呋喃核糖酰胺

仪器信息网呋喃核糖酰胺专题为您提供2024年最新呋喃核糖酰胺价格报价、厂家品牌的相关信息, 包括呋喃核糖酰胺参数、型号等,不管是国产,还是进口品牌的呋喃核糖酰胺您都可以在这里找到。 除此之外,仪器信息网还免费为您整合呋喃核糖酰胺相关的耗材配件、试剂标物,还有呋喃核糖酰胺相关的最新资讯、资料,以及呋喃核糖酰胺相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

呋喃核糖酰胺相关的资料

呋喃核糖酰胺相关的论坛

  • 关于利用核磁进行呋喃糖和砒喃糖定量的问题

    大家好,我正在做多糖的研究.现在有两个样品,结构相似,有一定的区别.想通过核磁找出它们的区别.请问能否通过核磁把他们中的呋喃糖和砒喃糖的氢分别定量,知道它们的比例?具体方法如何呢?谢谢各位!![em20]

  • 我想查些呋喃糖的HPLC 文献,资料

    我想查些呋喃糖的HPLC 文献,资料。主要分析二甲基羟基呋喃糖。因为呋喃糖缺少发色基团,UV方法可能比较难,外面文献报道得不多。正在发愁呢!

  • 【分享】呋喃西林代谢物产生途径的研究

    【分享】呋喃西林代谢物产生途径的研究

    呋喃西林代谢物产生途径的研究(烟台杰科检测服务有限公司,山东 烟台 265231)摘要:呋喃西林代谢物(SEM)是检测呋喃西林的标记物,本身具有致癌和弱毒性。研究发现食品中SEM的来源途径多样,不仅限于呋喃西林原药在动物体内的代谢,还包括偶氮甲酰胺(ADC)高温热解、次氯酸钠与含氮物质反应等。关键词:呋喃西林代谢物(SEM);偶氮甲酰胺(ADC);次氯酸钠 ;标记物Nitrofurazone metabolites produced by a variety of ways 关键词:呋喃西林代谢物(SEM);偶氮甲酰胺(ADC);次氯酸钠 ;标记物呋喃西林(图一)是一种引入硝基的广谱抗菌类药物, 因其杀菌能力强、抗菌谱广、不易产生耐药性、价格低廉、疗效好等优点,得到广泛应用。呋喃西林在临床上表现为明显的三致作用(致癌、致畸、致突变),因此引起各国的高度重视,欧盟早在1995年就禁止呋喃西林用作兽药,澳大利亚、美国也相继在2001年和2002年出台了相关法律,将呋喃西林作为养殖禁用药物。 呋喃西林在动物体内极易降解,短短数小时内即可代谢为呋喃西林代谢物(SEM)(图二),SEM与蛋白质结合,性质较稳定不易分解,可在动物体内存留数周。SEM常被用作检测呋喃西林原药的标记物,世界上大多数国家都以监测SEM来达到对呋喃西林原药监控的目的。 研究者发现,食品中SEM的来源不仅限于呋喃西林在动物体内的生物代谢,偶氮甲酰胺的高温热解反应、次氯酸钠作为消毒剂在食品加工过程中与含氮物质接触等都有可能导致SEM的产生。根据近年来国内外的有关研究,现将呋喃西林代谢物产生的途径做以下概述: 1、呋喃西林原药在动物体内代谢 虽然世界上大多数国家都禁止将呋喃类药物用作兽药,但因其药效和价格上的优点(上述第一段),仍有养殖者私自使用。 呋喃西林在动物体内代谢后与细胞膜蛋白结合,可在数周内保持稳定,从而延缓药物在体内的消除速度。普通的食物加工方法(如烧烤、微波加热、烹调)难以使结合态的SEM降解,经验证在弱酸条件下可以使代谢物从蛋白质中释放出来,当人食用了含有SEM的食物后,在胃酸的作用下,SEM与蛋白质解离,被人体吸收,当富集到一定量时会产生致癌的危险。 2、偶氮甲酰胺(ADC)高温热解 偶氮甲酰胺(Azodicarbonamide)(图三),简称ADC,为黄色至橘红色结晶性粉末,具有漂白和氧化双重作用,常用作面粉改良剂,可改善面团的物理操作性质及面制品组织结构 。偶氮甲酰胺能将面粉蛋白质内氨基酸的硫氢根(-SH)氧化成二硫键(-S-S-),使蛋白质链相互连结而构成立体网状结构,改善面团的弹性、韧性及均匀性,使生产出的面制品具有较大的体积,较好的组织结构。偶氮甲酰胺也是一种生产聚氯乙烯材料的发泡剂,食品玻璃容器盖子上的密封圈就是用聚氯乙烯材料制成的。 2.1 ADC—聚氯乙烯材料的发泡剂 人们第一次将偶氮甲酰胺与SEM联系在一起,是在2003年欧盟发生的一次严重的食品安全事件后。2003年欧洲食品安全局通报了一批SEM超出限量的食品,这些食品包括:果汁、果酱、蜂蜜、泡菜和消毒蔬菜、蛋黄酱,芥末,酱汁和番茄酱以及一些瓶装婴儿食品。这些食品有一个共同的特点:都是带有密封圈的玻璃或金属罐包装。欧洲食品安全局发布的调查结果为:SEM残留可能是ADC引起的。ADC用作密封圈(聚氯乙烯材料)的发泡剂,高温发泡的同时产生SEM,食物在与密封圈接触的过程中,SEM发生了迁移。 ADC的分解产物主要有气体(34%),包括氮气、一氧化碳、二氧化碳和氨,以及一些非挥法性残留物,主要是联二脲(hydrazodicarbonamide,HDC)(34%)和脲唑(urazole )(27%)。ADC在180℃-220℃的高温下加热30分钟,即可生成SEM。ADC的分解产物HDC和脲唑经加热处理可缓慢生成SEM,而同样的热处理条件下,SEM也可以生成HDC和脲唑,尽管生成的量很少。欧盟在2003年10月9曰,发布了关于SEM有害人体健康的警告,SEM具有弱毒性和致癌性。2004年1月6日,发布了2004/1/EC指令,规定在2005年8月2日后禁止使用ADC作为发泡剂用于聚氯乙烯密封垫片生产中。 2.2 ADC—面粉改良剂 Pereira et al研究发现:向不含SEM的面粉样品中添加ADC,经一定条件处理后,检出SEM 2.2 μg/kg -5.2 μg/kg。这些研究似乎证明了偶氮甲酰胺是面粉中检出西林的“罪魁祸首”。 面粉中检出氨基脲的事例并不常见,更多的是经过加热或烘烤的面制品。Becalski等研究发现:将含有ADC的面粉在特定温度下烘烤,以及用含有ADC的面粉制作成面包(经高温烘烤),都能检测出较高浓度的SEM,而同样含有ADC的面粉,不经高温处理,几乎检测不到SEM。该研究同时还发现面包中心的检出浓度要比面包外壳的稍大,经分析可能是由于面包中心的温度稍高的原因。Becalski还研究了湿度对SEM产生的影响:加水后的面粉和面包在200℃条件下烘焙,与干燥的面粉和面包同条件处理后相比,前者SEM的检出浓度要略高。这与ADC的热解产物HDC水解生成SEM需要水的条件是相符的。 在欧盟国家ADC是不允许作为面粉改良剂来使用的。同比,美国、巴西以及中国允许ADC在小麦粉中的最大添加量为45mg/kg。Anton发现,ADC添加到小麦粉中约有0.1%转化成SEM。而45mg/kg的允许添加量,显然是不安全的。 http://ng1.17img.cn/bbsfiles/images/2011/06/201106190944_300449_2177386_3.jpg http://ng1.17img.cn/bbsfiles/images/2011/06/201106190946_300450_2177386_3.jpg 图1 图2http://n

呋喃核糖酰胺相关的方案

呋喃核糖酰胺相关的资讯

  • 英国食品安全局公布第五次丙烯酰胺和呋喃调查报告
    英国食品安全局(FSA)近日在其第五次也是最近一次对英国一系列食品中的丙烯酰胺(acrylamide)、呋喃(furan)及加工污染水平的调查报告中公布了中期业绩。   基于2011年11月到2012年12月收集的约300种产品样本,调查给出了英国零售食品中丙烯酰胺和呋喃的范围水平。   报告中的丙烯酰胺和呋喃水平并不会增加人类健康的风险,因此机构没有必要修改针对消费者的建议。   与往年一样,此次丙烯酰胺和呋喃的调查结果也将被送至欧洲食品安全局(EFSA)用于收集、趋势分析,对于呋喃,将进行风险评估。   2012-2013年的调查报告将于2014年公布。如有可能,报告将包括该机构自2007年收集的所有英国的丙烯酰胺和呋喃水平调查数据的统计趋势分析。
  • 用于确定真菌核糖体结构的冷冻电镜
    大多数人身上携带真菌白色念珠菌,没有它会引起很多问题。然而,这种真菌的全身感染是危险的并且难以治疗。很少有抗菌剂是有效的,而且它的耐药性正在增加。包括格罗宁根大学副教授 Albert Guskov 在内的一个国际科学家小组已经使用单粒子冷冻电镜来确定真菌核糖体的结构。他们的研究结果近日发表在《科学进展》上,揭示了新药的潜在目标。白色念珠菌通常不会引起任何问题,或者只是容易治疗的皮肤瘙痒感染。然而,在极少数情况下,它可能会导致可能致命的全身感染。现有的抗真菌药物会引起很多副作用并且价格昂贵。此外,白色念珠菌的耐药性越来越强,因此确实需要新的药物靶点。“我们注意到没有抗真菌药物针对蛋白质合成,而一半的抗菌药物会干扰这个系统,”Guskov说。造成这种情况的一个原因是真菌核糖体,即将遗传密码转化为蛋白质的细胞机器,在人类和真菌中非常相似。所以,你需要一种非常有选择性的药物来避免杀死我们自己的细胞。——Albert Guskov,格罗宁根大学副教授原子分辨率因此,Guskov 和他的合作者推断,获得白色念珠菌核糖体的结构对于寻找药物靶点很有价值。经典的方法是从纯化的核糖体中生长晶体,并使用 X 射线晶体学确定它们的结构;然而,这是一项费力的技术。相反,他们使用单粒子冷冻电镜,其中大量单粒子在电子显微镜中在非常低的温度下成像。从不同角度看到的单个粒子的图像随后被组合以产生原子分辨率的结构。突变' 通过这种方式,我们解决了空缺和抑制剂结合的真菌核糖体的结构,并将它们的功能与酵母和兔子的核糖体进行了比较——后者作为人类核糖体的模型——并重复了与不同核糖体结合的核糖体抑制剂,”Guskov 解释道。其中一种抑制剂是抗微生物放线菌酮 (CHX),已知白色念珠菌对其具有抗药性。通过比较这些结构,科学家们注意到在蛋白质合成中起关键作用的 E 位点的单个突变阻止了 CHX 与白色念珠菌核糖体结合。 ' 突变将这个E位点结构中的一个氨基酸从脯氨酸改变为谷氨酰胺。这种替代减少了结合位点的大小,因此抑制剂不能附着,因此无效。另一种抑制剂叶花苷不会被突变阻断。威胁' 通过比较白色念珠菌和人类空缺核糖体中 E 位点的结构以及不同抑制剂与该位点结合方式的信息,我们可以开发出一种特异性抑制剂,它可以阻断真菌核糖体,但不能阻断人类的核糖体。这将成为治疗真菌感染的选择性药物。科学家们目前正在筛选分子库以寻找药物先导物。 “开发针对白色念珠菌的疫苗极具挑战性,就像我们针对冠状病毒所做的那样。因此,我们需要药物来治疗全身感染,”Guskov解释道。 “这种真菌日益增加的耐药性是一个真正的威胁。如果这种情况继续下去,除非开发出新药,否则我们可能会遇到严重的麻烦。Source:University of GroningenJournal reference:Zgadzay, Y., et al. (2022) E-site drug specificity of the human pathogen Candida albicans ribosome. Science Advances. doi.org/10.1126/sciadv.abn1062.
  • 曝光!“副”产物生产N,N-二甲基乙酰胺,难道这是新工艺?
    前言:聚四氢呋喃生产过程中产生副产物生产N,N-二甲基乙酰胺新工艺研究报道一、背景介绍精细化工生产过程中常常会产生副产物。处理或有效利用副产物是生产企业非常关注的问题。将副产物深度加工,生产出更有价值的产品-“变副为宝",既可减少三废,又能为企业创造更多价值。今天,小编来分享一个利用上游工艺副产物作为原料,通过康宁G1反应器生产N,N-二甲基乙酰胺工艺研究成果。在聚四氢呋喃生产过程中产生副产物乙酸甲酯甲醇溶液。但由于该溶液易形成二元共沸物,常规的乙酸甲酯精馏或萃取提纯,很难得到高纯度的乙酸乙酯,且操作复杂、能耗很高。将副产物直接用于反应生产高附加值的产品,那是一条更加经济的解决方案。研究者决定将该副产物溶液用于N,N-二甲基乙酰胺(缩写为DMAC)的生产。TipsN,N-二甲基乙酰胺( 缩写为DMAC),是一种重要的精细化工产品,主要被应用在塑料、化妆品、制药、纤维、有机合成等多个领域。预计到2025年,DMAC产能达到22万吨。目前,乙酸甲酯法合成DMAC 采用传统间歇釜式。连续流技术是未来的发展方向,可以减少占地和人员,提高生产效率和自动化的程度,对传统工艺有着巨大的冲击。因此,传统工艺的连续流技术改造有着非常重要的意义。此外,釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力。作者使用康宁G1反应器,对DMAC 的连续流工艺进行了研究。考察了反应温度、停留时间、催化剂含量等对反应结果的影响,优化工艺条件,形成一种以微通道反应器合成DMAC 的合成工艺技术。图1. 工艺流程图二、研究过程1、釜式实验研究者进行了釜式工艺的实验,结果如表1。经过分析,在釜式反应时间4h时选择性最高是96.2%。2、连续流工艺简介研究者结合微通道反应器的特点,可模块化设计,对反应器进行设计及改装如图2所示,选择9个模块组建成反应区。乙酸甲酯甲醇溶液与甲醇钠混合形成进料1,无水二甲胺液体储存于密封容器( 压力使无水二甲胺保持液相) 为进料2,两股物料泵入微通道反应器,然后在反应器进行液-液均相反应。调节仪器温度和压力,待反应温度和压力稳定,以及物料流速都达到测试要求时,开始计时。当运行时间达到为3 ~ 5 倍停留时间进行取样,用于气相色谱分析。3、连续流工艺条件优化作者研究了反应温度、 催化剂量、 原料配比、 停留时间等主要因素对乙酸甲酯转化率、 DMAC 选择性的影响,其实验结果及分析如下。如上图结果经过分析,该连续流工艺最佳反应条件为:反应温度 140 ℃,停留时间 72 s,反应压力为 1. 5 MPa,n(甲醇钠) ∶ n( 乙酸甲酯)= 0. 02∶ 1,乙酸甲酯与二甲胺摩尔比例为 1∶ 1. 1。在最佳条件下乙酸甲酯单程转化率 97. 5% ,DMAC选择性达到 100%。从连续流结果可以看出:对于均相反应,在不需要工艺强化的条件下,微反应取得了比釜式反应更好的结果,尤其是在微通道反应器内停留时间只有72秒。三、实验总结以聚四氢呋喃装置副产物乙酸甲酯甲醇溶液、无水二甲胺为原料、甲醇钠为催化剂,应用微通道反应器得到了新的 DMAC连续流新工艺。通过实验筛选获得较优的工艺条件和较佳实验结果,乙酸甲酯单程转化率 97. 5%,DMAC 选择性达到 100% 均优于釜式工艺。与传统间歇高压釜工艺相比,微通道反应器内乙酸甲酯转化率和DMAC选择性更高,且明显缩短反应时间。四、编者语微通道反应器常用于解决化学工艺中的安全问题被人熟知。实际上对于平时一般的釜式反应,即使是不需要强混合的均相反应,微通道连续流技术也是可行的。这对于化工的连续化,智能化以及多步反应的全连续至关重要;釜式工艺的连续流改造升级,可以创造新的知识产权,为未来的发展获得竞争力; 康宁反应器无缝放大的技术特性有助于快速实现工业化生产。参考文献:《广 州 化 工》,2019 年 10 月,第 47 卷第 20 期

呋喃核糖酰胺相关的仪器

  • 名称:聚丙烯酰胺产地:浙江衢州是否进口:否目数:100型号:BTJX-003A品牌:博特化学成份:H2=CHCONH2(CH2CHCONH2)外观:白色结晶有效物质含量:99(%)含量:99(%)包装规格:25KGPH值使用范围:5-8执行质量标准:国标CAS:9003-05-8是否危险化学品:否分子量:1200万/1800万 聚丙烯酰胺(PAM)是一种高分子的聚合物,它具有较强聚合度和水溶性,分子量在600-2000(万)之间,其分子链中含有很 性基子,能快速通过吸附水中悬浮的固体粒子,使粒子间架桥快速凝聚形成大的絮凝物,便于过滤和分离,从而促进污水的过滤,阴离子聚丙烯酰胺不溶于有机溶剂易溶于水。主要应用各种工业废水的絮凝沉降,沉淀澄清处理,如钢铁厂废水处理,冶炼厂废水处理,洗煤厂废水处理等。还可用于饮用水的净化澄清处理。由于其分子链中含有一定数量的很 性基团,他能吸附水中悬浮的固体颗粒,使离子间架桥或通过电荷中和使颗粒凝聚成大的絮凝物,可以加速悬浮颗粒的沉降加快溶液的澄清,促进过滤效果。 聚丙烯酰胺的用途:1. 主要用作絮凝剂:对于悬浮颗粒,较粗,浓度高,离子带阳电荷,水的PH值为中性和碱性的污水,由于该产品分子链中含有一定量的很 性基团能吸附水中的悬浮高固体颗粒,使粒子间架桥形成大的絮凝物。可以加速悬浮颗粒的沉降加快溶液的澄清,促进过滤效果。阴离子聚丙烯酰胺广泛应用于化学工业废水,废液的处理。洗煤,选矿,冶金,钢铁,锌铝加工业,等水处理。2. 用于石油工业:采油,钻井泥浆,废泥浆处理,防止水窜,降低摩擦阻力,提高采收率,三次采油*广泛的应用。3. 用于造纸工业:可以提高填料的,颜料的留着率,降低原料的流失,提高纸张的强度,还可以提高纸张的抗撕性和多孔性,以改进视觉和印刷 性能。4. 用于纺织印染工业:可作为织物处理的上浆剂,整理剂,以生成柔顺,防皱,防霉菌的保护层。用作印染助剂时,可使产品附着牢固大,鲜艳度高,还可作为漂白的非硅高分子稳定剂。5. 用于制香行业:由于其具有:溶解性好,粘度大,韧性好,易燃少烟,无毒无味等特点,产品性能稳定。使用该产品生产的香制品外观光滑平整,无断裂,无霉斑,抗折力强,烘干后不褪色,,可燃性强,燃烧时间长,可提高和减少香制品在烘干过程中的损失,同时可以减轻工人的劳动强度,提高工作效率。经济效益:使用本产品可减少原料成本5%--10%,节约能耗20%左右。6.用于其他行业:食品行业,用于甘蔗糖,甜菜糖生产中蔗汁澄清及糖浆磷浮法的提取。还可以用于饲料蛋白的回收,回收的蛋白对鸡的成活率和增重,产蛋无不良影响。合成树脂涂料,土建灌浆材料堵水,建材工业,建筑业胶黏剂,填缝修复及毒水剂,土壤改良,电镀工业等。
    留言咨询
  • L-谷氨酰胺简介:【产品名称】:L-谷氨酰胺【英文名字】:L-Glutamine(2-Aminoglutaramic acid;Glutamic acid amide)【 含 量 】:99%【 CAS 】:56-85-9分子式 C5H10N2O3分子量 146.14EINECS号 200-292-1熔点:185℃(dec.)(lit.)比旋光度:32.25°(c=10, 2 N HCl)折射率:6.8°(C=4, H2O)闪点:185-186℃储存条件:20℃规格含量:≥98.5%二、性状 L-谷氨酰胺颜色和性质:L-谷氨酰胺为白色结晶或晶性粉末,L-谷氨酰胺能溶于水,不溶于甲醇、乙醇、醚、苯、丙酮、氯仿和乙醇乙酯,L-谷氨酰胺无臭,稍有甜味。 三、用途1、食品:用于乳制食品、肉制食品、烘焙食品、面制食品、调味食品等。2、工业制造:石油业 、制造业、农业产品、蓄电池、精密铸件等。3、烟草制品:可代替甘油作烟丝的加香、防冻保湿剂。4、化妆品:洗面乳、美容霜、化妆水、洗发水、面膜等。5、饲料:宠物罐头、动物饲料、水产饲料、维生素饲料、兽药产品等。 L-谷氨酰胺是调味剂。GB2760-2001)规定为允许使用的食品用香料。【限量 】:1.占食品中总蛋白质量的6.6%(FDA§172.320,2000)。 2.FEMA(mg/kg):焙烤制品、早餐谷物,20~100;无醇饮料、含醇饮料,3~30;干酪、酱汁、肉制品、果仁制品、禽制品,15~100;胶姆糖、糖果、糖霜、凝胶及布丁、软糖、代糖品、甜沙司,3~15;调味品2~25;蛋制品、代乳品、其他谷类,5~10;油脂、冷饮、水果冰品、乳制品,5~15;鱼制品15~30;硬糖1~20;速溶咖啡和茶10~100;果酱、果冻、加工水果,2~15;加工蔬菜3~5;复水蔬菜5~25;调味香料10~250;小吃食品15~250;汤料5~250。
    留言咨询
  • 可检测项目:参数包括葡萄糖、乳酸、谷氨酸、谷氨酰胺、铵根、钠、钾、钙离子等细胞谷氨酰胺分析仪(用于非临床)无论您工作在生物制药还是生物技术相关行业,生物工艺向来被认为是一门艺术,您面临时刻要评估艺术调控的安全性和可靠性的问题。由于在线、快速、准确的检测方法的缺失导致发酵、表达一直停留在经验层面,个人对产品的质量和产量至关重要。西尔曼科技作为一家拥有十五年临床诊断仪器研发、生产、应用经验的富有创造力的高科技公司,积累了大量的原始经验数据。酶电极法由于其快速、准确、稳定的特点被作为医疗诊断的金标准,西尔曼科技根据生物制药、生物技术、食品等相关行业的需求,推出新一代基于酶电极技术的,针对工业技术、科研领域的细胞谷氨酰胺分析仪! 细胞谷氨酰胺分析仪一、 产品特点1. 更快的检测速度,所有结果60秒,单一模块参数只需20秒;2. 自主研发固定化酶膜技术,更长寿命,更低成本3. 专利流路技术,拒绝堵塞4. 自动进样,自动定标,减少人为误差5. 全量程高准确度(≤2%)和精密度(≤2%)6. 性能优于酶比色技术7. 相对误差(CV)小于2%8. 一次性处理样品可达15个9. 自动预稀释功能10. 日常自动维护功能11. 多功能菜单,人机交互式操作12. 一机多用,可用于哺乳动物细胞、细菌、真菌、酵母、藻类等培养过程。支持模块拓展,同时可测10个指标13. 全自动化检测,真正实现无人值守分析14. 耗材试剂运输可长距离运输15. 满足IQ/OQ认证要求16. 低样本量,单一模块样本量只需135微升细胞谷氨酰胺分析仪二、 性能参数1. 仪器形式:台式2. 认证:CE3. 检测项目:项目名称范围(无预稀释)范围(有预稀释模块)葡萄糖0.05-6 g/L0.05-60g/L乳酸0.05-50 g/L0.05-500g/L谷氨酸15-1460 mg/L15-14600mg/L谷氨酰胺15-1460 mg/L15-14600mg/L甘油 0.05-2g/L 0.05-20g/L甲醇 0.1-1 g/L 0.1-10 g/L乙醇(酒精度)0.04-2 g/L0.04-20g/L赖氨酸0-1.5 g/L0-15 g/L木糖0.05-2 g/L0.05-20 g/L半乳糖0.1-2 g/L0.1-20 g/L铵离子0.01g-0.6 g/L0.01g-6 g/L钠离子20.0-200.0mmol/L钾离子0.5-15.0mmol/L钙离子0.1-5.0mmol/L 4. 数据储存:支持,4000组5. 通讯接口:RJ45,USB,RS2326. 工作环境温度:15-35℃7. 电源:50-60 Hz, 100-240 VAC8. 精密度: CV 2%9. 测量单位:mmol/L, %, mg/L, g/L, mg/dL可选10. 质保期:一年细胞谷氨酰胺分析仪三、 应用范围1.监测生物反应器运行进程,分析生物发酵、细胞培养、表达中的重要参数(可选在线模块);2.确定细胞培养关键代谢产物的生成和消耗3.鉴定细胞培养、生物制药过程中生长限制性基质4.优化细胞培养、生物制药、微生物发酵补料策略5.校准生物反应器传感器6.平衡细胞培养、生物制药、微生物发酵培养基电解质7.减少样品浪费8.测定冰激凌中的葡萄糖和蔗糖9.测定包装绿豆中的葡萄糖含量10.测定冷冻绿豆中葡萄糖含量11.检测奶酪中乳酸含量12.测定玉米和豌豆中葡萄糖和蔗糖含量13.检测谷物制品中的葡萄糖和蔗糖14.测定烘焙食品中葡萄糖和蔗糖含量15.检测甜型炼乳中葡萄糖和蔗糖含量16.检测玉米糖浆和其他糖浆中葡萄糖含量17.土豆及其制品中的葡萄糖和蔗糖含量18.检测糖蜜中的葡萄糖和蔗糖含量19.测定糖浆中蔗糖含量20.测定膨化谷物中的熟化度21.快速检测生物质乙醇发酵中的葡萄糖含量22.监控玉米秸秆发酵过程中葡萄糖和木糖含量23.快速检测玉米酒糟蒸馏中乙醇残留24.各行业中液体溶液中的离子浓度快速检测25.满足PAT、DoE全自动标定,保证测试结果的准确性 微量样品最小只要10uL,样本随到随测 最低15uL标配15位自动进样盘 多达15个样本位的内嵌式样本盘可视化直观的操作界面,8寸彩色触屏人机互动 测样结果实时回顾、打印、传输
    留言咨询

呋喃核糖酰胺相关的耗材

  • AdvanceBio 酰胺 HILIC 和糖谱分析色谱柱
    AdvanceBio 酰胺 HILIC 和糖谱分析色谱柱经过精心设计和制造,可通过亲水相互作用液相色谱 (HILIC) 提供快速、高分离度和高重现性的多聚糖鉴定。酰胺 HILIC 色谱柱装填 1.8 µ m 颗粒填料,提供 100 mm 和 150 mm 两种柱长。安捷伦的 AdvanceBio 增强型酰胺 HILIC 色谱柱是我们的最新产品,可为多聚糖分析应用提供更高的分离性能,与传统的糖谱分析色谱柱相比,峰容量和温度稳定性都有所提高。我们的传统糖谱分析色谱柱有两种配置:2.7 µ m 表面多孔填料和 1.8 µ m 表面多孔填料,前者适用于在较低反压下进行高分离度分析,而后者则可实现超高分离度分析。AdvanceBio 酰胺 HILIC 和糖谱分析色谱柱采用先进技术,提高质谱和荧光检测结果的准确性。它们可以在 10 分钟时间内获得糖谱(比竞争产品缩短 40% 的时间),还可订购一系列标准品用于性能测试以及定位标记和未标记多聚糖保留时间。特性:快速:可在 10 分钟时间内获得出色的糖谱分析结果,比竞争产品缩短 40% 的时间高分离度:表征标记与未标记多聚糖,并能鉴定由过程变量引起的糖基化变化出色重现性:采用 2-AB 或 InstantPC 标记的 N-糖样品进行 QA 测试,确保始终如一的质量和性能可靠耐用:酰胺 HILIC 色谱柱即使在 80 °C 的高温下也能提供出色的长期稳定性
  • 用于四氢呋喃的有机单体401采样管
    使用乙醚浸泡、甲醇清洗并干燥的溶剂解析有机单体401管在高温活化去水后可用于四氢呋喃吸附。 Use for? ? 工作场所空气中有毒物质测定 杂环类化合物 GBZ/T 160.75 3-2004 四氢呋喃 填料与克重:150mg/75mg 最小包装:100支/盒
  • 用于四氢呋喃的有机单体401采样管
    使用乙醚浸泡、甲醇清洗并干燥的溶剂解析有机单体401管在高温活化去水后可用于四氢呋喃吸附。 Use for? ? 工作场所空气中有毒物质测定 杂环类化合物 GBZ/T 160.75 3-2004 四氢呋喃 填料与克重:150mg/75mg 最小包装:100支/盒
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制