己基噻吩

仪器信息网己基噻吩专题为您提供2024年最新己基噻吩价格报价、厂家品牌的相关信息, 包括己基噻吩参数、型号等,不管是国产,还是进口品牌的己基噻吩您都可以在这里找到。 除此之外,仪器信息网还免费为您整合己基噻吩相关的耗材配件、试剂标物,还有己基噻吩相关的最新资讯、资料,以及己基噻吩相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

己基噻吩相关的资料

己基噻吩相关的论坛

  • 【分享】认识化学试剂噻吩

    [size=3][b]噻吩(Thiophene),系统名1-硫杂-2,4-环戊二烯,CAS号110-02-1。从结构式上看,噻吩是一种杂环化合物,也是一种硫醚。分子式C4H4S,分子量84.14。熔点-38℃,沸点84℃,密度1.051g/cm3。在常温下,噻吩是一种无色、有恶臭、能催泪的液体。噻吩天然存在于石油中,含量可高达数个百分点。工业上,用于乙基醇类的变性。和呋喃一样,噻吩是芳香性的。硫原子2对孤电子中的一对与2个双键共轭,形成离域Π键。噻吩的芳香性仅略弱于苯。[/b][/size]

  • 欧盟投票禁止3-乙酰基-2,5-二甲基噻吩

    欧洲食品安全局(EFSA)于近日公布一份科学意见,并在5月16日发布的报道中称:“调味物质3-乙酰基-2,5-二甲基噻吩(3-acetyl-2,5-dimethylthiophene)具有基因毒性(可破坏DNA,即细胞遗传物质),因此关系到人类健康安全。该毒性物质不应该被刻意添加到食物链中。” EFSA并未进行暴露评估,因此其在新闻发布会上表示,消费者从食品中受到的该物质的暴露预计将非常小。 3-乙酰基-2,5-二甲基噻吩被用于给予食品烤坚果味。该物质仅有少数制造商生产,其整体使用率较低(据报告在欧盟内的年使用量为2.3千克)。 英国食品标准局(FSA)已收到通知,虽然英国食品行业该物质的使用量极少,但已对含有3-乙酰基-2,5-二甲基噻吩的食品进行调整。 将该物质从批准调味物质列表中移除的决定受到了所有成员国的支持,并将受到欧洲议会和理事会的监督管制。 欧盟将采纳该决定,并将于7月初生效。此原料在GB2760中,国标编号为S0572 (原编号 I1600),FEMA号为3527.

  • 采用FPD检测器测定苯中ppb级痕量噻吩

    采用高灵敏度FPD检测器和专有色谱柱,通过对仪器条件进行优化,能够准确测定苯中ppb级痕量噻吩。该系统稳定性和数据重复性极佳,一条标准曲线可以连续使用两年以上;仪器操作十分简单,除定期更换进样垫外几乎没有其它维护,是中控、质检分析的最佳选择。

己基噻吩相关的方案

己基噻吩相关的资讯

  • 欧盟禁止2,5-二甲基-3-乙酰基噻吩作为食用香料
    2013年6月15日,据欧盟网站消息,欧盟发布(EU)No 545/2013号委员会条例,修订了(EC)No 1334/2008号食用香精香料法规,禁止2,5-二甲基-3-乙酰基噻吩(3-acetyl-2,5-dimethylthiophene)作为食用香料用于食品。  据欧洲食品安全局2013年5月15日公布的2,5-二甲基-3-乙酰基噻吩评估结果,2,5-二甲基-3-乙酰基噻吩在体内外试验均具有致突变性,因此本法规将其从许可香料清单中删除。  同时,禁止2,5-二甲基-3-乙酰基噻吩作为食用香料投放市场或用于食品;禁止含有香料物质2,5-二甲基-3-乙酰基噻吩的食品投放市场,禁止2,5-二甲基-3-乙酰基噻吩作为香料进口或含有2,5-二甲基-3-乙酰基噻吩的食品进口。  对于在本法规生效前上市的含有2,5-二甲基-3-乙酰基噻吩的食品可在其保质期内进行销售;本法规生效前进口的含有2,5-二甲基-3-乙酰基噻吩的食品不适用于本法规。  本法规自公布之日起生效。
  • 河南大学宋金生团队通过宏环封装策略实现四噻吩非全融合型有机太阳能电池15.1%高效率
    【重点摘要】提出了宏环封装策略,通过在四噻吩外围导入融合烷基侧链实现。将该策略应用于非全融合四噻吩类受体材料。实现了高达15.1%的转化效率。【宏环封装策略实现高效有机太阳能电池】有机光伏一直被视为下一代可再生能源的重要候选技术。但是其光电转换效率一直无法达到与无机光伏装置媲美的水平。非全融合四噻吩类受体材料被认为是实现高效有机太阳能电池的一个有前景的方法。【宏环结构限制分子构象,提升分子堆积效率】在美国伯明翰南方研究院的最新研究中,通过在四噻吩外围导入环烷基侧链,形成宏环封装结构。这种设计可以锁定中央分子部分的构象,生成平面分子骨架,有利于分子的高效堆积。【对照组件构象扭曲,分子堆积效率降低】相比之下,没有宏环封装限制的对照分子则出现了扭曲变形的构象。这种构象变化会降低分子堆积的有效性,进而影响相关器件的性能。【噻吩宏环受体器件效率达15.1%】基于四噻吩宏环受体R4T-1的有机太阳能电池成功实现了15.1%的高效率。【宏环封装策略指明下一步优化方向】这项研究为构建高性能有机太阳能电池提供了新的思路。随着在分子设计和器件工程方面的持续优化,有机太阳能电池20%效率的目标指日可待。研究使用光焱科技太阳光模拟器SS系列 与量子效率测试系统 QE-R来协助量测。通过在简单的四噻吩上进行宏环封装设计出非全融合受体R4T-1,该结构实现了构象的单一性,消除了分子中心的电子跨效应,并保证了高效电荷传输通道的形成。因此,实现了高达15.10%的转化效率,短路电流密度显著提高至25.48 mA/cm2。图S7. JD40:4T-5和JD40:R4T-1的J1/2-V曲线,(a)空穴型器件和(b)电子型器件。
  • Nature|清华大学魏飞团队实现分子筛孔道内单分子原子级显微成像突破
    有机小分子在以分子筛为代表的多孔材料中的单分子成像与构象研究,是深入理解其相变、吸附、催化和相互作用过程的基础与关键。其中,有机小分子(吡啶,苯,噻吩等)在室温或更高温度下的原子级成像,一直是电子显微学领域的圣杯。近日,魏飞团队借助于包含酸性位点的孔道允许吡啶分子较大机率形成平躺稳定构象的原理,制备了利于观察的高硅铝比准二维片层ZSM-5(2-3个单胞厚度),利用电子显微镜技术,首次实现了在室温下ZSM-5分子筛孔道内限域的有机小分子(吡啶、噻吩)的原子级成像,实现了分子筛孔道内单分子原子级显微成像突破。2021年至今,魏飞团队利用对二甲苯和苯分子与ZSM-5孔道的匹配特性,首先在室温下,巧妙地借助了两个对位甲基与多孔骨架间的受限空间势阱的构型束缚效应,率先成功研究了客体分子与主体骨架间的范德华力相互作用;在此基础上,通过高温原位实时观测苯分子与骨架结构的相互作用,揭示了苯分子与分子筛在亚纳米尺度上的拓扑柔性行为(相关工作发表于Nature 592, 541, 2021;Science 376, 6592,2022),为此次突破打下了坚实的基础。图1 孔道内吡啶分子吸脱附过程的原位成像研究表明,在分子筛孔道中,主客体氢键相互作用和范德华力能够稳定吡啶分子在分子筛孔口处平躺时的原子构象,当吡啶六元环被充分地暴露在孔口成像投影方向上时,能够从静态图像甚至原位实验中直观地识别分子的原子排列、键长及与酸性位的相互作用。这一成像策略的核心是积分差分相位衬度扫描透射电子显微技术(iDPC-STEM)可以实现超低电子剂量下有机小分子的皮米级高分辨成像,以及高硅铝比准二维片层ZSM-5(2-3个单胞厚度)孔道内相互作用势阱能够限域单个吡啶分子,利用酸碱相互作用使吡啶单分子平躺在孔口处,实现了吡啶六元环的原子级分辨率成像。首先,采用原位成像实验研究了孔道内吡啶分子动态吸脱附过程,随着脱附过程的进行,能够在部分孔道中观察到与酸性位点相互作用的吡啶六元环结构(如图1所示),这证明了酸性位结合孔口范德华力作用使小分子环球结构原子级分辨的成像策略可行性。更进一步,如图2所示,实现了对单个吡啶分子的原子级成像,吡啶六元环上的原子清晰可辨。通过图像和计算的对比,证实了吡啶分子的成像结果,同时通过最小二乘法确定了吡啶环中N原子的位置。此外,根据吡啶环的位置和取向,能够识别出孔道内酸性位点的位置。图2 孔道内限域单个吡啶分子的原子级解析上述工作不仅提供了一种有效、通用的相互作用势阱在室温下对单个有机小分子的原子级结构成像策略,同时推动了电子显微学在有机小分子原子级成像上的进一步应用。可以预期,使用其他类型的相互作用来稳定目标分子,可以从原子和化学键的新视角,研究各种分子结构在反应条件下单分子演变和相互作用行为,例如催化反应中小分子结构演化的分子电影和生物大分子构型的转变等重要命题。更重要的是,这些分子行为可以在室温甚至更高温度下成像,这更接近它们实际应用条件下的真实状态,将有助于理解各种化学和物理过程中分子的真实行为。上述研究成果以“电子显微镜对分子筛限域单分子的原子级成像”(Atomic imaging of zeolite-confined single molecules by electron microscopy)为题,于7月13日发表在国际学术期刊《自然》(Nature)上。论文共同第一作者为清华大学化工系2020届博士毕业生申博渊(现已入职苏州大学)、2018级博士生王挥遒、2019级博士生熊昊。论文通讯作者为清华大学化学工程系魏飞教授和陈晓助理研究员。参与该项工作的研究人员还包括清华大学化工系骞伟中教授、赛默飞世尔科技的Eric G. T. Bosch和Ivan Lazić。论文链接:https://www.nature.com/articles/ s41586-022-04876-x

己基噻吩相关的仪器

  • 【磐诺硫化物在线气相色谱仪】该系统环境样品先经过在线除水装置除去其中的水份,再吸附到低温冷阱复合吸附管中,然后吸附管闪蒸快速升温至250℃解吸,进样,载气带着热解析出来的气体样品进入预柱分离,待目标化合物进入分析柱中后,切换阀,载气将高沸点化合物从预柱中反吹出去,目标化合物在分析柱中继续分离通过火焰光度检测器FPD检测得到。【仪器特点】1)在线样品富集、解吸附、样品分析,自动运行;2)全部管路和器件均经过硫钝化处理,对目标硫化物无吸附;3)低温冷阱富集,增强了对低沸点化合物的富集效率;4)快速升温,瞬间解吸附进样,大大的减小了分析误差;5)高灵敏度高选择性FPD检测器,用于硫化物检测的最佳选择;6)仪器具有开机自检功能,断气保护功能,断电自动重启功能和报警功能,保证系统安全和稳定性;7)使用自动电子流量控制技术(EPC)控制载气、空气和氢气,高精度(0.01psi),重复性和再现好;8)核心部件均使用国际知名品牌,可靠性高,使用寿命长。【应用领域】环境空气在线监测或科研焦化、造气、造纸、印染、制革、纤维等工业废气在线监测【技术参数】检测能力羰基硫、硫化氢、甲硫醇、甲硫醚、二甲二硫醚、二硫化碳和噻吩等检测器火焰光度检测器(FPD)检出限≤0.1ppb重复性RSD≤5%分析周期20min功率电源<800W,220V AC/50Hz工作环境温度:(-10~50)℃,湿度:(10%~90%)RH气源要求载气:高纯氮气或零级空气(≥99.999%);燃烧气:高纯氢气(≥99.999%)助燃气:零级空气(烃类<20ppb)输出4-20mA、RS232/RS485、以太网尺寸19"标准机箱,7U
    留言咨询
  • 上海科哲生化科技公司是上海知名分析仪器企业,为了满足难分离化合物纯化的需求,以国家重大仪器专项成果为基础,开创性的研发了PuriMaster-3500C1型制备色谱仪,不仅解决了单次制备难分离的问题还兼具有连续进样的功能,一机多用,可满足各种模式的制备需求。仪器特点1、使用高精度制备色谱泵,重现性良好;2、软件具有压力显示、报警、过压保护功能,避免泵的压力波动,防止压力过高损坏柱子、防止漏液造成样品损失;3、带有光源自检功能,管理光源寿命,提醒及时更换;4、带有单色仪自校正功能,波长准确性可达0.2nm;5、馏分收集方式智能:时间、色谱峰、阈值收集多种模可选;6、软件支持馏分索引功能,实时显示馏分收集位置与对应的色谱峰位置;7、软件有手动进样和自动进样操作模式,可以实现大体积上样;8、软件有流路自动清洗功能,一键式操作,方便快捷;9、软件自带溶剂液位设置功能,可设置报警体积,防止系统进气泡;10、软件自带标记标示功能,实时显示操作命令,人性化设计;11、软件连续进样模式、循环制备模式兼容,循环制备模式用于难分离样品的分离,连续进样模式用于快速处理样品;12、软件有重演模式用于重现处理步骤,便捷式操作;13、软件有数据备份功能,可将数据转移打开至多台电脑处理;14、可将实验图谱生成PDF实验报告,用户可更改报告生成的模板,调出适合自己的报告;15、软件支持色谱分峰与定量功能、审计追踪、数据管理、用户管理、个人管理等功能; 仪器参数泵模块1、高压二元梯度泵:300bar,压力脉动:≤0.2MPa,;2、流量范围:0~50mL/min单泵,流量稳定性:≤2%;检测器模块1、双波长UV-VIS检测器:190~850nm;2、检测器光源:氘灯-钨灯组合光源;3、波长精度:±1nm;重复性0.2nm;进样器1、自动进样模块;2、定量环:3mL 馏分收集模块1、馏分收集:6位收集阀(标配)(标配);2、馏分收集器160位(15*150mm试管)(选配); 仪器组成1、主机(包括恒流泵、进样器、检测器、梯度阀、收集阀,柱夹);2、制备色谱专用工作站;3、全自动馏分收集器(选配);4、旁路切换系统(选配)5、电脑; 仪器用途1、单次制备难分离化合物在不改变色谱柱和流动相的条件下,完成高纯度的制备;2、可实现对环化聚噻吩、位置异构体、色素原料、富勒烯、光电产物的分离;3、可用于GPC柱的循环制备分离,来分离难分离化合物。 由于技术不断进步,本公司保留设计更改之权利,更改恕不通知,敬请谅解。
    留言咨询
  • 重新构想和设计的 Agilent 8355 SCD 标志着硫化学发光检测技术 25 年来的第一次重大改进,使这项技术更加可靠且更易于使用。重新构想的检测器具有出色的灵敏度与特异性,且由于采用减少了 50% 组件的简化燃烧头设计而更易于维护。过去需要花费一小时的最常见服务程序如今仅需 10 分钟即可完成。8355 使用双等离子体燃烧器使含硫化合物在高温下燃烧生成一氧化硫 (SO)。光电倍增管可检测由 SO 和臭氧发生化学发光反应而产生的光。实现线性、等摩尔的硫化物响应,大部分样品基质都不会对其产生干扰。硫化物几乎在化学和生物化学的所有领域都起着非常重要的作用。 在石油和化学品领域,含硫化合物通常被认为是对产品和加工有害的。例如,众所周知,含硫化合物有毒,是催化剂毒物。另一方面,含硫化合物具有某些性质,例如在天然气和液态石油气中加入硫醇类气味剂。 原油和天然气中硫的含量通常会不断增加,而环境法规则要求降低燃料中的硫含量。这两种背道而驰的需求就要求业内技术人员、化学家和工程师们提高其对硫加工过程的认识;用于测定硫的分析仪器可提供所需的信息。硫化学发光检测器技术不仅能让用户测定总硫,还可以测定单个硫形态,这样获得的信息比只测定总硫更加丰富,这点通常更为重要。 在食品、调味品和饮料中,含硫化合物具有正面和反面的特性,并且这些特性与浓度有关。因此,能够准确地测定这些化合物,对产品质量控制和研究十分重要。 操作原理安捷伦硫化学发光检测器 (SCD) 利用硫化物燃烧形成一氧化硫 (SO),以及 SO 与臭氧 (O3) 化学发光反应的原理。这一特定的燃烧过程能达到超过 1800 °C 的高温,这在标准热裂解方法中难以达到。这一专利技术使 SCD 能够对任何含硫化合物进行超高灵敏度的检测,这些化合物可以采用气相色谱 (GC) 或超临界流体色谱 (SFC) 进行分析。 反应机理为:S 化合物 + O -- SO + 其他产物SO + O3 -- SO2 + O2 + hν (300–400 nm) 发射光 (hν) 通过滤光片后经光电倍增管进行检测;光的强度与样品中硫含量成正比。这一机理提供了选择性的硫检测,这在以下美国和其他国外专利中有所阐述:5,330,714;5,227,135;5,310,683;5,501,981;5,424,217;5,661,036;6,130,095;WO 95/22049 和申请中的专利。 方法审批SCD 是 ASTM 标准测试方法 D 5504 指定的检测器:采用气相色谱仪和化学发光检测器测定天然气和气态燃料中的硫化物;ASTM D 5623:采用气相色谱仪和硫选择性检测器测定轻质石油液体中的硫化物;ASTM D 7011:采用气相色谱仪和硫选择性检测器测定精炼苯中的痕量噻吩。SCD 是 ASTM D 5623-95 方法使用的唯一检测器,得到的数据足以满足测定方法的精度。(ASTM 研究报告:RR:D02-1335。) 应用SCD 的出色功能和性能使其在石油、化工和石化、食品和饮料、调味品、香料和环境行业中均得到广泛使用和认可。产品特性:● 完全集成化的配置或独立的配置● 皮克级检出限● 没有烃的淬灭● 对硫化物等摩尔线性响应● ASTM 方法兼容● 串联 SCD 和 FID 操作● 燃烧器组件减少约 40%;减少了潜在的泄漏点● 更换内部陶瓷管仅需 10 分钟● 安捷伦还提供 8255 氮化学发光检测器 (NCD)
    留言咨询

己基噻吩相关的耗材

  • 1-(2-噻吩甲酰基)-3,3,3-三氟丙酮 GR for analysis
    1-(2-噻吩甲酰基)-3,3,3-三氟丙酮 GR for analysis
  • 四氢噻吩Tetrahydrothiophene 1/b(5)检测管
    产品信息:德尔格检测管系统德尔格检测管是装满化学试剂的玻璃管,此化学试剂与特定的化学物质或相关化学物质发生反应。用德尔格accuro气泵抽取定量标准气样到检测管中,如果检测管中的试剂改变颜色,颜色变化的长度通常表明被测物质的浓度。德尔格检测管系统是全世界气体检测领域公认的、且应用最广泛的检测形式。**表示采样次数在20次以上的检测管,建议选配x-act 5000电动采样泵。订货信息:四氢噻吩Tetrahydrothiophene1/b(5)**检测管检测管名称测量范围订货号四氢噻吩Tetrahydrothiophene 1/b(5)**1 to 10 mg/m381013411 mg/m3 临界值
  • 噻吩分析专用柱对苯中噻吩分析 其他气相专用柱
    噻吩分析专用柱对苯中噻吩分析色谱柱:30m*0.25mm*0.5um柱温度:80℃进样器:200℃检测器:200℃其它条件:载气压力0.1MPa色谱柱货号:ZSF1-3205
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制