五氟苯酚生物素酯

仪器信息网五氟苯酚生物素酯专题为您提供2024年最新五氟苯酚生物素酯价格报价、厂家品牌的相关信息, 包括五氟苯酚生物素酯参数、型号等,不管是国产,还是进口品牌的五氟苯酚生物素酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合五氟苯酚生物素酯相关的耗材配件、试剂标物,还有五氟苯酚生物素酯相关的最新资讯、资料,以及五氟苯酚生物素酯相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

五氟苯酚生物素酯相关的资料

五氟苯酚生物素酯相关的论坛

  • 明治奶粉生物素含量不达标可致婴儿脱发

    明治奶粉生物素含量不达标可致婴儿脱发

    http://ng1.17img.cn/bbsfiles/images/2012/11/201211201436_405528_2518341_3.jpg其一款婴儿奶粉在香港被查出生物素含量不达标,可导致婴儿脱发、皮疹等,香港食环署已建议停售,至此相关奶粉的事件已经成为常态新闻了,三聚氰胺、婴儿提早发育、还有婴儿脱发等等,这些让人触目惊心的新闻背后到底有多少不可告人的秘密?根据食环署近日公布的一份报告,明治细仔奶粉0-12个月(850克)的生物素含量只有0.81微克/100千卡,低于食品法典委员会标准。风险评估发现,如根据标签上的喂哺建议,其生物素摄入量将低于世界卫生组织建议的摄入量5微克/日。而另一款和光堂的初生婴儿奶粉为0.68微克/100千卡,同样低于食品法典委员会标准。食物安全中心发言人表示,膳食生物素缺乏症是非常罕见的,未曾在母乳喂养的婴儿出现。但是如果零至6个月大婴儿长期只单纯靠上述奶粉摄取生物素,不排除对健康有不良影响。生物素缺乏的婴儿可能会出现脱发、皮疹、肌肉张力低、嗜睡等症状。你家的孩子现在吃的是什么奶粉?奶瓶塑化剂事件刚过,奶粉生物素问题又来了,怎样才能给自己孩子的健康给一个安全的保障?奶粉中生物素含量应该怎么来测定?奶粉生物素含量国家标准有哪些?生物素的物性是什么?为什么会引起婴儿脱发?

  • 生物素蛋白标记常见问题及注意事项

    [font=宋体][font=宋体]生物素[/font][font=Calibri]-[/font][font=宋体]亲和素系统 [/font][font=Calibri](biotin-avidin system[/font][font=宋体],[/font][font=Calibri]BAS)[/font][font=宋体],是[/font][font=Calibri]70[/font][font=宋体]年代后期应用于免疫学,并得到迅速发展的一种常用的生物反应放大系统。它具有高度特异性、敏感性、稳定性的特点,两者的亲和常数([/font][font=Calibri]K=1015 mol/L[/font][font=宋体])比抗原[/font][font=Calibri]-[/font][font=宋体]抗体([/font][font=Calibri]K=105[/font][font=宋体]~[/font][font=Calibri]1011 mol/L[/font][font=宋体])至少高[/font][font=Calibri]1[/font][font=宋体]万倍,是目前已知强度最高的非共价作用,这使得生物素标记的蛋白成为研究蛋白质相互作用和筛选抗体或小分子潜力药物的强大工具。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]义翘神州开发了丰富的生物素标记蛋白产品,拥有[/font][font=Calibri]Avi-tag[/font][font=宋体]定点标记和化学标记两种类型的生物素标记蛋白,覆盖细胞治疗、抗体药、疫苗等热门靶点。产品具有高批间一致性、高活性等优势,适用于[/font][font=Calibri]ELISA[/font][font=宋体]、[/font][font=Calibri]Biopanning[/font][font=宋体]、[/font][font=Calibri]SPR / BLI[/font][font=宋体]等实验。下面为大家提供生物素蛋白标记常见问题及注意事项:[/font][/font][font=宋体] [/font][font=宋体][b]生物素蛋白标记常见问题:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、什么是生物素标记蛋白[/font][font=Calibri]?[/font][/font][font=宋体][font=宋体]在生物化学中,生物素化蛋白质就是生物素与蛋白质等大分子物质共价结合的产物。生物素[/font][font=Calibri]-[/font][font=宋体]亲和素亲和常数至少比抗原[/font][font=Calibri]-[/font][font=宋体]抗体高一万倍[/font][font=Calibri],[/font][font=宋体]是目前发现的自然界中具有最强亲和力的物质。因此,生物素[/font][font=Calibri]-[/font][font=宋体]亲和素系统已被广泛地应用于免疫诊断技术。生物素化蛋白的出现,也为类似于[/font][font=Calibri]WB[/font][font=宋体]实验简化了流程,提高了效率。此外,由于生物素的小尺寸([/font][font=Calibri]MW = 244.31g / mol[/font][font=宋体]),不太影响蛋白质本身的天然功能。所以它同时具备了高亲和力、高特异性、高灵敏度的优点。[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、生物素标记蛋白有哪些应用?[/font][/font][font=宋体][font=宋体]生物素标记蛋白广泛的应用在生物技术的众多领域。如透析,将具有特殊结构的亲和分子制成固相吸附剂放置在层析柱中,当要被分离的蛋白混合液通过层析柱时,与吸附剂具有亲和能力的蛋白质就会被吸附而滞留在层析柱中。那些没有亲和力的蛋白质由于不被吸附,直接流出,从而与被分离的蛋白质分开,然后选用适当的洗脱液,[/font] [font=宋体]改变结合条件将被结合的蛋白质洗脱下来。怎么释放所需蛋白呢?这需要非常严苛的条件(例如,[/font][font=Calibri]pH=1.5[/font][font=宋体]的 [/font][font=Calibri]GuHCl[/font][font=宋体]),这种极端条件下的蛋白是会变性的。如果需要分离标记的蛋白质,最好用亚氨基生物素标记的蛋白质。该种生物素在碱性条件下与抗生物素蛋白结合紧密,但是在降低[/font][font=Calibri]pH[/font][font=宋体]以后,亲和力降低。因此亚氨基生物素标记蛋白可以通过降低[/font][font=Calibri]pH([/font][font=宋体]约[/font][font=Calibri]pH=4)[/font][font=宋体]从柱子上释放。[/font][/font][font=宋体] [/font][font=宋体][font=宋体]免疫检测中的应用:在常规[/font][font=Calibri]ELISA[/font][font=宋体]原理的基础上,结合生物素[/font][font=Calibri](B)[/font][font=宋体]与亲和素[/font][font=Calibri](A)[/font][font=宋体]间的高度放大作用,而建立的一种检测系统。生物素很易与蛋白质[/font][font=Calibri]([/font][font=宋体]如抗体等[/font][font=Calibri])[/font][font=宋体]以共价键结合。这样,结合了酶的亲和素分子与结合有特异性抗体的生物素分子产生反应,既起到了多级放大作用,又由于酶在遇到相应底物时的催化作用而呈色,达到检测未知抗原[/font][font=Calibri]([/font][font=宋体]或抗体[/font][font=Calibri])[/font][font=宋体]分子的目的。 这可以用于通过荧光或电子显微镜定位的[/font][font=Calibri]ELISA[/font][font=宋体]测定,[/font][font=Calibri]ELISPOT[/font][font=宋体]测定,[/font][font=Calibri]western[/font][font=宋体]印迹和其他免疫分析方法。[/font][/font][font=宋体] [/font][font=宋体][b]生物素标记注意事项:[/b][/font][font=宋体] [/font][font=宋体][font=Calibri]1[/font][font=宋体]、依抗原或抗体分子所带可标记基团的种类(氨基、醛基或巯基)以及分子的酸碱性,选择相应的活化生物素和反应条件;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]2[/font][font=宋体]、标记反应时,活化生物素与待标记抗原或抗体应有适当的比例;生物素:[/font][font=Calibri]IgG [/font][font=宋体]用量比[/font][font=Calibri](mg/mg)[/font][font=宋体]宜为[/font][font=Calibri]2:1, IgG[/font][font=宋体]应用浓度[/font][font=Calibri]0.5~5[/font][font=宋体]μ[/font][font=Calibri]g/ml [/font][font=宋体]生物素[/font][font=Calibri]1~3[/font][font=宋体]个[/font][font=Calibri]/Ag[/font][font=宋体],[/font][font=Calibri]3~5[/font][font=宋体]个[/font][font=Calibri]/Ab[/font][font=宋体];[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]3[/font][font=宋体]、为减少空间位阻影响,可在生物素与被标记物之间加入交联臂样结构;[/font][/font][font=宋体] [/font][font=宋体][font=Calibri]4[/font][font=宋体]、生物素与抗原、抗体等蛋白质结合后,不影响后者的免疫活性;标记酶时则结果有不同。[/font][/font][font=宋体] [/font][font=宋体] [/font][font=宋体][font=宋体]更多关于[url=https://cn.sinobiological.com/category/biotinylated-protein-elite][b]生物素标记蛋白[/b][/url]详情可以参看:[/font][font=Calibri]https://cn.sinobiological.com/category/biotinylated-protein-elite[/font][/font][font=宋体] [/font]

  • 超高效液相色谱-串联质谱法测定奶粉中生物素的含量

    超高效液相色谱-串联质谱法测定奶粉中生物素的含量

    [size=16px]超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定奶粉中生物素的含量[/size][align=center][size=16px]户江涛[/size][/align][align=center][size=16px](黑龙江省农垦科学院测试化验中心,黑龙江 佳木斯 154007 )[/size][/align][size=16px]摘要:采用超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法建立了检测奶粉中生物素含量的分析方法,对试样提取、净化条件,流动相、色谱柱和质谱条件进行了优化,结果表明该方法与国标微生物法对同一样品检测得到的生物素含量基本一致,但检测所需时间大大减少,且抗干扰能力、精密度均比微生物法高,特别适和大批量奶粉中生物素含量检测。关键词:超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱;奶粉;生物素生物素又称维生素B7,是生物体内羧基转化酶作用的一种辅酶,在人体生长、代谢、发育过程中发挥着重要的作用。人类自身不能合成生物素,需从膳食中获得,而奶粉是人类(特别是婴幼儿)获取生物素的重要途径,准确测定奶粉中生物素含量有重要意义。目前国家标准规定的生物素测定方法《GB 5009.259-2016 食品安全国家标准 食品中生物素的测定》为微生物法。该方法需要购买特定菌种,成本较高,且菌种难保存、易受污染,实验操作复杂、费时费力、技术难度大、对检验人员和实验室要求较高,且容易受到基质干扰、检测结果重复性较差。同时奶粉成分复杂,所含生物素含量极低,一般为十几个微克/100克。因此,制定一种准确、高效、便捷、灵敏度高的生物素测定方法迫在眉睫。基于高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]的分离能力和质谱的高灵敏度、高选择性,采用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱测定法具有前处理简单、分析速度快,适用的基质范围广、实用性强,可以为奶粉中生物素含量的测定提供一种有效的检测手段。本文建立的超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定奶粉中生物素含量[color=black]的方法前处理过程简便、分析时间短、灵敏度高、抗干扰能力强,特别适用于大批量奶粉样品中生物素[/color]含量的检测。1 实验部分1.1 材料与试剂[color=black]生物素(纯度[/color][font=宋体][color=black]≥[/color][/font][color=black]99%,Sigma公司);婴儿配方乳粉定量分析质控样品(BQC1051147452,北京普天同创生物科技有限公司);乙腈、甲酸(色谱纯,Fisher公司);Prime HLB固相萃取柱(200 mg,3 mL,[/color][font=宋体]Waters[/font][color=black]公司);0.2 um有机系滤膜;实验用水为Millipore纯水仪制备。[/color]1.2 仪器与设备UPLC XEVO TQ-S超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]串联质谱仪(Waters公司);涡旋振荡器。1.3 [color=black]生物素[/color]标准储备液的配置称取一定量生物素[color=black]标准品[/color],用50%乙醇-水溶液配置成质量浓度为100 ug/mL标准储备液,于2~4℃冰箱保存(有效期1个月),待用;临用前将溶液回温至室温,并吸取一定体积储备液用水逐级稀释成所需浓度的标准工作液。1.4 样品前处理准确称取1.00 g(精确到0.01 g)奶粉试样于50 mL离心管中,加入10.00 mL纯水涡旋混匀2 min,然后加入10.00 mL乙腈,涡旋混匀1 min,然后在离心机中以15000 r/min离心5 min,取出后吸取2 mL上清液置于[color=black]Prime HLB固相萃取柱中,使其自然流出弃去最初几滴,然后用玻璃试管接取流出液约1 mL涡旋混匀,[/color]过0.22[font=宋体]u[/font]m有机系微孔滤膜后供UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS分析测定。1.5 [url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]及质谱条件[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]:色谱柱:Waters HSS [font=times new roman]T3(1.8 μm,100mm×2.1mm);柱温:30℃[/font];流速:[font=times new roman]0.3 [/font]mL/min;进样量:[font=times new roman]2[/font] [font=times new roman]μL;流动相A:乙腈;流动相B:0.1%的甲酸水溶液。梯度洗脱程序:0~0.5min,10% A;0.5~3. 0 min,10%~100% A;3. 0 ~4. 0 min,100%A,4 ~4.1min,100% A~10% A,4.1 ~5.0min 10% A。[/font]质谱:离子源:电喷雾离子源( ESI [sup]+[/sup] ) ;扫描方式:正离子扫描;检测方式:多反应监测( MRM);毛细管电压:3.2 kv;离子源温度:150℃;去溶剂气温度:500℃;去溶剂气流量:1000 L /h;定性、定量离子对及碰撞能量见表1。[/size][align=center][size=16px]表1生物素的质谱参数[/size][/align][table][tr][td][align=center][size=16px]分析物[/size][/align][/td][td][align=center][size=16px]锥孔电压/V[/size][/align][/td][td][align=center][size=16px]母离子/(m/z)[/size][/align][/td][td][align=center][size=16px]子离子/(m/z) [/size][/align][/td][td][align=center][size=16px]碰撞能量/V[/size][/align][/td][/tr][tr][td][size=16px]生物素[/size][/td][td][align=center][size=16px]30[/size][/align][size=16px][/size][/td][td][align=center][size=16px]245[/size][/align][size=16px][/size][/td][td][align=center][size=16px]227﹡[/size][/align][align=center][size=16px]97[/size][/align][size=16px][/size][/td][td][align=center][size=16px]13[/size][/align][align=center][size=16px]25[/size][/align][size=16px][/size][/td][/tr][/table][size=16px]﹡为定量离子2 结果与讨论2.1 色谱质谱条件及前处理过程的优化流动相的选择:对比了酸性体系(0.1%甲酸水溶液)与甲醇、乙腈的流动相体系组合,结果发现生物素在乙腈体系中响应值比甲醇更好一些,故本研究采用0.1%甲酸水溶液+甲醇流动相体系。色谱柱的选择:比较了[font=宋体]Waters [/font]BEH C[sub]18[/sub](1.7 μm,50mm×2.1mm)和[font=宋体]Waters [/font]HSS T[sub]3[/sub](1.8 μm,100mm×2.1mm)两种不同填料的分析柱,实验时发现目标物在这两款色谱柱上响应值差不多,但目标物在BEH C[sub]18[/sub]上保留时间比HSS T[sub]3[/sub]要短,考虑到生物素本身属于水溶性维生素,极性较强,若出峰太早可能造成奶粉中一些极性强的基质随目标物一起共流出进而干扰目标物测定,因此本方法采用了HSS T[sub]3[/sub]色谱柱。质谱参数优化:将1.0 mg/L 生物素标准溶液直接注射到质谱中,在正离子模式下进行母离子全扫描,发现目标物各自对应的准分子离子峰[M+H][sup]+[/sup]具有很好的响应,然后在分别进行子离子全扫描,各得到两对丰度高、干扰小的子离子对进行MRM监测,最终确定的质谱条件见表1,相应的色谱质谱图见图1、图2。前处理过程优化:生物素属于水溶性维生素,用纯水作为提取试剂可以得到很好的提取效果。但实验过程中发现,用纯水将奶粉溶解后整个溶液呈乳白色,只通过离心方式很难去除其中大量的蛋白、脂肪等杂质,需要对提取液进行除蛋白操作。通过考察乙酸铅、三氯乙酸、乙腈等几种常用的沉淀蛋白方法,综合考虑在去除蛋白的同时要尽可能减少其它杂质的引入,因此本方法采用乙腈除蛋白的方式,比较了几种不同水/乙腈比例,最终选定水/乙腈(1:1体积比)达到最优的实验效果。对于脂肪的去除则选用了目前较流行的[color=black]Prime HLB固相萃取柱通过式方法,即提取液通过Prime HLB时脂肪等大分子保留在SPE小柱上,目标物不保留以达到去除脂肪等杂质的目的,[/color]综合以上因素本实验最终采用了1.4的前处理方法。[/size][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210071506558084_124_1729077_3.jpg[/img][/size][/align][align=center][size=16px]图1 [color=black]生物素[/color]标准溶液(10 ng/mL)MRM色谱图[/size][/align][size=16px][/size][align=center][size=16px][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210071506561980_1283_1729077_3.jpg[/img][/size][/align][align=center][size=16px]图2 奶粉样品中[color=black]生物素[/color]MRM色谱图[/size][/align][size=16px][color=black]2.2 线性范围和定量限[/color][color=black]吸取不同体积的生物素标准储备液(1.3),用[/color]纯水[color=black]分别配置不同浓度的[/color]上机标准溶液,以各自定量离子的峰面积(或与内标峰面积比值)为Y对应质量浓度X([color=black]m[/color]g/L)做标准曲线,得到的线性方程和相关系数见表2;以10倍信噪比(S/N)计算得到生物素的定量下限,结果见表2。表2 生物素标准溶液的线性方程、相关系数和定量下限(LOQ)[/size][table][tr][td][align=center][size=16px]分析物[/size][/align][/td][td][align=center][size=16px]线性范围/(ng/mL)[/size][/align][/td][td][align=center][size=16px]线性方程[/size][/align][/td][td][align=center][size=16px]R[/size][/align][/td][td][align=center][size=16px]LOQ/(ug/100g)[/size][/align][/td][/tr][tr][td][align=center][size=16px]生物素[sub] [/sub][/size][/align][/td][td][align=center][size=16px]0.2~50[/size][/align][size=16px][/size][/td][td][align=center][size=16px]Y=3078.1X-106.32[/size][/align][size=16px][/size][/td][td][align=center][size=16px]0.9993[/size][/align][size=16px][/size][/td][td][align=center][size=16px]0.5[/size][/align][/td][/tr][/table][size=16px][color=black]2.3回收率和精密度[/color][color=black]生物素在奶粉中天然存在[/color],选取已知生物素含量的奶粉作为基质进行加标。具体添加水平为:[color=black]0.5,5,50[/color] ug/100g。[color=black]每个[/color]水平重复6次,[color=black]同时做该奶粉的本底实验。[/color]按照1.4前处理方法处理后上机检测,回收率计算结果(扣除空白后)见表3。结果表明,该方法生物素的平均回收率为87.2%~110%,相对标准偏差(RSD,n=6)为2.3%~5.2%,均满足实验要求。[/size][align=center][size=16px]表3 奶粉生物素的加标回收率和相对标准偏差(n=6)[/size][/align][table][tr][td][align=center][size=16px]分析物[/size][/align][/td][td][align=center][size=16px]添加水平(ug/100g)[/size][/align][/td][td][align=center][size=16px]回收率/%[/size][/align][/td][td][align=center][size=16px]相对标准偏差/%[/size][/align][/td][/tr][tr][td][align=center][size=16px]生物素[/size][/align][size=16px][sub] [/sub][/size][/td][td][align=center][size=16px]0.5[/size][/align][align=center][size=16px]5[/size][/align][align=center][size=16px]50[/size][/align][/td][td][align=center][size=16px]86.8[/size][/align][align=center][size=16px]93.2[/size][/align][align=center][size=16px]91.6[/size][/align][size=16px][/size][/td][td][align=center][size=16px]4.6[/size][/align][align=center][size=16px]3.3[/size][/align][align=center][size=16px]2.1[/size][/align][size=16px][/size][/td][/tr][/table][size=16px][color=black]2.4实际样品分析[/color][color=black]为进一步验证该方法的准确性,采用本方法和《[/color]GB 5009.259-2016[color=black]》微生物法同时对北京普天同创生物科技有限公司的奶粉质控样品BQC1051147452生物素含量进行检测,结果见表4[/color]。由表4可知,UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS法测定结果与国标方法的结果基本一致,无显著性差异,但前者所需时间更短,精密度更好。[/size][align=center][size=16px]表4 奶粉质控样品[color=black]BQC1051147452[/color]生物素的测定结果[/size][/align][table][tr][td][align=center][size=16px]检测方法[/size][/align][/td][td][align=center][size=16px]特性值区间(ug/100g)[/size][/align][/td][td][align=center][size=16px]测定平均值(n=6)[/size][/align][/td][td][align=center][size=16px]相对标准偏差/%(n=6)[/size][/align][/td][/tr][tr][td][size=16px]UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS法微生物法[sub] [/sub][/size][/td][td][align=center][size=16px]15.6~22.4[/size][/align][align=center][size=16px]15.6~22.4[/size][/align][size=16px][/size][/td][td][size=16px]18.718.1[/size][/td][td][align=center][size=16px]2.5[/size][/align][size=16px] 4.6[/size][/td][/tr][/table][size=16px]3 结语本文建立了超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法(UP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]/MS)测定奶粉中[color=black]生物素[/color]含量的分析方法。该方法具有较高的灵敏度、准确度和精密度,前处理步骤简单,分析速度快,特别适合大批量样品的检测。参考文献:[1] GB 5009.259-2016 食品安全国家标准 食品中生物素的测定.[2] 薛霞, 赵慧男, 魏莉莉, 等. 超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定蜂蜜中五种水溶性维生素的含量[J]. 食品与发酵工业. 2021,47(12) : 250-256.[3] 李佳兴, 周利, 金艳, 等. 超高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-串联质谱法测定枸杞子中8种水溶性维生素[J]. 食品科技. 2018,43(11) : 336-341.[/size]

五氟苯酚生物素酯相关的方案

  • HPLC对皮革制品中三种含氯苯酚同时检测解决方案
    含氯苯酚作为一种防腐、防霉、防蛀剂使用在皮革等生态纺织品行业中,主要有 2,4,6--三氯苯酚,2,3,5,6--四氯苯酚和五氯苯酚三种。 三氯苯酚具有一定的防霉效果,但是对人体具有较大的生物毒性,因其有升华的特性,挥发性极强,吸入或经皮肤吸收可引起头痛、疲倦、眼睛、粘膜及皮肤的刺激症状、神经痛、多汗、呼吸艰难、发绀、肝、肾损害等。 在很多方法中,2,3,5,6--四氯苯酚和五氯苯酚大都由 GC/MS,GC-ECD 检测,2,4,6--三氯苯酚和五氯苯酚都有报道用 HPLC 法检测,未见 HPLC 对这三种物质同时进行检测,本文提出了一种方便快捷、试剂用量少、灵敏度高、回收率高、精密度好的测定方法。
  • 气相色谱质谱联用法检测纺织品中含氯苯酚
    摘要:作为纺织服装防腐、防霉、防蛀剂的含氯苯酚,主要有三氯苯酚、四氯苯酚和五氯苯酚。试验表明,含氯苯酚对人体有较大的生物毒性,人体吸入或经皮肤吸收可引起多种疾病,而且其还具有蓄集作用,自然降解过程长,对环境有害。许多发达国家和国际权威组织也相继颁布技术法规和标准,明确规定了含氯苯酚的限量要求,例如德国对四氯苯酚(TeCP)和五氯苯酚(PCP)的限量要求为,非接触皮肤产品5mg/kg,接触皮肤的产品为0.5 mg/kg;荷兰和奥地利对PCP限量为5 mg/kg;瑞士对PCP和TeCP 的限量为10 mg/kg;Oeko-Tex? Standard 100标准和GB/T18885-2009《生态纺织品技术要求》对含氯酚的限量为婴儿类≤0.05 mg/kg,其它类为≤0.5 mg/kg。 本文利用岛津公司的GCMS-QP2010 Ultra对纺织品中的四氯苯酚、五氯苯酚进行分析,分离度、线性关系及重复性好,定量准确。
  • 华谱科仪-液相方法测定奶粉样品中的生物素
    生物素又称维生素 H,是生物生命活动中必需的维生素之一,对动物生理具有不可替代的作用。由于生物素无典型的紫外(UV)发色基团,,基于亲和素与生物素的特定反应,将链霉亲和素(SA)用异硫氰酸荧光素 (FITC) 标记,与生物素结合后,SA-FITC 的荧光强度会随生物素浓度的增加而增加。采用柱后衍生化系统,使用荧光检测器检测的方法进行实验,能够在6.5 min 内完成生物素的检测,效率高,准确性好,灵敏度满足要求。

五氟苯酚生物素酯相关的资讯

  • 实验室检测背后的故事之或可致命的生物素
    p  2017年11月,美国食品和药物管理局(FDA)公布近期收到一份由于生物素干扰而导致肌钙蛋白测定不准确引起患者死亡的报告,提醒临床医生及实验室工作者:大剂量补充生物素(Biotin)可能会导致实验室检测结果出现误差,从而引起临床误诊误治1。/pp  而此前不久,国际顶级医学期刊-《新英格兰医学杂志》也发布了多例有关生物素干扰的误诊案例2。随着全球越来越多患者误诊误治案例的出现,生物素对免疫检测的干扰成为近期炙手可热的学术话题。/pp  strong【临床医生需了解并重视生物素对临床检测的干扰】/strong/pp  就此,北京大学人民医院心内科许俊堂教授表示:“可靠的实验室检查结果是临床正确诊断疾病的关键。作为心肌损伤的重要标志物及临床依据,肌钙蛋白在急性心肌梗死诊断中扮演重要的角色。FDA关于生物素引起肌钙蛋白假性降低的案例,也引起了我们临床医生的关注。”他表示,临床医生在诊疗过程中,应充分了解实验室检测方法并询问患者补充含生物素制剂情况;对于一些长期服用生物素的患者,当检测结果与临床不符,应以临床判断为准并进行相应诊治,避免漏诊、漏治及所导致严重后果,同时与实验室人员商讨补救办法,如在不使用生物素标记检测系统重新测定肌钙蛋白。/pp  strong【生物素的应用】/strong/pp  生物素是一种水溶性B族维生素,参与细胞的代谢及维持正常的细胞功能,被广泛添加于各种复合维生素、产前维生素和用于头发、皮肤和指甲生长的市售营养补充剂中。随着现代人群保健及美容意识的逐年上升,为了达到增强体质、防治脱发、减肥美容等各种目的,服用外源性生物素保健品的人群也越来越多3。更值得注意的是:由于保健品成分的复杂性和名称的多样性,很多人并未意识到自己服用了生物素。/pp  生物素OTC保健品推荐剂量多为5mg-10mg,有研究显示每日摄入生物素10mg,持续7天,在循环血液中检测到的生物素浓度可超过3000pg/ml,这个浓度可影响多项实验室检测4。/pp  strong【重视生物素干扰并加强相关研究】/strong/pp  在实验室免疫检测领域,生物素的应用已非常普遍。“生物素-链霉亲合素”系统是上世纪70年代末发展起来的一种生物反应放大系统。基于“生物素-链霉亲和素”系统的方法学可特异并高效地放大检测信号,提高免疫检测的灵敏度,市面上很多免疫检测产品使用了该方法学。使用这类检测产品时,患者如果服用了外源性生物素后,血液中高浓度的游离生物素可能会干扰链霉亲和素捕获目标分析物的能力。因方法学的不同,生物素可造成检测结果的假性升高或者降低。实验室的检验专业人员需要了解本实验室内检测平台的检测原理,明确受外源性生物素干扰的检测项目,并及时与临床沟通,保证检测结果的正确性。/pp  首都医科大学附属安贞医院检验科袁慧主任表示:“生物素对免疫检测的干扰,在近年来逐渐引起国外临床检验工作者的关注,并在著名医学学术期刊《新英格兰医学杂志》和《JAMA》上均有案例分享。而在国内,目前报道仍很少。但是,我们对生物素如何干扰临床检测的了解,仍然是冰山一角。生物素的服用剂量、服用时间及受影响的项目类型等,仍需要进一步系统的研究评估。”/pp  strong【总结】/strong/pp  FDA建议5:“ 如果实验室检测结果与患者的临床表现不符,应考虑将生物素干扰作为可能的原因。” 在临床实践过程中,很多患者可能受到专业知识限制而根本不了解自己是否服用生物素,对生物素可能存在的干扰毫不知情。当出现检验结果和临床不符合时,需要实验室专业人员在第一时间评估实验室可能存在的风险,加强与临床的沟通。临床医生要增加对于检验的专业认识和了解,不能因为不知情而忽略, 从而对疾病的判断和诊断产生影响。生物素干扰的风险应该得到临床和检验共同的高度重视,通过临床与检验的携手,为患者提供更加优质的服务。/pp1. Biotin (Vitamin B7): Safety Communication - May Interfere with Lab Tests - From FDA website https://www.FDA.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm586641.htm/pp2. Biotin Treatment Mimicking Graves’ Disease. N Engl J Med. 2016 375:7/pp3. Biotin: From Nutrition to Therapeutics. J Nutr. 2017 147(8):1487-1492/pp4. Association of Biotin Ingestion With Performance of Hormone and Nonhormone Assays in Healthy Adults. JAMA. 2017 318(12):1150-1160/pp5. 医脉通编译整理自:Michael O' Riordan. Biotin Supplements Can Interfere With Cardiac Troponin Tests: FDA. TCTMD. November 28, 2017/p
  • 李灵军与叶慧团队合作成果:生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析
    瓜氨酸化是影响蛋白质结构和功能的关键的翻译后修饰。尽管它与各种生物过程和疾病发病紧密相关,但由于缺乏有效的方法来富集、检测和定位该翻译后修饰,其潜在机制仍然知之甚少。近期,威斯康星大学麦迪逊分校李灵军教授课题组报道了生物素硫醇标签的设计和开发,该标签能够通过质谱法对瓜氨酸化进行衍生化、富集来实现可靠的鉴定。作者对小鼠组织的瓜氨酸化蛋白质组进行了全局分析并且从432种瓜氨酸化蛋白质中识别出691个修饰位点,这是迄今为止最大的瓜氨酸化数据集。作者发现并阐述了这个翻译后修饰的新的分布和功能并且表示该方法有希望为进一步破译瓜氨酸化的生理和病理作用奠定基础。这项工作以“Enabling Global Analysis Of Protein Citrullination Via Biotin Thiol Tag-Assisted Mass Spectrometry”为题发表在国际化学权威杂志Analytical Chemistry上 (https://doi.org/10.1021/acs.analchem.2c03844),文章作者为Yatao Shi#, Zihui Li#, Bin Wang#,Xudong Shi , Hui Ye, Daniel G. Delafield, Langlang Lv, Zhengqing Ye, Zhengwei Chen, Fengfei Ma,Lingjun Li*。此外,李灵军教授课题组进一步拓展了此方法的实用性。作者通过应用二甲基化亮氨酸(DiLeu)等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。相关成果以“12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response”为题同样发表在Analytical Chemistry上(https://doi.org/10.1021/acs.analchem.1c04073),文章作者为Zihui Li, Bin Wang, Qinying Yu, Yatao Shi, Lingjun Li*。  研究的主要内容  作者设计了一种生物素硫醇标签,它可以很容易的以低成本合成并且可以与瓜氨酸残基和2,3-丁二酮发生特异性反应(图 1a)。这种衍生化不仅增加了质量转移以允许更可靠的鉴定,而且还引入了生物素部分,使修饰分子的后续富集成为可能。该生物素硫醇标签设计具有紧凑的结构,在高能碰撞解离 (HCD) 期间仅产生两个碎片/诊断离子(图 1b)。 因此,肽主链可以保持良好的裂解效率,并在 HCD 或电子转移解离 (ETD) 期间分别产生丰富的b/y或c/z离子系列。在 HCD(图 1c)、ETD或电子转移/高能碰撞解离(EThcD)碎裂下,衍生化肽标准品的序列收集质谱图几乎完全覆盖相应的肽序列。实验结果表明生物素硫醇标签衍生的瓜氨酸化肽可以产生用于解析及标注的高质量的串联质谱图,并且与各种裂解技术相结合时可以提高瓜氨酸化位点的识别可信度。  图1|用于瓜氨酸化分析的生物素硫醇标签设计。a,使用生物素硫醇标签和 2,3-丁二酮对瓜氨酸肽进行衍生化。 b,HCD、ETD 或 EThcD 片段化后生物素硫醇标签衍生的瓜氨酸化肽的片段化位点。c,HCD 裂解后生物素硫醇标签衍生的瓜氨酸肽标准品 SAVRACitSSVPGVR 的串联质谱图。  在接下来的实验中作者使用该生物素硫醇标签和基于质谱的自下而上的蛋白质组学方法对瓜氨酸化进行分析(图2a)。作者在体外利用 PAD(一种可以催化瓜氨酸化的酶)催化的人组蛋白 H3 蛋白来验证这个过程。作为未被PAD催化的阴性对照,未发现组蛋白的肽段被鉴定为瓜氨酸化,证明了生物素标签反应的高特异性(图 2b)。在体外 PAD 处理后,作者 发现许多精氨酸残基被催化为瓜氨酸,并且大量的位点被高可信度的鉴定为瓜氨酸化位点(图 2c),进一步表明该方法的高效性。在 HCD 碎裂后,其产生了一系列丰富的 b/y 离子,可以帮助准确的表征在同一肽段上单个(图 2d)以及多个(图 2e)瓜氨酸化位点。  图2|使用生物素硫醇标签进行体外瓜氨酸化分析。a,使用生物素硫醇标签进行蛋白质瓜氨酸化分析的实验工作流程。b、c,在体外 PAD 处理之前 (b) 和之后 (c) 组蛋白 H3 蛋白的瓜氨酸化分析。 已识别的瓜氨酸化位点在序列中以蓝色字母突出显示。 序列下方的红色矩形表示鉴定的瓜氨酸化肽,而瓜氨酸化位点以蓝色显示。 d,PAD处理的组蛋白 H3 (R64Cit) 的已鉴定瓜氨酸化肽的串联质谱图示例。 e,PAD 处理的组蛋白 H3 的同一肽上鉴定的两个瓜氨酸化位点(R70Cit 和 R73Cit)的串联质谱图示例。  接下来,作者们尝试利用所开发的方法对复杂的生物样本中的瓜氨酸化进行全局分析,并希望能够以此提供阐明生物体中瓜氨酸化调节机制的依据。首先,作者对小鼠的六个身体器官和五个大脑区域进行了深入的瓜氨酸组分析,生成了第一个小鼠瓜氨酸组组织特异性数据库。作者从432种瓜氨酸化蛋白质中以高置信度的方式鉴定了691个瓜氨酸化位点(图 3a)。更重要的是,这些蛋白质中约有 60% 未曾在UniProt 数据库检索并被报道,这一结果极大地扩展了对瓜氨酸化以及这些底物蛋白质如何受到瓜氨酸化影响的理解。作者发现结果中与 UniProt 数据库的已知的瓜氨酸位点重叠部分较少(图 3b),这可能是因为 UniProt 中描述的近 40% 的瓜氨酸化位点是基于相似性外推理论而没有实际的实验证据。此外,许多报道的位点位于组蛋白上,尤其是蛋白质末端,可能会逃过自下而上质谱策略的检测(图 3b)。图 3c 展示了单位点瓜氨酸化和多位点瓜氨酸化蛋白质分布情况,其中 70% 的已鉴定蛋白质仅有一个瓜氨酸化位点被检测到。  这个新发现的瓜氨酸化蛋白质组为推测瓜氨酸化的调控机制提供了宝贵的资源。例如,作者在髓鞘碱性蛋白(MBP)上鉴定到了九个瓜氨酸化位点,而在 UniProt 数据库中只有四个(图3d)。作者的结果提供了高质量的串联质谱图,不仅证实了已知修饰位点的存在(图3e),而且还高可信度的识别了未知的位点(图 3f)。然后作者进行了瓜氨酸化肽段的序列分析,发现在鉴定的瓜氨酸化位点两侧并没有高度保守的氨基酸序列模式(图3g),但是谷氨酸残基更频繁地出现在瓜氨酸的N末端侧附近。这与Fert-Bober 等人报道的小鼠瓜氨酸组分析结论一致。另一方面,Tanikawa 等人发现在人体组织和血浆中大约五分之一的 PAD4 底物含有 RG/RGG 基序。同样,Lee 等人及相关研究人员观察到天冬氨酸和甘氨酸残基在瓜氨酸化位点出现频率偏高。值得注意的是,这些研究使用了不同的人源细胞系或组织,因此作者的结果可能表明在不同物种之间瓜氨酸化位点周围的序列模式是不同的。为了更好地辨别瓜氨酸化蛋白质所涉及的功能,作者展示了基因本体论(GO)富集分析的热图,其显示了二十个最显著富集的细胞成分(图3h)以及KEGG途径(图3i)。作者发现小鼠大脑组织和身体器官之间存在明显差异,而瓜氨酸蛋白更多地参与大脑功能。具体来说瓜氨酸化蛋白质集中在轴突、髓鞘、核周体和突触中,因此在中枢神经系统中可能发挥着重要的作用。  图3|不同小鼠组织的大规模瓜氨酸组分析。a,不同小鼠组织中已鉴定的瓜氨酸化蛋白和瓜氨酸化位点的数量。 b,本研究中鉴定的瓜氨酸化位点与 UniProt 数据库中报告的位点比较。 c,每个鉴定的瓜氨酸化蛋白质的瓜氨酸化位点数量分布。d,本研究中确定的瓜氨酸化位点与 UniProt 数据库中关于髓鞘碱性蛋白的瓜氨酸化位点的比较。e、f,在髓磷脂碱性蛋白 R157Cit (e) 和 R228Cit (f) 上鉴定的两个瓜氨酸化位点的示例串联质谱图。g,鉴定的瓜氨酸化肽的序列。瓜氨酸化位点位于中间的“0”位置。字母的高度表示每个氨基酸在特定位置的相对频率。 h,i,使用 Metascape 生成的热图显示不同小鼠组织中显着丰富的(p 值 0.01)细胞成分 (h) (KEGG) 通路 (i)。  为了进一步拓展该方法的实用性,作者应用了二甲基化亮氨酸(DiLeu)等重标记策略,第一次实现了对瓜氨酸化进行高通量的定量研究。作者首先使用瓜氨酸化标准肽段进行测试,证明在优化反应条件下DiLeu标记和生物素硫醇标记反应可以分步进行而不互相干扰(图 4B,4C)。同时,将标准肽段按照已知比例进行4-plex DiLeu标记并混合,再进行生物素硫醇标记和瓜氨酸化分析,结果显示了非常好的定量准确性(图5)。作者进一步优化了运用该方法在复杂生物样品中进行定量分析的实验方法,并且证明此方法依然可以实现极佳的定量准确度和精确度(图6)。  图4|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记分步反应的特异性和效率  图5|瓜氨酸化标准肽段测试DiLeu标记和生物素硫醇标记定量分析的准确性  图6|复杂生物样品测试DiLeu标记和生物素硫醇标记定量分析的准确度和精确度  作者接下来应用该方法对DNA损伤中瓜氨酸化的作用进行了研究。作者在MCF7细胞中用三种方法造成了DNA损伤,并定量分析了蛋白质瓜氨酸化的变化。作者一共鉴定到63种瓜氨酸化蛋白以及其包含的78个瓜氨酸化位点,并发现三个实验组中的瓜氨酸化表达相比于对照组呈现出非常不同的趋势(图7A),这一结果表明瓜氨酸化在不同类型的DNA损伤模型中具有差异性的作用。通过对实验组中显著变化的瓜氨酸化蛋白进行生物过程网络分析,作者发现瓜氨酸化主要对DNA代谢,蛋白结构变化,翻译以及DNA修复等过程进行调控(图 7B,7C)。该实验结果表明蛋白瓜氨酸化对DNA损伤以及相关发病机理具有非常重要的作用。  图7|高通量定量分析研究瓜氨酸化在DNA损伤中的变化及作用(来源:Anal. Chem.)  小结  本文章介绍了一种生物素硫醇标签的设计和开发,该标签可与瓜氨酸化肽段发生特异性反应并极大地提高了瓜氨酸化的富集和检测效率。在使用标准肽和重组蛋白证明该方法的有效性后,作者进一步优化了从复杂生物样品中检测瓜氨酸化的实验过程。通过此方法对小鼠五个大脑区域和六个身体器官的蛋白质瓜氨酸化进行分析,作者鉴定出432个瓜氨酸化蛋白以及691个瓜氨酸化位点,这是迄今为止最大的数据集。该研究揭示了这种翻译后修饰可能在神经系统中发挥的关键作用,并表明它们在包括呼吸和糖酵解在内的许多代谢过程中也可能发挥着重要作用。总的来说,实验结果表明蛋白质瓜氨酸化在不同组织中具有广泛分布并参与各种生物过程,这扩展了目前对蛋白质瓜氨酸化生理作用的认知和理解。此外,作者进一步拓展了此方法的实用性,通过应用DiLeu等重标记策略第一次实现了瓜氨酸化的高通量定量研究,并利用这一方法揭示了瓜氨酸化在人体细胞DNA损伤及修复过程中的重要作用。更重要的是,该方法可以提供一种普适、简单而强大的检测方法来明确鉴定蛋白质瓜氨酸化,这也将启发和有益于未来对这种翻译后修饰在生理和病理条件下的功能作用的研究。  相关研究成果近期发表在Analytical Chemistry上的两篇文章中, 通过生物素硫醇标签辅助质谱法对蛋白质瓜氨酸化进行全局分析文章的共同第一作者是威斯康星大学麦迪逊分校博士生石亚涛,李子辉,王斌,并与中国药科大学叶慧教授课题组合作 应用二甲基化亮氨酸等重标记策略进行蛋白质瓜氨酸化高通量定量研究文章的第一作者是威斯康星大学麦迪逊分校博士生李子辉,两篇文章通讯作者为李灵军教授。更多关于李灵军教授研究团队的最新研究进展欢迎登陆课题组网站:https://www.lilabs.org/
  • 首批生态环境基准《淡水水生生物水质基准—苯酚》发布
    12月23日,生态环境部发布继《淡水水生生物水质基准—镉》(2020年版)和《淡水水生生物水质基准—氨氮》(2020年版)之后的第三个国家生态环境基准——《淡水水生生物水质基准—苯酚》(2020年版)及其技术报告。  据了解,我国发布的首批生态环境基准中,镉、氨氮和苯酚3项污染物分别代表了重金属、常规污染物和有机污染物。我国《地表水环境质量标准》(GB 3838—2002)有24项基本项目,挥发酚是典型的混合有机污染物,苯酚是挥发酚的重要组成部分。苯酚是最典型的一元酚,它的基准和毒性研究是酚类、挥发酚类化合物标准值制定的重要科学基础,加拿大在制定酚类化合物基准值时,依据的就是苯酚的毒性研究结果,因此苯酚基准的研究可为其他混合物指标的基准研究提供借鉴。淡水水生生物水质基准技术报告—苯酚(2020年版).pdf

五氟苯酚生物素酯相关的仪器

  • 鑫佰利公司采用纯物理吸附法去除COD类物质的分离技术,是通过多种具有吸附能力的物质如特种树脂、活性炭等的组合使用,吸附脱除高浓度废水的COD,尤其是含有生物毒性的化学类物质,如氯仿,苯酚,甲苯,硝基苯等。从而实现高浓废水的物理法处理或作为生化工艺的预处理。所使用的吸附剂可通过再生恢复后重复使用。该技术成功应用于有机合成化工行业废水处理、焦化废水处理,以及煤化工行业RO浓水处理。使用该技术:● 可将工业生产过程产生的高盐高浓废水的COD和盐进行分离,实现COD物质和盐类物质分别处理● 可用于膜法中水回用的浓水处理● 可对含有生物毒性的化学物质废水进行生化前的降毒预处理● 可将生化后COD仍然不能达标的出水进行深度处理使其达标排放● 可将抗生素发酵工业中抗生素结晶母液中的产品回收,从而提高了平均总收率,同时,回收的产品具有纯度高的特点
    留言咨询
  • AQ4BW1 移动实验室水质毒性分析仪 近年来环保、卫生疾控以及自来水行业对水质检测需求日益增强,赛默飞世尔科技为您提供AQ4700 水质综合毒性分析仪,一种简单、快速的生物毒性检测方法。可广泛应用于环境污染、紧急事故、安检、常规检测及分析研究等目的毒性分析。 该系统利用发光细菌进行生物毒性检测,与传统的鱼类、藻类、水蚤等生物检测系统相比,发光细菌法操作简便、快速、灵敏、可检测多种样品的综合生物毒性。此方法符合国际标准ISO11348 的规定,测试结果准确可靠。功能特点ISO 测试模式、基本测试模式、RLU 测试模式(该模式可进行ATP 检测)对各类重金属、有机物等化学试剂响应灵敏附加重要水质参数检测能力,为毒性检测提供全面解决方案仪器轻便小巧,配有便携箱,可适应野外操作市场与应用各级环境监测部门和疾病预防控制中心作为应急监测项目对污水处理中的进出水、食品加工用水、地表水、沉淀物毒性的检测药厂快速检测抗菌素科研高校进行生物毒性的实验研究方法简介发光细菌是一类可以自身发出蓝绿色光的细菌(与萤火虫的发光相类似),且发光强度持续、稳定,一旦遭遇到外界不利因素,如遇到有毒的物质,就会很“敏感”地反应,几乎立即影响到它的发光,通常是发光受到抑制,抑制的程度跟所受到的毒物的浓度及其毒性大小相关。发光受抑制的程度可以很方便地用光电传感器检测出来,从而推算出样品毒性大小。技术参数国家标准可检测指标污水综合排放标准(GB 8978-96)第一类污染物:总汞,总镉,总铅,总镍,六价铬;第二类污染物:总铜,总锌,总锰,总硒, 苯酚,间- 甲酚,2,4- 二氯酚,挥发酚,甲醛,苯胺类钢铁工业水污染物(GB 13456-2012)总铁,总锌,总铜,六价铬,总铬,总铅,总镍,总镉,总汞纺织染整工业水污染(GB 4287-2012)苯胺类,六价铬炼焦化学工业污染物(GB 16171-2012)挥发酚发酵类制药工业水污染物(GB 21903-2008)急性毒性(HgCl2 毒性当量),总锌化学合成类制药工业水污染物(GB 21904-2008)急性毒性(HgCl2 毒性当量),总铜,总锌,挥发酚,总汞,总镉,六价铬,总铅,总镍,苯胺类混装制剂类制药工业水污染物(GB 21908-2008)急性毒性(HgCl22 毒性当量)提取类制药工业水污染物(GB 21905-2008)急性毒性(HgCl2 毒性当量)生物工程类制药工业水污染物排放标准(GB 21907-2008)挥发酚,甲醛,乙腈,急性毒性(HgCl2 毒性当量)未计入国家排放标准物质水溶性有机溶剂乙腈,甲醇,乙醇,丙酮,乙醚,四氢呋喃,异丙醇,苯酚,二甲亚砜,乙酰丙酮,乙酸乙酯,正丁醇,甲醛,吡啶,乙酸甲酯,乙二醇,水合肼,N’N- 二甲基甲酰胺,1- 甲基-2- 吡咯烷酮,N’N- 二甲基乙酰胺重金属化合物钴离子,三价铁离子,二价锰离子,锌离子,镍离子,四价硒离子苯胺类苯胺,邻甲基苯胺,对甲基苯胺,邻硝基苯胺,对硝基苯胺苯酚类苯酚,对硝基苯酚,间硝基苯酚,邻硝基苯酚,对氯苯酚,邻氯苯酚,2,4- 二氯苯酚,对甲苯酚,间甲苯酚环境温度5℃ -40℃环境湿度10%-90%(25℃)最快检测时间5 min连续工作时间≥ 8h数据保存功能涵盖三种测量模式,每种测量模式能够存储1000组测量数据预警提示功能自动提示样品是否超标可测光谱范围320nm-1000nm测量范围0-65535 RLU仪器重量约258g(含电池)外形尺寸202×78×30(mm)电源电压干电池供电(3V)数据线接口USB 接口
    留言咨询
  • 【概要】生物素作为酶辅基,催化有机体羧基化。为此,生物素通过羧基绑定到羧化酶的赖氨酸残余,二氧化碳结合生物素氮原子后转移,形成了所谓活跃的二氧化碳。过去几年里,人们对身体健康的意识和食品营养的兴趣显著提高,消费者开始重视营养品维生素含量,为迎合市场制造商将食品维生素化。当生物素缺乏时,就会出现皮脂溢、皮炎、食欲减退、肌肉疼痛、疲劳和神经性疾病。生物素是由人体肠道益群合成,缺乏的症状是罕见的,然而过量摄入生鸡蛋白会出现上述症状,这可以由生物素结合亲合素来解释。【性能参数】灵敏度:0.5ng/ml回收率(加标样品):98%培养时间:90分钟生物素试验批内变异率:3%【检测原理】生物素(维生素H)定量测试基于酶联免疫吸收分析原理。亲合素,对生物素亲和性高,涂在酶标板上。样品生物素和生物素碱性磷酸酶结合物加到酶标板孔中。标记的酶和游离生物素竞争结合位点。在室温下培育一小时后,用稀释的洗涤液洗孔,去掉未结合物。加入培养基溶液,培育30分钟,变成黄色。加入停止液抑制颜色发展,ELISA读取器测量黄色,生物素浓度间接的和测试样品颜色强度成比例。
    留言咨询

五氟苯酚生物素酯相关的耗材

  • 生物素国标检测试剂(微孔板法)
    本产品用于生物素国标微孔板法法的检测,符合GB 5009.259-2023《食品安全国家标准食品中生物素的测定》,满足标准要求,实验结果回收率90%-110%,cv<10%。
  • 4-氟苯酚 GR for analysis
    4-氟苯酚 GR for analysis
  • 安捷伦/Agilent Pursuit 五氟苯酚基液相色谱柱系列
    安捷伦/Agilent Pursuit 五氟苯酚基(PFP)液相色谱柱系列Agilent Pursuit C8液相色谱柱系列,为客户提供了不同的选择,为 ZORBAX 系列液相色谱柱提供有效补充。Pursuit 系列中包括通用型Pursuit C18 和Pursuit C8 固定相以及专用 Pursuit Diphenyl 和 Pursuit PFP 固定相,为多数常规应用提供了一种简单而可靠的选择。以下列出了这几款色谱柱与众不同的优势: 分析效率高:与其他常规色谱柱相比,Pursuit 液相色谱柱具有较小的表面积和较大的孔径。有 3 m 到 10 m 粒径可供选择 载样量更高:Pursuit XRs 液相色谱柱为您提供了更大表面积和更小孔径的选择 分析芳香化合物信心十足:Pursuit Diphenyl 色谱柱利用了强偶极氢键键合和pi-pi 作用机理,对芳香族化合物有不同的选择性,是 Eclipse Plus Phenyl-Hexyl或 SB-Phenyl 等 ZORBAX Phenyl 固定相的可靠替代品。有 3 m 到 10 m 粒径可供选择 可靠的极性分离:Pursuit PFP 色谱柱在反相色谱条件下对极性(卤代)分析物和位置异构物具有出色的分离性能。有 3 m 和 5 m 粒径可供选择订货信息:

五氟苯酚生物素酯相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制