桂皮对照药材

仪器信息网桂皮对照药材专题为您提供2024年最新桂皮对照药材价格报价、厂家品牌的相关信息, 包括桂皮对照药材参数、型号等,不管是国产,还是进口品牌的桂皮对照药材您都可以在这里找到。 除此之外,仪器信息网还免费为您整合桂皮对照药材相关的耗材配件、试剂标物,还有桂皮对照药材相关的最新资讯、资料,以及桂皮对照药材相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

桂皮对照药材相关的资料

桂皮对照药材相关的论坛

  • 【转帖】薄层扫描法测定胡黄连中香草酸和桂皮酸的含量

    摘要:建立胡黄连中香草酸和桂皮酸的含量测定方法。方法用双波长扫描法测定胡黄连中香草酸和桂皮酸的含量。结果香草酸。桂皮酸斑点峰面积3Il内稳定,香草酸回收率为103.86%,RSD=1.33%,桂皮酸回收率为103.16%,RSD=1.28%。结论该方法稳定,可行。具有实用性。 关键词:胡黄连 薄层扫描法 香草酸 桂皮酸 胡黄连具有保肝利胆、抗炎、抗真菌等药理作用。胡黄连含胡黄连素、胡黄连苷(I II III)、D-甘露醇、香草酸、肉桂酸、胡黄连醇成分。香草酸和桂皮酸是其中的两种抗菌成分。我们对胡黄连中香草酸、桂皮酸含量建立了薄层扫描法,以达到控制胡黄连的质量,从而为临床疗效提供保证。 1 仪器与试剂 药材:胡黄连,太原市药材公司;仪器:日本岛津CS--9301PC薄层扫描仪;手提式荧光灯(上海固村电光仪器厂);对照品:香草酸对照品(中国药品生物制品检定所);桂皮酸对照品溶液(省药检所提供e=0.604mg/50ml);硅胶GF254(青岛海洋化工厂)所用试剂均为分析纯。 2 实验条件 2.l 薄层层析条件:分别以石油醚-氯仿-丙酮-冰醋酸(10:4.4:10.1);正己烷-乙醚-冰醋酸(5:5:0.1);正己烷-氯仿-乙醚-冰醋酸(5:3:2:0.1)以及氯仿:甲醇(2:1)展开,多次比较发现正己烷。氯仿-乙醚-冰醋酸(5:3:2:0.4)分离效果好。 2.2 测定波长及主要扫描参数,分别对香草酸,桂皮酸对照品斑点在200nm-370nm扫描,在290nm处有最大吸收,350nm处无吸收,固定350nm为参比波长,290nm为测定波长。

  • 肉桂油中的桂皮醛

    [align=right][b]SGLC-GC-003[/b][/align][b]摘要:[/b]本文建立了肉桂油中桂皮醛的检测方法。结果表明,采用色谱柱SH-5 (1.0um*0.53mm*30m)分析肉桂油中的桂皮醛,理论板数按桂皮醛峰计算为133586,满足《中国药典》要求。此方法可为肉桂油中的桂皮醛测定提供参考。[b]关键词:[/b]桂皮醛 SH-5[b]1. 实验部分1.1 实验仪器及耗材[/b]GC-FID[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-氢火焰离子化检测器;色谱柱:SH-5 (1.0um*0.53mm*30m;P/N 221-75710-30);SHIMSEN Arc Disc HPTFE针式过滤器(P/N:380-00341-05);[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]认证样品瓶LabTotal Vial(P/N:227-34002-01);SHIMSEN Pipet[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]:SHIMSEN Pipet PMII-10(P/N:380-00751-02);SHIMSEN Pipet PMII-100(P/N:380-00751-04);SHIMSEN Pipet PMII-1000(P/N:380-00751-06)。[b]1.2 分析条件[/b]色谱柱:SH-5 (1.0um*0.53mm*30m)柱温:初始温度为100℃:,以每分钟5℃的速率升温至150℃,保持5分钟,再以每分钟5℃的速率升温至200℃,保持5分钟;载气:氮气进样口:200°C 分流比20:1检测器:220°C进样量:1 μL[b]2.结果及讨论2.1 色谱图[/b]按照上述色谱条件(1.2)进行采集,色谱图如下:[img=肉桂油中的桂皮醛]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-GC-006_1.png[/img][b]3. 结论[/b]参考《中国药典》中色谱条件,并对其条件进行优化,最终建立了肉桂油中的桂皮醛的检测方法。结果表明,采用色谱柱SH-5 (1.0um*0.53mm*30m)分析肉桂油中的桂皮醛,理论板数按桂皮醛峰计算为133586,满足《中国药典》要求。此方法可为肉桂油中的桂皮醛测定提供参考。

  • 【原创大赛】NIRS用于桂枝中桂皮醛、水分、浸出物含量快速检测方法研究

    【原创大赛】NIRS用于桂枝中桂皮醛、水分、浸出物含量快速检测方法研究

    [align=center][b]NIRS用于桂枝中桂皮醛、水分、浸出物含量快速检测方法研究[/b][/align][align=center]研究生:范剑[/align][align=center]导师:臧恒昌教授[/align][b]摘要目的:[/b]干姜和桂枝为传统常用药对。现代药学研究表明,桂枝、干姜均含有大量挥发油且为两药主要药效成分。随着2016年《中药配方颗粒管理办法(征求意见稿)》发布,未来中药配方颗粒限制将逐步放开。相对于单味药材提取的配方颗粒,经典药方或药对形式的配方颗粒,因其更加贴近中医用药理论,将来会受到越来越多的重视。进行干姜和桂枝混合蒸馏提取过程的研究,也可为经典药对配方颗粒的开发提供一定的技术支持。[b]方法:[/b]采用 Antaris II 傅立叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]漫反射模块采集85批桂枝样品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],以甲苯法、超高效液相色谱法和浸出物测定法,分别测定样品中水分、桂皮醛和浸出物含量,作为参考值,结合偏最小二乘算法分别建立水分、桂皮醛和浸出物含量的快速定量模型。[b]关键词:[/b]桂枝;[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url];过程分析[align=center]The research on the mixeddistillation extraction of Zingiberis Rhizoma and Cinnamomi Ramulus by NIRS[/align][align=center]Grauate student: Jian Fan[/align][align=center]Supervisor:Hengchang Zang[/align][b]Abstract Objective[/b]:Zingiberis Rhizoma and CinnamomiRamulus are couplet medicinesa in the Traditional Chinese Medicine (TCM). TheZingiberis Rhizoma contains chemical constituents of volatile oil, gingeroletc. It is a common TCM used in medicine and food. Its ether extract and waterextract have obvious analgesic effect. The cassia twig mainly contains cinnamicacid and cinnamaldehyde, it has obvious antipyretic, sedative, antiasthmatic,anti allergic and other effects. TCM on Guizhi - ginger in the compound oftraditional Chinese medicine compatibility is widely used, such as ZhangZhongjing, there are Guizhi drug compatibility in Huang Liantang, smallQinglong Decoction, Chaihuguizhi dried ginger in the “Treatise on FebrileDiseases”. Cassia twig and dried ginger contain a lot of volatile oil, and theyare the main active ingredients of two drugs. Shenzhiling oral solution is onenew kind of traditional chinese drugs , in the production of it,Zingiberis Rhizoma and CinnamomiRamulus as a couplet medicinesa were extracted together in 2016, theregulation of Chinese Medicine Dispensing Granules(take advicing)wes published. In thefuture, the limitations of Chinese Medicine Dispensing Granules will begradually liberalized, the application amount of Chinese Medicine DispensingGranules will be greatly increased. Chinese Medicine Dispensing Granules madewith a classic prescription of Chinese Medicine or couplet medicinesa. In thefuture, more and more attention will be paid to it. Study of ginger and CinnamomiRamulus mixed distilled extraction process, but also can provide technicalsupport for the development of the classic of medicine formula granules. [b]Methods:[/b] Collect 75 near infraredspectroscopys of samples by near-infrared spectrograph with diffuse reflectancemodule. The reference analyses were performed with toluene methodand, UHPLC andpharmacopoeia method respectively for determination of cinnamaldehyde,moisture, and extraction.[b]Key words: [/b]near-infraredspectroscopy manufacture process process analysis techonlogy[b]1 材料与仪器1.1 试剂与样品 [/b]桂皮醛(纯度 98.9 %,批号 110710-201619)购自中国食品药品检定研究院;乙腈、甲醇均为色谱纯;甲苯为分析纯加水饱和后经蒸馏制得;其它等试剂均为分析纯;超纯水(自制);75批桂枝样品购自零售药店、医院药房及药材批发企业,经泰安市食品药品检验检测中心中药科鉴定为樟科植物肉桂的干燥嫩枝。[b]1.2 仪器和软件[/b]Antaris II傅立叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],PLS_Toolbox工具箱;Agilent 1290型超高效液相色谱仪;Aquity BEH C18 色谱柱;KQ-100DE型医用数控超声波清洗器;电子分析天平; FW80型高速万能粉碎机。[b]2 方法2.1样品制备[/b]将收集的75批桂枝药材粉碎过40目筛,编号,封口袋密封置防潮柜中常温保存,备用。[b]2.2 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的采集[/b]取样品粉末约5g,混合均匀后放入样品杯中,摊平,压紧,以空气为参比,扣除背景,采用积分球漫反射方式采集[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图。光谱扫描范围4000~10000 cm[sup]-1[/sup],分辨率8 cm[sup]-1[/sup],扫描次数32次,每批样品扫描3次,求平均NIR光谱值。[b]2.3 样品中桂皮醛含量的测定[/b](1)对照品溶液的配制精密称取桂皮醛对照品105.00 mg于100 mL容量瓶中,加甲醇溶解并稀释至刻度,再精密量取1 mL至100 mL量瓶中加甲醇稀释至刻度。(2)供试品溶液的制备取桂枝粉末约0.5 g,精密称定,置具塞锥形瓶中,精密加入甲醇25 mL,称定重量,超声处理30分钟,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,精密量取续滤液1 mL ,置25 mL量瓶中,加甲醇至刻度,摇匀,即得。过0. 2 μm 微孔滤膜,供UHPLC分析用。(3)色谱条件WatersAquity BEH C18 色谱柱;流动相水(A)-乙腈(B),梯度洗脱;柱温30 ℃,流速0.3 mL/min,检测波长280 nm,进样体积5 uL。(4)含量测定按照(2)项下供试品溶液配制方法配制各样品供试品溶液,在(3)项的色谱条件下进样分析,利用外标法计算桂皮醛的含量。[b]2.4 样品中水分含量的测定[/b]按照2.2.4项下方法,精密称取样品粉末约15 g,测定计算含量。[b]2.5 样品中浸出物含量的测定[/b] 供试品约2 g,精密称定,置100 mL的锥形瓶中,精密加水50mL,密塞,称定重量,静置1小时后,连接回流冷凝管,加热至沸腾,并保持微沸1小时。放冷后,取下锥形瓶,密塞,再称定重量,用水补足减失的重量,摇匀,用干燥滤器滤过,精密量取滤液25 mL,置已干燥至恒重的蒸发皿中,在水浴上蒸干后,于105 ℃干燥3小时,置干燥器中冷却30分钟,迅速精密称定重量。以干燥品计算供试品中水溶性浸出物的含量(%)。[b]2.6 定量模型的建立[/b]利用化学计量学软件对光谱数据进行处理,建立桂枝中桂皮醛、水分、浸出物含量的PLS定量分析模型。首先,用K-S法按照2:1比例对样品进行校正集和验证集划分;通过光谱预处理方法和建模光谱区间的选择优化建模参数,提高模型稳健性和预测能力。采用模型评价参数 RMSEC、RMSEP、[i]R[sup]2[/sup][sub]c[/sub][/i]、[i]R[sup]2[/sup][sub]P[/sub][/i]、[i]LVs[/i]等参数对模型准确度和预测能力进行评价,并利用配对[i]t[/i]检验对验证集预测结果与测量结果进行显著性检验,进一步评价模型的预测能力。[b]3 结果与讨论3.1 桂皮醛含量结果[/b](1)UHPLC分析方法线性考察UHPLC分析方法线性考察结果:桂皮醛与相邻杂质峰分离度均大于1.5,符合分离度要求,在1.05-21 ug/Ll范围内,标准曲线为y = 166634x + 17.599 ,r[sup]2[/sup] =0.9998,标准曲线线性良好。图3-1为桂皮醛测定中,对照品与样品色谱图。[align=center][img=,690,273]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261509099671_1014_3389662_3.png!w690x273.jpg[/img][/align][align=center][img=,690,273]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261508367711_1478_3389662_3.png!w690x273.jpg[/img][/align]A.对照品;B.样品;[align=center]图3-1 桂枝中桂皮醛含量测定对照及样品的UHPLC[/align](2)桂皮醛含量结果共测定75个样品,其桂皮醛含量范围在0.543 % ~1.83 %。[b]3.2 水分含量结果[/b]共测定75个样品,其水分含量范围在8.38 % ~11.09 %。[b]3.3 浸出物含量结果[/b]共测定75个样品,其水浸出物含量范围在2.09 % ~7.72 %。[b]3.4 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析模型的建立3.4.1样品原始光谱图[/b][align=center][img=,544,268]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261510094401_9199_3389662_3.png!w544x268.jpg[/img][/align][align=center]图3-2 桂枝样品的近红外原始光谱叠加[/align]图3-2为不同批次桂枝样品间的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图,谱图较为相似,近红外原始光谱图与桂皮醛、水分、浸出物含量数据的相关性不显著,故须经过数学处理提取特征信息后,才能建立准确可靠的含量预测模型。[b]3.4.2样品校正集和验证集划分结果[/b]K-S法按照2:1比例对样品进行校正集和验证集划分,选择50个样品用于建立测定桂枝样品中桂皮醛、水分、浸出物含量的定量校正模型,选择25个样品作为验证集,用于验证所建立校正模型的预测能力。校正集和验证集中桂皮醛、水分、浸出物的最大值、最小值和平均值见表3-1。水分、浸出物含量验证集样品包含在校正集中,划分结果可行,有利于建立稳定可靠的模型。[align=center][img=,559,177]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261510500963_8217_3389662_3.png!w559x177.jpg[/img][/align]K-S划分结果,是桂皮醛含量验证集范围超出了校正集,所以用TQ软件自带功能重新对桂皮醛含量模型进行校正集和验证集划分,划分结果见表3-2。[align=center][img=,549,181]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261511341051_7951_3389662_3.png!w549x181.jpg[/img][/align][b]3.3.3桂皮醛、水分、浸出物含量分析模型建立(1)桂皮醛定量分析模型建立[/b]采用TQ Analyst 9. 1 软件自带化学计量学工具对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行预处理,消除固体样本颗粒、光散射、杂散光、仪器响应、以及一些与待测样品性质无关的因素所导致的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的基线漂移、噪声等。考察未处理(None),S-G平滑,ND平滑,一阶导数(FD),二阶导数(SD),多元散射校正(MSC),标准正态变量变换(SNV)以及其组合的预处理方式。桂皮醛其结构式见图3-3:[align=center][img=,354,472]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261512083981_5013_3389662_3.png!w354x472.jpg[/img][/align][align=center]图3-3 桂皮醛结构式[/align]含苯环,为芳烃化合物,芳烃的一级倍频和二级倍频分别在1685 nm(5934 cm[sup]-1[/sup])和1143 nm(8749 cm[sup]-1[/sup]),组合频在2150 nm(4651 cm[sup]-1[/sup])和2460 nm(4065 cm[sup]-1[/sup])[sup][/sup]。因此,尝试通过手动方法选择不同波段优选建模波段;采用PLS法建立桂皮醛定量校正模型,以校正集样品的以RMSECV、[i]R[sup]2[/sup]c、[/i]RMSEP、[i]R[sup]2[/sup]p[/i]、LVs、Perfformance Index(PI)为指标,优化建模参数。同过桂皮醛定量模型不同光谱预处理方法的分析,可知:同过PI指数可以看出,MSC处理光谱的效果不如原始光谱、SNV处理光谱的效果优于原始光谱、单独微分处理效果均不如原始光谱,二阶导数效果比一阶更差;MSC、SNV分别与FD、SD组合处理光谱效果均有所提升,与FD的组合模型优化效果更明显;当在此组合基础上再加上平滑处理时建模效果反而下降,说明,平滑的过程可能将有效信息掩盖。最佳光谱预处理组合为:MSC+FD、SNV+FD。光谱经预处理后建模评价参数基本接近,仅有细微差别。因此,暂时将两种处理方式均作为最优预处理方式对待。进行下一步的特征波长优化。表3-4是MSC+FD、SNV+FD两种预处理方式与不同光谱波段的建模效果汇总表。从表3-7数据可以看出在用包含芳烃特征吸收的谱段进行建模并没有取得预期的效果,可能与所选取波段不够精准有关系;也可能选取波段使信息量减少,造成了有效信息的丢失;综合考虑MSC+FD、SNV+FD预处理所建模型评价参数认为SNV+FD更优。因此,选择SNV+FD预处理方式,全光谱建立PLS最佳模型,模型参数为[i]R[sup]2[/sup]c[/i]=0.9855,[i]R[sup]2[/sup]p[/i]=0.9601,RMSEC=0.0427,RMSEP=0.0487,LVs为5。[align=center][img=,645,244]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261512437551_5597_3389662_3.png!w645x244.jpg[/img][/align][align=center]图3-4为桂皮醛预测值与实测值相关图[/align]以PLS法建立的最佳模型计算得到的验证集样品的桂皮醛预测值和UHPLC法测定的结果进行配对t检验,以评价模型的预测能力。表3-3为配对t检验的统计学结果,可见UHPLC测定结果的平均值和NIRS得到的结果均值相同。在95%的置信限下,桂皮醛模型的P=0.4510.05,说明近红外模型预测的结果和UHPLC的测定结果没有显著性差异,证实了NIRS用于桂枝药材桂皮醛测定的有效性。[align=center][img=,575,160]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261513515655_413_3389662_3.png!w575x160.jpg[/img][/align][align=center][/align][b](2)水分定量分析模型建立[/b]用Matlab化学计量学分析软件和PLS_Toolbox工具箱对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行如下步骤的处理和优化,最终建立水分水分定量分析模型。 考察两种常用数据增强算法:均值中心化(Mean Center)、标准化(Autoscaling);‚ 考察FD+SG、SD+SG平滑窗口宽度;ƒ 考察MSC、SNV、OSC预处理方式;④考察FiPLS、BiPLS、以及CARS方法选取特征波段;⑤采用PLS法建立桂皮醛定量校正模型,以校正集和验证集样品的RMSEC、RMSECV、[i]R[sup]2[/sup]c、[/i]RMSEP、[i]R[sup]2[/sup]p[/i]、LVs为指标,优化建模参数。⑥采用配对t检验法对预测值与测定值进行差异显著性检验,进一步评价模型准确性。均值中心化、标准化两种数据增强方式,均优于无处理方式,Mean Center较优,因此在下述处理中mean Center为基础处理方式。FD+S-G最佳平滑窗口宽度为3,SD+S-G最佳平滑窗口宽度为15,因此在接下来的数据处理中,均以最佳平滑窗口数进行。通过对不同预处理方式的考察,数据中可以看出最优处理方式为SNV+FD和FD。接下来以SNV+FD、FD分别为光谱预处理方式,进行特征波段选择。特征波段选择,采用FiPLS和CARS。预处理方式为FD,FiPLS-300即间隔数为300时,所选的波段区间建模模型RMSEP 最小RMSEC相对较小,[i]R[sub]c[/sub][/i][sup]2[/sup]、[i]R[sub]p[/sub][sup]2[/sup][/i]最大,结果最佳,且变量数最少。该方法对应光谱区间选择结果如图3-5所示,图形横坐标为波长变量 4000-10000 cm[sup]-1[/sup] 之间划分的3112个变量顺序,绿色区域对应 RMSECV 最小,即为所选变量区间6527.86-5951.25 cm[sup]-1[/sup],共包含300个变量,较全光谱缩减了2812个变量,改善模型结果的同时,降低90%的运算量。[align=center][img=,560,420]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261514457629_3089_3389662_3.jpg!w560x420.jpg[/img][/align][align=center]图 3-5FD,FORWARD iPLS-300 波段选择结果(实验记录Ⅱ-p108)[/align]以CARS法进行变量选择时对模型结果影响较大的两个参数为蒙特卡洛采样次数以及LVs,LVs考察2-10,蒙特卡洛采样次数考察10、25、50、100、200、500,以模型的RMSECV+RMSEP为评价参数。CARS前对图谱进行SNV+FD预处理考察结果见表3-3。[align=center][img=,587,410]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261515274590_6583_3389662_3.png!w587x410.jpg[/img][/align][align=center][/align]当LVs为7,采样次数为25时和LVs为8,采样次数为200时RMSECV+RMSEP处在较低水平。因此以这两个参数分别进行CARS波段选择,以FD为预处理方式,进行建模,模型评价见表3-5。[align=center][img=,558,137]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261516068540_2384_3389662_3.png!w558x137.jpg[/img][/align][align=center][img=,449,508]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261516196931_6560_3389662_3.png!w449x508.jpg[/img][/align][align=center][img=,431,291]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261517021361_7470_3389662_3.png!w431x291.jpg[/img][/align][align=center][img=,442,543]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261517366951_1045_3389662_3.png!w442x543.jpg[/img][/align][align=center][img=,447,230]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261519232531_9846_3389662_3.png!w447x230.jpg[/img][/align]最佳建模方式为FD+mean Center,FiPLS-300,模型参数为[i]R[sup]2[/sup]c[/i]=0.964,[i]R[sup]2[/sup]p[/i]=0.962,RMSEC=0.14419,RMSEP=0.13736,LVs为3。图3-10为水分预测值与实测值相关图。[align=center][img=,492,243]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261520051238_4887_3389662_3.png!w492x243.jpg[/img][/align]以PLS法建立的最佳模型计算得到的验证集样品的水分预测值和甲苯法测定的结果进行配对t检验,以评价模型的预测能力。表3-8为配对t检验的统计学结果,可见甲苯测定结果的平均值和NIRS得到的结果均值相同。在95%的置信限下,桂皮醛模型的P=0.560.05,说明近红外模型预测的结果和甲苯法的测定结果没有显著性差异,证实了NIRS用于桂枝药材水分测定的有效性。[align=center][img=,569,144]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261520481091_6921_3389662_3.png!w569x144.jpg[/img][/align][b](3)浸出物含量定量分析模型建立[/b]用Matlab化学计量学分析软件和PLS_Toolbox工具箱对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行如下步骤的处理和优化,最终建立浸出物含量定量分析模型。比较两种常用数据增强算法:Mean Center、Autoscaling;考察FD+SG、SD+SG平滑窗口宽度;考察MSC、SNV预处理方式;考察FiPLS、BiPLS方法选取特征波段;采用PLS法建立浸出物定量校正模型,以校正集和验证集样品的RMSEC、RMSECV、[i]R[sup]2[/sup]c、[/i]RMSEP、[i]R[sup]2[/sup]p[/i]、LVs为指标,优化建模参数。采用配对t检验法对预测值与测定值进行差异显著性检验,进一步评价模型准确性。[align=center][/align][align=center][img=,566,144]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261521414114_9838_3389662_3.png!w566x144.jpg[/img][/align] 从表3-7知均值中心化(Mean Center)、标准化(Autoscaling)两种数据增强方式,均优于无处理方式,Autoscaling较优,因此在下述处理中Autoscaling为基础处理方式。表3-8为FD+SG、SD+SG平滑窗口宽度建模效果。由表3-8数据可知,FD+S-G最佳平滑窗口宽度为7,SD+S-G最佳平滑窗口宽度为15,因此在接下来的数据处理中,均以最佳平滑窗口数进行。以下表格中FD、SD均指FD+S-G(7)和SD+S-G(15)。[align=center][/align][align=center] [img=,567,417]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261522089231_2342_3389662_3.png!w567x417.jpg[/img][/align][align=center] [img=,542,460]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261522357719_3272_3389662_3.png!w542x460.jpg[/img][/align]通过对不同预处理方式的考察,在表3-9汇总的数据中可以看出最优处理方式为SNV+SD。以SNV+SD为光谱预处理方式,进行特征波段选择。特征波段选择,采用iPLS。[align=center][/align][align=center] [img=,546,644]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261523113364_1649_3389662_3.png!w546x644.jpg[/img][img=,544,160]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261523275961_9034_3389662_3.png!w544x160.jpg[/img][/align]从表3-10可以看出预处理方式为SNV+SD,BiPLS-250即间隔数为250时,所选的波段区间建模模型RMSEP 最小RMSEC相对较小,[i]R[sub]c[/sub][/i][sup]2[/sup]、[i]R[sub]p[/sub][sup]2[/sup][/i]最大,结果最佳。该方法对应光谱区间选择结果如图3-11所示,图形横坐标为波长变量 4000-10000 cm[sup]-1[/sup] 之间划分的3112个变量顺序,绿色区域对应 RMSECV 最小,即为所选变量区间9999.1-9518.91 cm[sup]-1[/sup]、8070.63-7108.33 cm[sup]-1[/sup]、5660.05-4697.75 cm[sup]-1[/sup]及4213.7-3999.64 cm[sup]-1[/sup],共包含1362个变量,较全光谱缩减了1750个变量,改善模型结果的同时,降低56%的运算量。[img=,242,182]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,538,231]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261524165981_3520_3389662_3.png!w538x231.jpg[/img]浸出物最佳建模方式为SNV+SD+Autoscaling,BiPLS-250,模型参数为[i]R[sup]2[/sup]c[/i]=0.967,[i]R[sup]2[/sup]p[/i]=0.900,RMSEC=0.22104,RMSEP=0.3763,LVs为3。图3-10为浸出物预测值与实测值相关图。以PLS法建立的最佳模型计算得到的验证集样品的浸出物预测值和药典法测定的结果进行配对t检验,以评价模型的预测能力。表3-11为配对t检验的统计学结果,可见药典法测定结果的平均值和NIRS得到的结果均值相同。在95%的置信限下,桂皮醛模型的P=0.240.05,说明近红外模型预测的结果和药典法的测定结果没有显著性差异,证实了NIRS用于桂枝药材浸出物测定的有效性。[align=center][img=,577,146]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261524550178_7178_3389662_3.png!w577x146.jpg[/img][/align][b] 4总结[/b]通过收集市场上不同批次的桂枝样品,用常规方法测定桂皮醛、浸出物和水分的含量。桂皮醛、浸出物和水分的含量范围分别在0.543% ~1.83%、2.09% ~7.72 %和8.38 % ~11.09 %。药典规定桂皮醛、浸出物和水分的合格限为大于等于1.0%、大于等于6.0 %(作为参考)和不得过12 %。可见,市场上桂枝水分含量也基本稳定,而桂皮醛则存在不合格现象。不合格批次33批,占比44 %以上。说明市场上桂枝的品质存在很大的问题,这些与桂枝的产地、采收时间、加工方式不无关系,因此对于入库验收、对投料比例的把握就会提出更加严格的要求,光靠传统经验显然不足,常规方法又费时费力。开发快检方法尤为迫切。本实验成功运用 Antaris II傅立叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]以及相关化学计量学软件和方法建立了桂枝药材中桂皮醛、浸出物和水分的定量分析模型。基于Antaris II[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的桂枝药材光谱经SNV+SD+Autoscaling,BiPLS-250组合处理,在9999.1-9518.91 cm[sup]-1[/sup]、8070.63-7108.33 cm[sup]-1[/sup]、5660.05-4697.75 cm[sup]-1[/sup]及4213.7-3999.64 cm[sup]-1[/sup]区间,所建 PLS模型最佳,桂皮醛水分最佳PLS模型参数为[i]R[sup]2[/sup]c[/i]=0.9855,[i]R[sup]2[/sup]p[/i]=0.9601,RMSEC=0.0427,RMSEP=0.0487,LVs为5;水分最佳PLS模型参数为[i]R[sup]2[/sup]c[/i]=0.964,[i]R[sup]2[/sup]p[/i]=0.962,RMSEC=0.14419,RMSEP=0.13736,LVs为3;浸出物最佳PLS模型参数为[i]R[sup]2[/sup]c[/i]=0.967,[i]R[sup]2[/sup]p[/i]=0.900,RMSEC=0.22104,RMSEP=0.3763,LVs为3。为桂枝药材的购买、筛选提供参考方法,保障投料稳定均一,从源头保障产品质量。

桂皮对照药材相关的方案

桂皮对照药材相关的资讯

  • 【行业应用】赛默飞发布针对《中国药典》 2015年版药材阿胶、鹿角胶和龟甲胶的鉴别方法
    赛默飞世尔科技(以下简称:赛默飞)近日使用液相串联质谱重现了针对《中国药典》 2015 年版药材阿胶、鹿角胶和龟甲胶的鉴别方法。该方法完全满足《中国药典》 2015 年版阿胶、阿胶珠、鹿角胶和龟甲胶药材鉴别方法对于灵敏度和重现性的要求。《中国药典》 2015 年版于2015年12月1日正式实施。新版药典中检测技术的新亮点之一就是“药材阿胶、鹿角胶、龟甲胶的鉴别方法”,此方法所用的LC-MS/MS检测技术首次出现在《中国药典》的正文中。 本方法在Thermo ScientificTM TSQ Quantum Access MAXTM和TSQ EnduraTM 上开发了完全符合新版药典规定的中药材阿胶、鹿角胶、龟甲胶检测方法,只需配好流动相,按照本实验设计的步骤进行样品前处理,然后直接导入仪器方法,点击开始检测即可,使用Thermo ScientificTM LCquanTM 2.9 QF1软件进行方法编辑、数据采集与处理、数据报告。本实验使用LC-MS/MS检测药材酶解液中指定的特征选择反应监测离子对,色谱峰信噪比均大于 3:1,并同时呈现与对照药材色谱保留时间一致的色谱峰,完全可以满足《中国药典》2015年版对于中药材阿胶、鹿角胶、龟甲胶鉴别方法的要求。更多产品信息,请查看:Thermo ScientificTM TSQ Quantum Access MAXTMhttp://www.thermoscientific.cn/product/tsq-quantum-access-max-triple-quadrupole-mass-spectrometer.html TSQ EnduraTMhttp://www.thermoscientific.cn/product/tsq-endura-triple-quadrupole-mass-spectrometer.html 方法下载,请查看:http://www.thermoscientific.cn/content/dam/tfs/Country%20Specific%20Assets/zh-ch/CMD/MS/LSMS/documents/identification-of-donkey-hide-gelatin.pdf ---------------------------------------------------关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:www.thermofisher.com 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公 司,员工人数约3800名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应 用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成 立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.com 请扫码关注:赛默飞世尔科技中国官方微信
  • 曼陀罗叶中药材质量标准发布
    近日,云南省药品监督管理局发布中药材曼陀罗叶的质量标准,自2021年01月04日起实施。曼陀罗叶为茄科植物白曼陀罗或毛曼陀罗的叶。具有镇咳平喘,止痛拔脓之功效。常用于喘咳、痹痛、脚气,脱肛、痈疽疮疖。胃肠及胆道绞痛后,用开水冲服叶片粉末,也能起到很好的缓解作用。目前,多用于支气管炎、支气管哮喘、风湿性关节炎等疾病的治疗。曼陀罗叶即可内服也可外用,内服需谨遵医嘱注意用量,如过量摄入,会有中毒危险。具体中药材质量标准如下:云南省药品监督管理局中药材质量标准(云YNZYC-0032-2005-2021) 曼陀罗叶 MantuoluoyeDATURAE STRAMONII FOLIUM 【来源】本品为茄科植物曼陀罗Datura stramonium L.的干燥叶。7~8月采摘,干燥。【性状】本品呈灰绿色至深绿色,多皱缩、破碎。完整叶片展平后呈菱状卵形,长8~20cm,宽4~15cm,先端渐尖,基部楔形不对称,边缘有不规则重锯齿,齿端渐尖,两面均无毛。质脆、易碎。气微,味苦、涩。【鉴别】取本品粉末0.2g,加50%乙醇20ml,浸泡1小时,时时振摇,滤过,滤液挥去乙醇,加水10ml,用氨试液调pH值至8~9,用三氯甲烷振摇提取两次,每次15ml,合并三氯甲烷液,置水浴上蒸干,残渣加甲醇0.5ml使溶解,作为供试品溶液。另取曼陀罗叶对照药材0.2g,同法制成对照药材溶液。再取硫酸阿托品加甲醇制成每1ml含2mg的溶液,作为对照品溶液。照薄层色谱法(《中国药典》四部附录)试验,吸取供试品溶液和对照药材溶液各4μl与对照品溶液2μl,分别点于同一用羧甲基纤维素钠为黏合剂的硅胶G薄层板上,以乙酸乙酯-甲醇-浓氨试液(10:2:1)为展开剂,展开,取出,晾干,喷以稀碘化铋钾试液。供试品色谱中,在与对照药材和对照品色谱相应的位置上,分别显相同颜色的斑点。【检查】 水分 照水分测定法(《中国药典》四部附录)测定,不得过10.0%。总灰分 不得过13.0%(《中国药典》四部附录)。酸不溶性灰分 不得过1.0%(《中国药典》四部附录)。莨菪碱限度 取本品粉末2g,精密称定,置具塞锥形瓶中,精密加50%乙醇100ml,称定重量,浸渍1小时,超声处理20分钟,放至室温,称重,用稀乙醇补足减失重量,摇匀,滤过,精密量取续滤液50ml,挥去乙醇,用氨试液调pH值至8~9,用三氯甲烷振摇提取3次(20ml、20ml、10ml),合并三氯甲烷液,蒸干,残渣加甲醇定容至1ml,作为供试品溶液。另取硫酸阿托品对照品,加甲醇制成每1ml含2mg的溶液,作为对照品溶液。照薄层色谱法(《中国药典》四部附录)试验,精密吸取供试品溶液2μl、对照品溶液5μl,分别点于同一用羧甲基纤维素钠为黏合剂的硅胶G薄层板上,以乙酸乙酯-甲醇-浓氨试液(17:2:1)为展开剂,展开,取出,晾干,喷以稀碘化铋钾试液。供试品色谱中,在与对照品色谱相应的位置上,出现的斑点应小于对照品的斑点或不出现斑点。【浸出物】照醇溶性浸出物项下的热浸法(《中国药典》四部附录)测定,用乙醇作溶剂,不得少于13.0%。【含量测定】 照高效液相色谱法(《中国药典》四部附录)测定。色谱条件与系统适用性试验 以十八烷基硅烷键合硅胶为填充剂;以乙腈-水(含0.035mol/L磷酸钠和0.0087mol/L的十二烷基硫酸钠,0.5%磷酸,0.15%三乙胺)(35:65)为流动相;检测波长为216nm;理论板数按氢溴酸东莨菪碱峰计算应不低于3000。对照品溶液的制备 取氢溴酸东莨菪碱和硫酸阿托品对照品适量,精密称定,加流动相制成每1ml含氢溴酸东莨菪碱0.08mg, 硫酸阿托品0.2mg的溶液,即得。供试品溶液的制备 取本品粉末(过二号筛)约1g,精密称定,置锥形瓶中,加入2mol/L盐酸溶液10ml,超声处理(功率300W,频率45kHz)30 分钟,滤过,残渣和滤器用2mol/L盐酸溶液25ml分五次洗涤,合并滤液和洗液,用浓氨试液调PH至9,用三氯甲烷振摇提取4次,每次15ml,合并三氯甲烷液,回收溶剂至干,残渣用流动相溶液溶解,转移至5ml容量瓶中,加流动相至刻度,摇匀,滤过,取续滤液,即得。测定法 分别精密吸取上述对照品溶液与供试品溶液各10μl,注入液相色谱仪,测定,按外标法计算含量。按干燥品计算,本品含硫酸阿托品((C17H23NO3)2.H2SO4)不得少于0.13%,含氢溴酸东莨菪碱(C17H21NO4• HBr)不得少于0.04% ,含硫酸阿托品与氢溴酸东莨菪碱之和应为0.17%~0.40%。【性味与归经】苦、辛,温;有毒。归肺、心经。【功能与主治】平喘止咳,散寒止痛。用于喘咳,脘腹疼痛,痛经,寒湿痹痛。【用法与用量】0.3~0.6g。外用适量。【注意】青光眼忌用。【贮藏】置干燥处。
  • 取消中药材GAP认证,并非放而不管
    p  2月15日,CFDA官网消息显示,国务院印发《关于取消13项国务院部门行政许可事项的决定》(国发〔2016〕10号),规定取消中药材生产质量管理规范(GAP)认证。/pp style="text-align: center "img title="捕获.gif" src="http://img1.17img.cn/17img/images/201602/insimg/4feeb035-cfb2-43b2-a0b3-0737654a2ded.jpg"//pp  a style="color: rgb(255, 0, 0) text-decoration: underline " title="" href="http://www.instrument.com.cn/application/SampleFilter-S22002-T000-1-1-1.html" target="_self"span style="color: rgb(255, 0, 0) "strong中药材/strong/span/aGAP作为一项旨在推动药材规范化种植、保证药材质量的非强制性行业标准,自2002年起至今,已有10余年。采访中,有业内人士推测,中药材规范化种植还将继续推行,取消中药材GAP认证后,监管仍会加强,相信还有其他后续管理措施出台。/pp  strong中药难为“无米之炊”/strong/pp  某研究机构发布的《2015-2020年中国中药材GAP基地发展模式与投资战略规划分析报告》数据显示,中药材GAP认证从2004年至2012年5月7日,发布了16个公告,共有70余家企业(不计重复)、95个基地、60多个中药材品种通过中药材GAP认证。/pp  有专家认为,取消中药材生产质量管理规范(GAP)认证后,将由中药生产企业(包括饮片、中成药生产企业)对产品生产全过程的质量保证负责,确保供应临床、医药市场的所有药品质量信息可溯源。/pp  “谁向市场供应药品,谁就该对药品质量负全责。取消认证,是简政放权的举措之一。但作为相关生产企业,要保证药品质量稳定可控,药材质量稳定是关键,这是必须进行规范化种植的意义所在。中药生产企业对自己所使用到的所有药材质量负全责:药材质量信息可追溯,药材有稳定可控的来源。比如还在征求意见中的《中药配方颗粒管理办法(征求意见稿)》要求,生产所使用的药材信息备案是必须的。”某大型药企研发中心博士陈周全分析认为。/pp  在他看来,对于存在资源瓶颈的药材,企业必须自建或共建规范化种植基地,确保可持续生产。现在从政府到监管机构,到行业,都强调生产的可追溯质量保证体系。药材没有稳定可控的来源,药品的生产将会是无米之炊,可能也就自动退出了。/pp  记者留意到,在近期不少地区发布的中药材保护和发展规划中,基地建设成为重要发展目标。《贵州省中药材保护和发展实施方案(2016-2020年)》提出,到2020年,建设1个国家基本药物所需中药材种子种苗繁育基地、10个省级中药材良种繁育基地、15个省级中药材种植(养殖)科技示范园,申报国家认证中药材GAP种植基地累计达8个以上。《云南省人民政府办公厅关于贯彻落实中药材保护和发展规划(2015-2020年)的实施意见》发展目标明确,到2020年,云南省中药材种植面积将在现有600万亩的基础上,增至1000万亩,并建设100个以上省级中药材良种繁育基地、100个以上省级中药材种植养殖科技示范园,以及申报国家认证单品种中药材GAP种植基地。/pp  strong中药材种植不是“大棚种菜”/strong/pp  中药材GAP生产基地建设、中药材生产与中药标准化和现代化所应关注的问题值得深入探讨。/pp  在记者此前参加的一个有关中药材GAP研讨会上,权威专家周荣汉教授表示,在实施中药材GAP过程中,有一大问题就是传统中药材生产与农业现代化。尽管GAP建设取得一定成效,但充其量是在传统农业的基础上加以整理和组合,形成有进步意义的标准操作规程(SOP),在改革、创新方面却并不显著。/pp  此外,少部分企业完成GAP建设后疏于管理、流于形式,把中药材GAP基地当作向外推介、展示形象的招牌,只做表面文章,“重建设、轻管理”,建设之初能做到合理规划,对照标准,严格把关,一旦建成,后期管理出现松懈,这样违背科学、不注重后期管理的中药材GAP基地自然不会长久,也没有任何实施意义,因此建议提出复检制度。/pp  “企业规范化种植不是为了GAP而GAP,而是为了保证自己的重点产品,核心产品有合格的药材可用。为保证中药药效,对于药材的种植,业内有不少同仁强调采用仿野生种植,而不是像‘大棚种菜’一样。”前述药企人士表示。/pp  那么,如何保证药材质量?规范化生产如何实施?中药现代化之路如何更加理性与科学?都是传统中医药必须认真对待和解决的现实问题。/pp  另悉,除取消中药材生产质量管理规范(GAP)认证外,国务院还决定取消从事第三方药品物流业务批准等7项中央指定地方实施的食品药品行政审批事项。/pp  根据CFDA官网消息,本月初,国务院印发《关于第二批取消152项中央指定地方实施行政审批事项的决定》(国发〔2016〕9号),规定取消从事第三方药品物流业务批准、对国家食品药品监管总局负责的麻醉药品和精神药品研究立项审批的初审、国产保健食品注册的初审、特殊用途化妆品审批的初审、处方药转换非处方药申报资料的初审、药品注册补充申请的初审、直接接触药品的包装材料和容器注册的初审等7项省级食品药品监管部门实施的审批事项。/ppbr//p

桂皮对照药材相关的仪器

  • 仪器简介:吸附有硅酸盐的商品(新鲜水果蔬菜、脱水水果蔬菜、香辣调味料、茶黑胡椒、姜黄、牛至、红辣椒粉、红椒、孜然芹、芹菜种子、牙买加椒、黑芝麻、胡荽、生姜、、欧芹、月桂、芥末、桂皮、干香菇、干萝卜、乌龙茶、普洱茶、大麦茶、鱼腥草、虾、螃蟹、土豆、草莓、鳄梨、蘑菇、番木瓜果、芒果、中草药等)在辐照的过程中储存的能量,通过控制加热分离出来的硅酸盐、测定其热释光的强度,可以判断该商品是否已经经过辐照。技术参数:系统配置1) TLD 3500热释光辐照食品检测仪2) 辐照食品检测用高温样品加热盘3) 电脑4) 激光打印机5) LiF Mg Ti热释光剂量元件6) 样品杯7) 测量软件和计算软件8)X光辐照器 (备选)辐照食品检测专用程序:可导入发光曲线,通过计算输出分析结果。可以同时分析多个样品的发光曲线。符合欧盟EN1788和日本的热释光辐照食品检测标准,并可通过重新设定相应参数满足其它标准。技术性能指标单位: nC, gU, mrad, mrem, mGy, Gy, µ Sv, mSv, Sv温度范围:15oC-600 oC升温速率:1oC/s -50oC/s温度稳定性:+1oC系统稳定性: +0.005%操作温度:15~40℃主要特点:1) 该方法满足欧盟EN1788-2001和日本的标准方法。2)高灵敏度,可以检测小于1KGy的辐照剂量3)粉末TLD测量元件,适合辐照食品检测4)由热电偶监控的盘加热,确保最佳温度重复性5)加热温度可达600度6)所有参数通过软件设定7)系统操作简单快捷8)采用专门的分析软件9)内置QC诊断
    留言咨询
  • 中药饮片是中药材经过按中医药理论、中药炮制方法,经过加工炮制后的,可直接用于中医临床的中药。这个概念表明,中药材、中药饮片并没有的界限,中药饮片包括了部分经产地加工的中药切片(包括切段、块、瓣),原形药材饮片以及经过切制(在产地加工的基础上)、炮炙的饮片。其在生产加工过程中需要严格的控制水分,深圳冠亚SFY-20D中药材水分含量检测仪可以快速检测中药饮片的水分含量!水分要求在10~12%的品种:蔓荆子水分要求在10~13%的品种:白前、白薇、白敛、胡黄连、知母肉、秦艽、升麻、首乌、威灵仙、甘松、砂米、苡米、麻黄、荆芥、金银花、槐花、半边莲、玫瑰花、厚朴花、月季花水分要求在10~14%的品种:明党参、葛根、高良姜、大良姜、马尾连、千年健、白药子、白附子、青箱子、刀豆子、棕榈子、莲须、红豆蔻、青果、荜拨、马兜铃、枳实、泽兰、败酱草、壳砂、旱莲草、木贼草、伸筋草、白花舌草、莶草、地丁、兜铃藤、马齿苋、夏**草、肿节风、冬花、佛手花、洋金花、莞花、木槿花、荷叶、艾叶、穿心莲、罗布麻叶、黄柏、丹皮、桑皮、白萼皮、川槿皮、苦栋皮、寄生、忍冬藤、猪牙皂水分要求在10~15%的品种: 川芎、白芨、续断、草河车、藕节、薤白、茅茨菇、光茨菇、莲房、原蔻、白豆蔻、佛手、山楂片、白果、槐角、路路通、西瓜皮、木瓜、青皮、佩兰、鱼腥草、红花、谷精草、地骨皮、桂皮、肉桂、桂枝、鸡血藤、夜交藤、海风藤、青风藤水分要求在10~16%的品种:木香、龙胆草、桔皮、菊花水分要求在11~13%的品种:玉簪花、桔络、薄荷、土茯苓、三棱、干姜皮水分要求在11~14%的品种:通草、四花皮、仙鹤草、草蔻、毕解片、石菖蒲、仙茅、狼毒、香附、防风、黄芪、草乌、乌药片、干姜、丹参、黄连、杭白芍、毫芍、天麻、郁金水分要求在11~15%金雀花、地枫、芡实、益母草、草果、乌枣、狗脊片、甘遂、两头尖、排草、前胡、独活、银柴胡、防杞、毛知母、南星、川鸟、板兰根、泽泻水分要求在11~16%的品种:瓜蒌皮、乌梅、漏芦、杭麦冬、怀牛膝、大黄水分要求在11~17%的品种:桑椹、黄精、天冬水分要求在12~13%的品种:苦参、川贝水分要求在12~14%的品种:荔枝核、棱罗子、苍术、黄苓、白芷、生半夏水分要求在12~15%的品种:益智、金果榄、管仲、商陆、桔梗、赤芍、莪木、北沙参、白头翁水分要求在12~16%的品种:枳壳、川楝子、百部、地榆、天葵子、巴戟、蒿本、甘草、麦冬水分要求在12~17%的品种:肉苁蓉、桂元肉、川牛夕、光山药水分要求在12~18%的品种:瓜蒌水分要求在13~15%的品种:姜黄、党参、浙贝母水分要求在13~16%的品种:车前草、花粉、南沙参、当归、白术水分要求在13~17%的品种:锁阳、五味子、黑附片水分要求在13~18%的品种:枸杞子水分要求在14~18%的品种:玄参水分要求在14~19%的品种:生地深圳冠亚SFY-20D中药材水分含量检测仪技术参数:1、称重范围:0-90g可调试测试空间为3cm、5cm、10cm2、水分测定范围:0.01-**3、 净重:3.7KgJK称重系统传感器4、样品质量:0.5-90g5、加热温度范围:起始-205℃加热方式:应变式混合气体加热器微调自动补偿温度15℃6、水分可读性:0.01%7、显示7种参数: 水分示值,样品初值,样品终值,测定时间,温度初值,终值,恒重值红色数码管独立显示模式8、双重通讯接口:RS 232(打印机)RS 232(计算机)9、外型尺寸:380×205×325(mm)10、电源:220V±10%/110V±10%(可选)11、频率:50Hz±1Hz/60Hz±1Hz(可选)深圳冠亚SFY-20D中药材水分含量检测仪产品特点只需几分钟,速度快易操作,不用培训操作简单,全自动操作模式,无可动部件;核心部件均采用纯进口高端材料,以保证产品检测结果的准确性;零易损件,样品盘采用耐酸耐碱耐变形的纯不锈钢材料;采用特质的环形卤素光源,加热均匀,加热器更耐用;显示7种参数:(水分示值、样品重量初值、终值、测定时间、温度初值、终值、判别时间)
    留言咨询
  • 全自动中药材收获机,是结合国内实际情况研发的一款收获根茎药材的机械,收获长度可以达到50公分,也是一种深根中药材收获机,采用拖拉机带动并传递动力,振动式挖掘铲将药材整体挖出经过链条筛漏土分离,网格式链条筛上装有碎土装置同时将土块压碎,土块压碎后充分分离,是国内药材机械化收获的一大进步,提高了药材收获的效率,推动药材种植的规模化发展。经过多年发展,全自动中药材收获机、当归中药材收获机、白芷药材收获机已在各省种植基地广泛使用,并同种植基地建立了稳固的合作。全自动中药材收获机、当归中药材收获机、白芷药材收获机的作业宽度分为:0.8米、1米、1.2米、1.4米、1.6米和1.8米,特殊宽度可以定制,不同宽度大小的药材收获机需要匹配相应大小的拖拉机。比如1.4米宽药材收获机,需要804或904以上动力拖拉机带动。(一)4U-2 1390-2型挖药机技术参数配套动力:≥35马力拖拉机外型尺寸(长宽高):3200x1580x1160mm整机重量:655kg行走方式:悬挂式或牵引式工作方式:铲刀破土链条输送、分离堆放形式:身后条放作业速度:3-7km/h生产率:8-12亩/h作业行数:2作业幅宽:1390mm适应行距:550-750mm(二)4U-2 1550-2型挖药机技术参数配套动力:≥55马力拖拉机外型尺寸(长宽高):3800x1750x1160mm整机重量:760kg行走方式:悬挂式或牵引式工作方式:铲刀破土链条输送、分离堆放形式:身后条放作业速度:3-7km/h生产率:10-15亩/h作业行数:2作业幅宽:1550mm适应行距:700-850mm(三)型号:4U-2 170-2型侧输出挖药机技术参数配套动力:≥80马力拖拉机外型尺寸(长宽高):420x2500x1360mm整机重量:920kg行走方式:悬挂式或牵引式工作方式:铲刀破土链条输送、分离堆放形式:身后条放作业速度:3-7km/h生产率:12-16亩/h作业行数:2作业幅宽:1700mm适应行距:800-1000mm
    留言咨询

桂皮对照药材相关的耗材

  • 中药材仓库防潮除湿机
    中药材仓库防潮除湿机 新闻资讯报道:雨水多的天气,潮气重湿度大,那些存放在仓库中的中药材在空气潮湿的环境下,是很容易受潮,滋生霉菌的;而中药材一旦遭受霉菌、虫害,就有可能散失原来的药效,甚至还有可能会产生毒副作用,严重的会致癌、致畸。比如,人参的有效成分为蛋白质合成因子,含有多种人参皂甙糖类和其他有效成分,具有明显提高机体免疫能力的作用。一旦受潮霉变,它的蛋白质合成因子含有多种人参皂甙有效成分被破坏,失去提高机体免疫力的能力,而产生的内毒素等致病因子。因此,为确保中药材质量,药材生产、销售、加工炮制、贮存等单位一定要做好储存仓库的防潮除湿工作!为了让中药材仓库潮湿的问题不再反复出现,就需要一个能一次性解决的防潮方案。说起来,防潮措施很多人都做过,比如用干燥剂,用生石灰,用活性炭……不可谓不多了,但仓库潮湿问题并没有得到有效解决,湿度控制也没有得到明显改善。这是为什么呢?一句话:治标未治本!不过,现在有了正岛ZD-8138C中药材仓库防潮除湿机及ZD系列全自动高效除湿机;那么,中药材仓库的潮湿问题就能够从根本上得到了解决,库内环境湿度也能得到有效的控制,确保了中药材的保存品质和安全!正岛ZD-8138C中药材仓库防潮除湿机及ZD系列全自动高效除湿机具有智能湿度恒定控制系统,ZEDO用户可根据生产的需要,自动控制除湿机的工作及停机,通过自动控制实现最有效的除湿效果,降低整机运行成本。 正岛ZD-8138C中药材仓库防潮除湿机及ZD系列全自动高效除湿机严格采用专业的技术和精湛的工艺制造出高效、节能、环保的除湿机产品,ZEDO被广泛应用于企业仓储,车间生产,商务办公,科研实验,家居生活,资料档案,文物古迹,生物制药,食品加工,消费餐饮,休闲娱乐等场所,得到众多用户好评,在市场上享有美誉。电话:0571- 86731596 13958115553欢迎您来电咨询中药材仓库防潮除湿机的详细信息!除湿机的种类有很多,不同品牌的除湿机价格及应用范围也会有细微的差别,而正 岛 电 器将会为您提供优质的产品和全方位的售后服务。正岛ZD-8138C中药材仓库防潮除湿机及ZD系列全自动高效除湿机技术参数与选型参考: 产品型号除湿量(l/d)适用面积(㎡)功率(w)电源(v/Hz)尺寸(mm)净重(kg)ZD-228LB2820-40420220/50290*345*58415ZD-558LB5850-80670220/50350*455*60325ZD-890C9090-1201700220/50480*430*97050ZD-8138C138130-1802000220/50480*430*110058ZD-8168C168180-2202800380/50605*410*1650126ZD-8240C240240-3004900380/50770*470*1650160ZD-8360C360360-4207000380/501240*460*1700200ZD-8480C480480-5609900380/501240*460*1750230◆除湿量计算公式:W=V*P*(X2-X1)*1000*1.2( kg/h)W=所需除湿量(kg/h)、 P=空气密度(kg/m3)1.2、V=场所体积、X2=除湿前空气含湿量、X1=除湿后空气含湿量、1.2=安全系数(损耗) ◆选型注意事项--除湿机的除湿量和型号的选择,主要根据使用环境空间的体积、新风量的大小、空间环境所需的湿度要求等具体数值来科学计算。另外需要注意的是环境的相对湿度与环境的温度有关,温度越高,湿度蒸发越快,反之效果越差,因此在配置除湿机时,需要在专业人员的指导下进行选型,这样才能选到最为适合你的除湿机!查看更多中药材仓库防潮除湿机的详细信息尽在:杭 州 正 岛 电 器 设 备 有 限 公 司本站新闻记者ZEDO核心提示:总之, 中药材质量的好坏,不仅与药材的采收和后期加工有关,还与药材的保管储藏的方法密切相关。如果中药材在仓库保管措施不当,就很容易引起中药饮片腐烂、变色、出油、虫蛀等现象,给医院、医药公司等造成不小的经济损失,影响中药材在临床的正常使用。特别是在梅雨季节同,如果药材仓库防潮措施不完善,那么很容易造成中药材潮湿霉变。因此,做好中药材仓库的保管工作,对保证中药材临床应用安全有效性具有重要意义。为保障中药材的质量与药效,中药材在仓库中的储存与管理非常重要,选择中药材仓库必须干燥通风,库面地面不潮湿——如果地面容易出现返潮,就必须用除湿机来进行除湿,提前做好防范潮湿的工作。一开始,有些中药材仓库只是在库内地面上放置生石灰吸潮收湿,后来遇上雨天就发现药材大量发霉,直到用了正岛ZD-8138C中药材仓库防潮除湿机及ZD系列全自动高效除湿机,库内中药材变质的状况才逐渐好转起来!以上关于中药材仓库防潮除湿机的全部新闻资讯是正 岛 电 器为大家提供的!
  • 中药材烘干机,中药材烘干除湿机
    中药材烘干机,中药材烘干除湿机 新闻资讯 众所周知,中药材的用途不再局限于医药领域,还成为养生食材、化工用品原料等等。中药材的种植主要集中在我国的安徽亳州、河北安国,江西樟树 ,河南禹州这四大药都。现如今,中药材野生的资源是越来越少了,大多是人工繁殖,近几年中药材的种植用户也越来越多,相应的中药材的加工离不开干燥设备,这几年来咨询中药材烘干除湿机的的客户也比较多。  以前,的中药材大多数采用熏硫、摊晾、烘炕等技术烘干。熏硫干燥法虽然对中药材有较好的防烂效果,但是烟熏时除了要到处设置熏炉之外,还需要用到大量的硫磺。虽然硫磺本身属低毒危险化学品,但其蒸汽及硫磺燃烧后产生的二氧化硫,却对人体有剧毒。2016年的时候,由于使用了用硫磺熏蒸过的浙贝作为原料,很多成品药中被检测出较高的硫磺含量,多家知名药企涉及其中。  摊晾法占用空间大,看天吃饭,遇上阴天或雨天,药材就全毁了,同时还需要投入大量的人力看护 烘炕法便宜经济,以前张先生家的滇红花,就主要使用烘坑法进行烘干,但烧柴灰尘多、气味重,最为重要的是热度分布不均匀,火候难以掌握,一个不小心就会把高温区药材炕焦。  去年,为了响应中央号召,保护环境,安徽亳州省吹响了“煤改电”的冲锋号,要求到2017年止,除必要保留之外,全面淘汰燃煤小锅炉等污染、落后产能。为此,张先生听从一位当地中药协会中颇有声望的朋友介绍,只花了不到10万元就买了5台中药材烘干除湿机回来。  张先生向笔者介绍说,“这些机子(中药材烘干除湿机)蛮好用的,里面有全自动温湿度控制器。烘干全由微电脑控制,只需要设定好目标温度和湿度,烘干机就会自动运行进行烘干与除湿,自己完成烘干全过程。中药材烘干房用这机器来烘干,不但省心省事,产能也从过去一天只能产2500公斤到现在7500公斤,生产成本一下子就降低了20%。”  最后,张先生给笔者表示,以前每到收获季的时候,自己就忙得要死,不但要请人,而且经常一家老小都要上阵。现在好了,有了这些机子(中药材烘干除湿机)他不但可以轻轻松松的烘完基地里的药材,还可以为附近的小种植户提供药材烘干服务。  针对干燥室、烘干房节能除湿干燥的需求,正岛电器研发生产的正岛ZD-8240G中药材烘干除湿机及ZD系列升温加热烘干除湿一体机(适用于室内温度高于38℃低于55℃的环境下除湿)不仅可以快速去除烘干房内的湿气,在整个烘干过程中对烘干房内的湿度进行有效控制,还可以选配相应功率的电加热辅助升温,从而大大加快烘干速度,有效的提高了烘干房的利用率和烘干的质量!欢迎您查询中药材烘干机,中药材烘干除湿机的详细信息!  正岛ZD-8240G中药材烘干除湿机及ZD系列升温加热烘干除湿一体机技术参数:  烘干除湿一体机选型:根据实际的烘干房的总体湿负荷来选配适合的型号,具体的就是根据其面积,层高,以及烘干水分的蒸发量,初始湿度值目标湿度值,还有室内的密闭效果,散湿源,新风补给等综合因素来计算出制冷量,单位时间的除湿量等其它关键数据后才能正确的选出需要的型号。想要了解更多中药材烘干机,中药材烘干除湿机的详细信息尽在:杭 州 正 岛 电 器 设 备 有 限 公 司  那么,中药材烘干除湿机取代传统的烘干方法,到底划算不?近日,安徽亳州中药材基地张先生,在面对前去采访的笔者时,开口称赞道:“经济帐很划算,生态帐更划算。”  新型环保中药材烘干技术带来一场改革,据了解,安徽亳州的一些中药材基地使用中药材烘干除湿机替代了传统熏硫、摊晾、烘炕等技术烘干,不但省时省力,还提高烘干效率为当地百姓寻求一条致富路。以上关于中药材烘干机,中药材烘干除湿机的全部新闻资讯是正岛电器提供的,仅供大家参考!
  • 2015版药典中药材分析二氧化硫专用气相柱
    2015版药典中药材中二氧化硫分析毛细管色谱柱符合药典要求的专用柱§中药材使用硫黄熏蒸,是药材种植户对药材进行初加工的一种习用方法,目的在于防霉、防腐和干燥等。但是近年来,部分不法商贩为追求药材的外观漂亮、保存期长,用工业硫黄过量、反复熏蒸中药材,以旧充新,以次充好。§一般来说,经硫黄熏蒸后的药材会残留少量的二氧化硫和亚硫酸盐类物质。 §国家药典委员会规定,中药材中二氧化硫残留量不得超过400 mg/kg。 §本法系用酸碱滴定法、气相色谱法、离子色谱法分别作为第一法、第二法、第三法测定经硫磺熏蒸处理过的药材或饮片中二氧化硫的残留量。对于具体品种,可根据情况选择适宜方法进行二氧化硫残留量测定。订货请联系我们
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制