通过研究热动力学相关性,实现成分和工艺的定量化,并介绍了动力学模型在多种钢铁材料中的实际应用。刘峰还提出了大驱动力大能垒设计的概念,可以同先进高强钢相结合,用于设计纳米相变体系,发展出具有优良力学性能的双相双峰组织。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/261b0d7a-2f06-475c-b322-849f4d76bc4d.jpg" title="刘峰.jpg" alt="刘峰.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"//pp style="text-align: center "  西北工业大学教授刘峰/pp  西北大学教授陈三平作了题为“镝单分子磁体的磁弛豫动力学”的主题报告。高性能单分子磁体构筑要考虑金属离子的选择、单轴各向异性和晶体场的对称性 镧系金属离子具有磁矩大、奇数电子和强轴向性等特点 在此基础上,陈三平构建了D4d构型、D5h镝单分子磁体。陈三平还介绍了弱化面各向异性的Dy-I单核体系和Dy-X双核体系。最后,陈三平提出了构建热容和低温磁弛豫动力学关系的展望。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/c5ad46bc-4b58-44d3-bdbe-7bb658b2b5ec.jpg" title="陈三平.jpg" alt="陈三平.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"/  /pp style="text-align: center "西北大学教授陈三平/pp  南京大学教授胡文兵作题为“高分子结晶动力学的Flash DSC研究”的主题报告。目前,全球超过三分之二产量的合成高分子是可结晶的,高分子加工需要控制结晶,但加工成型的冷却速度通常比较快。传统DSC技术需要的样品量较多,且升降温速度不够快。因此,超快扫描芯片量热仪应运而生。超快DSC技术是研究动力学的有力工具,推动着高分子结晶学进入低温区域,并有助于帮助理解高分子化学结构与结晶动力学的关系。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/907f7dbb-0e27-40e0-9f37-ee03042a2010.jpg" title="胡文兵.jpg" alt="胡文兵.jpg" style="width: 400px height: 277px " width="400" vspace="0" height="277" border="0"/  /pp style="text-align: center "南京大学教授胡文兵/pp  下午,大会分为热分析动力学方法、热分析动力学应用、热分析动力学应用与热分析、热动力学与热力学四个专题,开设了四个分会场。其中,热分析动力学方法分会场,作报告的专家有南京理工大学的成一教授、西安建筑科技大学的酒少武教授、南京师范大学的王昉教授以及邯郸学院的任宁教授等。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/c8009021-8440-4775-8044-ef43fd9ad66c.jpg" title="热分析动力学方法专题会场.jpg" alt="热分析动力学方法专题会场.jpg" style="width: 600px height: 336px " width="600" vspace="0" height="336" border="0"//pp style="text-align: center "  热分析动力学方法专题会场/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/df522974-aa72-4581-add4-71d885afbe80.jpg" title="热分析动力学应用专题会场.jpg" alt="热分析动力学应用专题会场.jpg" style="width: 600px height: 336px " width="600" vspace="0" height="336" border="0"//pp style="text-align: center "热分析动力学应用专题会场/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/721f5c24-3f68-4f0f-af25-8e3afa8fcd63.jpg" title="热分析动力学应用与热分析专题会场.jpg" alt="热分析动力学应用与热分析专题会场.jpg" style="width: 600px height: 336px " width="600" vspace="0" height="336" border="0"//pp style="text-align: center "热分析动力学应用与热分析专题会场/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/86184f2d-c57a-4d4b-98b1-25e8af0bb90b.jpg" title="热动力学与热力学专题会场.jpg" alt="热动力学与热力学专题会场.jpg" style="width: 600px height: 336px " width="600" vspace="0" height="336" border="0"//pp style="text-align: center "热动力学与热力学专题会场/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/f2f76146-9def-49ef-a46a-42674df93166.jpg" title="铂金埃尔默.jpg" alt="铂金埃尔默.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-美国铂金埃尔默公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/231d5013-a502-4cfb-836c-efb470ba0d08.jpg" title="梅特勒.jpg" alt="梅特勒.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-梅特勒-托利多/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/0243fa12-8bf7-4513-a5b6-7b7e15c17e49.jpg" title="耐驰.jpg" alt="耐驰.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-德国耐驰仪器制造有限公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/116cfd6a-f1aa-40b0-a710-8e6aaf969f89.jpg" title="TA仪器.jpg" alt="TA仪器.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-美国TA仪器公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/8e5e18cf-bf0a-4649-a0f8-8e823f144319.jpg" title="林赛斯.jpg" alt="林赛斯.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-德国林赛斯仪器公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/fb2af071-a5fb-4e2b-968d-4ed698e9d797.jpg" title="日立高新.jpg" alt="日立高新.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-日立高新技术(上海)国际贸易有限公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/27e4e2bb-4abc-4bf0-ba9b-6cc4b1e95c54.jpg" title="塞塔拉姆.jpg" alt="塞塔拉姆.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-法国塞塔拉姆仪器公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/7f27dcd8-af4d-4570-94b0-bda11b1a6d23.jpg" title="仰仪.jpg" alt="仰仪.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-杭州仰仪科技有限公司/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/fe1b89a3-ebf8-4f47-9e7b-51da980c5376.jpg" title="凯正.jpg" alt="凯正.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "会议合作厂家-上海凯正仪器有限公司/ppbr//p
  • 中国化学会第七届全国热分析动力学与热动力学学术会议顺利闭幕
    pstrong仪器信息网讯/strong  2019年4月21日,由中国化学会主办、中国化学会第七届全国热分析动力学与热动力学学术会议中国化学会热力学与热分析专业委员会、合肥微尺度物质科学国家研究中心和中国科学技术大学理化科学实验中心联合承办的中国化学会第七届全国热分析动力学与热动力学学术会议于合肥顺利闭幕。21日上午的大会由桂林电子科技大学的孙立贤、河北师范大学的张建军、天津科技大学的邓天龙联合主持。在闭幕式上,颁发了“最佳张贴报告奖” 并发布2021年第八届全国热分析动力学与热动力学学术会议筹备的最新消息。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/b77b6d53-6fc5-4cf5-9718-398f495537a8.jpg" title="孙立贤_副本.jpg" alt="孙立贤_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"/  /pp style="text-align: center "桂林电子科技大学孙立贤/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/f0a1c4e0-09b9-4d96-b3ce-745c45ed36de.jpg" title="张建军_副本.jpg" alt="张建军_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"/  /pp style="text-align: center "河北师范大学张建军/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/90a6779e-fa06-42d5-bd4d-122190562706.jpg" title="邓天龙_副本.jpg" alt="邓天龙_副本.jpg" style="width: 400px height: 294px " width="400" vspace="0" height="294" border="0"/  /pp style="text-align: center "天津科技大学邓天龙/pp  中国科学院化学研究所院士韩布兴首先作了题为“绿色溶剂体系热力学、催化材料合成与化学反应中的溶剂效应”的主题报告。当前,70%以上的化学化工过程都会使用到溶剂,尤其是有机溶剂,但也同时面临着效率低、功能有限和环境污染等问题,因此无法满足当代化工可持续发展的要求,开发利用绿色溶剂是必然发展趋势。绿色溶剂应具有无毒、无害、便宜易得、容易循环利用和具有特定功能等特性。其中,具有代表性的绿色溶剂包括水、超临界流体、离子液体和生物质基溶剂等。韩布兴课题组目前的主要研究工作就是围绕超临界CO2、离子液体和水等绿色溶剂,通过化学热力学研究以及发展实验方法,实现绿色功能介质创制、催化材料合成等应用。报告中,韩布兴介绍了其目前的研究成果,包含超临界流体体系局域热力学模型、离子液体与超临界流体/离子液体乳液体系、超临界CO2中表面活性剂自组装及组装体催化功能、配合物催化剂稳定的CO2包水型微乳液光催化CO2还原、MOF稳定CO2/水乳液及MOF界面组装、超临界CO2/IL乳液制备有序介孔MOF纳米球、多孔金属制备及生物质基资源转换、离子液体/有机盐体系制备介孔无机盐、离子液体制备负载型纳米催化材料等。韩布兴课题组还尝试了用离子液体解决CO2反应中的热力学问题,实现了两相体系的甲酸合成 利用CO2形成碳酸解决动力学问题和用于纳米催化等,并介绍了溶剂效应在化学反应中的应用。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/c173d718-ce88-4413-bc02-5cf5159d12aa.jpg" title="韩布兴_副本.jpg" alt="韩布兴_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"//pp style="text-align: center "中国科学院化学研究所院士韩布兴/pp  武汉大学刘义作了题为“蛋白纤维化纳米抑制剂的设计及其作用机制”的主题报告。阿尔兹海默症近年来受到人们的普遍关注 研究表明,其与蛋白纤维化关系密切。目前,主要的蛋白纤维化抑制剂分为多肽类抑制剂、小分子抑制剂和新型纳米材料三种。新型纳米材料由于其稳定性强、比表面积大和表面易修饰的特点,受到广泛青睐。碳点是一类生物相容性很好的纳米材料,刘义通过设计一系列表面改性的碳点(如氧化改性),并以与阿尔兹海默症相关的胰岛素蛋白为研究对象,利用等温滴定量热、荧光光谱、圆二色谱和显微分析等仪器,证实了其对与疾病相关的HI蛋白的聚集和生长有抑制作用。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/b8ca13a8-ab38-466b-8635-f03976de0064.jpg" title="刘义_副本.jpg" alt="刘义_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"//pp style="text-align: center "武汉大学刘义/pp  桂林电子科技大学孙立贤作了题为“新型储能材料设计与热力学调控”的主题报告。我国对可再生能源的需求迫切,氢能源利用是支持可再生能源大规模应用的重要途经,但目前缺乏安全高效的氢储运技术,制约了氢能的发展。孙立贤介绍了其在可控形貌低维催化剂制备及配位氢化物储氢、金属与配体调变以及符合纳米化MOFs储氢等工作。此外,还分享了孙立贤课题组首次创建的国内储氢材料数据库基本情况。/pp  陕西师范大学的刘志宏作了题为“热化学在硼酸盐功能材料制备及其性能研究中的应用”的主题报告。报告主要介绍了硼酸盐微孔晶体材料的液-固相吸附热动力学、硼酸盐纳米阻燃材料应用的研究和多级孔硼酸盐材料制备及其吸附性能的研究等。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/8c4c8e97-1587-41d4-aae8-d3bbbb67608b.jpg" title="刘志宏_副本.jpg" alt="刘志宏_副本.jpg"//pp style="text-align: center "陕西师范大学刘志宏/pp  河北师范大学张建军作了题为“稀土超分子配合物的晶体结构、热分解反应动力学及热力学的研究“的主题报告。报告中,张建军主要阐释了稀土超分子配合物中第一系列配合物、第二系列配合物和第三系列配合物的热分解机理 并提出了简单反应处理的改进双等双步法,从而确定了活化能E、指前因子A以及其他热力学参数。/pp  中国科学技术大学丁延伟作了题为“仪器间差异对于热分析动力学结果影响的研究“的主题报告。报告中对影响热分析曲线的多种因素进行了分析讨论,其中包含样品量、制样方式、样品状态、样品前处理条件、温度控制程序、支架类型、仪器结构、实验气氛及流速、仪器状态、仪器间差异、人员差异等。丁延伟特别强调,要不定期进行仪器的校准,尤其在进行重要的实验前,最好一定要做仪器的校准。/pp  在报告中,对“仪器间差异”这一重要因素进行了深入、全面的分析和解读。理化科学实验中心先后与美国赛默飞、美国珀金埃尔默公司、美国TA公司等6家仪器厂商共建联合实验室,目前已经装备不同型号热分析仪器近30台。除了考察不同实验室中仪器对同一样品的测试差异之外,利用理化科学实验中心的优势,特别补充同一测试条件下、不同仪器对同一样品的测试差异分析。报告中以三家公司(匿名)的DSC数据说明了仪器间差异对最终测试结果的影响较大。通过比对了不同公司仪器、相同型号仪器、不同类型仪器的热重分析结果,丁延伟发现相同型号仪器对比差别不大,不同类型仪器对比差别较大。通过考察同一公司不同型号仪器之间的差异,发现数据结果并不吻合 丁延伟认为,不一定是仪器的质量问题,而是有可能是校准方法差异的问题。通过对比同一公司不同类型的仪器,测试结果也会产生差异,这可能是由于仪器结构的影响。报告还指出,即使是同一公司的同一产品,测得的结果也可能不同,这可能是由于仪器状态不同导致的。因此,校准方法、结构和仪器状态都可能对热分析动力学结果产生影响。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/4c89254e-800e-422a-82dc-54ab6200f331.jpg" title="丁延伟_副本.jpg" alt="丁延伟_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"//pp style="text-align: center "中国科学技术大学丁延伟/pp  大会闭幕式由张建军主持。闭幕式上颁发了“最佳张贴报告奖” 获奖名单由辽宁大学房大维宣布:山东农业大学的兰孝征、西北大学的陈湘、南京师范大学的刘浩、南京大学的谢科峰、北京理工大学的钟野、河南师范大学的邢肇碧、辽宁大学的宋宗仁、广西师范大学的陈志凤、中国科学院上海硅酸盐研究所的张赵文斌和北京理工大学的任杰。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/7d1e3620-9c8a-41fd-afec-4c28560cda4b.jpg" title="房大维_副本.jpg" alt="房大维_副本.jpg" style="width: 400px height: 300px " width="400" vspace="0" height="300" border="0"/ /pp style="text-align: center "辽宁大学房大维/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/fac4c8ae-f987-4091-8f1d-4c6662013f46.jpg" title="大会颁奖.jpg" alt="大会颁奖.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "颁奖现场/pp  随后,大会合作厂商、美国TA公司的经理王健女士发表了讲话 武汉大学刘义对大会进行了总结发言。最后,大会特别通告,2021年第八届热分析动力学与热动力学学术会议由陕西师范大学承办,并邀请下一届会议主办方代表刘志宏登台发言。诸多参会代表纷纷组团在即将关闭的大会主屏幕前合影留念,为本次大会圆满结束留下了最后的注脚。/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201904/uepic/ad559fe0-de58-41b8-9275-132c4800061b.jpg" title="大会留影.jpg" alt="大会留影.jpg" style="width: 600px height: 398px " width="600" vspace="0" height="398" border="0"//pp style="text-align: center "组团合影留念/ppbr//p
  • 梅特勒托利多倾情赞助第三届全国热分析动力学与热动力学学术会议
    由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办的&ldquo 中国化学会第三届全国热分析动力学与热动力学学术会议&rdquo 于2011年10月20-22日在江苏省南京市召开,会议期间同时召开&ldquo 江苏省第三届热分析技术研讨会&rdquo 。 本次会议以展现热分析动力学与热动力学以及热分析领域的主要研究成果为主题,就近两年来热分析、热分析动力学和热动力学在理论研究、新仪器设计与分析技术方面的进展以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。会议邀请了国内、外热分析、热分析动力学、热动力学研究领域内的著名专家领衔主讲,同时,会议期间还展示了一批国内外最新热分析仪器及相关产品,提供大量的最新技术、最新测试方法等资料。第三届全国热分析动力学与热动力学学术会议开幕式 来自全国各地高校的教授、学生及企事业单位的技术人员近150人参加了本次大会。会议交流形式包括出版大会论文集、大会特邀报告、专题报告与讨论、墙报展讲,题材涵盖热分析动力学理论与研究进展;热分析动力学的仪器功能、实验方法和数据处理软件的开发等;热分析动力学在无机、有机、高分子、材料、生物等各个领域中的应用;热分析与量热学领域内的研究工作 武汉大学、西北大学、南京理工大学、南京师范大学、清华大学、北京大学、南京大学等高校的教授分别介绍了各自领域的研究成果。大会上的精彩报告不断,提问踊跃。梅特勒托利多公司热分析仪器部技术应用顾问唐远旺先生为大会作了&ldquo 闪速DSC 1-超快速差示扫描量热仪技术与应用&rdquo 的报告,向与会人员介绍了闪速DSC1在材料科学领域的重要应用。 本次大会特设&ldquo 梅特勒托利多杯优秀学生论文奖&rdquo ,奖励那些第一作者为学生的优秀论文作者。 梅特勒托利多公司郭晓群经理为获得优秀学生论文奖的学生颁发证书 梅特勒托利多公司参展此次会议 梅特勒托利多公司是本次大会的最大赞助商。为了让大家更好地了解热分析发展的前沿,梅特勒托利多公司特将全球第一款商品化的超快速差示扫描量热仪-闪速DSC1搬到了会场展台。闪速DSC1是梅特勒托利多公司最新推出的升温速率可达2,400,000K/min,降温速率可达240,000K/min的超快速差示扫描量热仪,会上很多专家、教授、学者表现出了对闪速DSC的极大兴趣,大家也纷纷讨论有关超快速差示扫描量热仪的有关课题。 梅特勒托利多公司技术人员为与会人员讲解闪速DSC1 同时为了配合&ldquo 国际化学年在中国&rdquo 活动,10月20日下午还举办了&ldquo 梅特勒托利多杯国际先进热分析技术讲习班&rdquo 。讲习班特邀请德国Rostock大学物理系、Thermochimica Acta副主编Christoph Schick教授,苏州大学孙建平老师,梅特勒托利多公司热分析技术应用顾问唐远旺先生为会议参加者提供一个专业的培训学习和增长见闻的机会,同时也为热分析领域的研究骨干提供一个国际交流与合作的平台。Christoph Schick教授为学员介绍了热分析的最新进展;孙建平老师讲解了热分析实验的方法与技巧;唐远旺先生就热分析联用技术及应用进行了详细阐述。课程结束后,每一位学员都参加了课程考试,对于成绩优秀者,颁发&ldquo 梅特勒托利多优秀学员奖&rdquo 证书及奖品。 梅特勒托利多热分析部应用顾问唐远旺在讲习班上做报告 梅特勒托利多公司实验室市场部郭晓群经理为讲习班优秀学员颁奖 会议于10月22日闭幕,大家一致认为,通过这次大会的成功举办既很好地交流了学术,又增进了大家的友谊。与会人员希望今后能有更多的交流沟通热分析的机会,促进国内热分析的蓬勃发展。
  • 独家专访|顾景凯教授畅谈小分子药物与纳米药物的药代动力学发展与挑战
    2002年SCIEX发布4000 QTRAP®系统产品时,首次将QTRAP®质谱推向市场,该质谱技术是一种将三重四极杆串联质谱与线性离子阱质谱高度结合的复合技术,可同时高灵敏地进行有机物的定量定性分析,目前已广泛应用于药物研发的各个阶段,同时也应用于蛋白、多肽的分析,是药物定性定量的分析利器。  2022年是SCIEX QTRAP®质谱进入中国的第20个年头,吉林大学顾景凯教授是QTRAP®质谱在中国的首批用户之一。作为药物研发领域的资深专家,顾教授不仅见证了“中国创新药物”市场突飞猛进的发展,也感受到QTRAP®质谱分析技术助力药物研发时的强劲推力。  药物分析贯穿药物从研发到上市乃至整个药物的生命周期,为药物研发和应用的全链条提供关键的技术和方法。随着纳米科技的迅速发展,纳米药物在疾病的早期诊断、预防和治疗等方面发挥出越来越重要的作用。为适应纳米药物相关的物理、化学及生物学特性,各种分离分析技术得以开发应用,那么当前纳米药物成分分析的常用方法有哪些?高分子药用辅料体内分析又面临哪些难题与挑战?未来纳米药代动力学研究的发展趋势如何?带着这些问题,仪器信息网特别采访了吉林大学顾景凯教授,与他进行了深入的交流。  吉林大学 顾景凯教授  相辅相成:仪器技术革命加速药物分析发展  2021年生物学界公布了一项重要研究进展,人工智能(AI)技术已能精准预测上万对蛋白质的三维结构,其工作量及效率远超多年来该领域科学研究者人力工作的总和。消息一经公布便引发全球关注,该进展也随之被顶级期刊Science、Nature评选为年度技术之一。这一现象背后,反映的是人类科学研究的革命、科学探索的迭代升级,都离不开科学技术/仪器技术的精进。  20世纪70年代,气相色谱、液相色谱、电化学分析和毛细管电泳分析等先进的仪器分析技术逐渐被用于药物及其制剂的常规杂质检查和定量分析。进入80年代后,为了适应新药研发,满足生物样品分析量少、药物浓度低等要求,各种微量和超微量分离分析技术得以开发应用。其中,最常用的分析方法有免疫测定法、气相色谱法、高效液相色谱法、高效毛细管电泳法及各种联用技术如气相色谱-质谱联用,液相色谱-质谱联用等。“90年代我们使用气相色谱法开展小分子药物分析,当时离子源技术不过关,联用质谱技术发展还不成熟,对现在来说司空见惯的肽、蛋白质、糖、核苷酸等化合物分析,在当时简直是不可思议的事。我最早是在1995年用热喷雾液相色谱-单四极杆质谱(LC-MS)开展药物分析研究,当时的仪器只能做全扫描和SIM(选择离子检测模式)。由于当时质谱技术分析化合物时的灵敏度与选择性不够高,致使药物的定性和定量分析研究工作进展非常有限。1997年以后,我开始全面接触基于大气压离子源(API,包括ESI与APCI)的液相色谱-串联质谱联用技术(LC-MS/MS),那时候全国医药口的LC-MS/MS还仅是个位数,当时我就察觉到,如果能利用结合了强大液相色谱分离能力及质谱的高选择性、高通量和高灵敏度的LC-MS技术替代传统方法去开展药物代谢和药代动力学的研究工作,也许一周就能完成当时传统分析方法三年的工作量。而且,LC-MS/MS技术从通量、灵敏度、定性和定量等各方面可以把研究结果提高几个数量级,所以我真切感受到技术革命带来的最大变化是研究者可以利用技术创新完成原来做不到的事情。近三十年间,我见证着质谱仪器相关技术的更新发展,我的研究内容也随之不断拓展和延伸,从最初的小分子药物向如今非常火热的大分子、高分子以及纳米药物逐步扩展”,顾景凯说道。  近几十年,药物分析技术的发展也从体外到体内,从小样本到高通量,从人工到自动化,由单一技术到联用技术。随着医学和生命科学的迅速发展,药物分析科学也呈现出多学科交叉融合的特点及优势,在此基础上发展起来的一系列质谱技术、超微量分析手段,被广泛用于新药研发、药品生产和临床应用的每个环节。  高分子药用辅料及其PEG化药物的定性与定量分析方法的创新突破  纳米药物的核心是药物的纳米化技术,包括药物的直接纳米化和纳米载药系统。纳米给药系统是对药物进行靶向递释、降低药物毒副作用的新手段。随着聚合物纳米载体在设计、合成方面不断取得进展,聚合物纳米材料在纳米给药系统中得到了广泛的应用。  聚乙二醇(Polyethyleneglycol, PEG)是美国食品药品管理局(FDA)认证的无毒、无害且具有良好生物相容性的生物医用高分子材料,常用作与亲水端来修饰药物和纳米制剂。聚乙二醇化(PEG化)是一种将聚乙二醇聚合物以共价方式连接到治疗药物上的技术,具有增加药物水溶性、降低毒性、延长药物循环半衰期以及减少酶降解作用提高生物利用度等优点。但对于PEG这类分子量不唯一,且呈多分散性的高分子聚合物,常用的质谱定量分析方法要实现精准定量还存在多方面的挑战。顾景凯团队近期在国际上率先公开发表了关于PEG、单价与多价态PEG化前体药物及代谢产物定性定量分析的文章,是高分子聚合物全轮廓定量与定性分析领域的一大突破,目前该方法已成功获得中国发明专利授权。  相比于单一直链型PEG,多价PEG化小分子药物可以大大提高载药量。然而,其体内动态释药规律及药代动力学过程也要比单一直链型PEG化药物要复杂的多。多价PEG化小分子药物除了围绕PEG化药物、PEG及游离药物等部分外还要同时考察不同价态PEG化药物的体内变化规律。随之而来对分析检测方法的考验更加严峻,基于此顾景凯团队利用SCIEX的高效液相色谱-四极杆串联飞行时间质谱技术,采用TripleTOF质谱的全谱分析模式(TOF-MS与MSAll),先通过高效液相色谱将样本中的多价PEG化药及其体内不同形态代谢产物的混合物进行分组分离,使同一组内的同分异构体或同系衍生物具有相同的液相保留行为,再通过质谱选取共有特征性碎片实现各组分的绝对定量,意即在全扫描模式下,所有待测物在Q1中全通过,在Q2过程中经适宜的碰撞能(CE)将待测物打碎,TOF质量分析器扫描通过的全部子离子,获得所有碎片的精确质量信息,然后进行定性与定量分析。  正如上文介绍的,顾景凯团队提出创新性分析方法,突破了串联质谱所无法全轮廓定量分析高分子药用辅料或PEG化药物的技术难题,使高分子聚合物或药物的全轮廓定量分析成为可能。当前越来越多的研究表明,许多过去被普遍认为是无活性的聚合物纳米材料可能具有某些活性或毒性。因此,建立针对聚合物纳米材料的体内定量分析方法,全面、深入地研究聚合物纳米材料的体内命运具有非常重要的药理学与毒理学意义。  直面高灵敏度定量定性分析挑战: SCIEX QTRAP®质谱大显身手  药代动力学是定量研究药物在生物体内吸收、分布、代谢和排泄的动态变化规律, 并阐明不同部位药物浓度与时间关系的科学。由于药代动力学的硬性要求,其对仪器的灵敏度、选择性以及分析通量等方面都提出非常高的要求。  “曲普瑞林是由十个氨基酸组成的合成肽,用于治疗激素反应性癌症,比如前列腺癌和乳腺癌,当前该药物已在市场上广泛应用。对于多肽类药物分析来说,由于其与内源性肽和蛋白质的质荷比相近的非常多,背景化学干扰非常强,所以对这类药物分析存在两大挑战,即灵敏度和选择性。通常使用三重四极杆串联质谱进行常规分析时,尽管利用了前端固相萃取净化,高效液相色谱分离以及MRM(多重反应监测技术)母离子选择性极高的分析手段,我们仍然发现有很强的背景干扰,并且信噪比达不到药代动力学的准确定量要求。由于QTRAP® 质谱是将三重四极杆串联质谱技术与线性离子阱质谱技术高度结合的复合技术,所以我们引进了QTRAP® 质谱技术,在四极杆选择、打碎的基础上,利用线性离子阱再次裂解即可获得选择性很高的孙离子。由于离子阱同时具有很强的离子富集功能,这时利用孙离子进行定量分析,就可以大幅度地提高灵敏度,我印象中提高了十几倍,因此成功地满足了药代动力学的定量要求。我们利用 QTRAP® 6500系统成功建立了多肽药物曲普瑞林的分析方法,这让我印象非常深刻。“顾景凯介绍道。  顾教授与研究生同SCIEX QTRAP质谱合影照片  推进超低浓度、超强干扰药物分析与纳米药代动力学:串联质谱与差分离子淌度大有可为  “不仅如此,我们还曾开发了一种选择性好、灵敏度和分析通量高的利马前列素分析方法。利马前列素临床使用剂量极低,用于后天性腰椎管狭窄症的给药剂量为5μg,达峰浓度(Cmax )仅为1.2 pg/mL,这要求利马前列素的定量下限至少达到0 .1~0 .2 pg/mL。同时,体内存在数十倍于利马前列素达峰浓度的内源性化学背景干扰,可以说该药物体内分析面临着以上“瓶颈”问题。  “基于此,我们的分析方法是通过液相色谱、SelexION™差分离子淌度(DMS)和SCIEX QTRAP® 6500系统三维度分离分析相结合的策略,可降低对液相色谱分离度的要求,缩短了分析时间,提高分析通量,有效避免基质中内源物干扰,减少必需萃取次数,缩短了样品处理时间,在国内率先成功地完成了利马前列腺素片的人体BE评价研究工作。“顾景凯介绍说。  ”这是国际上首次采用DMS-MS/MS实现了如此低药物浓度的准确定量分析,并且我们依照国家药品监督管理局药品审评中心相关技术指南的要求,前后共完成了7500个生物样品的分析,这也是差分离子淌度技术首次用于如此多的生物样品分析评价工作。“顾景凯补充道。  顾景凯也坦言,当前纳米给药系统的研究进展,国内已处于国际前沿,并且个别领域是国际领先。纳米药物载体的设计属于纳米药物产业上游,发展非常迅速,但针对纳米药物的药代动力学研究,国内外相对来说,是严重滞后纳米药物的设计与制备的,当前药物分析技术的能力远远达不到对纳米给药系统体内命运精准评价所提出的要求,目前主要还是主要依靠下游的药效或毒性评价来间接反映其体内命运,这严重制约了纳米药物的临床转化成功率。下一步需要通过新型的分离与分析手段,进一步推进纳米药代动力学研究的进程。  对于下一步的研究计划,顾景凯表示,当前团队研究方向主要有三方面,一是多糖类药物的分析 二是mRNA、LNP疫苗不同形态的体内准确分析 三是高分子药用辅料准确定量和定性分析。此外其团队也在开展基于药代动力学性质的前体药物设计合成,目前作为主要参与单位的前体药物已经上市,同时还有两个作为负责单位的前体药物处于IND研究阶段。
  • 中国在原子分子超快动力学研究方面取得重要进展
    p  飞秒强激光为在原子时空尺度(阿秒时间与亚埃空间尺度)探测物质微观结构及电子超快动力学提供了重要手段。近日,我国专家在利用飞秒强激光探测原子分子结构及电子超快动力学研究方面取得重要进展。/pp  飞秒强激光诱导的电离电子波包或可重新返回母离子实并与之发生再散射过程,由再散射引起的高次谐波谱或光电子谱为探测原子分子结构及电子态超快演化提供有效途径。当前,发展时空高分辨的原子分子结构及动力学探测方法为研究领域广泛关注。/pp  中国科学院武汉物理与数学研究所柳晓军研究员、全威研究员等人与北京应用物理与计算数学研究所陈京研究员、吴勇副研究员等合作,提出一种新的激光诱导非弹性电子衍射方案,并采用这一方案实验测定了电子与惰性气体离子碰撞引起的非弹性散射微分截面。/pp  据介绍,在这一方案中,专家利用飞秒强激光驱动原子产生的再散射电子波包替代传统电子束,通过电子碰撞的方法对惰性气体母离子结构进行探测。结合武汉物数所前期建成的高分辨电子-离子动量谱仪装置与符合测量方法,他们实验测量了对应于电子-离子碰撞电离过程的光电子二维动量谱,并从中提取出电子与母体离子作用的非弹性散射微分截面,实验结果与扭曲波波恩近似理论计算结果吻合。/pp  这一方案继承了传统电子衍射方法的超高空间分辨优点,而且具有超高时间分辨能力,为在飞秒乃至阿秒时间尺度研究激光诱导的原子分子超快动力学过程提供了重要手段。相关研究成果近期发表在学术期刊《物理评论快报》上。/p
  • 超快光谱用于拓扑材料高压超快动力学研究
    近期,中科院合肥研究院固体所计算物理与量子材料研究部与广东大湾区空天信息研究院、中科院合肥研究院强磁场中心等团队合作,研究了高压下拓扑绝缘体 Sb2Te3 的电子和声子动力学,探索了压力对该材料电声耦合强度、相干声子以及热声子瓶颈等的影响。 相关结果发表在 Physical Review B 上,固体所博士后张凯为论文第一作者,苏付海研究员为通讯作者。超快光谱可以飞秒时间分辨率记录激发态演化过程,进而获得热电子冷却、电声子耦合、相干声子激发等动力学信息;金刚石对顶砧高压技术可连续调控材料的晶格和电子结构,实现不同量子态的抑制或诱导。超快光谱和金刚石对顶砧相结合,对于探寻和理解高压下电子拓扑相变、金属-绝缘体转变等重要物理现象和机制具有重要意义。近年来,固体所计算物理与量子材料研究部研究人员已研制出基于飞秒激光的近红外至太赫兹波段高压超快光谱系统,并利用该技术在石墨烯、砷化镓等材料的热电子动力学压力调控方面取得了一定进展 (Appl. Phys. Lett. 117, 101105 (2020);Phys. Rev. Lett. 126, 027402 (2021);Optics Express, 29, 14058 (2021))。在此基础之上,研究团队以经典拓扑绝缘体Sb2Te3为研究对象,着重探究电子拓扑转变过程中的超快动力学效应。借助高压下飞秒泵浦-探测光谱,测量了不同压力下瞬态反射光谱,获得了Sb2Te3的热电子弛豫时间、相干声学声子寿命等参数和压力的关系,并观察到伴随电子拓扑转变的热声子瓶颈压制效应(图1)。结合理论计算,发现其电子能态密度在电子拓扑转变之上迅速增大,从而为热电子和热声子提供更多的弛豫通道,有效提高电声耦合强度,减弱热声子瓶颈效应。由于超快光谱可探测偏离费米面或能带极值点的高能载流子弛豫过程,反映电子和声子结构的色散细节以及高频光学声子相关的电声子耦合,因而高压超快光谱能够清晰直观地表征材料的电子拓扑及晶体结构转变(图2)。该研究首次揭示了高压下Sb2Te3材料在电子拓扑转变及晶格结构相变过程中的非平衡态电子和声子动力学,深化了对该体系材料中电声子相互作用的理解,为高压下拓扑相变探测开辟了新途径。该工作得到了国家青年基金项目、面上项目和基金委国家重大科研仪器研制项目等的支持。文章链接:https://doi.org/10.1103/PhysRevB.105.195109。 图1. 不同压力下的Sb2Te3的飞秒泵浦-探测反射光谱以及相干声子寿命、快时间、热声子瓶颈效应随压力的变化趋势图2. 不同压力下Sb2Te3的飞秒泵浦-探测反射光谱。
  • 分子超快动力学过程研究获进展
    飞秒泵浦-探测技术是一种可以在原子运动时间尺度上实时观测化学反应的有力手段,在飞秒泵浦-探测技术基础上发展起来的分子超快动力学是当前分子反应动力学研究领域的热点和焦点之一。  中科院武汉物理与数学研究所-武汉国家光电实验室张冰研究员领导的研究团队一直从事分子超快动力学方面的研究。近日,该团队利用飞秒泵浦-探测技术与飞行时间质谱和光电子影像技术相结合,对碘甲烷分子的B带预解离超快动力学过程进行了研究并取得重大进展。通过采集不同时刻下的光电子影像(见下图),获得了分子电离时的光电子能量和角度分布,并得到它们随泵浦-探测时间延迟变化的动态信息。实验中观察到碘甲烷母体的三种电离通道。通过光电子影像,直观地研究了碘甲烷分子的B带预解离过程,实验测得B带与A带交叉发生预解离的时间为1.55 ps。不同时间延迟下的光电子影像  该项工作得到国家自然科学基金项目的支持,结果发表在《光学快讯》(Optics Express) (2009,17(13):10506-10513)上。
  • 厉害了,康宁在光反应动力学的又一大突破!!!
    摘要近日康宁AFR欧洲技术团队,基于紫外-可见光下(E)-偶氮苯的光异构化,开发了一种高效、低成本的多波长化学光量测量方法。由量子产率估算和1H NMR核磁共振分析表明,对于从紫外光到可见光范围的各种波长,结果都非常准确。研究者还通过对光化学反应器中光子通量密度的测定,核算N2-苯腙在405nm波长下的量子产率,对该方法进行了验证。小贴士量子产率:每吸收一个量子所产生的反应物的分子数,通常是对于特定的波长而言,即量子产率=(生成产物的分子数)/(吸收的量子数)。量子产率是进行光化学学动力学研究的重要参数。光子通量密度:表示单位时间单位面积上在特定波长范围内入射的光量子数。背景相对于批次间歇反应釜,连续流光化学反应器具有持液体积小、透光均匀、反应安全且重现性好等优点。随着单色度高、寿命长且能耗低的LED光源的发展,市场上涌现出了新一代高效的连续流光化学反应器,产能通量包括从实验室级(克/小时)到工业生产级(吨/天)。在上述背景下,为了量化通过光反应器的光子通量密度,帮助理解光化学反应机理,并能精确地描述光反应器在生产率变化时如何随时间变化和操作,迫切需要开发低成本和多功能的光量测量方法。然而,现有方法大多数都是基于昂贵的光量光度计和繁琐的程序,且极少有测定连续流微通道光化学反应器中接收光子通量密度的光量测量方法被报道。研究过程:一、理论模型与结果化学家们曾研究了大量一级光化学反应物质,这些物质在光的诱导下转化为另一种物质的速率可以被精确测量,并与入射的绝对光子通量密度相关联。在这类光化学反应体系中,光子被反应物R和产物P以不同的摩尔消光系数吸收,吸光度随时间而变化。作者在前人的研究基础上,建立了理论模型。并考虑到康宁Lab光化学反应微通道的几何形状,呈现了两个垂直于光源的平行壁,由于光路在通道的每个点上都是恒定的,到光源的距离也是固定的和恒定的。利用康宁连续流光学反应器来研究化学光量测量方法所面对的主要问题,是要对康宁微通道反应器的玻璃模块的玻璃层和换热层的光透射进行修正。图1.康宁LAB光化学反应器剖面图2017年,作者的团队报道了一种简单的方法,在溶剂中使用偶氮苯作为一种方便的光度计。该方法的主要优点在于偶氮苯的成本低和使用核磁共振作为一种定量光谱技术来简化动力学测量。图2. 偶氮苯的光异构化研究者展示了应用此方法在具有四个不同波长(365、385、405和475nm)的康宁Lab光化学反应器进行光量测量,并给出了数据和拟合结果(以405 nm为例):图3.康宁Lab光化学反应器中405 nm下的化学光量测量结果特定波长下(405nm),反应路径内的光子通量密度与光强之间的拟合公式如下:【编者语】康宁反应器不只是应用于工艺开发或者工业化生产,也适用于化学研究领域。不管是动力学理论研究,新的测量方法研究,还是新化合物的发明与发现,康宁反应器都有可能是您的得力助手。二、方法应用与验证:为了证明这种方法在连续流光化学反应动力学研究中的适用性,作者按照本文方法重新计算了isatin N2-phenylhydrazone的光量子产率(已知最近的文献中其光化学量子产率(ΦZ ≈ 1 × 10–3))。图3. 康宁实验室光化学反应器。前面铝箔覆盖包裹避免自然光照图4. isatin N2-phenylhydrazone 405nm异构化的光动力学研究 考虑到康宁Lab光化学反应器的通道极细(0.4mm),为了保证足够的量进行1H NMR分析,浓度增加到2×10−3mol.L−1。在上述浓度条件下,吸收约为99% (ε z=12270L.mol−1.cm−1),光子几乎全部吸收,可以通过核磁共振波谱进行非常精确的测量。由于康宁Lab光化学反应器中良好的传热性能,温度可以保持在20°C,因此可以忽略热异构化的影响。由于Z-构型的氢键,E和Z异构体的浓度可以轻易的通过1H NMR进行定量。利用长停留时间确定了光静止状态。(Z)-异构体的甲醇溶液在405nm的不同停留时间照射,光功率为100%。 图5.isatin N2-phenylhydrazone的光异构化反应EPSS(0.20)被用作一个参数来绘制图ln (EPSS−E) 与时间的关系,它与相关系数表现出线性关系并具有良好的平方相关系数(R2=1.00) 。该图的斜率(0.070s−1)对应于公式:通过公式换算可以很容易的计算出量子产率ΦZ(1.1 × 10–3),这一数据与文献数值非常接近。结果与讨论康宁欧洲技术团队开发的此光量测量方法为应用连续流光化学反应器进行光反应动力学研究提供了参考。鉴于此方法安全、简单易操作,它的应用可以扩展到更大规模的连续流光反应器(如康宁G1和G3光化学反应器)中作为例行分析测试手段。参考文献:Photochemical & Photobiological Sciences. 8 January 2022康宁光化学反应器宁高通量微通道光化学反应器(Advanced-Flow Photo Reactor),拥有透光率高、耐高温、耐高压、光强度大、光源纯净,控温精准、无放大效应等特点,在光化学反应中有独特的技术优势和广泛的应用前景。此外,康宁光化学反应器可以与在线NMR结合,对反应工艺参数进行快速筛选,有效地提升新分子的探索和工艺优化的过程。
  • 【热门应用】WAVE基于GCI技术的分子相互作用动力学分析在药物开发中的应用
    Creoptix公司,光学生物传感器的领军企业,2022年加入马尔文帕纳科,拥有专利的光栅耦合干涉(GCI)技术,开创新一代动力学,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据具备先进的GCI技术的WAVE系列分子互作分析仪,究竟能为生物开发领域带来什么样的支持呢?他和传统的分子互作技术相比又有哪些差异和优势呢?本文将针对以上问题予以解答。1关于光栅耦合干涉技术(GCI)光栅耦合干涉技术(Grating-Coupled Interferometry, GCI)是一种近年发展起来的具有极高灵敏度的基于芯片的非标记生物传感器技术,它区别于依赖荧光和免疫等标记分子的传统分子间相互作用技术。通过一次GCI实验,用户可以快速、准确、可靠的获取一整套描述分子间相互作用的信息,包括并不限于结合有无、结合特异性、描述结合强弱的亲和力KD或键合常数KA、描述结合快慢与稳定性的动力学常数(结合速率常数ka与解离速率常数kd)、样品活性浓度、分子间结合机制以及理论热力学信息(范德霍夫焓变)等。GCI技术的商业化产品是Creoptix WAVE系列(2022年初被马尔文帕纳科收购作为旗下Label-Free分子互作分析平台的一员)。 GCI技术具有高灵敏度、分析物的分子量无下限以及捕获快速解离动力学等优势,改进了基于片段的小分子筛选和动力学分析,与无堵塞的流路集成芯片配合使用,加速了药物开发的过程。图1 光栅耦合干涉技术(GCI)示意图2弱相互作用也能得到很好的数据在基于片段的筛选中发现的弱结合物通常是根据亲和力而不是动力学进行排名的,因为它们的解离速率常数kd非常快,这是传统的SPR仪器无法解决的问题。然而,由于具有超快速的流路切换时间,Creoptix WAVE系统可以提供出色的分辨率,在高达10 s-1的解离速率下仍然能够可靠地确定动力学,提供了一个多功能的片段药物筛选和分析平台。使用4PCZ WAVE芯片固定淀粉样纤维蛋白(Amyloid Fibrils),小分子硫黄素(ThT,319 Da)以4种浓度(50 mM ~ 6.25 mM)注入,拟合后显示出10 s-1左右的解离速率常数。图2 淀粉样纤维蛋白与硫黄素的结合分析下图为在PCP WAVE芯片上捕获的6-mer寡核苷酸(1.7 kDa)与其互补的ssDNA结合的传感图,拟合后显示出10 s-1左右的解离速率常数。图3 寡核苷酸与其互补的ssDNA的结合分析3创新的waveRAPID技术加快药物发现的早期阶段对于更快地将新药送到患者手中至关重要。为了满足用户需求,Creoptix推出了测量动力学的新方法。在传统的动力学实验中,分析物以不断增加的浓度被注入,每次注射的持续时间一样。然而,Creoptix创新的waveRAPID (Repeated Analyte Pulses of Increasing Duration)技术通过以不同时长注入单一浓度的分析物,不断增加在芯片表面的脉冲时间来进行动力学分析,该方法免去了浓度梯度的稀释步骤,大大减少了人为稀释误差和实验前的准备时间。图4 waveRAPID与传统动力学的方法比较用waveRAPID和传统的多循环动力学测量小分子化合物FUR(分析物)与碳酸酐酶CAII(配体)的结合。使用WAVEcontrol软件的“Direct Kinetics”分析,两种方法都能提供高度一致的结果。图5 waveRAPID与传统动力学的数据比较使用waveRAPID技术,在18小时内完成了对90个小分子的动力学分析,图中显示的结果为筛选过的具有低统计学误差的速率常数,突出展示了三种不同结合强度的相互作用的传感图和拟合图。图6 小分子药物苗头化合物的waveRAPID动力学筛选结论Conclusion通过Creoptix WAVE所提供的亲和力和动力学信息能够表征药物结合的详细动力学机制,为开发具有高选择性的药物提供了理论基础,使得未来药物设计中的计算和实验更加合理化。提高通量是药物发现过程中经常提到的需求,使用waveRAPID技术大大缩短了总测量时间,在药物发现领域得到了广泛应用。参考文献[1] Kartal O, Andres F, Lai MP, et al. waveRAPID-A Robust Assay for High-Throughput Kinetic Screens with the Creoptix WAVEsystem. SLAS Discov. 2021 26(8): 995-1003.[2] FitzGerald EA, Butko MT, Boronat P, et al. Discovery of fragments inducing conformational effects in dynamic proteins using a second-harmonic generation biosensor. RSC Adv. 2021 11(13): 7527-7537.相关产品WAVE 分子相互作用分析仪WAVE分子相互作用分析仪拥有基于光栅耦合干涉技术(GCI)的光学生物传感器,且具有创新性的微流控技术,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据,帮助药物和生物科学研究人员加快新药发现和开发的进程。与传统动力学分子互作分析技术相比具有如下优势:无需配置浓度梯度样品10倍于传统分子互作技术分析速度超高灵敏度,捕获快速动力学微流控技术,不堵塞流路点击下载产品手册马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。
  • 南开大学团队:研制出世界首套超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统
    近日,南开大学物理科学学院超快电子显微镜实验室付学文教授团队成功研制并报道了国际首套超快扫描电子显微镜(SUEM)与超快阴极荧光(TRCL)多模态载流子动力学探测系统。该系统在飞秒超快电子模式下实现了空间分辨率优于10 nm,SUEM成像和TRCL探测的时间分辨率分别优于500 fs和4.5 ps,各项技术性能和参数指标达到国际领先水平。该团队利用该多模态载流子动力学探测系统在飞秒与纳米时空分辨尺度直接追踪了n型掺杂砷化镓(n-GaAs)半导体中的光生载流子的复杂动力学过程,结合SUEM成像和TRCL测量成功区分了其表面载流子和体相载流子的动力学行为,全面直观地给出了其光生载流子动力学的物理图像。该仪器系统的成功研制填补了我国在该技术领域的空白,为研究和解耦半导体中复杂的光生载流子动力学过程提供了一个强有力的高时空分辨测量平台,将为新型半导体材料与高性能光电功能器件的开发提供重要支撑。该研究近日以“A femtosecond electron-based versatile microscopy for visualizing carrier dynamics in semiconductors across spatiotemporal and energetic domains”(一种基于飞秒电子的可用于跨时空和能量维度可视化半导体载流子动力学的多功能显微镜)为题,发表于重要国际学术期刊《Advanced Science》。半导体光电材料与器件的功能和性能主要取决于其材料表/界面的载流子动力学过程,例如光伏与光电探测器件需要增强其界面光生载流子的分离与传输,抑制载流子的复合,而发光器件则要增强其界面载流子的辐射复合,抑制非辐射复合。这些载流子的动力学过程多发生在表/界面处,且动力学过程快至皮秒乃至飞秒量级,因此以超高的时间、空间以及能量分辨率测量半导体材料表/界面载流子不同类型的动力学过程对于现代半导体器件的研发及应用起着至关重要的作用,尤其是对于一些低维、高速、超灵敏的半导体光电器件。当前,研究半导体光生载流子动力学的时间分辨探测技术主要有瞬态吸收显微镜(TAM)及光谱、时间分辨近场扫描光学显微镜(NOSM)、时间分辨阴极荧光(TRPL)、时间分辨光发射电子显微镜(TR-PEEM)等。然而,光学衍射极限限制了这些技术的空间分辨率,并且激光较大的作用深度使得测得的动力学信号主要来自材料内部的平均载流子动力学信息,很大程度上掩盖了来自表面或界面载流子的贡献,且单一的探测手段难以同时给出载流子不同类型的动力学信息。因此,为了全面表征半导体材料的载流子动力学,特别是表/界面载流子的动力学,亟需发展一种在时空间和能量维度上同时具有超高分辨率并且兼具高表面敏感特性的超快探测手段。图1. 仪器系统的示意图和时空分辨性能表征。(a)超快扫描电镜与超快阴极荧光多模态载流子动力学探测系统的示意图。其中包含飞秒光学系统、扫描电镜系统、阴极荧光收集系统、条纹相机以及液氦低温台。图中左上角分别为金刚石微晶的扫描电镜图、阴极荧光强度分布图像、阴极荧光光谱以及n型GaAs在77 K下的条纹相机图像 (b)传统模式下锡球标样的SEM图 (c)和(d)不同放大倍数下锡球标样的飞秒脉冲电子图像,表明飞秒脉冲电子模式下良好的成像质量,其空间分辨率优于10 nm。(e)初始红外飞秒激光脉冲的脉宽;(f)超快扫描电子成像的时间分辨率测试,其仪器相应函数(IRF)大约为500 fs;(g)超快阴极荧光探测的时间分辨率测试,其IRF约为4.5 ps。随着超快电子显微镜技术的蓬勃发展,超快扫描电子显微镜(SUEM)和超快阴极荧光(TRCL)技术也迅速兴起,两者都同时兼具超短脉冲激光的超快时间分辨率和电子显微镜的超高空间分辨率。其中SUEM技术是基于泵浦-探测原理,用一束可见波段飞秒激光激发样品表面产生光生载流子,另一束同步的紫外飞秒激光激发扫描电子显微镜的光阴极产生飞秒脉冲电子进行扫描成像。由于扫描电子显微镜主要收集来自距离样品表面几个纳米范围内的二次电子信号,使得超快扫描电子显微镜技术具有表面敏感特性,能够直接对半导体材料表面或界面光生载流子(电子和空穴)的时空演化动力学进行成像。然而,该技术无法直接区分辐射复合与非辐射复合动力学过程。TRCL技术是用聚焦的飞秒脉冲电子束激发样品产生瞬态荧光,用条纹相机或时间相关单光子计数器对瞬态荧光进行测量,具有能量敏感特性,且信号绝大部分来源于材料体内,可直接反映载流子的辐射复合行为。因此,SUEM和TRCL在功能上形成良好的互补,将两者有机结合有望实现在超高的时空和能量分辨下全面解析半导体材料表/界面和体相载流子的动力学信息。鉴于此,付学文教授团队将飞秒激光、场发射扫描电子显微镜和瞬态荧光探测模块相结合,研制出了国际首套超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统(如图1示意图和图2实物图所示),实现了对半导体材料表/界面和体相载流子动力学过程的高时空分辨探测和解析。图2. 超快扫描电子显微镜与超快阴极荧光多模态载流子动力学探测系统实物照片。图3. 利用该系统对n型GaAs单晶表面的SUEM成像和TRCL测量结果。(a)n型砷化镓表面测量得到的随时间演化的SUEM图像;(b)从图(a)中光激发区域提取的二次电子强度演化及相应的载流子演化时间常数;(c)表面载流子的空间分布随时间的演化;(d)从297 K到77 K的变温时间积分CL光谱;(e)和(g)在图(a)的SUEM测试区域中分别探测得到的297 K和77 K下的条纹相机图像;(f)和(h)分别从(e)和(g)中提取的带边发射的衰减曲线及相应的荧光寿命。为展示SUEM成像与TRCL探测在超高时空和能量分辨率下直接可视化并解耦半导体中复杂激发态载流子动力学过程上的独特优势,该团队利用该自主研发的多模态实验装置研究了n型GaAs中的载流子动力学。如图3所示,SUEM图像表明由于表面能带弯曲效应,飞秒激光作用后表面光生载流子发生快速分离使空穴向表面富集。通过分析随时间变化的SUEM图像,提取出了光生载流子不同阶段的衰减时间常数;同时通过计算表面空穴分布的均方根位移,揭示了对应不同阶段表面空穴随时间的超扩散、局域化和亚扩散过程。通过进一步分析室温和液氦温度下测量的条纹相机图像中相应的非平衡载流子复合动力学过程和寿命,不但区分出了体相和表面载流子动力学过程的差异,还揭示了上述表面载流子的空间演变过程分别对应于能量空间热载流子冷却、缺陷捕获和带间/缺陷辅助辐射复合过程。该工作阐明了表面态和缺陷态对半导体表/界面载流子动力学的重要影响,展示了超快扫描电子显微镜和超快阴极荧光多模态动力学探测系统在超高时空尺度解耦半导体表/界面和体相载流子动力学中的独特优势。南开大学为该项工作的第一完成单位及通讯单位。南开大学物理科学学院博士生张亚卿和博士后陈祥为该论文共同第一作者,南开大学付学文教授为通讯作者。该研究得到了国家自然科学基金委、国家科技部、天津市科技局、中央高校基础研究经费等的大力支持。文章链接:https://doi.org/10.1002/advs.202400633
  • 物理所在光激发VO2超快电子相变和结构相变的动力学解耦研究中取
    二氧化钒(VO2)是一种典型的强关联材料。在温度约为340K时,VO2会经历从绝缘性单斜相(M1-VO2)到金属性金红石相(R-VO2)的一级相变过程。强关联材料中电荷、晶格、轨道和自旋等自由度强烈地耦合在一起,这使得VO2绝缘体-金属相变存在多种相变机制。超快激光脉冲通过激发固体材料的价电子可以快速改变原子的势能面,因此激光辐射已经成为一种诱导强关联材料相变的有效途径,比如激光辐射可以使M1-VO2在500fs内发生非热的结构相变。但是实验上通常很难直接同时观测结构相变和绝缘体-金属相变中的超快原子和电子动力学,因此对于VO2的超快结构相变和绝缘体-金属相变的相变机制,以及两种相变能否脱耦仍然存在巨大争议。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心表面物理国家重点实验室研究人员利用自主开发的激发态动力学模拟软件TDAP,研究了激光诱导M1-VO2到R-VO2的超快结构相变和绝缘体-金属相变,揭示了超快尺度上的非平衡相变机制。激发态动力学模拟可以追踪光诱导VO2结构相变和绝缘体-金属相变的超快过程,直接证明飞秒尺度上两种相变的解耦合行为。在这种动力学过程中,激光将M1-VO2 d||带上的价电子激发到导带上,d||带上产生的空穴可以引起V-V对的扩张和V-V-V扭转角的增加,从而驱动M1-VO2到R-VO2的结构相变(图1、图2)。计算模拟得到的结构相变速率与激发强度的依赖关系,与超快实验数据符合得很好。基于杂化密度泛函的激发态动力学模拟证明了在M1-VO2构型下可以出现等同结构的绝缘体-金属相变(图3)。M1-VO2中的空穴会引起间隙能级在带隙中的填充,从而引起带隙的消失。更高强度的光激发可以引起d||带的明显上移。模拟得到的结构相变和绝缘体-金属相变的激发阈值基本上是相同的,而结构相变和电子相变存在着数百飞秒的时间延迟,这导致了金属型M1-VO2瞬态和等同结构电子相变的出现(图4)。该工作揭示了VO2超快结构相变和绝缘体-金属相变过程中不同的超快机制,澄清了以往对于VO2是否存在等同原子结构的电子相变的争议,并提供了研究强关联材料非平衡动力学的新方法。相关成果近期发表在Science Advances上。研究工作受到国家重点研发计划、国家自然科学基金委和中科院的资助。图1 VO2原子结构图和光激发电子跃迁过程。(A)低温绝缘型M1-VO2和(B)高温金属型R-VO2的原子结构图。钒原子和氧原子分别以绿色和橙色显示。(C)脉冲电场强度E0为0.20 V/的800nm激光脉冲,以及其激发M1-VO2中的光生空穴密度随时间的演变。(D)光激发有效空穴密度与激光脉冲电场强度E0的关系。图2 光激发M1-VO2到R-VO2相变原子动力学。(A)不同激发强度下V-V长键和V-V短键平均长度的时间演变。(B)不同激发强度下平均V-V-V扭曲角的时间演化。(C)0.64 e/f.u激发强度下的差分电荷密度图。黄色区域对应于电子增加,青色区域对应于电子减少。(D)光激发结构相变时间常数与实验数据的比较。图3 光激发M1-VO2的电子动力学。(A)不同激发强度下M1-VO2的电子态密度。(B)杂化泛函非绝热模拟中电子激发量的演化。在E0=0.14 V/ 下t= 20 fs(C)和t = 40 fs(D)时的电子占据和态密度。图4 光诱导M1-VO2超快相变示意图。初始的绝缘相M1-VO2(t = -100 fs)在t = 0 fs时被激光脉冲激发。光激发诱导M1-VO2发生等同原子结构的绝缘体-金属相变(10 fs内),而结构相变在100至300 fs的时间尺度内发生。
  • 中国化学会第八届全国热分析动力学与热动力学学术会议暨江苏省第九届热分析学术研讨会(第一轮通知)
    由中国化学会化学热力学和热分析专业委员会与江苏省分析测试协会热分析专业委员会主办,扬州大学、南京师范大学和陕西师范大学承办的第八届全国热分析动力学与热动力学学术会议将于2021年10月29-31日在江苏省扬州市召开。本次会议将围绕热分析动力学和热动力学,就近年来相关理论研究、新仪器设计与分析技术方面的进展,以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。会议将邀请国内从事热分析动力学和热动力学及相关领域的著名专家、中青年学者和仪器生产厂商参加学术交流和技术探讨。会议期间还将展示一批国内外最新热分析仪器及相关产品,提供最新技术和最新测试方法方面的资料。欢迎广大科技工作者踊跃投稿,积极参加。欢迎相关企业利用此次契机参与会展,扩大影响。主办单位:中国化学会化学热力学与热分析专业委员会 江苏省分析测试协会热分析专业委员会 承办单位:扬州大学 南京师范大学 陕西师范大学一、会议组织委员会 大会主席:王键吉大会副主席:尉志武组委会主席:韩 杰、张建军、王昉组委会副主席:胡文兵、吴德峰、王赪胤、刘志宏 组委会委员:成 一、李小云、吴 昊、周东山、卞国庆、白华萍、陈登宇、蔡军、陈建梅、陈 军、蔡 挺、顾海兵、顾敏芬、郭 耸、刘畅、李艳春、罗亚莉、李忠红、李照磊、马淑凤、南照东、庞欢、石 健、谭卫红、徐 颖、杨高文、郁清、朱立忠、张蓉仙秘书长:吴德峰秘书处:张小兴、尹苏娜、陈 洁、解文媛、谢 安、王玮二、会议学术委员会(按姓氏拼音排序) 主 席:韩布兴 副主席:房大维、李浩然、刘洪来、刘 义、王键吉、尉志武、张建玲 秘书长:赵 扬 委 员:安学勤、白光月、白同春、陈三平、崔子祥、邓天龙、邸友莹、丁延伟、杜为红、杜 勇、方文军、高 峡、胡文兵、胡艳军、黄在银、蒋风雷、兰孝征、李宏平、李强国、李庆忠、李 武、刘志宏、刘志敏、陆小华、吕兴梅、马海霞、孟祥光、牟天成、彭汝芳、任宜霞、史 全、王昉、王金本、王 琦、王毅琳、王玉洁、武克忠、吴卫泽、谢 钢、徐 芬、薛永强、严川伟、杨莉萍、叶树亮、于惠梅、张建军、张庆国、张锁江、张同来、赵凤起、曾德文、卓克垒三、 会议学术顾问委员会(按姓氏拼音排序) 顾问:高胜利、沈伟国、孙立贤 四、大会主题 展现热分析动力学与热动力学以及热分析和量热领域的主要研究成果。 五、会议交流形式 大会特邀报告、专题报告及讨论、墙展、出版大会论文集。 大会拟于2021年10月29日下午14:30-18:00举行热分析先进技术培训班,培训班将邀请国内著名的热分析学者参与,请感兴趣者提前安排好时间,本培训班不再额外收取费用。六、征文内容 1.热分析动力学理论与研究进展;2.热动力学理论与研究进展 3.热分析动力学和热动力学的仪器功能、实验方法和数据处理软件的开发等 4.热分析动力学和热动力学在无机、有机、高分子、材料、生物等各个领域中的应用;5.热分析与量热学领域内的研究工作 6.其他相关内容。七、论文要求 1.会议接收未在国内外学术刊物上公开发表过的原创论文;2.会议论文要求突出工作的创新性,文字简练,语言准确;3.论文摘要格式要求如下:请按照摘要模板要求(模板可从中国化学会会议注册网站下载,附件1,https://www.chemsoc.org.cn/meeting/TAKT/)以中文或英文提供论文摘要,每篇摘要不超过两页。4.论文征集截稿日期:2021年9月30日。八、会议日期、地点 日期:2021年10月29-31日(29日报到) 地点:江苏省扬州市会议中心 2021年10月29日下午14:30-18:00: 热分析先进技术培训班 九、会议注册 1.注册费:交费日期(以汇款时间为准)非化学会会员化学会会员化学会学生会员9 月 30 日前1050 元850 元700 元10 月 1 日以后1200 元 950 元 800 元2.缴费方式:(1)汇款:银行户名:江苏省分析测试协会 银行账号:320006610010149002047 开户银行:交通银行南京玄武支行 备注:TAKT-参会代表姓名汇款后请发送email到jsfxcsxh@163.com,告知汇款金额、单位与参会人信息。 (2)现场缴费。3.会议期间食宿统一安排,费用自理。 4.本次会议采用网站注册(https://www.chemsoc.org.cn/meeting/TAKT/),论文摘要(word电子版,模板可从注册网站下载,附件1)可网上提交,也可通过E-mail(snyin@yzu.edu.cn)发送给组委会。十、联系方式 联系人:陈 洁 (电话:0514-87975244 手机:13952731429,扬州大学) 尹苏娜 (手机:18762306233,扬州大学) 吴德峰 (手机:13952734010,扬州大学) 王 玮 (手机:18061229299,江苏省分析测试协会) E-mail:snyin@yzu.edu.cn jsfxcsxh@163.com 主办单位:中国化学会化学热力学与热分析专业委员会 江苏省分析测试协会 热分析专业委员会 承办单位:扬州大学 南京师范大学 陕西师范大学 2021 年 7 月 1 日
  • 第三届全国热分析动力学与热动力学学术会议在南京召开
    仪器信息网讯 作为“国际化学年在中国”的系列活动之一,“中国化学会第三届全国热分析动力学与热动力学学术会议暨江苏省第三届热分析技术研讨会”于2011年10月21日在南京古南都饭店隆重召开。本次会议是受中国化学会委托,由中国化学会化学热动力学和热分析专业委员会及江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办,河北师范大学协办,来自全国各地近240名热分析工作者参与了此次大会。大会开幕式由江苏省分析测试协会热分析专业委员会主任王昉老师主持大会主办方之一南京师范大学副校长陈国祥教授致欢迎辞江苏省分析测试协会理事长、江苏省生产力促进中心胡义东主任致开幕词中国分析测试协会副理事长、南京大学陈洪渊院士致贺词中国化学会热分析和热分析专业委员会主任、中科院化学所韩布兴研究员致贺词  本届大会将历时2天,共有28个精彩报告,报告内容涉及热动力学理论研究、材料分析、药物分析、生命科学、仪器研发及最新技术进展等广泛领域,充分体现了本届大会“展现热分析动力学与热动力学以及热分析领域的主要研究成果”的主题。会议现场  梅特勒-托利多国际贸易(上海)有限公司、铂金埃尔默仪器(上海)有限公司、耐驰科学仪器商贸(上海)有限公司、TA仪器公司、精工盈司电子科技(上海)有限公司、上海精科天美贸易有限公司、法国赛特拉姆仪器公司等热分析相关厂商赞助了此次会议。热分析仪器厂商纷纷参展  梅特勒-托利多是本届大会最大的赞助商,在会上展示了其2010年底推出的升温速度高达2,400,000K/min的FLASH DSC样机,同时还为本届大会设立了“梅特勒-托利多优秀学生论文奖”,奖励第一作者为学生的优秀论文。梅特勒-托利多FLASH DSC亮相大会现场
  • 中国化学会第七届全国热分析动力学与热动力学学术会议(第一轮通知)
    p style="text-align: center "strong 中国化学会第七届全国热分析动力学与热动力学学术会议/strong/pp style="text-align: center "strongThe 7th National Symposium on Thermal Analysis Kinetics and Thermokinetics of Chinese Chemical Society/strong/pp style="text-align: center "(第一轮通知)/pp /pp  由中国化学会主办,中国化学会化学热力学和热分析专业委员会和中国科学技术大学承办的第七届全国热分析动力学与热动力学学术会议将于2019年4月19-21日在安徽省合肥市召开。/pp  本次会议将就近年来热分析动力学和热动力学以及热分析与量热在理论研究、新仪器设计与分析技术方面的进展,以及在无机、有机、高分子、新材料、生物医药等各个领域中的应用进行学术研讨和交流。会议将邀请国内从事热分析动力学和热动力学及热化学领域的著名专家、中青年学者和仪器生产厂商参加学术交流和技术探讨。会议期间还将展示一批国内外最新热分析仪器及相关产品,提供大量的最新技术、最新测试方法等资料。欢迎广大科技工作者踊跃投稿,积极参加。欢迎相关企业利用此次契机参与会展,扩大影响。本次会议的优秀论文将推荐给《物理化学学报》和《化学物理学报》(英文版),经过正常审稿程序被录用后发表。/pp /ppstrong一、会议组织委员会/strong/pp  大会主席:王键吉 尉志武 张建军/pp  组委会主席:罗 毅 刘文齐 丁延伟/pp  秘书长:丁延伟/pp  秘书处:宋 策 白玉霞 刘吕丹 王雨松 程 霄/pp /ppstrong二、会议学术委员会(按姓氏拼音排序)/strong/pp  主任:王键吉(河南师范大学)/pp  副主任: 尉志武(候任主任)(清华大学)、房大维(辽宁大学)、李浩然(浙江大学)、刘洪来(华东理工大学)、刘义(武汉大学)/pp  秘书长:赵扬(河南师范大学)/pp  委员:安学勤(华东理工大学)、白光月(河南师范大学)、白同春(苏州大学)、陈三平(西北大学)、崔子祥(太原理工大学)、邓天龙(天津科技大学)、邸友莹(聊城大学)、丁延伟(中国科学技术大学)、杜为红(中国人民大学)、杜勇(中南大学)、方文军(浙江大学)、高峡(北京理化分析测试中心)、韩布兴(中国科学院化学研究所)、胡文兵(南京大学)、胡艳军(湖北师范大学)、黄在银(广西民族大学)、蒋风雷(武汉大学)、兰孝征(山东农业大学)、李宏平(郑州大学)、李强国(湘南学院)、李庆忠(烟台大学)、李武(中国科学院青海盐湖研究所)、刘士军(中南大学)、刘志宏(陕西师范大学)、刘志敏(中国科学院化学研究所)、陆小华(南京工业大学)、吕兴梅(中国科学院过程工程研究所)、马海霞(西北大学)、孟祥光(四川大学)、牟天成(中国人民大学)、彭汝芳(西南科技大学)、任宜霞(延安大学)、史全(中国科学院大连化学物理研究所)、王昉(南京师范大学)、王金本(中国科学院化学研究所)、王琦(浙江大学)、王毅琳(中国科学院化学研究所)、王玉洁(河南科技学院)、武克忠(河北师范大学)、吴卫泽(北京化工大学)、谢钢(西北大学)、徐芬(桂林电子科技大学)、薛永强(太原理工大学)、严川伟(中国科学院金属研究所)、杨莉萍(中国科学院上海硅酸盐研究所)、叶树亮(中国计量学院)、于慧梅(华东理工大学)、张建军(河北师范大学)、张建玲(中国科学院化学研究所)、张庆国(渤海大学)、张锁江(中国科学院过程工程研究所)、张同来(北京理工大学)、赵凤起(西安近代化学研究所)、曾德文(中南大学)、卓克垒(河南师范大学)/pp /ppstrong三、大会主题/strong/pp  展现热分析动力学与热动力学以及热分析和量热领域的主要研究成果。/pp /ppstrong四、会议交流形式/strong/pp  大会特邀报告、专题报告及讨论、墙展、出版大会论文集。/pp  大会拟于2019年4月19日下午14:30-18:00举行热分析动力学和热动力学应用的讲习班,讲习班将邀请国内著名热分析动力学和热动力学学者参与,请感兴趣者提前安排好时间,本讲习班不再额外收取费用。/pp /ppstrong五、征文内容/strong/pp  1. 热分析动力学理论与研究进展 /pp  2. 热动力学理论与研究进展 /pp  3. 热分析动力学和热动力学的仪器功能、实验方法和数据处理软件的开发等 /pp  4. 热分析动力学和热动力学在无机、有机、高分子、材料、生物等各个领域中的应用 /pp  5. 热分析与量热学领域内的研究工作 /pp  6. 其他相关内容。/pp /ppstrong六、论文要求/strong/pp  1. 会议接收未在国内外学术刊物上公开发表过的原创论文 /pp  2. 会议论文要求突出工作的创新性,文字简练,语言准确 /pp  3. 论文摘要格式要求如下:请按照附件2中论文摘要的模板以中文或英文提供论文摘要,每篇摘要不超过两页。提交的论文摘要(word电子版)及报名表回执表通过E-mail(takt2019@ustc.edu.cn)发送给组委会 /pp  4. 论文征集截稿日期:2019年3月19日。/pp /ppstrong七、会议日期、地点/strong/pp  日期:2019年4月19-21日(19日报到)/pp  地点:安徽省合肥市/pp  2019年4月19日下午14:30-18:00: 热分析动力学和热动力学应用讲习班/pp /ppstrong八、会议注册/strong/pp  1. 注册费:/ptable width="522" border="0" cellspacing="0" cellpadding="0"tbodytr class="firstRow" style="height: 30px "td width="238" height="30" style="border-width: 1px 1px 0px border-style: solid solid none border-color: windowtext windowtext rgb(0, 0, 0) padding: 0px border-image: none background-color: transparent "p style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "交费日期/span/pp style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "(以汇款时间为准)/span/p/tdtd width="124" height="30" style="border-width: 1px 0px 0px border-style: solid none none border-color: windowtext rgb(0, 0, 0) rgb(0, 0, 0) padding: 0px border-image: none background-color: transparent "p style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "教师及其他人员/span/pp style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "(非化学会会员)/span/p/tdtd width="96" height="30" style="border-width: 1px 1px 0px border-style: solid solid none border-color: windowtext windowtext rgb(0, 0, 0) padding: 0px border-image: none background-color: transparent "p style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "学生/span/pp style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "(凭学生证)/span/p/tdtd width="64" height="30" style="border-width: 1px 1px 0px 0px border-style: solid solid none none border-color: windowtext windowtext rgb(0, 0, 0) rgb(0, 0, 0) padding: 0px background-color: transparent "p style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "化学会/span/pp style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "会员/span/p/td/trtr style="height: 23px "td width="238" height="23" style="border-width: 1px 1px 0px border-style: solid solid none border-color: windowtext windowtext rgb(0, 0, 0) padding: 0px border-image: none background-color: transparent "p style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "2019/spanspan style="color: black font-family: 仿宋 font-size: 16px "年span3/span月span30/span日(含)之前/span/p/tdtd width="124" height="23" style="border-width: 1px 0px 0px border-style: solid none none border-color: windowtext rgb(0, 0, 0) rgb(0, 0, 0) padding: 0px border-image: none background-color: transparent "p style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "1200/spanspan style="color: black font-family: 仿宋 font-size: 16px "元/span/p/tdtd width="96" height="23" style="border-width: 1px 1px 0px border-style: solid solid none border-color: windowtext windowtext rgb(0, 0, 0) padding: 0px border-image: none background-color: transparent "p style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "800/spanspan style="color: black font-family: 仿宋 font-size: 16px "元/span/p/tdtd width="64" height="23" style="border-width: 1px 1px 0px 0px border-style: solid solid none none border-color: windowtext windowtext rgb(0, 0, 0) rgb(0, 0, 0) padding: 0px background-color: transparent "p style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "1000/spanspan style="color: black font-family: 仿宋 font-size: 16px "元/span/p/td/trtr style="height: 23px "td width="238" height="23" style="padding: 0px border: 1px solid windowtext border-image: none background-color: transparent "p style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "2019/spanspan style="color: black font-family: 仿宋 font-size: 16px "年span3/span月span31/span日之后或现场交费/span/p/tdtd width="124" height="23" style="border-width: 1px 0px border-style: solid none border-color: windowtext rgb(0, 0, 0) padding: 0px background-color: transparent "p style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "1300/spanspan style="color: black font-family: 仿宋 font-size: 16px "元/span/p/tdtd width="96" height="23" style="padding: 0px border: 1px solid windowtext border-image: none background-color: transparent "p style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "900/spanspan style="color: black font-family: 仿宋 font-size: 16px "元/span/p/tdtd width="64" height="23" style="border-width: 1px 1px 1px 0px border-style: solid solid solid none border-color: windowtext windowtext windowtext rgb(0, 0, 0) padding: 0px border-image: none background-color: transparent "p style="text-align: center "span style="color: black font-family: 仿宋 font-size: 16px "1100/spanspan style="color: black font-family: 仿宋 font-size: 16px "元/span/p/td/tr/tbody/tablep  2. 缴费方式:/pp  (1)汇款:银行户名:中国科学技术大学/pp  银行账号:184203468850/pp  开户银行:中行合肥南城支行/pp  备  注:TAKT-参会代表姓名/pp  请注意:/pp  · 汇款时请务必写上“TAKT XXX(一名参会代表姓名)” /pp  · 汇款后请发送E-mail至takt2019@ustc.edu.cn,告知汇款金额、汇款单位 /pp  · 汇款后请保管好汇款凭证,会议报到时,凭汇款凭证或复印件开具发票。/pp  (2)现场缴费。/pp  3.会议期间食宿统一安排,费用自理。/pp  4.本次会议注册采用网站注册(网址:http://takt2019.ustc.edu.cn/)、邮件注册(请将附表1回执表填好后发送到takt2019@ustc.edu.cn)的方式。/pp /ppstrong九、联系方式/strong/pp  联系人:丁延伟 (电话:0551-63606347 手机:13033058986)/pp  宋 策 (电话:0551-63607614 手机:15255102219)/pp  白玉霞 (手机:18715115436)/pp  刘吕丹 (手机:13695695976)/pp  E-mail:takt2019@ustc.edu.cn/pp /pp style="text-align: right " img width="500" height="154" title="1.png" style="width: 500px height: 154px " alt="1.png" src="https://img1.17img.cn/17img/images/201812/uepic/ee4d3789-5932-47c1-971a-66062171ef3f.jpg" border="0" vspace="0"//pp /pp附件:img style="margin-right: 2px vertical-align: middle " src="/admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif"/a title="takt2019会议通知-章.pdf" style="color: rgb(0, 102, 204) font-size: 16px text-decoration: underline " href="https://img1.17img.cn/17img/files/201812/attachment/6c1d875a-83c4-413b-979e-4b44030b3c45.pdf"span style="font-size: 16px "takt2019会议通知.pdf/span/a/ppbr//p
  • 2015第一届药代动力学朝阳论坛成功举行
    仪器信息网讯 为期三天的&ldquo 2015年南京生物医药发展论坛暨第一届药代动力学朝阳论坛&rdquo 于2015年4月11日至13日在风景秀丽的南京珍珠泉畔明发珍珠泉大酒店成功举办。本届会议由由南京生物医药谷主办,南京高新生物医药公共服务平台承办,中国药物和化学异物代谢专业委员会协办,近400位来自国内外高校、科研院所、制药企业等单位人员参加了本届会议。  本届会议举办目的主要是在新时代下为药代动力学研究和新药研发在中国长远健康的发展培养和储备一批具有国际竞争力的青年人才。朝阳论坛会议日程采用会前专题研讨会、大会报告和主题会场的形式,有针对性地为相关专业人才提供充分交流的平台。会议特邀1个大会报告、10个主题会场共38个主题报告,阐述中国药代动力学研究的现状和挑战、药物代谢研究中的前沿和热点、生物分析法规与技术进展、药物分析和代谢组学研究中的新技术等10个相关领域,并专为青年学者特设职业发展专场和青年学者专场,职业发展专场讲解中国学生撰写药代动力学研究文章出现的主要问题及写作技巧、以及如何回答编辑和审稿人问题等方法,介绍药代动力学的职业发展 青年学者专场邀请国内药代动力学研究相关实验室的优秀青年学者就各自研究方向、进展及经验进行介绍,搭建和提供青年学者学术交流合作的机会和平台,促进我国DMPK的发展。会议现场  大会开幕式由南京高新区的管委会副主任许扬汶主持,南京市副市长储永宏,南京高新区管委会常务副主任闵一峰出席开幕式并致辞。 大会组委会主席军事医学科学院毒物药物研究所庄笑梅研究员介绍会议基本情况。发言人:储永宏 南京市副市长发言人:庄笑梅 研究员 军事医学科学院毒物药物研究所  会议特邀中国药科大学王广基院士做题为&ldquo 细胞药代动力学及成药性研究探讨&rdquo 报告,报告结合精准医学对经典药代动力学的挑战,从宏观的血浆药物浓度监测,深入至微观的细胞层面,提出细胞药代动力学的新概念。阐述了全细胞吸收、亚细胞分布、细胞药效动力学的研究平台建立过程,从细胞药代动力学的角度揭示微观层面药物在细胞内靶点的作用,及其对药物筛选、纳米靶向制剂、ADC(Antibody Drug Conjugate, ADC) 药物细胞内释药机制以及临床联合用药等领域的指导意义。通过综述不同药物在细胞核内,线粒体以及胞浆的研究结果,为精准医学的长远目标,提供药效、毒理以及药代方面的指南性研究。报告人:王广基院士 中国药科大学报告题目:细胞药代动力学及成药性研究探讨  在随后一天半的分会报告涵盖新药研发申报中的PK/PD问题,生物大分子药物分析及药代动力学研究现状及挑战,中药PK/PD研究中药活性成分与作用机理,药物分析与代谢组学研究中的新技术,代谢组学与生物标志物发现等多个药代动力学的多个关键领域。来自海内外的38位资深专家为参会人员带来内容详实,深入全面的报告, &ldquo 呈现精彩纷呈的学术大餐&rdquo 。  多家仪器及耗材生产代理企业参加了本届会议。(撰稿:杨改霞)安捷伦科技(中国)有限公司沃特世科技(上海)有限公司岛津企业管理(中国)有限公司赛默飞世尔科技(中国)有限公司SCIEX 公司  第一届药代动力学朝阳论坛官方网站:http://www.bpisunrise.com
  • 上海光机所在单次超快动力学诊断方面取得研究进展
    近日,中国科学院上海光机所高功率激光物理联合实验室在单次超快动力学诊断方面取得研究进展,相关研究成果以“Single-shot spatiotemporal plasma density diagnosis using an arbitrary time-wavelength-encoded biprism interferometer”为题发表于Optics and Lasers in Engineering。   超快动力学现象在光化学、自旋电子学、等离子体物理、激光加工等领域广泛的存在,超快动力学诊断技术是可视化超快动力学现象演化过程的重要工具,可以用于定量研究超快演化过程的机制,揭示超快演化过程的原理,在超快演化过程调控中可以实现定量反馈的作用。然而,目前的单次超快动力学诊断技术很难同时兼顾高时空分辨率、高序列深度、时间窗口独立可调、无需参考臂等优点。   在这项工作中,研究人员提出了时间波长编码的双棱镜干涉仪(TWEBI),其原理是通过级联不同相位匹配角的非线性晶体产生波长编码的探针光,利用二维衍射光学元件(DOE)和窄带通干涉滤光片(IBPF)实现波长空间复用,利用即插即用的双棱镜干涉仪实现阴影记录模式和相位测量模式的按需切换。实验在神光II飞秒数拍瓦的光参量啁啾脉冲放大的前端上进行的,在实验中TWEBI装置实现了4 的空间分辨率、200 fs的时间分辨率、序列深度为12、有效帧率可达5 Tfps、时间窗口可以从亚皮秒到1.86 ns任意可调。用TWEBI装置对激光诱导空气成丝的动力学过程进行阴影记录和密度测量,相关实验结果证明了该方法的可行性。本项工作为诊断复杂的瞬态动力学提供了一个潜在的解决方案,这将有助于我们进一步理解、调控、应用这些超快现象。   相关工作得到了国家自然科学基金、中国科学院基金、上海市科学技术委员会基金、科技部基金的支持。图1 (a)TWEBI实验装置;(b)探针光光谱图;(c)探针光时域振幅和相位图;(d)成像系统空间分辨率图图2 (a)激光诱导空气成丝阴影图;(b)子光斑中心波长图;(c)激光诱导成丝相位和振幅图;(d)重建的等离子体密度分布图
  • 中国化学会第三届全国热分析动力学与热动力学学术会议(第三轮通知)
    “中国化学会第三届全国热分析动力学与热动力学学术会议(3rd TAKT)”将于2011年10月20-22日在江苏省南京市召开,会议期间同时召开“江苏省第三届热分析技术研讨会(3rdJTA)”。本届会议由由中国化学会化学热力学和热分析专业委员会和江苏省分析测试协会主办,江苏省分析测试协会热分析专业委员会、南京师范大学承办、河北师范大学协办。  会议期间,我们将举办“国际先进热分析技术讲习班”。讲习班结束我们将颁发培训证书,并设立“梅特勒-托利多优秀学员奖”若干名,大会论文还特设“梅特勒-托利多优秀学生论文奖”,包括在职研究生,论文第一作者要求为学生。  热忱邀请相关领域的科研、教学工作者、研究生和仪器厂商参加研讨交流。  一、大会主题:展现热分析动力学与热动力学以及热分析领域的主要研究成果二、会议组织委员会主席:陈国祥,韩布兴,尉志武副主席:赵厚民,张建军,魏少华,张明明,王昉秘书长:汤伟三、会议学术委员会主任委员:韩布兴副主任委员(以姓氏拼音为序):陈启元,高胜利,刘义,沈伟国,孙立贤,王键吉,尉志武委员(以姓氏拼音为序):安学勤,白同春,陈健,陈三平,成一,杜为红,杜勇,顾敏芬,关伟,胡文兵,李浩然,李小云,李武,刘洪来,刘育,陆昌伟,卢雁,孟祥光,孙建平,谭卫红,檀亦兵,王保怀,汪存信,王昉,吴昊,王金本,王琦,王晓东,王毅琳,杨家振,杨腊虎,郁清,袁钻如,张洪林,张建军,张建玲,张堃,朱立忠,张同来,赵凤起四、会议日程:详见附件一。五、会议日期:2011年10月20-22日。  六、会议报到时间及地点:10月20日8:00—23:00,南京师范大学敬师楼大酒店一楼大厅(南京市宁海路122号)  注:报名参加《国际先进热分析技术讲习班》的代表请于10月20日中午12:00之前报到。  七、会议时间及地点(详见附件二):  1、2011年10月20日下午14:00-17:00《国际先进热分析技术讲习班》在南京师范大学南山专家楼1楼多媒体厅 2、2011年10月21日-22日学术会议在南京古南都饭店江南春厅(三楼)。(南京市广州路208号)。  八、会议注册:650元/人(2011年8月30日前汇款),750元/人(现场注册) 学生:450元/人(2010年8月30日前汇款),550元/人(现场注册) 陪同:450元/人 论文审理费:60元/篇。讲习班:200元/人邮局汇款:南京市龙蟠路189号江苏省分析测试协会汤伟收(汇款附言中请注明“TAKT2011”)银行汇款:汇款单位:江苏省分析测试协会 汇款帐号:320006610010149002047  开户行:江苏南京交行玄武支行九、联系方式:联系人:江苏省分析测试协会汤伟(电话:025-85485940,13912996398传真:025-85404940)   南京师范大学王昉(手机:13851614122) 河北师范大学张建军(手机:15533995800)Email:TAKT2011@126.com  江苏协会南京大学河北大学二○一一年九月十日 附件一:会议日程 时间日程安排月 日(星期四)8:00—22:00全天报到14:00—17:00国际先进热分析技术讲习班月 日(星期五) 07:00—08:00早餐08:00—08:40开幕式08:40—09:00合影留念大会报告1. 西安近代化学研究所胡荣祖教授热分析动力学和热动力学进展9:10—12:002. 清华大学尉志武教授蛋白质热变性的动力学问题思考 3. 武汉大学刘义教授生命体系中的热动力学 4. 西北大学高胜利教授含能配合物的热动力学研究 5.南京师范大学安学勤教授脂质体相平衡与药物释放12:00—13:30午餐、午休 1. 中国食品药品检定研究院杨腊虎教授热分析在药物研究中的作用大会报告2. 北京大学陈尔强教授一些复杂软物质的热分析研究13:40—17:303. 中国科学院大连化学物理研究所孙立贤教授新型储氢材料的纳米限域及其热化学研究 4. 中国科学院大连化学物理研究所王晓东研究员能源和环境催化研究中的吸附量热应用 5. 南京大学胡文兵教授聚合物结晶热分析的现状和挑战 6. 南京师范大学周宁琳教授热分析技术在生物材料中的应用 7. 河北师范大学郑君茹稀土2,3二氯苯甲酸与2,2'-联吡啶配合物的合成、晶体结构及热分析动力学 8. 南京理工大学成一教授热分析动力学的研究与应用18:00—20:00迎宾晚宴  注:大会还安排有热分析各大厂商的新产品、新技术介绍。  附件二:宾馆信息及路线  (会务组与两家酒店合作为参会代表提供舒适的住宿环境和优惠的价格)1、南京古南都饭店(五星级):地址:南京市广州路208号  标准双人间:520元/间/天,含双早餐 标准单人间:480元/间/天,含单早餐2、南京师范大学敬师楼大酒店(准三星,也称“南师大南山专家楼东楼”):  地址:南京市宁海路122号,距离南京古南都饭店50米。  标准双人间:228元/间/天,含双早餐 标准单人间:258元/间/天,含单早餐  到南京古南都饭店和南京师范大学敬师楼大酒店交通路线:南京市内可乘3W、6W、91W、109W、132W、152W、302W、318W到“随家仓”站下,即到。往东走是南京古南都饭店,往西走是敬师楼大酒店。  一、火车站 、火车站打出租车 元左右即可到达南京师范大学敬师楼大酒店。 、步行至“南京站”地铁站、乘坐地铁1号线(或 地铁1号线南延), 在 珠江路站 下车,步行至珠江路站,乘坐91路(或6,132), 在“ 随家仓”站 下车,即到南京古南都饭店,再往西走50米是敬师楼大酒店。 、步行100米至“南京车站”公交车站,乘坐318路,在 随家仓站 下车,即到。往东走是南京古南都饭店,往西走是敬师楼大酒店。二、南京长途汽车总站(中央门)步行460米至“玉桥市场”站,乘坐303路, 在广州路站 下车,步行320米至南京古南都饭店,再往西走50米是敬师楼大酒店。三、南京长途汽车东站  步行70米至长途东站,乘坐115路(或70,136,28,45), 在 板仓村站 下车,乘坐6路,在 “随家仓”站 下车,即到南京古南都饭店,再往西走50米是敬师楼大酒店。四、飞机场机场大巴 号线到国防园(21:00结束)乘坐132路(或91), 在随家仓站 下车,即到。往东走是南京古南都饭店,往西走是敬师楼大酒店。或者从国防园打出租到敬师楼大酒店,起步价就够。
  • 外泌体分泌动力学受温度控制
    单分子荧光成像:外泌体分泌动力学受温度控制荧光显微镜的出现,让细胞器的观察成为可能,而如果要观察到更细致的目标,则需要做单分子荧光成像,今天我们就来分享一个今年用TIRF全内反射荧光显微镜做的单分子荧光成像研究:外泌体分泌动力学受温度控制。 为什么使用TIRF全内反射荧光显微镜全内反射荧光显微镜MF53-TIRFTIRF全内反射荧光显微镜是利用光线全反射后形成衰逝波特性,来实现薄区域荧光观察的光学仪器,这种显微镜相比常规荧光显微镜(宽场荧光),背景荧光显著更低,可以实现信噪比更高、细节更丰富的荧光成像,尤其适合应用于细胞膜物质的动态观察。衰逝波①衰逝波是一种光学现象,当激发光以特定角度入射时,会发生全反射现象,所有激发光会被反射,靠近反射面的样品面则会形成一个深度仅几百纳米,光强呈指数衰减的激发光,称为衰逝波。普通荧光成像与TIRF成像对比① 利用衰逝波,TIRF全内反射荧光显微镜可以将激发范围控制在样品面极薄的区域,从而避免了传统荧光显微镜焦面以外的荧光激发形成的模糊光晕,大大提升了信噪比和分辨率。由于衰逝波光强呈指数衰减,因此最合适的应用是细胞膜相关研究。 外泌体分泌动力学受温度控制我们来看一个论文案例,从中了解TIRF全内反射荧光显微镜的应用优势:超高分辨率、动态观察。使用CD63-pHluorin可视化pH敏感蛋白 使用CD63-pHluorin可视化外泌体与质膜融合过程。TIRF全内反射荧光显微镜可以实现单分子动态跟踪观察,为此需要配备高帧率、高灵敏度的显微镜相机,比如MSH12之类背照式sCMOS科学相机。按成像分析,区分外泌体不同活动方式② 单分子荧光成像研究通常涉及数据统计分析等内容,往往需要一定的算法设计来自动化分析和量化处理,比如本论文使用的就是MATLAB脚本,在github可以下载。成像分析可靠性验证,排除溶酶体或囊泡转运② 通过成像分析CD63-pHluorin可视化外泌体与质膜融合,排除溶酶体或囊泡转运。外泌体与质膜融合有多种动力学模式② 算法分析,得出外泌体与质膜融合有多种动力学模式。 外泌体与质膜融合事件受温度控制② 对不同动力学模式进行分析,显示外泌体与质膜融合事件受温度控制。 模型验证② 利用模型验证解释实验观察到的动力学。进一步的动力学分析② 外泌体与质膜融合前先有对接。 结尾总体而言,全内反射荧光显微镜MF53-TIRF是细胞表面物质动态观察的理想仪器,如固定在盖玻片或细胞膜表面上的分子等,在TIRF基础上明美还有dSTORM超分辨成像方案,有兴趣的老师可以跟我们联系。 如您对这篇论文感兴趣,或者有兴趣获取论文使用的MATLAB自动分析处理脚本,请参考应用来源部分信息②。 引用来源:①Fish KN. Total Internal Reflection Fluorescence (TIRF) Microscopy. Curr Protoc. 2022 Aug 2(8):e517. doi: 10.1002/cpz1.517. PMID: 35972209 PMCID: PMC9522316. ②Mahmood A, et al. Exosome secretion kinetics are controlled by temperature. Biophys J. 2023 Apr 4 122(7):1301-1314. doi: 10.1016/j.bpj.2023.02.025. Epub 2023 Feb 22. PMID: 36814381 PMCID: PMC10111348.https://www.mshot.com/article/1828.html
  • 大连化物所“表面光化学动力学研究装置”通过验收
    大连化物所分子反应动力学国家重点实验室1102组承担的中科院重大科研装备研制项目“表面光化学动力学研究装置”于11月23-24日通过了中科院计划财务局组织的专家组的现场测试和验收。  以中国科技大学朱俊发教授为组长的测试专家组在11月23日全天对建成的“表面光化学动力学研究装置”的各项指标进行了认真测试,给出的测试报告认为“测试结果表明,该研究装置完全达到甚至优于各项设计指标,运转良好,而且操作简便。该设备将为研究表面光化学动力学提供强大的、性能独特的研究平台”。  以清华大学莫宇翔教授为组长的验收专家组于11月24日听取了项目负责人杨学明做的研制工作报告、经费收支报告、设备使用报告和测试组组长做的测试报告,审核了相关的文件档案,提问和质询了有关问题。经充分讨论后,专家组形成的验收意见认为本项目研制成功的实验装置“基于超高真空系统、采用可调谐飞秒激光技术和质谱技术,具有原位测量和高灵敏度的特点”,“将为研究表面光化学动力学提供强大的、性能独特的研究平台”。专家组一致同意该项目通过验收。
  • 动力学的未来,GCI分子互作技术为药物研发按下“快进键”
    Creoptix公司是光学生物传感器的领军企业,于2022年1月加入马尔文帕纳科,成为旗下提供研究分子间相互作用技术的子品牌。Creoptix总部位于瑞士的苏黎世,致力于提供高质量的动力学数据,研发了高灵敏度的WAVE分子相互作用仪,为研究分子间相互作用力提供分析利器,使科学研究者可以做以前不可能做的事情,看到以前看不见的数据。2022年6月,马尔文帕纳科在线发布Creoptix新品WAVE分子相互作用仪。为了进一步了解新品WAVE分子相互作用仪的创新点与亮点,近日,仪器信息网编辑采访了马尔文帕纳科制药和食品行业中国区销售经理叶飞,同时,也借此机会对马尔文帕纳科在中国的技术支持、售后服务等方面进行深入了解。马尔文帕纳科制药和食品行业中国区销售经理 叶飞新品WAVE亮相,多项参数吸睛叶飞首先向我们介绍了Creoptix 新品WAVE分子相互作用仪核心竞争优势:“分子间相互作用的生物物理表征是研究分子互作的重要环节,马尔文帕纳科一直致力于帮助用户从不同角度阐述分子互作的机理和特征。不同于传统的基于表面等离子共振(Surface Plasmon Resonance,SPR)技术的解决方案,WAVE采用专利的光栅耦合干涉(Grating-Coupled Interferometry,GCI)技术,以及外置的微流控技术和基于Google AI 技术的自动化软件,实现了在更广泛的样品范围内提供更高质量的分子结合亲和力数据和动力学数据,帮助药物和生物科学研究人员加快新药发现和开发的进程。”Creoptix WAVE 分子相互作用仪亮点1:新一代动力学分析—GCI技术随着科学技术进步和前沿研究的深入,分子互作技术呈现“多元化、互补化”发展态势。叶飞表示:“虽然是分子互作赛道新的参与者,WAVE却是在认真了解和研究了目前市场上存在的多种非标记分子互作技术的局限与问题后发展起来的新原理技术。基于波导干涉测量,WAVE创新提出将传感器表面折射率变化转化为时间依赖的相移信号,通过延长光与样品相互作用的长度(2mm),从而实现优越的信噪比。再结合3 mm 的互作传感区域,信号噪音低于0.01 pg/mm2 (0.01 RU),能够非常稳定的检测低配体活性、低偶联水平下的结合,消除了物质迁移限制效应(MTL)的影响,同时可以稳定的检测长解离信号,这对于具有极强亲和力的抗体分析而言无疑是很重要的。”Creoptix WAVE工作原理示意图亮点2:突破传统动力学检测—waveRAPID技术筛选通量、检测时间以及结合数据可靠性是生物药研发领域十分关注的几个问题。叶飞详细介绍说:“Creoptix创新推出的waveRAPID技术(单浓度动力学测定方法),突破了传统动力学的检测方式,只需一个浓度的样品,无需多次稀释样品和多浓度DMSO校正,不仅大大减轻了用户稀释工作量,节省了样品准备所占用的实验时间,同时单浓度实验还降低了人与人之间的稀释差异;不仅如此,对于目前非标技术中弱相互作用(如片段药物筛选)大多依赖稳态亲和力分析的现状,waveRAPID实现了更短的进样时间和解离时间,让生物药物动力学分析过程的总时间较其他技术大为减少,也让再生条件摸索更加容易;在数据分析上,waveRAPID采用独特的算法提取传感图解离段中的kon和koff信息,既提高了分析速度(waveRAPID 比传统动力学检测约快5-10倍,koff可达10s-1),又完美的避开了让很多研究者都很头疼的溶剂效应(bulk effect),让复杂样品分析更轻松。WAVE还提供专属的Biologic Package,提供配体筛选与CFCA(无需标准曲线的浓度测定方法)等多种生物药物分析工具套装,为用户提供活性浓度等重要评价指标。”亮点3:创新性微流控技术,助力临床样品分析“马尔文帕纳科专注于开发用于药物发现和生命科学的下一代生物分析仪器。WAVE 配置独特的外置微流控设计从而保护传感器表面不受污染或损坏,可在几秒钟内更换。此外,无微流阀的设计有效避免系统线路阻塞问题,较大限度地减少停机时间,也为大颗粒的动力学分析提供了可靠的解决方案。”叶飞补充说:“由于WAVE独特的无堵塞、免维护、可抛弃式流路设计,它将在粗制样品分析、膜蛋白分析、血清血浆等临床样品分析中具有广阔的应用空间,一旦完成相应的方法开发,其未来应用市场应该至少有几十亿美元的规模。”作为中国市场的“新人”,拥有众多全球用户分子间相互作用是生命科学和药物研发中的关键问题之一,也是研究的热点领域。在分子互作技术领域,已经有很多传统的荧光和免疫的方法,如ELISA, CoIP,FRET等,这些传统方法的问题和局限性也被广大研究者所了解。正是如此,非标记分子互作分析技术才在近些年蓬勃发展起来。作为新一代动力学分析技术的代表产品WAVE,由于推向中国市场的时间较短,目前国内的用户还不够多,但在全球却拥有众多忠实用户。叶飞介绍说:“全球用户中有著名的跨国药企如安进,罗氏、诺华等;著名的高校如乌普萨拉大学、苏黎世大学、维也纳生物中心;诊断试剂公司包括Mologic和Idorsia;专业外包服务公司如PepScan, LeadXpro, 2Bind,Domainex等。”“此外,在近三年中,多篇应用WAVE的研究论文发表于Science,Cell和Nature及其子刊,充分地说明了通过WAVE系统获取的数据已经得到了研究者和业内专家的认可和信赖。这些用户使用WAVE的代表领域包括基于片段的药物筛选(FBDD)、针对膜蛋白GPCR的小分子及生物药物开发、多肽药物的研发与优化、针对临床样本的诊断试剂开发、植物功能的分子机理研究等等。”超70%的员工提供安装等一揽子服务“马尔文帕纳科不仅仅致力于提供高性能的产品,更加关注客户的使用体验,超过70%的员工为服务工程师和应用科学家,提供安装、操作培训、方法开发流程培训等一揽子服务,确保用户第一时间掌握产品的使用方法。”叶飞进一步表示,“针对WAVE分子相互作用仪这个新产品,马尔文帕纳科在上海和北京的应用实验室投入了WAVEdelta型号的Demo样机,用于为用户提供测样和培训服务。另外,公司还有两位应用专家,其中韩佩韦博士在分子互作和微量热领域有10多年的技术支持和应用经验,可以把马尔文帕纳科的成功经验用最专业的方式分享给用户。同时国内的售后工程师经过了专业的培训,可以第一时间响应用户的安装和服务需求。我们坚信WAVE分子相互作用仪的高灵敏度、快速响应、样品制备简单、故障率低等特点,能够有效解决用户使用部分技术的痛点。和马尔文帕纳科MicroCal、Zetasizer、NanoSight、OMNISEC等产品线一起为客户的研发工作保驾护航”。后记:在叶飞看来,任何一款新原理技术,市场通常都会有个信息传导、了解和接受的过程。以SPR产品为例,从上个世纪90年代就开始在中国推广,历经10余年才逐渐开始被用户所认知和了解,又过了10余年,该技术才被药典所接受。“因此,作为新一代动力学分析技术的Creoptix WAVE,我们目前的最大瓶颈就是了解的人较少,知名度尚浅,国内用户还较少。然而,随着我们在WAVE发布会,仪器信息网等线上和多个线下会议持续曝光,相信在非标记技术已经逐渐深入人心的今天,Creoptix WAVE会很快得到广大用户的认可和信赖”,叶飞最后讲到。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制