红外差示法

仪器信息网红外差示法专题为您提供2024年最新红外差示法价格报价、厂家品牌的相关信息, 包括红外差示法参数、型号等,不管是国产,还是进口品牌的红外差示法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外差示法相关的耗材配件、试剂标物,还有红外差示法相关的最新资讯、资料,以及红外差示法相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

红外差示法相关的厂商

  • 广州飒特电力红外技术有限公司是一家总部设在中国广州的民营红外热像仪跨国企业,公司在法国、爱尔兰、英国分别设有研发、生产和销售中心,是中国红外热像仪制造的龙头企业。 飒特企业目前生产的红外热像仪产品超过11个类别,35种产品。主要应用于电力、军事、警务、钢铁石化、水泥、电子制造业、电信、轨道交通、建筑、消防、教育以及医疗行业的发热人群筛查及人体测温等等。只要涉及到测温的领域(尤其是非接触性的状态检测),红外热像仪都能大展身手。 飒特企业是GB/T 1987-2005《工业检测型红外热像仪》国家标准的起草单位,,是中国红外成像技术的领跑者。公司拥有30几项的国内外专利和独立的知识产权,系列产品被国家科技部、国家商务部、国家质量监督局、国家环保局联合授予国家重点新产品。 飒特企业所制造的红外热像仪产品远销德国、法国、日本、美国、俄罗斯、中东、巴西、韩国、澳大利亚等全世界三十多个国家和地区,获得海内外用户一致的肯定与好评! 而今,飒特企业已经成为了国际市场上名列前茅的民用红外热成像研发及生产企业,“飒特红外”已成为了国际著名的红外热像仪品牌。 请即拨打020-82227875飒特企业国内销售部。您的需求,正是飒特企业全力以赴的理由!
    留言咨询
  • 湖北久之洋红外系统股份有限公司主要从事红外热像仪、激光测距仪的研发、生产与销售,是国内少有的、同时具备红外热像仪和激光测距仪自主研发与生产能力的高新技术企业,是中国高科技产业化研究会光电科技产业化专家工作委员会常务理事单位、中国光电子协会红外专业委员会常务理事单位、湖北省光学学会常务理事单位。公司主要产品包括具有先进水平的各型制冷红外热像仪、非制冷红外热像仪以及激光测距仪等产品,在红外热成像技术、激光测距技术、光学技术、电子技术、图像处理技术等方面具有综合学科优势,技术水平居国内领先地位。 公司拥有光学、红外、激光技术领域具备丰富研发经验的研发团队,专项负责相关领域的技术创新和新产品研发,组建有非制冷红外、制冷红外、激光产品三条生产线,能够满足不同客户定制产品或批量产品的需求。 凭借强大的研发实力、丰富的生产经验和过硬的产品质量,公司产品的市场占有率不断提升,产品广泛应用于海洋监察、维权执法、安防监控、森林防火监控、水上交通安全监管和救助、搜索救援、工业检测、检验检疫以及辅助驾驶等领域。
    留言咨询
  • 广州飒特红外股份有限公司始建于1991年,公司座落在美丽的花城广州,公司位于广州黄埔经济技术开发区,主厂区占地1000多平方米,建筑面积50000多平方米,职工600人,公司拥有其中工程师200多人,大专及同等以上学历占67%。公司通过吸引国内外先进的技术与自主研发相结合,不断创新。 广州飒特红外股份有限公司是一家专注于红外热成像仪产品的研发、生产和销售的高新技术企业,在法国、爱尔兰、英国分别设有研发、生产和销售中心,其旗下各类产品出口到世界上30多个国家和地区,是中国红外界成功进入世界市场的一家跨国公司。公司下面有军品部,是国家国防产品供应商,国家二级保密单位。 “飒特红外”成立至今已有20多年的发展历史,作为世界知名的红外热像仪主要制造商,“飒特红外”产品线涵盖了入门迷你型、普通工具型、工业维护型、高端研究型、消防救援型、矿用防爆型、安全侦察型、夜驾辅助型医疗诊断型、智能监控型等十大系列超过60种热像仪产品,年产量超过一万台。“飒特红外”通过为全球三十多个国家和地区提供完善、稳定的红外应用技术和产品解决方案,让全球各地的电力、消防、石化、冶金、煤矿、建筑、医疗、电力、安防、监控、等领域的用户享有全方位的红外热像产品及服务。 “飒特红外”是中国GB/T 1987-2005《工业检测型红外热像仪》国家标准的制定单位;是中国消防和电力两大行业红外热像仪检测技术国家标准的主要参与起草单位和样机提供单位;是中国红外热像仪制造业龙头企业。“飒特红外”拥有119项的国内外**和独立的知识产权,系列产品被中国科技部、商务部、质检总局以及环保局授予《国家重点新产品》证书。
    留言咨询

红外差示法相关的仪器

  • LY-DOAS 热湿法紫外差分气体测量光学模块一、产品概述 LY-DOAS热湿法紫外差分气体测量光学模块,采用紫外差分吸收光谱(DOAS)技术,可同时测量SO2、NOx等有害气体;模块气室采用130℃高温温控,在高温、高湿环境下实现样气浓度测量,避免气体溶解损失,集气体分析与预处理为一体,具有测量精度高、响应速度快、多组分同时检测、抗干扰能力强、检出限低等诸多优点;自主设计开发,机械结构可按需求灵活定制。二、原理特点 当光源发出的紫外-可见连续光谱经过含有被测气体的样气时,特定波长光能被样气中的目标气体吸收,光的吸收(吸光度)与目标气体浓度呈正比,采用光谱分析和化学计量学方法建立起实验室标定的差分吸光度和目标气体浓度之间的经验曲线,根据现场被测样气的差分吸光度实时计算样气中目标气体浓度。三、产品特点采用紫外差分吸收光谱法,实时检测SO2、NO、NO2等气体浓度,不受水气、粉尘干扰采用自主开发深紫外光谱仪,优化紫外光谱响应性能采用低功率脉冲氙灯光源,功耗低、寿命长、预热时间短气室采用恒定高温控制,避免溶解损失,保证检测结果的准确性和稳定性直接检测NO2,无需转化炉量程可定制机械结构可按需求定制。四、应用领域 固定污染源废气分析移动污染源排气分析工业过程气体分析实验室气体分析
    留言咨询
  • 紫外差分光学吸收烟气分析仪飞瑞特U760U760系列气体分析仪是一款将非分散红外吸收(NDIR)与紫外差分光学吸收(UV-DOAS)原理结合的气体分析仪。它可以同时测量多达九种不同的气体成分,并且可以通过短时间的预热和快速响应进行自动校准。同时系统具备WiFi集成,具有以太网和任意总线连接,也可以通过远程控制。凭借其直观的系统,紧凑、超轻的设计和大型触摸屏显示器,可从任何联网的PC访问,为用户友好的体验提供了最佳解决方案。 U760P适用于所有类型的工业,以其实用性、可靠性和多功能性而闻名。整套系统可高度订制,以满足客户需求。CO和CO2使用非分散红外技术(NDIR)进行测量,而SO2、NOx和HC等化合物使用紫外差分光学吸收(UV-DOAS)技术进行测量。还可以根据客户的需要进一步定制分析类型,比如使用顺磁氧模块(或电化学模块)以满足用户的氧气检测要求。我们的分析仪提供独特的功能,如自动校准和通过远程访问提供互联网支持,最大限度的满足用户的各种实际检测要求。产品特点1.高度订制检测模式订制:根据具体的应用场景可以分为壁挂式、19英寸机架式以及便携式三种模式;仪器的检测成分订制:用户可以在多种可测气体成分中自由选择具体的检测成分。量程订制:具体检测成分的量程可以实现从ppb级别到百分比级别的订制。 2 多气体检测能力:我们的气体分析仪采用非分散红外(NDIR)和紫外差分光学吸收(UV-DOAS)原理,可同时检测9种气体成分,包括CO、CO2、N2O、CH4、CF4、SF6、O3、Cl2、H2S、SO2、NO2和NO等等。这使得该设备成为一个全方位的气体监测解决方案,适用于不同行业和应用领域。 3. 高灵敏度和精确性:我们的气体分析仪具有高灵敏度和精确性,能够检测到极低浓度的气体。通过优化的光学系统和精确的算法,它能够提供准确的气体浓度测量结果,帮助用户快速发现和识别潜在的气体问题。 3. 实时监测和快速响应:该设备能够实时监测气体浓度变化,并以快速响应的方式提供准确的测量结果。这对于需要及时采取行动的应用场景至关重要,例如工业安全、环境监测和燃气泄漏检测等领域。 4. 宽测量范围和可调性:我们的气体分析仪具有宽广的测量范围,从低至几ppb到高至100%浓度,能够满足不同气体浓度级别的监测需求。此外,设备还具有可调性,可以根据特定应用场景和需求进行灵活调整和配置。 5. 高可靠性和稳定性:U760系列气体分析仪采用先进的传感器和稳定的光学系统,具有长期稳定性和高重复性。它经过严格的质量控制和测试,确保可靠性和稳定性,完全可以满足用户持续、精确的气体检测要求。 6. 网络连接和数据管理:该设备配备了彩色触摸屏幕,操作软件具备故障时的自动备份系统,解决了用户对数据的后顾之忧。设备具有网络连接功能,可实现数据远程传输和实时监控。它还配备了用户友好的界面和数据管理系统,使用户能够轻松访问、分析气体测量数据,还可以通过USB快速轻松地下载.csv格式的分析数据,帮助用户做出合理的决策和优化的控制策略。 这些特点和优势使得U760系列气体分析仪在工业安全、环境监测、燃气泄漏检测、室内空气质量监测等领域具有广泛的应用价值。无论您是工程师、研究人员还是环保专业人员,我们的设备都能为您提供准确、可靠的气体分析解决方案,帮助您保障生产安全、改善环境质量和确保人员健康。如果您对我们的产品感兴趣或有任何疑问,请随时联系我们,我们将竭诚为您服务!
    留言咨询
  • 产品介绍:皖仪科技自主研发的紫外光谱仪和高温反射式气室,通过小型化和轻量化设计,将高温预处理采样系统与紫外差分检测装置安装到一个小型便携式设备里。特别适用于在低温高湿的烟气环境下复杂干扰成分里低浓度污染物气体的监测。仪表内置了湿度传感器,可以直接将湿基值计算为干基值,满足环保监测比对的需求。产品特点:全程高温预处理采样系统,一体化设计,无需预处理箱,无冷凝SO2溶解丢失,适合低温高湿环境下超低排放的SO2和NOx监测。采样杆和高温气室加热温度可达180℃,适用于污染源NH3排放监测。采用紫外差分光谱法,抗干扰能力强,适合在各种复杂的烟气环境下准确监测污染物浓度。内置湿度传感器,可直接测量烟气的湿度,计算污染物的干基值,符合环保比对的要求。可扩展CO2检测功能,符合碳排放监测的政策要求。自带气密性检测功能,可自动测试管路密封性。自动恒流采样和压力补偿功能,适用于不同压力的烟道环境。SO2和NO具有双量程选择功能,适合不同污染物浓度的现场监测。具备折算值显示和统计功能。具备趋势图显示功能,方便用户了解工况运行的情况。自动生成1min和5min的均值报表,支持导出到U盘,方便后期的数据整理。7#彩色TFT触摸屏,显示界面大方直观,适合现场观察数据和人工操作仪器。支持微型打印机,现场打印测量数据。具备漏电保护功能,使用更安全。应用范围:污染源排放浓度监测,可适应低温高湿,高CO,含有NH3等复杂的烟气工况下测量脱硫脱硝工艺过程监测工业锅炉燃烧控制环境应急监测
    留言咨询

红外差示法相关的资讯

  • 安光所在高分辨率激光外差光谱应用于风场探测方面获得新进展
    近日,中科院合肥研究院安徽光机所高晓明研究员团队在激光外差光谱应用于风场探测方面取得新进展,相关研究成果以《基于氧气矫正的高分辨率激光外差辐射计(LHR)用于平流层和对流层风场探测的研究》为题发表于美国光学学会(OSA)学术期刊Optics Express。激光外差辐射计(LHR)具有高光谱分辨率的特点,可以有效地探测到由风场引起的微小多普勒频移,频移结合大气透过率谱,通过光谱反演得到沿视线方向水平风的垂直廓线和大气柱浓度等信息。团队谈图副研究员和李竣博士生设计了基于氧气矫正的近红外激光外差光谱仪,同时测量大气O2和CO2透过率谱,基于受约束的内尔德-米德(Nelder-Mead’s)单纯形法,利用大气O2透过谱来校正大气温度和压力分布,并结合最优估算法反演得到了精度为∼±2.5 m/s的大气风场垂直剖面,研究结果表明,氧气校正激光外差辐射计作为便携式和小型化测量仪器在风场探测中具有广阔的应用潜力。本研究工作得到国家自然科学基金重点项目、国家重点研发计划、所长特别预研基金等项目的资助。双通道近红外激光外差辐射计示意图图(a)为测量的大气透射光谱;图(b)为先验风廓线(蓝色曲线)和反演的风廓线(红色虚线)
  • 石墨烯太赫兹外差混频探测器研究获重大进展
    p  中国电子科技集团有限公司第十三研究所专用集成电路国家级重点实验室与中国科学院苏州纳米技术与纳米仿生研究所、中国科学院纳米器件与应用重点实验室再次合作,在高灵敏度石墨烯场效应晶体管(G-FET)太赫兹自混频(Homodyne mixing)探测器的基础上,实现了外差混频(Heterodyne mixing)和分谐波混频(Sub-harmonic mixing)探测,最高探测频率达到650 GHz,利用自混频探测的响应度对外差混频和分谐波混频的效率进行了校准,该结果近期发表在碳材料杂志Carbon上(Carbon 121, 235-241 (2017))。/pp  频率介于红外和毫米波之间的太赫兹波(Terahertz wave)在成像、雷达和通信等技术领域具有广阔的应用前景,太赫兹波与物质的相互作用研究具有重要的科学意义。高灵敏度太赫兹波探测器是发展太赫兹应用技术的核心器件,是开展太赫兹科学研究的重要手段与主要内容之一。太赫兹波探测可分为直接探测和外差探测两种方式:直接探测仅获得太赫兹波的强度或功率信息 而外差探测可同时获得太赫兹波的幅度、相位和频率信息,是太赫兹雷达、通信和波谱成像应用必需的核心器件。外差探测器通过被测太赫兹信号与低噪声本地相干太赫兹信号的混频,将被测信号下转换为微波射频波段的中频信号后进行检测。与直接探测相比,外差探测通常具备更高的响应速度和灵敏度,但是探测器结构与电路更加复杂,对混频的机制、效率和材料提出了更高的要求。/pp  天线耦合的场效应晶体管支持在频率远高于其截止频率的太赫兹波段进行自混频探测和外差混频探测。前者是直接探测的一种有效方法,可形成规模化的阵列探测器,也是实现基于场效应晶体管的外差混频探测的基础。目前,国际上基于CMOS晶体管实现了本振频率为213 GHz的2次(426 GHz)和3次(639 GHz)分谐波混频探测,但其高阻特性限制了工作频率和中频带宽的提升。/pp  石墨烯场效应晶体管因其高电子迁移率、高可调谐的费米能、双极型载流子及其非线性输运等特性为实现高灵敏度的太赫兹波自混频和外差混频探测提供了新途径。前期,双方重点实验室秦华团队和冯志红团队合作成功获得了室温工作的低阻抗高灵敏度石墨烯太赫兹探测器,其工作频率(340 GHz)和灵敏度(~50 pW/Hz1/2)达到了同类探测器中的最高水平(Carbon 116, 760-765 (2017))。此次合作进一步使工作频率提高至650 GHz,并实现了外差混频探测。/pp  如图1所示,工作在650 GHz的G-FET太赫兹探测器通过集成超半球硅透镜,首先通过216、432和650 GHz的自混频探测,验证了探测器响应特性与设计预期一致,并对自混频探测的响应度和太赫兹波功率进行了测试定标。在此基础上,实现了本振为216 GHz和648 GHz的外差混频探测,实现了本振为216 GHz的2次分谐波(432 GHz)和3次分谐波(648 GHz)混频探测。混频损耗分别在38.4 dB和57.9 dB,对应的噪声等效功率分别为13 fW/Hz和2 pW/Hz。2次分谐波混频损耗比216 GHz外差混频损耗高约8 dB。/pp  此次获得混频频率已远高于国际上已报道的石墨烯外差探测的最高工作频率(~200 GHz),但中频信号带宽小于2 GHz,低于国际上报道最高中频带宽(15 GHz)。总体上,目前G-FET外差混频探测器性能尚不及肖特基二极管混频器。但是,无论在材料质量还是在器件设计与工艺技术上,都有很大的优化提升空间。根据Andersson等人预测,G-FET的混频转换效率可降低至23.5 dB,如何达到并超越肖特基二极管混频探测器的性能指标是未来需要重点攻关的关键问题。/pp  图3所示为基于432 GHz的直接探测以及二次谐波探测的透射成像图对比,分谐波探测时的透射成像显现出比直接探测更高的动态范围,可达40 dB。/pp  该研制工作得到了国家自然科学基金项目(No. 61271157, 61401456, 61401297等)、国家重点研发计划(2016YFF0100501, 2014CB339800)、中科院青促会(2017372)、中科院苏州纳米所纳米加工平台、测试分析平台和南京大学超导电子学研究所的大力支持。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/c73fe96e-7527-4de4-8f95-ff4e6c2935aa.jpg" title="1.jpg"/ /pp style="text-align: center "图1:650 GHz天线耦合的G-FET太赫兹外差混频探测器br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/70869861-507f-4a27-91dc-64a7cf6c6185.jpg" title="2.jpg"//pp style="text-align: center "图2:(a)准光耦合的外差混频探测系统示意图 (b)216 GHz外差混频探测的中频频谱br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/15463ac0-04f0-4c63-9091-fee1013ca466.jpg" title="3.jpg"//pp style="text-align: center "图3:(a)分别采用432 GHz直接探测和本振为216 GHz的2次分谐波探测对树叶进行的透射成像效果对比 (b)采用本振为216 GHz的2次分谐波探测对柠檬片的透视成像。/p
  • 激光外差干涉技术在光刻机中的应用
    激光外差干涉技术在光刻机中的应用 张志平*,杨晓峰 复旦大学工程与应用技术研究院上海市超精密运动控制与检测工程研究中心,上海 201203摘要 超精密位移测量系统是光刻机不可或缺的关键分系统之一,而基于激光外差干涉技术的超精密位移测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程和数米每秒的测量速度等优点,是目前唯一能满足光刻机要求的位移测量系统。目前应用于光刻机的超精密位移测量系统主要有双频激光干涉仪和平面光栅测量系统两种,二者均以激光外差干涉技术为基础。本文将分别对这两种测量系统的原理、优缺点以及在光刻机中的典型应用进行阐述。关键词 光刻机;外差干涉;双频激光干涉仪;平面光栅1 引言集成电路产业是国家经济发展的战略性、基础性产业之一,而光刻机则被誉为集成电路产业皇冠上的明珠[1]。作为光刻机三大指标之一的套刻精度,是指芯片当中上下相邻两层电路图形的位置偏差。套刻精度必须小于特征图形的1/3,比如14 nm节点光刻机的套刻精度要求小于5.7 nm。影响套刻精度的重要因素是工件台的定位精度,而工件台定位精度确定的前提则是超精密位移测量反馈,因此超精密位移测量系统是光刻机不可或缺的关键分系统之一[2-4]。随着集成电路特征尺寸的不断减小,对位置测量精度的需求也不断提高;同时,为了满足光刻机产率不断提升的需要,掩模台扫描速度也在不断提高,甚至达到 3 m/s 以上;此外,为了满足大尺寸平板显示领域的需求,光刻机工件台的尺寸和行程越 来越大,最大已达到 1. 8 m×1. 5 m;最后,为了获得工件台和掩模台良好的同步性能,光刻机还要求位置测量系统具备多轴同步测量的功能,采样同步不确定性优于纳秒级别[5-8]。 综上,光刻机要求位置测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程、数米每秒测量速度、闭环反馈以及多轴同步等特性。目前,在精密测量领域能同时满足上述测量要求的,只有外差干涉测量技术。 本文分别介绍外差干涉测量技术原理及其两 种具体结构——双频激光干涉仪和平面光栅测量系统,以及外差干涉技术在光刻机中的典型应用。 2 外差干涉原理 2. 1 拍频现象 外差干涉又称为双频干涉或者交流干涉,是利用“拍频”现象,在单频干涉的基础上发展而来的一 种干涉测量技术。 假设两列波的方程为 x1 = A cos ω1 t , (1) x2 = A cos ω2 t 。 (2) 叠加后可表示为(3)拍频定义为单位时间内合振动振幅强弱变化 的次数,即 v =| (ω2 - ω1)/2π |=| v 2 - v 1 | 。 (4) 波 x1、x2 以及合成后的波 x 如图 1 所示,其中包 络线的频率即为拍频,也称为外差频率。如果其中一个正弦波的相位发生变化,拍频信号的相位会发生完全相同的变化,即外差拍频信号将完整保留原始信号的相位信息。 图 1. 拍频示意图Fig. 1. Beat frequency diagram对于激光而言,因为频率很高(通常为 1014 Hz 量级),目前的光电探测器无法响应,但可以探测到两束频率相近的激光产生的拍频(几兆到几十兆赫兹)。因此拍频被应用到激光领域,发展成激光外差干涉技术。2. 2 外差干涉技术 由拍频原理可知 ,所谓外差就是将要接收的信号调制在一个已知频率信号上,在接收端再将该调制信号进行解调。由于高频率的激光信号相位变化难以精确测量,但利用外差干涉技术可以用低频拍频信号把高频信号的 相位变化解调出来,将大大降低后续精确鉴相的难度。因此,外差技术最显著的特点就是信号以交流的方式进行传输和处理。 与单频干涉技术相比,外差干涉技术的突出优点是:1)由于被测对象的相位信息是加载在稳定的差频(通常几兆到几十兆赫兹)上,因此光电探测时避过了低频噪声区,提高了光电信号的信噪比。例如在外界干扰下,测量光束光强衰减 50% 时,单频干涉仪很难正常工作,而外差干涉仪在光强衰减 90% 时仍能正常工作 ,因此更适用于工业现场 。 2)外差干涉可以根据差频信号的增减直接判别运动方向,而单频干涉技术则需要复杂的鉴相系统来 判别运动方向。单频干涉技术与外差干涉技术对比如表 1 所示。表 1. 单频干涉技术与外差干涉技术对比Table 1. Comparison between homodyne interferometry and heterodyne interferometry3双频激光干涉仪 3. 1 双频激光干涉仪原理 双频激光干涉仪是在单频激光干涉仪的基础上结合外差干涉技术发展起来的,其原理如图 2 所 示。双频激光器发出两列偏振态正交的具有不同频率的线偏振光,经过偏振分光器后光束被分离。 图 2. 双频激光干涉仪原理图Fig. 2. Schematic diagram of dual frequency laser interferometer设两束激光的波动方程为 E1 = E R1 cos ( 2πf1 t ) E2 = E R2 cos ( 2πf2 t ) , (5) 式中:ER1和 ER2为振幅;f1和 f2为频率。 偏振态平行于纸面的频率为 f1 的光束透过干涉仪后,被目标镜反射回干涉仪。当被测目标镜移动时,产生多普勒效应,返回光束的频率变为 f1 ± Δf, Δf 为多普勒偏移量,它包含被测目标镜的位移信息。经过干涉镜后,与频率为 f2 的参考光束会合,会合后光束发生拍频,其光强 IM函数为 (6) 式(6)包含一个直流量和一个交流量,经光电探测器转换为电信号,再进行放大整形后,去除直流量,将交 流量转换为一组频率为 f1 ± Δf- f2的脉冲信号。从双频激光器中输出频率为 f1 - f2 的脉冲信 号,作为后续电路处理的基准信号。测试板卡采用减法器通过对两列信号的相减,得到由于被测目标 镜的位移引起的多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为 (7) 式中:λ 为激光的波长;N 为干涉的条纹数。因此, 只要测得条纹数,就可以计算出被测物体的位移。 3. 2 系统误差分析 双频激光干涉仪的系统误差大致由三部分组成:仪器误差、几何误差以及环境误差,如表 2 所示。 三种误差中,仪器误差可控制在 2 nm 以内;几何误 差可以通过测校进行动态补偿,残差可控制在几纳米以内;环境误差的影响最大,通常可达几十纳米到几微米量级,与测量区域的环境参数(温度、压 力、湿度等)有关,与量程几乎成正比,因此大量程测量时,需要对环境参数进行控制。 表 2. 双频激光干涉仪系统误差分解Table 2. System error of dual frequency laser interferometer4 平面光栅测量系统 双频激光干涉仪在大量程测量时,精度容易受 温度、压力、湿度等环境因素影响,研究者们同样基于外差干涉原理研发了平面光栅测量系统,可克服双频激光干涉仪的这一缺点。 4. 1 基于外差干涉的光栅测量原理 众所周知 ,常规的光栅测量是基于叠栅条纹的,具有信号对比度差、精度不高的缺点。基于外差干涉的光栅测量原理如图 3 所示,双频激光器发出频率 f1 和 f2 的线偏振光,垂直入射到被测光栅表面,分别进行+1 级和−1 级衍射,衍射光经过角锥反射镜后再次入射至被测光栅表面进行二次衍射, 然后会合并沿垂直于光栅表面的方向返回。由于被测光栅与光栅干涉仪发生了相对运动,因此,返回的激光频率变成了 f1 ± Δf和 f2 ∓ Δf,其中 Δf为多 普勒频移量,它包含被测目标镜的位移信息。 图 3. 基于外差干涉的光栅测量原理Fig. 3. Principle of grating measurement based on heterodyne interference会合后的光束 f1 ± Δf 和 f2 ∓ Δf 发生拍频,其频率为 ( f1 ± Δf ) - ( f2 ∓ Δf ) = ( f1 - f2 ) ± 2Δf。(8) 式(8)的信号与双频激光器中输出频率为 f1 - f2 的 参考信号相减,得到多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为(9) 式中 :p 为光栅的栅距 ;N 为干涉的条纹数 。 因此,只要测得条纹数 ,就可以计算出被测物体的位移。 上述原理推导是基于一维光栅刻线的,只能测量一维运动。为了获得二维测量,只需将光栅的刻线由一维变成二维(即平面)即可。 4. 2 两种测量系统优缺点对比 由此可知,基于外差干涉的光栅测量原理与双频激光干涉仪几乎完全相同,主要的差别是被测对象由反射镜换成了衍射光栅。两种测量系统的优缺点如表 3 所示。表 3. 双频激光干涉仪与光栅测量系统对比Table 3. Dual frequency laser interferometer versus gratingmeasurement system5外差干涉测量在光刻机中的应用 发展至今,面向 28 nm 及以下技术节点的步进扫描投影式光刻机已成为集成电路制造的主流光刻机。作为光刻机的核心子系统之一的超精密工件台和掩模台,直接影响着光刻机的关键尺寸、套刻精度、产率等指标。而工件台和掩模台要求具有高速、高加速度、大行程、超精密、六自由度(x、y 大 行程平动,z 微小平动,θx、θy、θz微小转动)等运动特点,而实现这些运动特点的前提是超精密位移测量反馈。因此,基于外差干涉技术的超精密位移测量子系统已经成为光刻机不可或缺的组成部分。 4. 光刻机中的多轴双频激光干涉仪[10]Fig. 4. Multi-axis dual frequency laser interferometer in lithography machine[10]图 4 为典型的基于多轴双频激光干涉仪的光刻机工件台系统测量方案[10],在掩模台和硅片台的侧面布置多个多轴激光干涉仪,对应地在掩模台和硅 片台上安装长反射镜;通过多个激光干涉仪的读数解算出掩模台和硅片台的六自由度位移。 然而,随着测量精度、测量行程、测量速度等运动指标的不断提高,双频激光干涉仪由于测量精度易受环境影响、长反射镜增加运动台质量致使动态性能差等问题难以满足日益提升的测量需求。因 此,同样基于外差干涉技术的平面光栅测量系统成为了另一种选择[8]。 光刻机工件台平面光栅测量技术首先由世界光刻机制造巨头 ASML 公司取得突破。该公司于 2008 年 推 出 的 Twinscan NXT:1950i 浸 没 式 光 刻机,采用了平面光栅测量技术对 2 个工件台的六自 由度位置进行精密测量。如图 5 所示,该方案在主基板的下方布置 8 块大面积高精度平面光 栅(约 400 mm×400 mm),在两个工件台上分别布置 4 个 平面光栅读数头(光栅干涉仪),当工件台相对于平 面光栅运动时,平面光栅读数头即可测出工件台的 运动位移[2,5,9]。图 5. ASML 光刻机的平面光栅测量方案[2,5,9]Fig. 5. Plane grating measurement scheme of ASML lithography machine[2,5,9]相比多轴双频激光干涉仪测量方案,平面光栅测量方案具有以下优点:1)测量光路短(通常小于 20 mm),因此测量重复精度和稳定性对环境变化不 敏感;2)工件台上无需长反射镜,因此质量更轻、动态性能更好。 然而,平面光栅测量方案也有其缺点:1)大面积高精度光栅制造难度太大;2)由式(9)可知,位移 测量结果以栅距 p 为基准,然而受栅距均匀性限制, 测量绝对精度不高。为了获得较好的精度和线性度,往往需要利用双频激光干涉仪进行标定。 面临极端测量需求的挑战 ,Nikon 公 司 在 NSR620D 光刻机中采用了平面光栅和双频激光干涉仪混合测量的技术方案[9],如图 6 所示。该方案 将平面光栅安装在工件台上表面,而将光栅读数头安装在主基板下表面,同时增加了双频激光干涉仪,结合了平面光栅测量系统和双频激光干涉仪的 优点。在读头与读头切换时采用双频激光干涉仪进行在线校准。 图 6. Nikon光刻机混合测量方案[9]Fig. 6. Hybrid measurement scheme of Nikon lithography machine [9]6激光外差干涉系统的发展趋势 无论是双频激光干涉仪还是平面光栅测量系统,要想获得纳米级测量精度,既需要提高测量系统本身的精度,更需要从使用的角度努力,即“三分 靠做,七分靠用”。 就激光外差干涉测量系统本身而言,误差源主要来自于光学非线性误差。在外差干涉测量系统 中,由于光源及光路传输过程各光学器件性能不理想或装调有偏差,会带来两个频率的光混叠现象, 即原本作为测量信号频率 f1(或 f2)的光中混杂了频 率 f2(或 f1)的光,或原本作为参考信号频率 f2(或 f1) 的光中混杂了频率 f1(或 f2)的光。在信号处理中该混叠的频率信号会产生周期性的光学非线性误差。尽管目前主流的双频激光干涉仪厂家已经将非线性误差控制在 2 nm 以内[10- 12],但应用于 28 nm 以下光刻机时仍然需要进一步控制该误差。国内外众多学者从非线性误差来源、检测和补偿等角度出发,进行了大量研究并取得了丰硕成果[13- 17]。这些成果有望对非线性误差的动态补偿提供理论支持。 从应用角度,研究热点主要集中在应用拓展、 安装误差及其测校算法、环境参数控制及其补偿方法研究等方面。在应用拓展方面,激光外差干涉技术除了应用于测长之外,还在小角度测量、直线度、平面度、反馈测量等方面取得了应用[18- 20]。在安装误差和环境误差补偿算法方面,主要聚焦于多自由度解耦算法、大气扰动补偿等研究方向[4,21- 27]。 7 总结 阐述了光刻机对位移测量系统大量程、亚纳米 分辨率、纳米精度、高测速及多轴同步的苛刻要求。 概述了激光外差干涉技术原理,指出目前为止,激光外差干涉技术是唯一能满足光刻机上述要求的超精密位移测量技术。并综述了两种基于激光外差干涉技术的测量系统:双频激光干涉仪和平面光栅测量系统。总结了这两种位移测量系统在光刻机中的典型应用,以及激光外差干涉技术的当前研究热点和发展趋势。全文详见:激光外差干涉技术在光刻机中的应用.pdf

红外差示法相关的方案

  • 傅里叶红外光谱法在食品异物分析中的应用
    食品异物污染会导致消费者对食品经营者失去信任,进而造成经济损失。因此,采取措施防止污染,并在消费者投诉时迅速识别可疑物质可以有效减少企业损失。树脂,纤维,毛发,橡胶和金属等都是食品中常见异物,分析人员需要根据异物的大小和形状选择合适的分析方法。Nicolet Summit傅里叶红外光谱仪具有操作简单、重复性好、维护成本低等优势,搭配Everest ATR(衰减全反射附件)附件可以在几秒内获得食品中异物的红外光谱。搭配OMNICTM SpectaTM多组分检索软件,可以快速对未知混合物的组分进行检索,还可以半定量分析各组分的含量,有效提升分析效率。
  • 傅里叶红外光谱法在食品异物分析中的应用
    食品异物污染会导致消费者对食品经营者失去信任,进而造成经济损失。因此,采取措施防止污染,并在消费者投诉时迅速识别可疑物质可以有效减少企业损失。树脂,纤维,毛发,橡胶和金属等都是食品中常见异物,分析人员需要根据异物的大小和形状选择合适的分析方法。Nicolet Summit傅里叶红外光谱仪具有操作简单、重复性好、维护成本低等优势,搭配Everest ATR(衰减全反射附件)附件可以在几秒内获得食品中异物的红外光谱。搭配OMNICTM SpectaTM多组分检索软件,可以快速对未知混合物的组分进行检索,还可以半定量分析各组分的含量,有效提升分析效率。
  • 傅里叶红外光谱法在食品异物分析中的应用
    食品异物污染会导致消费者对食品经营者失去信任,进而造成经济损失。因此,采取措施防止污染,并在消费者投诉时迅速识别可疑物质可以有效减少企业损失。树脂,纤维,毛发,橡胶和金属等都是食品中常见异物,分析人员需要根据异物的大小和形状选择最佳的分析方法。Nicolet Summit傅里叶红外光谱仪具有操作简单、重复性好、维护成本低等优势,搭配Everest ATR(衰减全反射附件)附件可以在几秒内获得食品中异物的红外光谱。搭配OMNICTM SpectaTM多组分检索软件,可以快速对未知混合物的组分进行检索,还可以半定量分析各组分的含量,有效提升分析效率。

红外差示法相关的资料

红外差示法相关的论坛

  • 【讨论】红外、紫外差分光学烟气分析仪在污染源废气监测中的应用及优势!

    形势分析:目前在线烟气连续监测系统(CEMS)一般都采用红外、紫外原理等高精度的分析系统,做比对测试的便携式烟气分析仪基本采用定电位电解原理,测量精度比较低,低精度便携仪器比对高精度系统,无法给出令人信服的数据。 近几年我国火电厂上了大量的脱硫和脱硝工程,但还有一些电厂没有建脱硫脱硝工程,做为环保监测仪器,应能适应高浓度和低浓度气体测量要求,需要测量仪器具有双量程,能够做到高低量程切换,两个量程都能达到高精度;这对于传统定电位电解原理的仪器是很难实现的,但是红外、紫外差分烟气分析仪就可以同时满足高、低浓度双量程精确测试。 所以非分散红外分析技术(NDIR)和紫外差分技术(DOAS)在污染源烟气成分测试中的应用解决了测试不准和量程受限的问题,崂应3023紫外差分、3026红外型-烟气综合分析仪正是基于此形势下,经过多次验证试验分析和现场工况测试,测量数据与在线的仪器比对数据相吻合,深受广大客户好评,希望了解这类仪器的小伙伴们参与讨论。或者您觉得目前光学烟气分析仪与传统电化学烟气分析仪相比是否有优势?您更喜欢哪种类型的烟气分析仪?或您正使用的是哪一款仪器?也可以推荐更成熟的先进烟气分析技术供大家讨论。

红外差示法相关的耗材

  • LYDOAS 紫外差分气体测量光学模块
    LYDOAS 紫外差分气体测量光学模块模块介绍崂应LYDOAS超低浓度紫外差分气体测量光学模块(以下简称模块),采用紫外差分吸收光谱(DOAS)技术,SO2、NO、NO2检出限原理特点当紫外-可见连续光谱经过含有被测污染气体的样气时,特定波长光能被样气中的污染气体吸收,光的吸收(吸光度)与污染气体浓度呈正比,采用光谱分析和化学计量学方法建立起实验室标定吸光度和污染气体浓度之间的经验曲线,根据现场被测样气的吸光度实时计算样气中污染气体浓度。在实际测量中,不仅存在气体分子对光的吸收,还存在瑞利散射、米氏散射等对光的衰减作用,差分吸收的基本思想是将气体分子的吸收截面分为两个部分,一是随波长作缓慢变化的宽带光谱结构,即低频部分,二是随波长作快速变化的窄带光谱结构,即高频部分。DOAS方法利用吸收光谱的高频部分计算得出气体浓度。由于DOAS方法分析的是吸收光谱的高频部分,而水汽、烟尘和其他一些成分的吸收光谱均属于低频,因此DOAS技术可以有效地去除水汽、烟尘等对测量结果的影响,使测量结果可以更加准确、稳定、可靠。同时,由于每种气体分子都有其特征吸收光谱,DOAS可以同时测量多种气体组分。产品特点Ø采用紫外差分吸收光谱法,实时检测SO2、NO、NO2、NH3、CS2、苯系物等气体浓度,不受水汽、粉尘干扰;Ø采用自主开发深紫外光谱仪,优化紫外光谱响应性能;Ø采用低功率脉冲氙灯光源,功耗低、寿命长、预热时间短;Ø原创设计多次反射型气室及先进镀膜技术,兼顾长光程和快速响应;Ø气室内壁特殊处理,无气体吸附;Ø气室采用恒温控制,环境适应性更强,保证检测结果的准确性和稳定性;Ø直接检测NO2,无需转化炉;Ø采用模式识别和化学计量学方法,消除交叉干扰,实现一次测量同时获得多种目标分析物浓度;Ø检出限3,量程可定制;Ø体积小巧、重量轻盈,模块化设计,可根据客户应用需求灵活定制机械结构及参数。应用领域Ø环境空气分析Ø室内空气质量监测Ø污染源废气分析Ø移动污染源排气分析Ø工业气体分析Ø过程测量技术技术指标注:表中浓度单位为标准状态(温度为273.15K,压力为101.325kPa)下的质量浓度。技术指标技术参数测量气体SO2NONO2量程0-100mg/m30-100mg/m30-100mg/m30-285mg/m30-134mg/m30-205mg/m3可依照用户需求定制示值误差≤±2% FS检出限≤1mg/m3重复性≤1% FS零点漂移≤±2% FS /24h量程漂移≤±2% FS /24h校准响应时间T90 ≤ 30 s工作温度(-20-45)℃相对湿度≤95%RH通信接口RS232/RS485供电DC12V功率LYDOAS 超低浓度紫外差分气体测量光学模块模块介绍崂应LYDOAS超低浓度紫外差分气体测量光学模块(以下简称模块),采用紫外差分吸收光谱(DOAS)技术,SO2、NO、NO2检出限3,量程可定制;可定制检测NH3、CS2、苯系物、恶臭气体及其他VOCs等有紫外特征吸收的气态污染物,具有测量精度高、测量速度快、多组分同时检测、抗干扰能力强、检测下限低等诸多优点,可广泛应用于固定污染源排放监测、移动污染源排放监测、工业气体分析、过程测量技术等领域。原理特点当紫外-可见连续光谱经过含有被测污染气体的样气时,特定波长光能被样气中的污染气体吸收,光的吸收(吸光度)与污染气体浓度呈正比,采用光谱分析和化学计量学方法建立起实验室标定吸光度和污染气体浓度之间的经验曲线,根据现场被测样气的吸光度实时计算样气中污染气体浓度。在实际测量中,不仅存在气体分子对光的吸收,还存在瑞利散射、米氏散射等对光的衰减作用,差分吸收的基本思想是将气体分子的吸收截面分为两个部分,一是随波长作缓慢变化的宽带光谱结构,即低频部分,二是随波长作快速变化的窄带光谱结构,即高频部分。DOAS方法利用吸收光谱的高频部分计算得出气体浓度。由于DOAS方法分析的是吸收光谱的高频部分,而水汽、烟尘和其他一些成分的吸收光谱均属于低频,因此DOAS技术可以有效地去除水汽、烟尘等对测量结果的影响,使测量结果可以更加准确、稳定、可靠。同时,由于每种气体分子都有其特征吸收光谱,DOAS可以同时测量多种气体组分。LYDOAS 紫外差分气体测量光学模块采用原创设计的新型多次反射型长光程气室,入射光经气室内凹面反射镜多次折返后最终会聚至出光口,由于气室中的光束是通过两端固定的反射镜来反射,气室壁不参与测量光束的反射,可避免传统内壁反射气室随老化而导致信号漂移、灵敏度损失等现象,保证气室长期使用中的光程稳定。采用多次反射技术,可以同时实现小体积和长光程,并可根据应用需求定制光程。产品特点Ø采用紫外差分吸收光谱法,实时检测SO2、NO、NO2、NH3、CS2、苯系物等气体浓度,不受水汽、粉尘干扰;Ø采用自主开发深紫外光谱仪,优化紫外光谱响应性能;Ø采用低功率脉冲氙灯光源,功耗低、寿命长、预热时间短;Ø原创设计多次反射型气室及先进镀膜技术,兼顾长光程和快速响应;Ø气室内壁特殊处理,无气体吸附;Ø气室采用恒温控制,环境适应性更强,保证检测结果的准确性和稳定性;Ø直接检测NO2,无需转化炉;Ø采用模式识别和化学计量学方法,消除交叉干扰,实现一次测量同时获得多种目标分析物浓度;Ø检出限3,量程可定制;Ø体积小巧、重量轻盈,模块化设计,可根据客户应用需求灵活定制机械结构及参数。应用领域Ø环境空气分析Ø室内空气质量监测Ø污染源废气分析Ø移动污染源排气分析Ø工业气体分析Ø过程测量技术技术指标技术指标技术参数测量气体SO2NONO2量程0-100mg/m30-100mg/m30-100mg/m30-285mg/m30-134mg/m30-205mg/m3可依照用户需求定制示值误差≤±2% FS检出限≤1mg/m3重复性≤1% FS零点漂移≤±2% FS /24h量程漂移≤±2% FS /24h校准提供零点校准、量程校准响应时间T90 ≤ 30 s工作温度(-20-45)℃相对湿度≤95%RH通信接口RS232/RS485供电DC12V功率注:表中浓度单位为标准状态(温度为273.15K,压力为101.325kPa)下的质量浓度。
  • 便携式红外测温仪
    方源仪器长期供应便携式红外测温机,便携式红外测温机适用于包括发动机熄火及排气、冷却、加热和空调等系统的故障诊断。 便携式红外测温机 的详细介绍 便携式红外测温机 温度变化可指示常见的机械和电子问题,通过AutoProST25就可进行快速安全而且方便的诊断。 此型号具有SmartSight---两个激光合并成一单激光指示所测的目标区域为13毫米,红外光斑尺寸特别适合汽车故障诊断中常见的小目标测量。内置照明灯照亮工作区,在暗光下也可精确测量。 AutoProST25还附有带插图的非常具体的操作手册,详细地说明了各种故障的诊断方法,包括发动机熄火及排气、冷却、加热和空调等系统的故障诊断。 测量范围 -32~535℃(-25~999℉) 精度(假定环温为23℃时)  ± 1%或± 1℃取大值 重复精度  ± 0.5%或± 1℃(± 2℉)取大值 响应时间  &le 0.5s(95%响应) 光谱响应  8~14&mu m 发射率  预设0.95 环温工作范围  0~50℃(32~120℉) 相应湿度  10~90% 储存温度  -20~60℃(-13~158℉) 重量尺寸  360g(12oz)205× 160× 55mm(8× 6× 2in) 电源  9V碱性或电池 电池寿命/碱性  带激光,照明灯和背景灯开时,4hrs  带激光,照明灯和背景光关闭时,20hrs 激光(II级)  SmartSight双激光瞄准系统 工作区照明  亮白光LED D:S  好在8inches处使用,焦点处约为16:1 显示高温度值  &radic 显示保持(7s)  &radic LCD背景光  &radic 温度显示  ℃或℉可选 显示分辨率  0.2℃(0.5℉) 硬壳携带报  &radic 三脚架安装  &radic 可移基座  &radic 图表操作手册  &radic 保修  1年 选件/附件  尼龙软包,NIST认证(包括1年保修)
  • 11415红外氧枪阀
    11415 红外氧枪阀 ELTRA OXYGEN STOP SOLENOID VALVE
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制