当前位置: 仪器信息网 > 行业主题 > >

桂皮对照药材

仪器信息网桂皮对照药材专题为您提供2024年最新桂皮对照药材价格报价、厂家品牌的相关信息, 包括桂皮对照药材参数、型号等,不管是国产,还是进口品牌的桂皮对照药材您都可以在这里找到。 除此之外,仪器信息网还免费为您整合桂皮对照药材相关的耗材配件、试剂标物,还有桂皮对照药材相关的最新资讯、资料,以及桂皮对照药材相关的解决方案。

桂皮对照药材相关的论坛

  • 【转帖】薄层扫描法测定胡黄连中香草酸和桂皮酸的含量

    摘要:建立胡黄连中香草酸和桂皮酸的含量测定方法。方法用双波长扫描法测定胡黄连中香草酸和桂皮酸的含量。结果香草酸。桂皮酸斑点峰面积3Il内稳定,香草酸回收率为103.86%,RSD=1.33%,桂皮酸回收率为103.16%,RSD=1.28%。结论该方法稳定,可行。具有实用性。 关键词:胡黄连 薄层扫描法 香草酸 桂皮酸 胡黄连具有保肝利胆、抗炎、抗真菌等药理作用。胡黄连含胡黄连素、胡黄连苷(I II III)、D-甘露醇、香草酸、肉桂酸、胡黄连醇成分。香草酸和桂皮酸是其中的两种抗菌成分。我们对胡黄连中香草酸、桂皮酸含量建立了薄层扫描法,以达到控制胡黄连的质量,从而为临床疗效提供保证。 1 仪器与试剂 药材:胡黄连,太原市药材公司;仪器:日本岛津CS--9301PC薄层扫描仪;手提式荧光灯(上海固村电光仪器厂);对照品:香草酸对照品(中国药品生物制品检定所);桂皮酸对照品溶液(省药检所提供e=0.604mg/50ml);硅胶GF254(青岛海洋化工厂)所用试剂均为分析纯。 2 实验条件 2.l 薄层层析条件:分别以石油醚-氯仿-丙酮-冰醋酸(10:4.4:10.1);正己烷-乙醚-冰醋酸(5:5:0.1);正己烷-氯仿-乙醚-冰醋酸(5:3:2:0.1)以及氯仿:甲醇(2:1)展开,多次比较发现正己烷。氯仿-乙醚-冰醋酸(5:3:2:0.4)分离效果好。 2.2 测定波长及主要扫描参数,分别对香草酸,桂皮酸对照品斑点在200nm-370nm扫描,在290nm处有最大吸收,350nm处无吸收,固定350nm为参比波长,290nm为测定波长。

  • 肉桂油中的桂皮醛

    [align=right][b]SGLC-GC-003[/b][/align][b]摘要:[/b]本文建立了肉桂油中桂皮醛的检测方法。结果表明,采用色谱柱SH-5 (1.0um*0.53mm*30m)分析肉桂油中的桂皮醛,理论板数按桂皮醛峰计算为133586,满足《中国药典》要求。此方法可为肉桂油中的桂皮醛测定提供参考。[b]关键词:[/b]桂皮醛 SH-5[b]1. 实验部分1.1 实验仪器及耗材[/b]GC-FID[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-氢火焰离子化检测器;色谱柱:SH-5 (1.0um*0.53mm*30m;P/N 221-75710-30);SHIMSEN Arc Disc HPTFE针式过滤器(P/N:380-00341-05);[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url]认证样品瓶LabTotal Vial(P/N:227-34002-01);SHIMSEN Pipet[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液枪[/color][/url]:SHIMSEN Pipet PMII-10(P/N:380-00751-02);SHIMSEN Pipet PMII-100(P/N:380-00751-04);SHIMSEN Pipet PMII-1000(P/N:380-00751-06)。[b]1.2 分析条件[/b]色谱柱:SH-5 (1.0um*0.53mm*30m)柱温:初始温度为100℃:,以每分钟5℃的速率升温至150℃,保持5分钟,再以每分钟5℃的速率升温至200℃,保持5分钟;载气:氮气进样口:200°C 分流比20:1检测器:220°C进样量:1 μL[b]2.结果及讨论2.1 色谱图[/b]按照上述色谱条件(1.2)进行采集,色谱图如下:[img=肉桂油中的桂皮醛]https://img.shimadzumall.com/Storage//userfiles/images/Img_articles/SGLC-GC-006_1.png[/img][b]3. 结论[/b]参考《中国药典》中色谱条件,并对其条件进行优化,最终建立了肉桂油中的桂皮醛的检测方法。结果表明,采用色谱柱SH-5 (1.0um*0.53mm*30m)分析肉桂油中的桂皮醛,理论板数按桂皮醛峰计算为133586,满足《中国药典》要求。此方法可为肉桂油中的桂皮醛测定提供参考。

  • 【原创大赛】NIRS用于桂枝中桂皮醛、水分、浸出物含量快速检测方法研究

    【原创大赛】NIRS用于桂枝中桂皮醛、水分、浸出物含量快速检测方法研究

    [align=center][b]NIRS用于桂枝中桂皮醛、水分、浸出物含量快速检测方法研究[/b][/align][align=center]研究生:范剑[/align][align=center]导师:臧恒昌教授[/align][b]摘要目的:[/b]干姜和桂枝为传统常用药对。现代药学研究表明,桂枝、干姜均含有大量挥发油且为两药主要药效成分。随着2016年《中药配方颗粒管理办法(征求意见稿)》发布,未来中药配方颗粒限制将逐步放开。相对于单味药材提取的配方颗粒,经典药方或药对形式的配方颗粒,因其更加贴近中医用药理论,将来会受到越来越多的重视。进行干姜和桂枝混合蒸馏提取过程的研究,也可为经典药对配方颗粒的开发提供一定的技术支持。[b]方法:[/b]采用 Antaris II 傅立叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]漫反射模块采集85批桂枝样品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url],以甲苯法、超高效液相色谱法和浸出物测定法,分别测定样品中水分、桂皮醛和浸出物含量,作为参考值,结合偏最小二乘算法分别建立水分、桂皮醛和浸出物含量的快速定量模型。[b]关键词:[/b]桂枝;[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url];过程分析[align=center]The research on the mixeddistillation extraction of Zingiberis Rhizoma and Cinnamomi Ramulus by NIRS[/align][align=center]Grauate student: Jian Fan[/align][align=center]Supervisor:Hengchang Zang[/align][b]Abstract Objective[/b]:Zingiberis Rhizoma and CinnamomiRamulus are couplet medicinesa in the Traditional Chinese Medicine (TCM). TheZingiberis Rhizoma contains chemical constituents of volatile oil, gingeroletc. It is a common TCM used in medicine and food. Its ether extract and waterextract have obvious analgesic effect. The cassia twig mainly contains cinnamicacid and cinnamaldehyde, it has obvious antipyretic, sedative, antiasthmatic,anti allergic and other effects. TCM on Guizhi - ginger in the compound oftraditional Chinese medicine compatibility is widely used, such as ZhangZhongjing, there are Guizhi drug compatibility in Huang Liantang, smallQinglong Decoction, Chaihuguizhi dried ginger in the “Treatise on FebrileDiseases”. Cassia twig and dried ginger contain a lot of volatile oil, and theyare the main active ingredients of two drugs. Shenzhiling oral solution is onenew kind of traditional chinese drugs , in the production of it,Zingiberis Rhizoma and CinnamomiRamulus as a couplet medicinesa were extracted together in 2016, theregulation of Chinese Medicine Dispensing Granules(take advicing)wes published. In thefuture, the limitations of Chinese Medicine Dispensing Granules will begradually liberalized, the application amount of Chinese Medicine DispensingGranules will be greatly increased. Chinese Medicine Dispensing Granules madewith a classic prescription of Chinese Medicine or couplet medicinesa. In thefuture, more and more attention will be paid to it. Study of ginger and CinnamomiRamulus mixed distilled extraction process, but also can provide technicalsupport for the development of the classic of medicine formula granules. [b]Methods:[/b] Collect 75 near infraredspectroscopys of samples by near-infrared spectrograph with diffuse reflectancemodule. The reference analyses were performed with toluene methodand, UHPLC andpharmacopoeia method respectively for determination of cinnamaldehyde,moisture, and extraction.[b]Key words: [/b]near-infraredspectroscopy manufacture process process analysis techonlogy[b]1 材料与仪器1.1 试剂与样品 [/b]桂皮醛(纯度 98.9 %,批号 110710-201619)购自中国食品药品检定研究院;乙腈、甲醇均为色谱纯;甲苯为分析纯加水饱和后经蒸馏制得;其它等试剂均为分析纯;超纯水(自制);75批桂枝样品购自零售药店、医院药房及药材批发企业,经泰安市食品药品检验检测中心中药科鉴定为樟科植物肉桂的干燥嫩枝。[b]1.2 仪器和软件[/b]Antaris II傅立叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],PLS_Toolbox工具箱;Agilent 1290型超高效液相色谱仪;Aquity BEH C18 色谱柱;KQ-100DE型医用数控超声波清洗器;电子分析天平; FW80型高速万能粉碎机。[b]2 方法2.1样品制备[/b]将收集的75批桂枝药材粉碎过40目筛,编号,封口袋密封置防潮柜中常温保存,备用。[b]2.2 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的采集[/b]取样品粉末约5g,混合均匀后放入样品杯中,摊平,压紧,以空气为参比,扣除背景,采用积分球漫反射方式采集[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图。光谱扫描范围4000~10000 cm[sup]-1[/sup],分辨率8 cm[sup]-1[/sup],扫描次数32次,每批样品扫描3次,求平均NIR光谱值。[b]2.3 样品中桂皮醛含量的测定[/b](1)对照品溶液的配制精密称取桂皮醛对照品105.00 mg于100 mL容量瓶中,加甲醇溶解并稀释至刻度,再精密量取1 mL至100 mL量瓶中加甲醇稀释至刻度。(2)供试品溶液的制备取桂枝粉末约0.5 g,精密称定,置具塞锥形瓶中,精密加入甲醇25 mL,称定重量,超声处理30分钟,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过,精密量取续滤液1 mL ,置25 mL量瓶中,加甲醇至刻度,摇匀,即得。过0. 2 μm 微孔滤膜,供UHPLC分析用。(3)色谱条件WatersAquity BEH C18 色谱柱;流动相水(A)-乙腈(B),梯度洗脱;柱温30 ℃,流速0.3 mL/min,检测波长280 nm,进样体积5 uL。(4)含量测定按照(2)项下供试品溶液配制方法配制各样品供试品溶液,在(3)项的色谱条件下进样分析,利用外标法计算桂皮醛的含量。[b]2.4 样品中水分含量的测定[/b]按照2.2.4项下方法,精密称取样品粉末约15 g,测定计算含量。[b]2.5 样品中浸出物含量的测定[/b] 供试品约2 g,精密称定,置100 mL的锥形瓶中,精密加水50mL,密塞,称定重量,静置1小时后,连接回流冷凝管,加热至沸腾,并保持微沸1小时。放冷后,取下锥形瓶,密塞,再称定重量,用水补足减失的重量,摇匀,用干燥滤器滤过,精密量取滤液25 mL,置已干燥至恒重的蒸发皿中,在水浴上蒸干后,于105 ℃干燥3小时,置干燥器中冷却30分钟,迅速精密称定重量。以干燥品计算供试品中水溶性浸出物的含量(%)。[b]2.6 定量模型的建立[/b]利用化学计量学软件对光谱数据进行处理,建立桂枝中桂皮醛、水分、浸出物含量的PLS定量分析模型。首先,用K-S法按照2:1比例对样品进行校正集和验证集划分;通过光谱预处理方法和建模光谱区间的选择优化建模参数,提高模型稳健性和预测能力。采用模型评价参数 RMSEC、RMSEP、[i]R[sup]2[/sup][sub]c[/sub][/i]、[i]R[sup]2[/sup][sub]P[/sub][/i]、[i]LVs[/i]等参数对模型准确度和预测能力进行评价,并利用配对[i]t[/i]检验对验证集预测结果与测量结果进行显著性检验,进一步评价模型的预测能力。[b]3 结果与讨论3.1 桂皮醛含量结果[/b](1)UHPLC分析方法线性考察UHPLC分析方法线性考察结果:桂皮醛与相邻杂质峰分离度均大于1.5,符合分离度要求,在1.05-21 ug/Ll范围内,标准曲线为y = 166634x + 17.599 ,r[sup]2[/sup] =0.9998,标准曲线线性良好。图3-1为桂皮醛测定中,对照品与样品色谱图。[align=center][img=,690,273]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261509099671_1014_3389662_3.png!w690x273.jpg[/img][/align][align=center][img=,690,273]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261508367711_1478_3389662_3.png!w690x273.jpg[/img][/align]A.对照品;B.样品;[align=center]图3-1 桂枝中桂皮醛含量测定对照及样品的UHPLC[/align](2)桂皮醛含量结果共测定75个样品,其桂皮醛含量范围在0.543 % ~1.83 %。[b]3.2 水分含量结果[/b]共测定75个样品,其水分含量范围在8.38 % ~11.09 %。[b]3.3 浸出物含量结果[/b]共测定75个样品,其水浸出物含量范围在2.09 % ~7.72 %。[b]3.4 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]定量分析模型的建立3.4.1样品原始光谱图[/b][align=center][img=,544,268]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261510094401_9199_3389662_3.png!w544x268.jpg[/img][/align][align=center]图3-2 桂枝样品的近红外原始光谱叠加[/align]图3-2为不同批次桂枝样品间的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图,谱图较为相似,近红外原始光谱图与桂皮醛、水分、浸出物含量数据的相关性不显著,故须经过数学处理提取特征信息后,才能建立准确可靠的含量预测模型。[b]3.4.2样品校正集和验证集划分结果[/b]K-S法按照2:1比例对样品进行校正集和验证集划分,选择50个样品用于建立测定桂枝样品中桂皮醛、水分、浸出物含量的定量校正模型,选择25个样品作为验证集,用于验证所建立校正模型的预测能力。校正集和验证集中桂皮醛、水分、浸出物的最大值、最小值和平均值见表3-1。水分、浸出物含量验证集样品包含在校正集中,划分结果可行,有利于建立稳定可靠的模型。[align=center][img=,559,177]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261510500963_8217_3389662_3.png!w559x177.jpg[/img][/align]K-S划分结果,是桂皮醛含量验证集范围超出了校正集,所以用TQ软件自带功能重新对桂皮醛含量模型进行校正集和验证集划分,划分结果见表3-2。[align=center][img=,549,181]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261511341051_7951_3389662_3.png!w549x181.jpg[/img][/align][b]3.3.3桂皮醛、水分、浸出物含量分析模型建立(1)桂皮醛定量分析模型建立[/b]采用TQ Analyst 9. 1 软件自带化学计量学工具对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行预处理,消除固体样本颗粒、光散射、杂散光、仪器响应、以及一些与待测样品性质无关的因素所导致的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的基线漂移、噪声等。考察未处理(None),S-G平滑,ND平滑,一阶导数(FD),二阶导数(SD),多元散射校正(MSC),标准正态变量变换(SNV)以及其组合的预处理方式。桂皮醛其结构式见图3-3:[align=center][img=,354,472]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261512083981_5013_3389662_3.png!w354x472.jpg[/img][/align][align=center]图3-3 桂皮醛结构式[/align]含苯环,为芳烃化合物,芳烃的一级倍频和二级倍频分别在1685 nm(5934 cm[sup]-1[/sup])和1143 nm(8749 cm[sup]-1[/sup]),组合频在2150 nm(4651 cm[sup]-1[/sup])和2460 nm(4065 cm[sup]-1[/sup])[sup][/sup]。因此,尝试通过手动方法选择不同波段优选建模波段;采用PLS法建立桂皮醛定量校正模型,以校正集样品的以RMSECV、[i]R[sup]2[/sup]c、[/i]RMSEP、[i]R[sup]2[/sup]p[/i]、LVs、Perfformance Index(PI)为指标,优化建模参数。同过桂皮醛定量模型不同光谱预处理方法的分析,可知:同过PI指数可以看出,MSC处理光谱的效果不如原始光谱、SNV处理光谱的效果优于原始光谱、单独微分处理效果均不如原始光谱,二阶导数效果比一阶更差;MSC、SNV分别与FD、SD组合处理光谱效果均有所提升,与FD的组合模型优化效果更明显;当在此组合基础上再加上平滑处理时建模效果反而下降,说明,平滑的过程可能将有效信息掩盖。最佳光谱预处理组合为:MSC+FD、SNV+FD。光谱经预处理后建模评价参数基本接近,仅有细微差别。因此,暂时将两种处理方式均作为最优预处理方式对待。进行下一步的特征波长优化。表3-4是MSC+FD、SNV+FD两种预处理方式与不同光谱波段的建模效果汇总表。从表3-7数据可以看出在用包含芳烃特征吸收的谱段进行建模并没有取得预期的效果,可能与所选取波段不够精准有关系;也可能选取波段使信息量减少,造成了有效信息的丢失;综合考虑MSC+FD、SNV+FD预处理所建模型评价参数认为SNV+FD更优。因此,选择SNV+FD预处理方式,全光谱建立PLS最佳模型,模型参数为[i]R[sup]2[/sup]c[/i]=0.9855,[i]R[sup]2[/sup]p[/i]=0.9601,RMSEC=0.0427,RMSEP=0.0487,LVs为5。[align=center][img=,645,244]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261512437551_5597_3389662_3.png!w645x244.jpg[/img][/align][align=center]图3-4为桂皮醛预测值与实测值相关图[/align]以PLS法建立的最佳模型计算得到的验证集样品的桂皮醛预测值和UHPLC法测定的结果进行配对t检验,以评价模型的预测能力。表3-3为配对t检验的统计学结果,可见UHPLC测定结果的平均值和NIRS得到的结果均值相同。在95%的置信限下,桂皮醛模型的P=0.4510.05,说明近红外模型预测的结果和UHPLC的测定结果没有显著性差异,证实了NIRS用于桂枝药材桂皮醛测定的有效性。[align=center][img=,575,160]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261513515655_413_3389662_3.png!w575x160.jpg[/img][/align][align=center][/align][b](2)水分定量分析模型建立[/b]用Matlab化学计量学分析软件和PLS_Toolbox工具箱对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行如下步骤的处理和优化,最终建立水分水分定量分析模型。 考察两种常用数据增强算法:均值中心化(Mean Center)、标准化(Autoscaling);‚ 考察FD+SG、SD+SG平滑窗口宽度;ƒ 考察MSC、SNV、OSC预处理方式;④考察FiPLS、BiPLS、以及CARS方法选取特征波段;⑤采用PLS法建立桂皮醛定量校正模型,以校正集和验证集样品的RMSEC、RMSECV、[i]R[sup]2[/sup]c、[/i]RMSEP、[i]R[sup]2[/sup]p[/i]、LVs为指标,优化建模参数。⑥采用配对t检验法对预测值与测定值进行差异显著性检验,进一步评价模型准确性。均值中心化、标准化两种数据增强方式,均优于无处理方式,Mean Center较优,因此在下述处理中mean Center为基础处理方式。FD+S-G最佳平滑窗口宽度为3,SD+S-G最佳平滑窗口宽度为15,因此在接下来的数据处理中,均以最佳平滑窗口数进行。通过对不同预处理方式的考察,数据中可以看出最优处理方式为SNV+FD和FD。接下来以SNV+FD、FD分别为光谱预处理方式,进行特征波段选择。特征波段选择,采用FiPLS和CARS。预处理方式为FD,FiPLS-300即间隔数为300时,所选的波段区间建模模型RMSEP 最小RMSEC相对较小,[i]R[sub]c[/sub][/i][sup]2[/sup]、[i]R[sub]p[/sub][sup]2[/sup][/i]最大,结果最佳,且变量数最少。该方法对应光谱区间选择结果如图3-5所示,图形横坐标为波长变量 4000-10000 cm[sup]-1[/sup] 之间划分的3112个变量顺序,绿色区域对应 RMSECV 最小,即为所选变量区间6527.86-5951.25 cm[sup]-1[/sup],共包含300个变量,较全光谱缩减了2812个变量,改善模型结果的同时,降低90%的运算量。[align=center][img=,560,420]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261514457629_3089_3389662_3.jpg!w560x420.jpg[/img][/align][align=center]图 3-5FD,FORWARD iPLS-300 波段选择结果(实验记录Ⅱ-p108)[/align]以CARS法进行变量选择时对模型结果影响较大的两个参数为蒙特卡洛采样次数以及LVs,LVs考察2-10,蒙特卡洛采样次数考察10、25、50、100、200、500,以模型的RMSECV+RMSEP为评价参数。CARS前对图谱进行SNV+FD预处理考察结果见表3-3。[align=center][img=,587,410]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261515274590_6583_3389662_3.png!w587x410.jpg[/img][/align][align=center][/align]当LVs为7,采样次数为25时和LVs为8,采样次数为200时RMSECV+RMSEP处在较低水平。因此以这两个参数分别进行CARS波段选择,以FD为预处理方式,进行建模,模型评价见表3-5。[align=center][img=,558,137]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261516068540_2384_3389662_3.png!w558x137.jpg[/img][/align][align=center][img=,449,508]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261516196931_6560_3389662_3.png!w449x508.jpg[/img][/align][align=center][img=,431,291]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261517021361_7470_3389662_3.png!w431x291.jpg[/img][/align][align=center][img=,442,543]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261517366951_1045_3389662_3.png!w442x543.jpg[/img][/align][align=center][img=,447,230]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261519232531_9846_3389662_3.png!w447x230.jpg[/img][/align]最佳建模方式为FD+mean Center,FiPLS-300,模型参数为[i]R[sup]2[/sup]c[/i]=0.964,[i]R[sup]2[/sup]p[/i]=0.962,RMSEC=0.14419,RMSEP=0.13736,LVs为3。图3-10为水分预测值与实测值相关图。[align=center][img=,492,243]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261520051238_4887_3389662_3.png!w492x243.jpg[/img][/align]以PLS法建立的最佳模型计算得到的验证集样品的水分预测值和甲苯法测定的结果进行配对t检验,以评价模型的预测能力。表3-8为配对t检验的统计学结果,可见甲苯测定结果的平均值和NIRS得到的结果均值相同。在95%的置信限下,桂皮醛模型的P=0.560.05,说明近红外模型预测的结果和甲苯法的测定结果没有显著性差异,证实了NIRS用于桂枝药材水分测定的有效性。[align=center][img=,569,144]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261520481091_6921_3389662_3.png!w569x144.jpg[/img][/align][b](3)浸出物含量定量分析模型建立[/b]用Matlab化学计量学分析软件和PLS_Toolbox工具箱对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行如下步骤的处理和优化,最终建立浸出物含量定量分析模型。比较两种常用数据增强算法:Mean Center、Autoscaling;考察FD+SG、SD+SG平滑窗口宽度;考察MSC、SNV预处理方式;考察FiPLS、BiPLS方法选取特征波段;采用PLS法建立浸出物定量校正模型,以校正集和验证集样品的RMSEC、RMSECV、[i]R[sup]2[/sup]c、[/i]RMSEP、[i]R[sup]2[/sup]p[/i]、LVs为指标,优化建模参数。采用配对t检验法对预测值与测定值进行差异显著性检验,进一步评价模型准确性。[align=center][/align][align=center][img=,566,144]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261521414114_9838_3389662_3.png!w566x144.jpg[/img][/align] 从表3-7知均值中心化(Mean Center)、标准化(Autoscaling)两种数据增强方式,均优于无处理方式,Autoscaling较优,因此在下述处理中Autoscaling为基础处理方式。表3-8为FD+SG、SD+SG平滑窗口宽度建模效果。由表3-8数据可知,FD+S-G最佳平滑窗口宽度为7,SD+S-G最佳平滑窗口宽度为15,因此在接下来的数据处理中,均以最佳平滑窗口数进行。以下表格中FD、SD均指FD+S-G(7)和SD+S-G(15)。[align=center][/align][align=center] [img=,567,417]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261522089231_2342_3389662_3.png!w567x417.jpg[/img][/align][align=center] [img=,542,460]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261522357719_3272_3389662_3.png!w542x460.jpg[/img][/align]通过对不同预处理方式的考察,在表3-9汇总的数据中可以看出最优处理方式为SNV+SD。以SNV+SD为光谱预处理方式,进行特征波段选择。特征波段选择,采用iPLS。[align=center][/align][align=center] [img=,546,644]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261523113364_1649_3389662_3.png!w546x644.jpg[/img][img=,544,160]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261523275961_9034_3389662_3.png!w544x160.jpg[/img][/align]从表3-10可以看出预处理方式为SNV+SD,BiPLS-250即间隔数为250时,所选的波段区间建模模型RMSEP 最小RMSEC相对较小,[i]R[sub]c[/sub][/i][sup]2[/sup]、[i]R[sub]p[/sub][sup]2[/sup][/i]最大,结果最佳。该方法对应光谱区间选择结果如图3-11所示,图形横坐标为波长变量 4000-10000 cm[sup]-1[/sup] 之间划分的3112个变量顺序,绿色区域对应 RMSECV 最小,即为所选变量区间9999.1-9518.91 cm[sup]-1[/sup]、8070.63-7108.33 cm[sup]-1[/sup]、5660.05-4697.75 cm[sup]-1[/sup]及4213.7-3999.64 cm[sup]-1[/sup],共包含1362个变量,较全光谱缩减了1750个变量,改善模型结果的同时,降低56%的运算量。[img=,242,182]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img][img=,538,231]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261524165981_3520_3389662_3.png!w538x231.jpg[/img]浸出物最佳建模方式为SNV+SD+Autoscaling,BiPLS-250,模型参数为[i]R[sup]2[/sup]c[/i]=0.967,[i]R[sup]2[/sup]p[/i]=0.900,RMSEC=0.22104,RMSEP=0.3763,LVs为3。图3-10为浸出物预测值与实测值相关图。以PLS法建立的最佳模型计算得到的验证集样品的浸出物预测值和药典法测定的结果进行配对t检验,以评价模型的预测能力。表3-11为配对t检验的统计学结果,可见药典法测定结果的平均值和NIRS得到的结果均值相同。在95%的置信限下,桂皮醛模型的P=0.240.05,说明近红外模型预测的结果和药典法的测定结果没有显著性差异,证实了NIRS用于桂枝药材浸出物测定的有效性。[align=center][img=,577,146]http://ng1.17img.cn/bbsfiles/images/2018/07/201807261524550178_7178_3389662_3.png!w577x146.jpg[/img][/align][b] 4总结[/b]通过收集市场上不同批次的桂枝样品,用常规方法测定桂皮醛、浸出物和水分的含量。桂皮醛、浸出物和水分的含量范围分别在0.543% ~1.83%、2.09% ~7.72 %和8.38 % ~11.09 %。药典规定桂皮醛、浸出物和水分的合格限为大于等于1.0%、大于等于6.0 %(作为参考)和不得过12 %。可见,市场上桂枝水分含量也基本稳定,而桂皮醛则存在不合格现象。不合格批次33批,占比44 %以上。说明市场上桂枝的品质存在很大的问题,这些与桂枝的产地、采收时间、加工方式不无关系,因此对于入库验收、对投料比例的把握就会提出更加严格的要求,光靠传统经验显然不足,常规方法又费时费力。开发快检方法尤为迫切。本实验成功运用 Antaris II傅立叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]以及相关化学计量学软件和方法建立了桂枝药材中桂皮醛、浸出物和水分的定量分析模型。基于Antaris II[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]的桂枝药材光谱经SNV+SD+Autoscaling,BiPLS-250组合处理,在9999.1-9518.91 cm[sup]-1[/sup]、8070.63-7108.33 cm[sup]-1[/sup]、5660.05-4697.75 cm[sup]-1[/sup]及4213.7-3999.64 cm[sup]-1[/sup]区间,所建 PLS模型最佳,桂皮醛水分最佳PLS模型参数为[i]R[sup]2[/sup]c[/i]=0.9855,[i]R[sup]2[/sup]p[/i]=0.9601,RMSEC=0.0427,RMSEP=0.0487,LVs为5;水分最佳PLS模型参数为[i]R[sup]2[/sup]c[/i]=0.964,[i]R[sup]2[/sup]p[/i]=0.962,RMSEC=0.14419,RMSEP=0.13736,LVs为3;浸出物最佳PLS模型参数为[i]R[sup]2[/sup]c[/i]=0.967,[i]R[sup]2[/sup]p[/i]=0.900,RMSEC=0.22104,RMSEP=0.3763,LVs为3。为桂枝药材的购买、筛选提供参考方法,保障投料稳定均一,从源头保障产品质量。

  • 【求助】对照药材在紫外下观察荧光问题?

    白芷的荧光鉴别白芷是与肉桂、红花、川乌、草乌、荆芥、防风、干姜、金银花、当归、三棱、莪术混提,用水煎煮提取2次,每次2小时,成品中有白芷的薄层鉴别,与白芷对照药材在紫外下观察荧光。我已经做了多批,都看不到荧光斑点,很困惑,请有经验的老师帮忙指导。

  • 33.7 HPLC法测定桂枝中桂皮醛和肉桂酸的含量

    33.7 HPLC法测定桂枝中桂皮醛和肉桂酸的含量

    【作者】 王连芝; 蒋维谦;【机构】 黑龙江中医药大学中医药研究院;【摘要】 目的:建立HPLC法测定桂枝中桂皮醛和肉桂酸含量。方法:采用Diamonsil C18(250mm×4.6mm,5μm)色谱柱,以乙腈-0.1%磷酸溶液(38:62)为流动相,流速为1.0ml.min-1,检测波长为276nm和289nm双波长扫描。结果:样品中桂皮醛的平均回收率为99.48%,RSD为1.21%;肉桂酸的平均回收率为98.76%,RSD为1.29%;桂皮醛在0.01~0.03之间峰面积与浓度线性关系良好(r=0.9998);肉桂酸在0.002~0.01μg之间峰面积与浓度线性关系良好(r=0.9997)。结论:该实验方法简便,重现性好,回收率高,可作为同时测定桂枝中桂皮醛和肉桂酸含量的方法。 更多还原【关键词】 桂皮醛; 肉桂酸; 高效液相色谱法; 桂枝; 【基金】 黑龙江中医药大学科研基金项目(200745)http://ng1.17img.cn/bbsfiles/images/2012/08/201208071034_382135_2352694_3.jpg

  • 64.8 高效液相色谱法测定生桂口服液中桂皮醛含量

    64.8 高效液相色谱法测定生桂口服液中桂皮醛含量

    【作者】 雷灼雨; 巴国际;【机构】 重庆市药品检验所; 重庆市药品检验所 重庆 400015; 重庆 400015;【摘要】 目的建立生桂口服液中桂皮醛的含量测定方法。方法采用反相高效液相色谱法,色谱柱为Diamonsil C18柱(150 mm×4.6 mm, 5μm),甲醇-水-冰醋酸(45:55:0.5)为流动相,流速为1.0 mL/min,测定波长为274 nm。结果方法的平均回收率为99.39%,RSD= 0.27%,桂皮醛的线性范围是25.2~201.4μg/mL。结论所建立的方法准确、可靠,能满足该产品的质量控制要求。 更多还原【关键词】 生桂口服液; 桂皮醛; 反相高效液相色谱法; http://ng1.17img.cn/bbsfiles/images/2012/08/201208271555_386456_2352694_3.jpg

  • 制剂中处方药材鉴别有干扰,如何选择对照?

    制剂中处方药材鉴别有干扰,如何选择对照?

    研究中药复方制剂中各味药材的鉴别药典中鉴别乌梅药材,选择“熊果酸”为对照乌梅含有熊果酸,大枣也含有熊果酸,请问那我做制剂中乌梅药材鉴别时,是不是就不能以熊果酸作对照了,因为怕大枣会有干扰?这种情况,乌梅该选择什么组分作为对照?实验结果显示,乌梅阴性并没有干扰,我能以“熊果酸”作为对照鉴别乌梅吗,虽然明知大枣也含熊果酸。乌梅阴性没有干扰,会不会是点样量少的问题?http://ng1.17img.cn/bbsfiles/images/2012/11/201211010017_400582_1872149_3.jpg1. 熊果酸;2-4. 样品;5. 阴性

  • 荆芥鉴别中对照药材斑点不明显

    荆芥鉴别中对照药材斑点不明显

    请各位老师帮忙看看,不知荆芥对照药材(右边一个为对照药材,左边三个为制剂样品——含荆芥)本身就这样,还是我做的不好,斑点不清晰。多谢![img=,690,517]https://ng1.17img.cn/bbsfiles/images/2019/07/201907171127582678_7811_1825519_3.jpg!w690x517.jpg[/img]

  • 黄连上清片黄连对照药材的鉴别

    黄连上清片黄连对照药材的鉴别

    黄连上清片高温灭菌后,黄连对照药材薄层鉴别的点变红是怎么回事?[img=,690,388]https://ng1.17img.cn/bbsfiles/images/2019/07/201907101138123673_5943_1782490_3.jpg!w690x388.jpg[/img]

  • 桂皮、洋葱和茶多酚复配阻断亚硝胺生成

    以 猪肉香肠为研究对象,研究桂皮、洋葱和茶多酚复配对阻断产品中N一亚硝胺生成的效果。实验结果表明:茶多酚对猪肉发酵香肠中亚硝胺残留量的影响最大,茶多酚、洋葱和桂皮三种物质复配能有效地抑制N一亚硝胺的生成,其最佳配比为(加人量以肉重计):茶多酚含量为0.029%,洋葱汁为3.5%, 6%桂皮浸体液含量为5.4%,此时产品中亚硝胺的含量6.5ug/kg

  • 肉桂和樟脑的薄层色谱分离

    肉桂和樟脑的薄层色谱分离

    做一个新制剂的质量标准,肉桂的薄层色谱,阴性样品相同位置有干扰。处方中有樟脑,怀疑是樟脑引起的干扰,样品中樟脑的分离很有难度,想通过展开剂的调整,使其位置与桂皮醛位置不同而排出干扰,换了好多种展开剂还是没有分开,请高手指点一下。1是对照药材 2~4是样品 5是阴性样品[img=,690,673]https://ng1.17img.cn/bbsfiles/images/2019/07/201907151138215988_90_1777483_3.jpg!w690x673.jpg[/img]

  • 薄层板跑板:供试品与对照药材的相应位置的点颜色不同怎么处理?

    薄层板跑板:供试品与对照药材的相应位置的点颜色不同怎么处理?

    中药制剂中木瓜的薄层鉴别:供试品与对照药材处相应的点颜色不同是为什么?狗脊的薄层鉴别也是一样,提取时处理方法是一样的图1前三供试品(绿色),中二木瓜对照药材(蓝色),后二阴性对照图2前二供试品(亮的点蓝色),中二狗脊对照药材(绿色),后二阴性对照不知道该怎么办,诚请各位大师解答,谢谢[img=,690,459]https://ng1.17img.cn/bbsfiles/images/2019/08/201908061329352099_2969_1816508_3.jpg!w690x459.jpg[/img][img=,380,362]https://ng1.17img.cn/bbsfiles/images/2019/08/201908061329533546_2463_1816508_3.jpg!w380x362.jpg[/img]

  • 【原创】药材“鬼市”

    年前,因为要采购药材,去了国内一个大型的药材市场。第一次跟着公司的人来,算是涨见识了。这个药材市场早上三点左右开市,六点多闭市。大冬天,天还漆黑一片,我们一行两点就起床,开始去转市场。市场里满是人,有采购的,有销售的。买药材的都拿着手电,到哪个药贩跟前,拿手电一照,用手摸摸,感觉差不多,谈价交易,很考验人。大冷天的,药材在凌晨都冻得硬邦邦的,摸着都很干燥。而且,你还别说湿,因为药贩手里都是这种货,天一冻,一折就断,药贩说是干的,真正干货你也根本买不到,只有凭经验确定其水分含量,往下使劲压价吧。更有些药贩还根本不让你用手电照,拿个袋子往你跟前一伸,开个口:这是样品,自己摸吧,大货跟这一样。我的天啊,这是药市么?分明是“鬼市”啊!我们那些天,天天都是这么白天睡觉,凌晨去买药材,一切全凭手电照的第一眼和自己的手感。好在,买过来的药材只是湿些(压根就没有干的,都是这么湿),没有大的质量问题,现在想想都后怕啊。

  • 【原创大赛】好药材不怕检,蒲黄药材接着检

    【原创大赛】好药材不怕检,蒲黄药材接着检

    好药材不怕检,蒲黄药材接着检 蒲黄药材为香蒲科植物狭叶香蒲、宽叶香蒲、东方香蒲和长苞香的花粉,具有止血,化瘀,通淋功效。用于吐血,衄血,咯血,崩漏,外伤出血,经闭痛经,脘腹刺痛,跌扑肿痛,血淋涩痛效果较好。实验部分原理 取适量该药材,加甲醇溶解,加热回流或超声波提取,经进样系统进样,色谱柱分离,紫外检测器检测,保留时间定性,峰面积定量计算。仪器及试剂 仪器:高效液相色谱仪(紫外检测器),柱温箱,超声波清洗仪,溶剂过滤器,针筒式过滤器,加热回流装置,电子天平 试剂:甲醇(色谱纯),超纯水样品制备 对照品溶液的制备:精密称取异鼠李素-3-O-新橙皮糖苷、香蒲新苷对照品适量,加甲醇配制成浓度均为50μg/ml的对照品溶液,备用。 供试品溶液的制备:精密称取本品约0.5g,置具塞锥形瓶中,精密加入50ml甲醇后,称定重量并记录,冷浸12小时后加热回流1小时(或超声波超声30min),放冷,再次称定重量,用甲醇补足减少的重量,摇匀,滤过,待测。色谱条件检测器:紫外检测器色谱柱:C18,4.6 X 250mm,5μm流动相:乙腈:0.05%磷酸溶液=15:85(V:V)检测波长:254nm进样量20μl柱温:室温对照品色谱图:http://ng1.17img.cn/bbsfiles/images/2014/10/201410192152_519002_2498430_3.png供试品色谱图:http://ng1.17img.cn/bbsfiles/images/2014/10/201410192153_519003_2498430_3.png 从以上色谱图我们可以看出样品出峰时间很晚,峰形也较差。下面我们换用一根耐酸性色谱柱,效果我们请看色谱图。对照品色谱图:http://ng1.17img.cn/bbsfiles/images/2014/10/201410192153_519004_2498430_3.png供试品色谱图:http://ng1.17img.cn/bbsfiles/images/2014/10/201410192153_519005_2498430_3.png 换了这根色谱柱,色谱图的峰形好了很多,出峰时间也明显有所提前,但保留时间还是有点晚。下面我们又把色谱柱温度调整了一下,调到了40℃,效果接着往下看。对照品色谱图:http://ng1.17img.cn/bbsfiles/images/2014/10/201410192153_519006_2498430_3.png供试品色谱图:http://ng1.17img.cn/bbsfiles/images/2014/10/201410231859_519702_2498430_3.png 当然保留时间还可以再缩短缩短(通过增加流动相中甲醇含量,或提高高压泵流速,或换用更高效更短的色谱柱),但供试品中异鼠李素-3-O-新橙皮糖苷的附近有一个干扰物,为了保证分离度,这个分析时间已经比较合理,不要再缩短了。 检测蒲黄药材的这个方法到现在已经很完美了。但有几点事项需要注意。1.样品若采用超声波超声提取,为了保证提取效果有时得增加超声时间或超声波水域温度。2.检测这个样品最好要选择一款效果好的色谱柱,如耐酸性的色谱柱。3.为了缩短检测时间我们可以升高色谱柱的温度,对于这个样品效果就挺好。当然适当增加流动相中甲醇含量或增加高压泵流速,或换用更高效更短的色谱柱也能达到比较理想的效果。

  • 【原创大赛】一次枳壳药材检测发现药材的真伪

    【原创大赛】一次枳壳药材检测发现药材的真伪

    [align=left] 小序:药材真伪鉴别有很多种,有经验的人员可能从外观就能辨别,但有些药材我们不能光靠眼睛就能辨别的,技术人员就借用仪器手段进行鉴别。此批药材是我们实验室第一次接的枳壳外样,看着外观没有什么异常。但是实验数据却给了不一样的结果。[/align][align=left]1 材 料 枳壳药材1(送检样);枳壳药材2(购自药店);甲醇(分析纯);[color=#333333]柚皮苷对照品、新橙皮苷对照品[/color][color=#333333](均购自中检院)[/color]。[/align][align=center][img=,498,505]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081306161780_6432_1858223_3.png!w498x505.jpg[/img][/align][align=center]图1 客户送检样品[/align][align=center][img=,578,428]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081313139967_7392_1858223_3.png!w578x428.jpg[/img][/align][align=center]图2 药店购买样品[/align][align=left][color=#333333]2 仪器与设备[/color][color=#333333] 岛津液相LC-20AT(带紫外检测器及自动进样器);色谱柱安捷伦Zorbax SB C18(250mm*4.6μm*5[/color][color=#333333]μ[/color][color=#333333]m);超声波清洗仪([/color]昆山市超声仪器有限公司[color=#333333]);[/color]DZKW-S-6型电热恒温水浴锅(北京市永光明医疗器械仪器有限公司)。[color=#333333]3 实验过程[/color][color=#333333]3.1标准品制备[/color][color=#333333] 取柚皮苷对照品、新橙皮苷对照品适量,精密称定,加甲醇分别制成每1ml含柚皮苷和新橙皮苷各[/color][color=#333333]100[/color][color=#333333]μg的溶液,即得。[/color][/align][align=left][color=#333333]3.2溶液样品制备[/color][/align][align=left][color=#333333] 取本品粗粉约0.2g,精密称定,置具塞锥形瓶中,精密加入甲醇50ml,称定重量,加热回流1.5小时,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过。精密量取续滤液10ml,置25ml量瓶中,加甲醇至刻度,摇匀,即得。[/color][color=#333333]3.3 送检样品加标实验[/color][color=#333333] [/color][color=#333333]取本品粗粉约0.1g,精密称定,置具塞锥形瓶中,分别加入柚皮苷和新橙皮苷标准品各 3mg,精密加入甲醇50ml,称定重量,加热回流1.5小时,放冷,再称定重量,用甲醇补足减失的重量,摇匀,滤过。精密量取续滤液10ml,置25ml量瓶中,加甲醇至刻度,摇匀,即得。[/color][color=#333333]3.4 色谱条件[/color][color=#333333] 色谱柱安捷伦Zorbax SB C18(250mm*4.6μm*5[/color][color=#333333]μ[/color][color=#333333]m)[/color] ;[color=#333333]以乙腈为流动相A,以水为流动相B(磷酸调pH值为3),A:B=20:80等度洗脱;流速为1.0 mL/min;柱 温 为35 ℃ ,检 测 波 长 为280nm,进样量10μL。[/color][/align][align=center][color=#333333][img=,690,178]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081319338619_5099_1858223_3.png!w690x178.jpg[/img][/color][/align][align=center][color=#333333]图3 柚皮苷色谱图[/color][/align][align=center][color=#333333][img=,690,178]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081320576832_9358_1858223_3.png!w690x178.jpg[/img][/color][/align][align=center][color=#333333]图4 新橙皮苷色谱图[/color][/align][align=center][color=#333333][img=,690,178]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081322121897_7669_1858223_3.png!w690x178.jpg[/img][/color][/align][align=center][color=#333333]图5 送检样品色谱图[/color][/align][align=center][color=#333333][img=,690,178]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081321513186_1732_1858223_3.png!w690x178.jpg[/img][/color][/align][align=center][color=#333333]图6 药店购买样品[/color][/align][align=center][color=#333333][img=,690,178]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081322540249_8100_1858223_3.png!w690x178.jpg[/img][/color][/align][align=center][color=#333333]图7 送检样品加标色谱图[/color][/align][align=center][color=#333333][img=,690,342]https://ng1.17img.cn/bbsfiles/images/2019/07/201907081324389664_4444_1858223_3.png!w690x342.jpg[/img][/color][/align][align=center][color=#333333]图8 样品和标准品对比色谱图[/color][/align][align=left][color=#333333]4 结果讨论[/color][color=#333333] 检测过程中发现样品中柚皮苷和新橙皮苷两种有效成分均未检出。实验人员觉得很诡异,查找各种原因,一开始觉得是我们的前处理有问题,然后换不同人员进行处理,发现依然是未检出。[/color][color=#333333] 为了防止仪器出现异常引起,首先[/color][color=#333333]按照3.3操作步骤[/color][color=#333333]我们做一个简单的加标实验。做了加标实验发现两种成分都在,其次,我们去单位旁边的药店买了一批枳壳药材进行检测,发现药店里的药材两种有效成分都在,经过验证说明我们的人员和仪器都没有问题。我们怀疑客户的这批样品是已经经过处理,联系委托人及时通知他们,减少客户的损失。[/color][/align][align=left][color=#333333] 通过此次实验我们推断该批次枳壳药材在售卖之前已经进行了提取,看着药材性状外观都符合药典规定,其实有效成分已经不存在了,中药材市场混乱,提醒大家采用有效方法进行辨认,以免造成损失。 我们做为检测人员除了保证数据的准确性,要积极创造数据以外的价值。[/color][/align]

  • 42.10 不同采收期及贮存时间广陈皮药材主要成分含量的动态变化研究

    42.10 不同采收期及贮存时间广陈皮药材主要成分含量的动态变化研究

    作者:王洋(南京中医药大学)摘要:本文对不同采收期、不同贮存时间的广陈皮药材主要成分的含量进行了测定,归纳总结了其主要的变化规律,旨在揭示个青皮与广陈皮药材“同源不同性”的机理以及初步探索贮存时间对广陈皮内在成分的影响,为广陈皮药材的临床应用提供实验依据。   1.本文所需广陈皮药材样品共13份,收集于广东省新会县广陈皮种植基地,样品分别为2004年11月、2005年10月、2005年11月、2005年12月、2006年10月、2006年11月、2006年12月、2007年5/6月、2007年8月、2007年9月、2007年10月、2007年11月和2007年12月。   2.对各广陈皮样品的主要成分进行了含量测定,确定了测定方法。总黄酮、总生物碱和总多糖采用紫外分光光度法,回归方程、相关系数和线性范围分别为:y=3.397x+0.011,r=0.9998,线性范围:0.04mg/m1~0.24mg/ml;y=7.12x+0.018,r=0.9998,线性范围:0~0.18mg/ml;y=0.083x-0.005,r=0.9997。挥发油成分采用GC/MS法测定,气相色谱条件:色谱柱为DB-5(30m×250μm×0.25μm)石英毛细管色谱柱;进样口温度220℃;程序升温60℃(维持5min),以5℃/min升温至200℃;载气为高纯氦气,流量1mL/min,溶剂延迟3min。质谱条件:MSD离子源为El源,离子源温度230℃,电子能量70eV,扫描质量范围50~550质量数。加速电压1000eV。   橙皮苷、川陈皮素和橘皮素的含量测定采用HPLC法,色谱条件为:流动相体系为甲醇(A)-乙腈(B)-4%醋酸水溶液(C),梯度洗脱。0~25min,A: B:C=10:15:75;25~40nun,A升至50%,A:B:C=50:15:35,保持30min。色谱柱为Platisil ODS柱(5μm,250×4.6mm),柱温30℃,流速1ml/min。检测波长:0~50min,283nm;50~70min,332nm。   3.对不同采收期广陈皮药材主要成分的含量变化进行了对比,结果为:个青皮总黄酮和橙皮苷的含量最高,而广陈皮药材挥发油、生物碱以及多糖类成分均高于个青皮,这可能就是个青皮与广陈皮“同源不同性”的内在机理。   对于不同贮存时间的广陈皮药材,黄酮类成分与总生物碱含量随着贮存时间的延长会基本保持不变或者略有上升。   4.用“老化”模拟实验处理广陈皮药材,结果表明在高温条件下,黄酮类成分化学性质较稳定,且随着烘烤时间的延长,含量会略有上升。另外,在高温条件下,药材内部可能发生了化学成分的转化并产生新的极性较大的物质。谱图:http://ng1.17img.cn/bbsfiles/images/2012/08/201208131431_383497_1606903_3.jpg

  • 贵细、毒剧药材发放SOP

    目 的:建立贵细、毒剧药材的发放工作程序。范 围:贵细、毒剧药材的发放管理。责任者:仓库保管员、仓库负责人、车间负责人、领料人、质量部负责人。程 序:贵细、毒剧药材的发放按“原辅料发放SOP”进行操作,增加的内容如下。1、在指定的取样室或称量室进行,如生产前不经前处理,需在与生产的洁净级别相适应的环境内进行。2、称量时使用天平,并以净重精确称量至0.1g。3、需有两位保管员在领料单上签字,将盛装容器密封,在封口处贴好封条,由两位保管员一起送货至车间。

  • 岛津高液天麻药材比对照品保留时间漂移3分钟

    天麻对照品天麻素和对羟基苯甲醇保留时间分别是11和22分钟,天麻药材出峰时间是15和26分钟,且时间还比较稳定,后面更换了新柱子,把柱温箱温度从30度调到35度,把泵从B泵更换到A泵,重新配流动相,供试品,发现还是一样漂移。而且之前做的特征图谱保留时间又对的上。流动相过滤了也超声了。真的不知道该咋办了??

  • 必知:各类中药材采收有技巧

    树皮类药材的采收通常在春夏之交、植物生长旺盛期、树液流动时应尽快采剥。此时,树皮类汁液充足,形成层生长最活跃,皮部与木质部最容易分离,如杜仲、黄柏、厚朴、肉桂等树皮。树皮类药材的采收:通常在春夏之交、植物生长旺盛期、树液流动时应尽快采剥。此时,树皮类汁液充足,形成层生长最活跃,皮部与木质部最容易分离,如杜仲、黄柏、厚朴、肉桂等树皮。其采收方法:一般剥取环状块或采取“剥皮再生法”进行采收。花类药材的采收:这类药材采摘季节性很强,如辛夷花、款冬花、金银花等要采摘未开放的花蕾供药用;绿梅花等要采摘即将开放的花朵入药;菊花、凌霄花、红花、西红花等要采摘盛开的花或花柱供药用。采收方法:选择晴天分期分批采摘,采摘后避免挤压,并注意遮阳,防日晒变色。全草类药材的采收:通常在枝叶生长茂盛、初花时收割,如荆芥、藿香、穿心莲、益母草、半边莲等。但有些应在开花前采收,如佩兰、青蒿等;也有些是采集嫩苗,如春柴胡等;而马鞭草要在花开后采。极少要连根挖出入药,如北细辛、紫花地丁等。采收方法:割取或挖取。叶类药材的采收:一般在植物的叶片生长旺盛、叶色浓绿,花蕾开放前采收,如青叶、紫苏叶、艾叶等品。植物一旦开花结果,叶肉内储藏的营养物质就向花、果转移,从而降低叶类药材的质量。也有极少数叶类药材宜在秋后经霜打后采摘,如桑叶、银杏叶等,而枇杷叶则要在落叶后采。采收方法:摘取、割取或拾取。根及根茎类药材的采收:当植物正在生长发育时,会消耗根部储藏的养分,因此一般在植物休眠期,即秋冬季落叶后至翌年早春萌发前采收根及根茎类药材,如黄芪、党参、丹参、桔梗、丹皮、地骨皮、前胡等。此时地下根和根茎储藏的营养物质和有效成分含量最高。少数药材如白芷、当归、川芎等应在生长期采收。采收方法:选雨后的晴天或阴天,在土壤较湿润时用锄头或特制的工具挖取。采挖时注意保持根皮完整,避免损伤而降低药材质量。根皮类药材的采收:采收时期同根茎类。先将根部从土中挖出,然后进行砸打或搓揉使皮肉与木心分离,如五加皮、远志肉等根皮。果实类药材的采收:多数果实类药材在果实完全成熟时采收,如瓜蒌、黄栀子、薏苡仁、花椒、八角等;也有些要求果实成熟经霜打后再采,如山茱萸霜后变红、川楝子霜打变黄时才采收;还有些应在果实未成熟时采收,如青皮、枳实、桔红等。果实成熟期不一致的药材,如山楂等,要随熟随采,过早采收肉薄产量低,过期采收肉松泡,质量差。多汁浆果,如枸杞子、山茱萸等,采摘后应避免挤压和翻动。采收方法:摘取或剪取。同一果序上的果实成熟期一致的,如女贞子、五味子等,可将整果序剪取,放置若干天后摘取果实。种子药材的采收:多数种子类药材要在果实充分成熟、籽粒饱满时采收,如牵牛子、决明子、补骨脂、续断子等。一些蒴果类的种子,若待果实完全成熟,则蒴果开裂,种子散失,难以收集,须稍提早采收,如急性子、牵牛子、豆蔻等。对种子成熟期不一致而且成熟即脱落的药材,如补骨脂等,应随熟随采。干果类一般在干燥后取出种子,蒴果通常敲打后收集。肉质果,若果肉亦作药用的,可先剥取果肉,留下种子或果核,如瓜蒌子等;有些果肉不能作药用的则取出种仁。

  • 中药材干燥程度简易鉴别

    为了便于贮藏和防止霉变,中药材一般都是经过了干燥的。那么,购买中药材时如何鉴勋它的干燥程度是否符合要求呢? 医学教.育网搜集整理  鉴别质地:一般来说。干燥的药材质地硬、脆,用牙咬、手折都比较费力;如果质地柔软,则说明这种中药材未干透,易发生霉变。  鉴别断面:已干透了的根类、根茎类、枝干皮类中药材,将其折断后,断面应该色泽~致,中间和外表无明显的分界线;如果断面色泽不一致或仍然与新鲜时相同,说明未干透。  手搓鉴别:一些叶、花或全草类的中药材,如果手折易碎断或成粉末,则说明已经干透了;反之,则柔软不易折断或不易粉碎。 手掐牙咬鉴别:一些果实、种子类的中药材,可以采取用手掐和牙咬的方法,即用手能够轻易掐入无阻力,用牙咬感到很硬,说明是干透了。如果用手掐入时阻力很大.不易掐到底,甚至有潮湿的感觉,或粘附在手上,或感到较软,都是未干透的。  敲击鉴别:未达到干燥标准的中药材.相互敲击时声音沉闷不清脆,需继续干燥。但一些含糖分比较高的药材,如桂圆肉、天冬等,干燥后敲击的声音并不清脆。

  • 中药材的口试鉴别

    根据口尝中药材来体会其特殊味道和口感,从而衡量和鉴别药材真伪优劣的方法,称口试法。该法简便易行,对鉴别根皮类、果实种子类等中药材有较大适用价值。  一、有些药材具有鲜明纯正而恒久的苦、酸、甜、咸、辣等味,且一般味道越浓,质量越好。   黄连、苦参、山豆根、穿心莲、胡黄连、苦杏仁、鸦胆子味道极苦,且越苦越佳;乌梅、木瓜、山楂以味酸为好;蜂蜜、甘草、党参、罗汉果以味甜为好;全蝎、土元味咸;干姜、郁金、高良姜、草果、草豆蔻味辛辣等。  二、有些中药材药味间杂,同时具有两种以上味道,或嚼之稍久而变味。   黄芪、沙苑子嚼之味甜而有豆腥气;西洋参、陈皮、板蓝根、桔梗先甜而后苦;枳壳先苦而后微酸;续断味苦、微甜而后涩;厚朴苦而辛辣;肉桂嚼之味甜辣,渣少为佳;秦艽、双边栝楼根味苦涩等。  三、有些药材根据口味和口感可资鉴别。   知母、石斛、麦冬、鹤虱、白及微甜又略苦,嚼之有黏性;黄精、玉竹、白术味甜有黏性;山药味微酸,嚼之发黏;天南星、三棱、蛇床子、牵牛子、牡丹皮、徐长卿口尝有麻辣味乃至麻舌感;苏合香、鹿角霜、茯苓、龙骨、天竺黄嚼之发黏;雷丸嚼之初有颗粒感,微带黏性,久嚼无渣;冰片、白豆蔻味辛凉浓烈;蛤蟆油嚼之有黏滑感;大黄嚼之发黏,有沙粒感,唾液染成黄色;黄柏味苦,嚼之有黏液性,唾液染成黄色;枸杞子嚼之味甜,唾液呈红黄色;杜仲味微苦,嚼之有胶状感;乌药味微苦,有清凉感;木香味苦辛,但川木香却又嚼之发黏;胖大海、车前子嚼之均有黏液性等。  四、有些药材口尝时有明显或强烈的刺激性。   合欢皮味微涩、稍刺舌,而后喉头有不适感;白附子、半夏嚼之麻辣而刺喉、刺舌;藜芦粉味苦,有强烈的催嚏性,对舌有较强刺激性和烧灼感;远志有一种特殊的苦味,伴刺喉感等。  在使用口试鉴别法时要注意两点:一是取样要有代表性,药材各部位的味觉可能不同;二是对强烈刺激性和剧毒药材,口尝时要小心,取样要少,尝后要立即吐出,漱口,洗手,以防中毒。另外有些中药材如斑蝥因刺激性强,不宜口尝。特别说明:非专业人士请勿轻易随便口试中药材,以免中毒!!!

  • 【原创大赛】中药材刺五加检测

    【原创大赛】中药材刺五加检测

    中药材刺五加检测 中药材刺五加为五加科植物刺五加的干燥根和根茎。可在春、秋二季采收,清水洗净,晒至干燥。 刺五加具有益气健脾、补肾安神、强身健体、补肾安神、延年益寿、安神醒脑功效。可用于治疗脾肺气虚、体虚乏力、食欲不振、腰膝酸软、肺肾两虚、久咳虚喘、腰膝酸痛、失眠多梦。另外对脑动脉硬化、脑血栓、脑栓塞、冠心病、神经衰弱、更年期等病症也有很好疗效。 刺五加药物功效很多,是很多药品生产的原材料,所以它中重要药物成分含量需要严格控制。下面我们介绍高效液相色谱法检测中药材刺五加中紫丁香苷含量实验。原理 取适量该粉末药材,加甲醇溶解,超声波超声提取,进样器进入高效液相色谱系统,由流动相带人C18色谱柱分离,紫外检测器检测,保留时间定性,峰面积定量(外标法)计算。仪器及试剂 仪器:高效液相色谱仪(紫外检测器+高压输液泵+柱温箱+自动进样器+在线脱气机等),超声波清洗仪,溶剂过滤器,电子天平,三号药典筛等。 试剂:甲醇(色谱纯),超纯水等。对照品溶液制备 精密称取紫丁香苷对照品2mg与25ml容量瓶中,加甲醇溶解并至刻度,配制成80μg/ml紫丁香苷对照品溶液,备用。供试品溶液制备 取刺五加药材适量,充分粉碎后过三号筛(药典筛),精密称取过筛后粉末2g于具塞锥形瓶中,精密加入甲醇25ml,称定重量,超声处理大约30分钟,放冷,再次称定重量,用甲醇补足减少的重量,摇匀,0.45um有机相微膜滤过,待测。色谱条件检测器:紫外检测器色谱柱:pGrandsil-STC-C18,4.6 X 250mm,5μm流动相:甲醇-水(25:75)检测波长:265 nm流速:1.0 mL/min柱温:30℃进样量:10ul对照品色谱图: http://ng1.17img.cn/bbsfiles/images/2014/12/201412282227_529738_2498430_3.png供试品色谱图:http://ng1.17img.cn/bbsfiles

  • 【分享】中药材的口试鉴别

    [size=3]根据口尝中药材来体会其特殊味道和口感,从而衡量和鉴别药材真伪优劣的方法,称口试法。该法简便易行,对鉴别根皮类、果实种子类等中药材有较大适用价值。   一、有些药材具有鲜明纯正而恒久的苦、酸、甜、咸、辣等味,且一般味道越浓,质量越好。   黄连、苦参、山豆根、穿心莲、胡黄连、苦杏仁、鸦胆子味道极苦,且越苦越佳;乌梅、木瓜、山楂以味酸为好;蜂蜜、甘草、党参、罗汉果以味甜为好;全蝎、土元味咸;干姜、郁金、高良姜、草果、草豆蔻味辛辣等。   二、有些中药材药味间杂,同时具有两种以上味道,或嚼之稍久而变味。   黄芪、沙苑子嚼之味甜而有豆腥气;西洋参、陈皮、板蓝根、桔梗先甜而后苦;枳壳先苦而后微酸;续断味苦、微甜而后涩;厚朴苦而辛辣;肉桂嚼之味甜辣,渣少为佳;秦艽、双边栝楼根味苦涩等。   三、有些药材根据口味和口感可资鉴别。   知母、石斛、麦冬、鹤虱、白及微甜又略苦,嚼之有黏性;黄精、玉竹、白术味甜有黏性;山药味微酸,嚼之发黏;天南星、三棱、蛇床子、牵牛子、牡丹皮、徐长卿口尝有麻辣味乃至麻舌感;苏合香、鹿角霜、茯苓、龙骨、天竺黄嚼之发黏;雷丸嚼之初有颗粒感,微带黏性,久嚼无渣;冰片、白豆蔻味辛凉浓烈;蛤蟆油嚼之有黏滑感;大黄嚼之发黏,有沙粒感,唾液染成黄色;黄柏味苦,嚼之有黏液性,唾液染成黄色;枸杞子嚼之味甜,唾液呈红黄色;杜仲味微苦,嚼之有胶状感;乌药味微苦,有清凉感;木香味苦辛,但川木香却又嚼之发黏;胖大海、车前子嚼之均有黏液性等。   四、有些药材口尝时有明显或强烈的刺激性。   合欢皮味微涩、稍刺舌,而后喉头有不适感;白附子、半夏嚼之麻辣而刺喉、刺舌;藜芦粉味苦,有强烈的催嚏性,对舌有较强刺激性和烧灼感;远志有一种特殊的苦味,伴刺喉感等。[/size]

  • 【原创大赛】检测蒲黄药材快速,准确出结果

    【原创大赛】检测蒲黄药材快速,准确出结果

    检测蒲黄药材快速、准确出结果 蒲黄药材具有止血,化瘀,通淋等药物功效。常用于治疗吐血,衄血,咯血,崩漏,外伤出血,经闭痛经,跌伤肿痛,血淋涩痛等疾病效果较好,属于名贵药材。 蒲黄里的药物成分很多,主要有异鼠李素-3-O-新橙皮糖苷、香蒲新苷。下面我们就针对这两种成分进行实验部分原理 取适量蒲黄药材,加纯甲醇溶解,超声波提取,经进样器进样,色谱柱分离,紫外检测器检测,保留时间定性,峰面积定量计算。仪器及试剂仪器:高效液相色谱仪(紫外检测器+柱温箱),超声波清洗仪,溶剂过滤器,针筒式过滤器,电子天平试剂:甲醇(色谱纯),乙腈(色谱纯),磷酸溶液(分析纯),超纯水样品制备 对照品溶液的制备:准确称取异鼠李素-3-O-新橙皮糖苷、香蒲新苷对照品各2.5mg于50ml容量瓶中,加甲醇至刻度,配制成浓度均为50μg/ml的对照品溶液,备用。 供试品溶液的制备:准确称取本品约0.5g,置具塞锥形瓶中,精密加入50ml甲醇后,称定重量并记录,冷浸12小时后超声波超声30min,放冷,再次称定重量,用甲醇补足减少的重量,摇匀,滤过,待测。色谱条件检测器:紫外检测器色谱柱:普通C18,4.6 X 250mm,50μm流动相:乙腈:0.05%磷酸溶液=15:85(V:V)检测波长:254nm进样量20μl柱温:室温对照品色谱图: http://ng1.17img.cn/bbsfiles/images/2015/07/201507301828_558136_2536753_3.png供试品色谱图: http://ng1.17img.cn/bbsfiles/images/2015/07/201507301828_558137_2536753_3.png 从以上色谱图我们可以看出样品出峰时间较晚,峰形也较差。下面我们换用一根天津博纳艾杰尔科技有限公司生产的耐酸性色谱柱,效果我们请看色谱图。对照品色谱图:http://ng1.17img.cn/bbsfiles/images/2015/07/201507301828_558138_2536753_3.png 供试品色谱图: http://ng1.17img.cn/bbsfiles/images/2015/07/201507301829_558139_2536753_3.png 换了这根色谱柱,色谱图的峰形好了很多,保留时间也明显有所提前,但保留时间还是有点晚。下面我们把流动相比例调整了下,调整为乙腈:0.05%磷酸溶液=22:78(V:V),效果接着往下看。对照品色谱图: http://ng1.17img.cn/bbsfiles/images/2015/07/201507301829_558140_2536753_3.png供试品色谱图: http://ng1.17img.cn/bbsfiles/images/2015/07/201507301829_558141_2536753_3.png 当然保留时间还可以再缩短些(通过提高色谱柱温度,或提高高压泵流速,或换用更高效更短的色谱柱),但供试品中异鼠李素-3-O-新橙皮糖苷的附近有干扰物,为了保证分离度,这个分析应该时间比较合理(一定要根据样品情况而定,如果样品很纯净,对被测物没有干扰,保留时间当然是越短越好),尽量不要再缩短了,保证分离度是第一位的。 检测蒲黄药材的这个方法到现在已经比较完美。但有几点事项还需注意。1. 样

  • 【求助】薄层检测陈皮药材时,为什么不用CMC-Na铺板?而用NaOH呢?展开系统又是如何摸索出来的?

    本人最近在用薄层鉴别陈皮药材,发现药典的规定是:吸取上述对照品和对照药材及供试品,分别点于同一用0.5%氢氧化钠溶液制备的硅胶G薄层板上,以乙酸乙酯甲醇一水(100:17:13)为展开剂,展至约:3cm,取出.晾干,再以甲苯一乙酸乙酯甲酸一水(20:10:1:1)的上层溶液为展开剂,展至约8cm,取出,晾干,喷以三氯化铝试液,置紫外光灯(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的荧光斑点。我按照上述方法进行操作,有几个疑问:薄层检测陈皮药材时,为什么不用CMC-Na铺板?而用NaOH呢?难道他们会反应?但用NaOH铺的板太不结实了。展开系统又是如何摸索出来的?两次展开,目的何在?刚刚接触薄层色谱,有点不明白。请高手指教。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制