当前位置: 仪器信息网 > 行业主题 > >

红外差示法

仪器信息网红外差示法专题为您提供2024年最新红外差示法价格报价、厂家品牌的相关信息, 包括红外差示法参数、型号等,不管是国产,还是进口品牌的红外差示法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合红外差示法相关的耗材配件、试剂标物,还有红外差示法相关的最新资讯、资料,以及红外差示法相关的解决方案。

红外差示法相关的资讯

  • 安光所在高分辨率激光外差光谱应用于风场探测方面获得新进展
    近日,中科院合肥研究院安徽光机所高晓明研究员团队在激光外差光谱应用于风场探测方面取得新进展,相关研究成果以《基于氧气矫正的高分辨率激光外差辐射计(LHR)用于平流层和对流层风场探测的研究》为题发表于美国光学学会(OSA)学术期刊Optics Express。激光外差辐射计(LHR)具有高光谱分辨率的特点,可以有效地探测到由风场引起的微小多普勒频移,频移结合大气透过率谱,通过光谱反演得到沿视线方向水平风的垂直廓线和大气柱浓度等信息。团队谈图副研究员和李竣博士生设计了基于氧气矫正的近红外激光外差光谱仪,同时测量大气O2和CO2透过率谱,基于受约束的内尔德-米德(Nelder-Mead’s)单纯形法,利用大气O2透过谱来校正大气温度和压力分布,并结合最优估算法反演得到了精度为∼±2.5 m/s的大气风场垂直剖面,研究结果表明,氧气校正激光外差辐射计作为便携式和小型化测量仪器在风场探测中具有广阔的应用潜力。本研究工作得到国家自然科学基金重点项目、国家重点研发计划、所长特别预研基金等项目的资助。双通道近红外激光外差辐射计示意图图(a)为测量的大气透射光谱;图(b)为先验风廓线(蓝色曲线)和反演的风廓线(红色虚线)
  • 石墨烯太赫兹外差混频探测器研究获重大进展
    p  中国电子科技集团有限公司第十三研究所专用集成电路国家级重点实验室与中国科学院苏州纳米技术与纳米仿生研究所、中国科学院纳米器件与应用重点实验室再次合作,在高灵敏度石墨烯场效应晶体管(G-FET)太赫兹自混频(Homodyne mixing)探测器的基础上,实现了外差混频(Heterodyne mixing)和分谐波混频(Sub-harmonic mixing)探测,最高探测频率达到650 GHz,利用自混频探测的响应度对外差混频和分谐波混频的效率进行了校准,该结果近期发表在碳材料杂志Carbon上(Carbon 121, 235-241 (2017))。/pp  频率介于红外和毫米波之间的太赫兹波(Terahertz wave)在成像、雷达和通信等技术领域具有广阔的应用前景,太赫兹波与物质的相互作用研究具有重要的科学意义。高灵敏度太赫兹波探测器是发展太赫兹应用技术的核心器件,是开展太赫兹科学研究的重要手段与主要内容之一。太赫兹波探测可分为直接探测和外差探测两种方式:直接探测仅获得太赫兹波的强度或功率信息 而外差探测可同时获得太赫兹波的幅度、相位和频率信息,是太赫兹雷达、通信和波谱成像应用必需的核心器件。外差探测器通过被测太赫兹信号与低噪声本地相干太赫兹信号的混频,将被测信号下转换为微波射频波段的中频信号后进行检测。与直接探测相比,外差探测通常具备更高的响应速度和灵敏度,但是探测器结构与电路更加复杂,对混频的机制、效率和材料提出了更高的要求。/pp  天线耦合的场效应晶体管支持在频率远高于其截止频率的太赫兹波段进行自混频探测和外差混频探测。前者是直接探测的一种有效方法,可形成规模化的阵列探测器,也是实现基于场效应晶体管的外差混频探测的基础。目前,国际上基于CMOS晶体管实现了本振频率为213 GHz的2次(426 GHz)和3次(639 GHz)分谐波混频探测,但其高阻特性限制了工作频率和中频带宽的提升。/pp  石墨烯场效应晶体管因其高电子迁移率、高可调谐的费米能、双极型载流子及其非线性输运等特性为实现高灵敏度的太赫兹波自混频和外差混频探测提供了新途径。前期,双方重点实验室秦华团队和冯志红团队合作成功获得了室温工作的低阻抗高灵敏度石墨烯太赫兹探测器,其工作频率(340 GHz)和灵敏度(~50 pW/Hz1/2)达到了同类探测器中的最高水平(Carbon 116, 760-765 (2017))。此次合作进一步使工作频率提高至650 GHz,并实现了外差混频探测。/pp  如图1所示,工作在650 GHz的G-FET太赫兹探测器通过集成超半球硅透镜,首先通过216、432和650 GHz的自混频探测,验证了探测器响应特性与设计预期一致,并对自混频探测的响应度和太赫兹波功率进行了测试定标。在此基础上,实现了本振为216 GHz和648 GHz的外差混频探测,实现了本振为216 GHz的2次分谐波(432 GHz)和3次分谐波(648 GHz)混频探测。混频损耗分别在38.4 dB和57.9 dB,对应的噪声等效功率分别为13 fW/Hz和2 pW/Hz。2次分谐波混频损耗比216 GHz外差混频损耗高约8 dB。/pp  此次获得混频频率已远高于国际上已报道的石墨烯外差探测的最高工作频率(~200 GHz),但中频信号带宽小于2 GHz,低于国际上报道最高中频带宽(15 GHz)。总体上,目前G-FET外差混频探测器性能尚不及肖特基二极管混频器。但是,无论在材料质量还是在器件设计与工艺技术上,都有很大的优化提升空间。根据Andersson等人预测,G-FET的混频转换效率可降低至23.5 dB,如何达到并超越肖特基二极管混频探测器的性能指标是未来需要重点攻关的关键问题。/pp  图3所示为基于432 GHz的直接探测以及二次谐波探测的透射成像图对比,分谐波探测时的透射成像显现出比直接探测更高的动态范围,可达40 dB。/pp  该研制工作得到了国家自然科学基金项目(No. 61271157, 61401456, 61401297等)、国家重点研发计划(2016YFF0100501, 2014CB339800)、中科院青促会(2017372)、中科院苏州纳米所纳米加工平台、测试分析平台和南京大学超导电子学研究所的大力支持。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/c73fe96e-7527-4de4-8f95-ff4e6c2935aa.jpg" title="1.jpg"/ /pp style="text-align: center "图1:650 GHz天线耦合的G-FET太赫兹外差混频探测器br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/70869861-507f-4a27-91dc-64a7cf6c6185.jpg" title="2.jpg"//pp style="text-align: center "图2:(a)准光耦合的外差混频探测系统示意图 (b)216 GHz外差混频探测的中频频谱br//pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/15463ac0-04f0-4c63-9091-fee1013ca466.jpg" title="3.jpg"//pp style="text-align: center "图3:(a)分别采用432 GHz直接探测和本振为216 GHz的2次分谐波探测对树叶进行的透射成像效果对比 (b)采用本振为216 GHz的2次分谐波探测对柠檬片的透视成像。/p
  • 激光外差干涉技术在光刻机中的应用
    激光外差干涉技术在光刻机中的应用 张志平*,杨晓峰 复旦大学工程与应用技术研究院上海市超精密运动控制与检测工程研究中心,上海 201203摘要 超精密位移测量系统是光刻机不可或缺的关键分系统之一,而基于激光外差干涉技术的超精密位移测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程和数米每秒的测量速度等优点,是目前唯一能满足光刻机要求的位移测量系统。目前应用于光刻机的超精密位移测量系统主要有双频激光干涉仪和平面光栅测量系统两种,二者均以激光外差干涉技术为基础。本文将分别对这两种测量系统的原理、优缺点以及在光刻机中的典型应用进行阐述。关键词 光刻机;外差干涉;双频激光干涉仪;平面光栅1 引言集成电路产业是国家经济发展的战略性、基础性产业之一,而光刻机则被誉为集成电路产业皇冠上的明珠[1]。作为光刻机三大指标之一的套刻精度,是指芯片当中上下相邻两层电路图形的位置偏差。套刻精度必须小于特征图形的1/3,比如14 nm节点光刻机的套刻精度要求小于5.7 nm。影响套刻精度的重要因素是工件台的定位精度,而工件台定位精度确定的前提则是超精密位移测量反馈,因此超精密位移测量系统是光刻机不可或缺的关键分系统之一[2-4]。随着集成电路特征尺寸的不断减小,对位置测量精度的需求也不断提高;同时,为了满足光刻机产率不断提升的需要,掩模台扫描速度也在不断提高,甚至达到 3 m/s 以上;此外,为了满足大尺寸平板显示领域的需求,光刻机工件台的尺寸和行程越 来越大,最大已达到 1. 8 m×1. 5 m;最后,为了获得工件台和掩模台良好的同步性能,光刻机还要求位置测量系统具备多轴同步测量的功能,采样同步不确定性优于纳秒级别[5-8]。 综上,光刻机要求位置测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程、数米每秒测量速度、闭环反馈以及多轴同步等特性。目前,在精密测量领域能同时满足上述测量要求的,只有外差干涉测量技术。 本文分别介绍外差干涉测量技术原理及其两 种具体结构——双频激光干涉仪和平面光栅测量系统,以及外差干涉技术在光刻机中的典型应用。 2 外差干涉原理 2. 1 拍频现象 外差干涉又称为双频干涉或者交流干涉,是利用“拍频”现象,在单频干涉的基础上发展而来的一 种干涉测量技术。 假设两列波的方程为 x1 = A cos ω1 t , (1) x2 = A cos ω2 t 。 (2) 叠加后可表示为(3)拍频定义为单位时间内合振动振幅强弱变化 的次数,即 v =| (ω2 - ω1)/2π |=| v 2 - v 1 | 。 (4) 波 x1、x2 以及合成后的波 x 如图 1 所示,其中包 络线的频率即为拍频,也称为外差频率。如果其中一个正弦波的相位发生变化,拍频信号的相位会发生完全相同的变化,即外差拍频信号将完整保留原始信号的相位信息。 图 1. 拍频示意图Fig. 1. Beat frequency diagram对于激光而言,因为频率很高(通常为 1014 Hz 量级),目前的光电探测器无法响应,但可以探测到两束频率相近的激光产生的拍频(几兆到几十兆赫兹)。因此拍频被应用到激光领域,发展成激光外差干涉技术。2. 2 外差干涉技术 由拍频原理可知 ,所谓外差就是将要接收的信号调制在一个已知频率信号上,在接收端再将该调制信号进行解调。由于高频率的激光信号相位变化难以精确测量,但利用外差干涉技术可以用低频拍频信号把高频信号的 相位变化解调出来,将大大降低后续精确鉴相的难度。因此,外差技术最显著的特点就是信号以交流的方式进行传输和处理。 与单频干涉技术相比,外差干涉技术的突出优点是:1)由于被测对象的相位信息是加载在稳定的差频(通常几兆到几十兆赫兹)上,因此光电探测时避过了低频噪声区,提高了光电信号的信噪比。例如在外界干扰下,测量光束光强衰减 50% 时,单频干涉仪很难正常工作,而外差干涉仪在光强衰减 90% 时仍能正常工作 ,因此更适用于工业现场 。 2)外差干涉可以根据差频信号的增减直接判别运动方向,而单频干涉技术则需要复杂的鉴相系统来 判别运动方向。单频干涉技术与外差干涉技术对比如表 1 所示。表 1. 单频干涉技术与外差干涉技术对比Table 1. Comparison between homodyne interferometry and heterodyne interferometry3双频激光干涉仪 3. 1 双频激光干涉仪原理 双频激光干涉仪是在单频激光干涉仪的基础上结合外差干涉技术发展起来的,其原理如图 2 所 示。双频激光器发出两列偏振态正交的具有不同频率的线偏振光,经过偏振分光器后光束被分离。 图 2. 双频激光干涉仪原理图Fig. 2. Schematic diagram of dual frequency laser interferometer设两束激光的波动方程为 E1 = E R1 cos ( 2πf1 t ) E2 = E R2 cos ( 2πf2 t ) , (5) 式中:ER1和 ER2为振幅;f1和 f2为频率。 偏振态平行于纸面的频率为 f1 的光束透过干涉仪后,被目标镜反射回干涉仪。当被测目标镜移动时,产生多普勒效应,返回光束的频率变为 f1 ± Δf, Δf 为多普勒偏移量,它包含被测目标镜的位移信息。经过干涉镜后,与频率为 f2 的参考光束会合,会合后光束发生拍频,其光强 IM函数为 (6) 式(6)包含一个直流量和一个交流量,经光电探测器转换为电信号,再进行放大整形后,去除直流量,将交 流量转换为一组频率为 f1 ± Δf- f2的脉冲信号。从双频激光器中输出频率为 f1 - f2 的脉冲信 号,作为后续电路处理的基准信号。测试板卡采用减法器通过对两列信号的相减,得到由于被测目标 镜的位移引起的多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为 (7) 式中:λ 为激光的波长;N 为干涉的条纹数。因此, 只要测得条纹数,就可以计算出被测物体的位移。 3. 2 系统误差分析 双频激光干涉仪的系统误差大致由三部分组成:仪器误差、几何误差以及环境误差,如表 2 所示。 三种误差中,仪器误差可控制在 2 nm 以内;几何误 差可以通过测校进行动态补偿,残差可控制在几纳米以内;环境误差的影响最大,通常可达几十纳米到几微米量级,与测量区域的环境参数(温度、压 力、湿度等)有关,与量程几乎成正比,因此大量程测量时,需要对环境参数进行控制。 表 2. 双频激光干涉仪系统误差分解Table 2. System error of dual frequency laser interferometer4 平面光栅测量系统 双频激光干涉仪在大量程测量时,精度容易受 温度、压力、湿度等环境因素影响,研究者们同样基于外差干涉原理研发了平面光栅测量系统,可克服双频激光干涉仪的这一缺点。 4. 1 基于外差干涉的光栅测量原理 众所周知 ,常规的光栅测量是基于叠栅条纹的,具有信号对比度差、精度不高的缺点。基于外差干涉的光栅测量原理如图 3 所示,双频激光器发出频率 f1 和 f2 的线偏振光,垂直入射到被测光栅表面,分别进行+1 级和−1 级衍射,衍射光经过角锥反射镜后再次入射至被测光栅表面进行二次衍射, 然后会合并沿垂直于光栅表面的方向返回。由于被测光栅与光栅干涉仪发生了相对运动,因此,返回的激光频率变成了 f1 ± Δf和 f2 ∓ Δf,其中 Δf为多 普勒频移量,它包含被测目标镜的位移信息。 图 3. 基于外差干涉的光栅测量原理Fig. 3. Principle of grating measurement based on heterodyne interference会合后的光束 f1 ± Δf 和 f2 ∓ Δf 发生拍频,其频率为 ( f1 ± Δf ) - ( f2 ∓ Δf ) = ( f1 - f2 ) ± 2Δf。(8) 式(8)的信号与双频激光器中输出频率为 f1 - f2 的 参考信号相减,得到多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为(9) 式中 :p 为光栅的栅距 ;N 为干涉的条纹数 。 因此,只要测得条纹数 ,就可以计算出被测物体的位移。 上述原理推导是基于一维光栅刻线的,只能测量一维运动。为了获得二维测量,只需将光栅的刻线由一维变成二维(即平面)即可。 4. 2 两种测量系统优缺点对比 由此可知,基于外差干涉的光栅测量原理与双频激光干涉仪几乎完全相同,主要的差别是被测对象由反射镜换成了衍射光栅。两种测量系统的优缺点如表 3 所示。表 3. 双频激光干涉仪与光栅测量系统对比Table 3. Dual frequency laser interferometer versus gratingmeasurement system5外差干涉测量在光刻机中的应用 发展至今,面向 28 nm 及以下技术节点的步进扫描投影式光刻机已成为集成电路制造的主流光刻机。作为光刻机的核心子系统之一的超精密工件台和掩模台,直接影响着光刻机的关键尺寸、套刻精度、产率等指标。而工件台和掩模台要求具有高速、高加速度、大行程、超精密、六自由度(x、y 大 行程平动,z 微小平动,θx、θy、θz微小转动)等运动特点,而实现这些运动特点的前提是超精密位移测量反馈。因此,基于外差干涉技术的超精密位移测量子系统已经成为光刻机不可或缺的组成部分。 4. 光刻机中的多轴双频激光干涉仪[10]Fig. 4. Multi-axis dual frequency laser interferometer in lithography machine[10]图 4 为典型的基于多轴双频激光干涉仪的光刻机工件台系统测量方案[10],在掩模台和硅片台的侧面布置多个多轴激光干涉仪,对应地在掩模台和硅 片台上安装长反射镜;通过多个激光干涉仪的读数解算出掩模台和硅片台的六自由度位移。 然而,随着测量精度、测量行程、测量速度等运动指标的不断提高,双频激光干涉仪由于测量精度易受环境影响、长反射镜增加运动台质量致使动态性能差等问题难以满足日益提升的测量需求。因 此,同样基于外差干涉技术的平面光栅测量系统成为了另一种选择[8]。 光刻机工件台平面光栅测量技术首先由世界光刻机制造巨头 ASML 公司取得突破。该公司于 2008 年 推 出 的 Twinscan NXT:1950i 浸 没 式 光 刻机,采用了平面光栅测量技术对 2 个工件台的六自 由度位置进行精密测量。如图 5 所示,该方案在主基板的下方布置 8 块大面积高精度平面光 栅(约 400 mm×400 mm),在两个工件台上分别布置 4 个 平面光栅读数头(光栅干涉仪),当工件台相对于平 面光栅运动时,平面光栅读数头即可测出工件台的 运动位移[2,5,9]。图 5. ASML 光刻机的平面光栅测量方案[2,5,9]Fig. 5. Plane grating measurement scheme of ASML lithography machine[2,5,9]相比多轴双频激光干涉仪测量方案,平面光栅测量方案具有以下优点:1)测量光路短(通常小于 20 mm),因此测量重复精度和稳定性对环境变化不 敏感;2)工件台上无需长反射镜,因此质量更轻、动态性能更好。 然而,平面光栅测量方案也有其缺点:1)大面积高精度光栅制造难度太大;2)由式(9)可知,位移 测量结果以栅距 p 为基准,然而受栅距均匀性限制, 测量绝对精度不高。为了获得较好的精度和线性度,往往需要利用双频激光干涉仪进行标定。 面临极端测量需求的挑战 ,Nikon 公 司 在 NSR620D 光刻机中采用了平面光栅和双频激光干涉仪混合测量的技术方案[9],如图 6 所示。该方案 将平面光栅安装在工件台上表面,而将光栅读数头安装在主基板下表面,同时增加了双频激光干涉仪,结合了平面光栅测量系统和双频激光干涉仪的 优点。在读头与读头切换时采用双频激光干涉仪进行在线校准。 图 6. Nikon光刻机混合测量方案[9]Fig. 6. Hybrid measurement scheme of Nikon lithography machine [9]6激光外差干涉系统的发展趋势 无论是双频激光干涉仪还是平面光栅测量系统,要想获得纳米级测量精度,既需要提高测量系统本身的精度,更需要从使用的角度努力,即“三分 靠做,七分靠用”。 就激光外差干涉测量系统本身而言,误差源主要来自于光学非线性误差。在外差干涉测量系统 中,由于光源及光路传输过程各光学器件性能不理想或装调有偏差,会带来两个频率的光混叠现象, 即原本作为测量信号频率 f1(或 f2)的光中混杂了频 率 f2(或 f1)的光,或原本作为参考信号频率 f2(或 f1) 的光中混杂了频率 f1(或 f2)的光。在信号处理中该混叠的频率信号会产生周期性的光学非线性误差。尽管目前主流的双频激光干涉仪厂家已经将非线性误差控制在 2 nm 以内[10- 12],但应用于 28 nm 以下光刻机时仍然需要进一步控制该误差。国内外众多学者从非线性误差来源、检测和补偿等角度出发,进行了大量研究并取得了丰硕成果[13- 17]。这些成果有望对非线性误差的动态补偿提供理论支持。 从应用角度,研究热点主要集中在应用拓展、 安装误差及其测校算法、环境参数控制及其补偿方法研究等方面。在应用拓展方面,激光外差干涉技术除了应用于测长之外,还在小角度测量、直线度、平面度、反馈测量等方面取得了应用[18- 20]。在安装误差和环境误差补偿算法方面,主要聚焦于多自由度解耦算法、大气扰动补偿等研究方向[4,21- 27]。 7 总结 阐述了光刻机对位移测量系统大量程、亚纳米 分辨率、纳米精度、高测速及多轴同步的苛刻要求。 概述了激光外差干涉技术原理,指出目前为止,激光外差干涉技术是唯一能满足光刻机上述要求的超精密位移测量技术。并综述了两种基于激光外差干涉技术的测量系统:双频激光干涉仪和平面光栅测量系统。总结了这两种位移测量系统在光刻机中的典型应用,以及激光外差干涉技术的当前研究热点和发展趋势。全文详见:激光外差干涉技术在光刻机中的应用.pdf
  • 高分辨率激光外差光谱技术研究取得进展
    近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所副研究员许振宇团队在激光外差光谱技术研究中获进展。相关研究成果发表在《光学通信》(Optics Letters)上。激光外差光谱仪因具有高光谱分辨率、体积小、易集成等优点,已经逐渐发展成为与地基傅里叶变换光谱仪互补的温室气体柱浓度与廓线测量工具。激光外差光谱技术因受限于光学天线理论,无法通过增加光学接收口径的方法提高外差信号信噪比,这导致高分辨率激光外差探测中气体廓线测量精度受限。对此,研究人员提出基于半导体光放大技术的微弱太阳光放大方法,解决了高分辨率激光外差探测中光学天线理论限制的外差信号信噪比提高问题。研究结果表明,相比于传统的高分辨率激光外差光谱仪,所研发的基于半导体光放大的高分辨率激光外差光谱仪的弱光信号探测和气体浓度测量精度得到大幅提升。该研究有助于提高高分辨率激光外差光谱仪的性能,在大气温室气体传感等方面具有巨大应用潜力。相关研究工作获得国家自然科学基金、国家重点研发计划等项目的资助。基于半导体光放大技术的激光外差光谱仪实验装置示意图信号对比测量结果
  • 安光所二氧化碳空间外差光谱仪校飞成功
    大气温室气体是导致全球平均气温和海温升高、大范围雪和冰融化、以及海平面上升等全球气候变化的重要因素,特别是二氧化碳的排放是当今世界最为关注的地球大气环境问题。实现对全球大气温室气体(尤其是二氧化碳)的高精度探测,对我国制定相关气候应对措施具有深远影响,将为我国的环境外交政策提供强有力的技术支撑和保障。基于目前科学技术水平,准确把握二氧化碳的全球变化,是目前空间遥感探测的热点和难点,需要充分依靠高灵敏度和高光谱分辨率的遥感探测技术。  由我所承担的院空间科技创新基地重要方向项目“超光谱环境遥感监测关键技术研究”经过近2年攻关,研制成功基于空间外差光谱技术(SHS — Spatial Heterodyne Spectroscopy)的大气主要温室气体二氧化碳航空遥感探测试验样机。该技术目前已被列入高光谱观测卫星与环境减灾小卫星的温室气体探测计划。  日前,在山东日照进行的机载试验受到中国海监北海支队的大力支持,机载试验样机装载于中国海监Y-12飞机,实现一次装机,一次校飞获取信息。试验共飞行两架次,约9个半小时,两个飞行高度(500m、1000m),飞行区域为山东日照市区及附近郊区,选择了农田、工业区、海岸滩涂等典型地表区域,获取了大量数据。预处理结果表明了试验样机完全到达了设计指标,即在大气二氧化碳最主要的吸收波段1575nm范围中,得到光谱分辨率为0.1nm的实际大气二氧化碳吸收光谱,与理论计算对比一致。这些遥感数据将成为反演大气环境中二氧化碳柱浓度不可替代的和最直接的依据。下图为二氧化碳机载试验样机、机载试验状况及大气二氧化碳超光谱曲线。  空间外差光谱技术是近年发展起来的一种新型超光谱遥感探测技术,与传统的傅立叶干涉系统(如日本的GOSAT)和衍射光栅系统(如欧洲的ENVISAT、美国的OCO)高分辨光谱遥感技术相比,空间外差光谱技术更具有针对性,该技术综合了衍射及空间调制干涉技术于一体,在限定的光谱范围内可达到很高的光谱分辨率和信噪比,且具有结构紧凑、无运动部件等特点,因而成为高精度大气成分遥感探测的优选技术之一。  安徽光机所是国内最早开展空间外差光谱技术实验研究的单位之一,先后获得了国家自然基金、863项目、院创新基金的支持。2008年在院重要方向项目支持下,集中攻克了空间外差一体化干涉仪核心技术,解决了大气温室气体空间外差光谱遥感系统设计及定标(辐射、光谱以及吸收池)等关键技术,针对二氧化碳、甲烷以及一氧化碳等大气温室气体的探测研制了机载遥感试验样机和干涉仪组件。  本次校飞试验结果表明,历时两年自主研发的二氧化碳空间外差光谱仪系统指标先进、性能稳定。本次校飞试验,不仅在国内首次获得了高分辨率大气二氧化碳飞行数据,同时验证了该系统在移动平台下获取高质量大气二氧化碳超分辨光谱的能力,为发展包括大气温室气体、气溶胶、污染气体等国家机载大气环境遥感监测系统,以及发展我国大气温室气体星载遥感系统奠定了坚实基础。
  • 合肥研究院在高分辨率激光外差光谱技术研究方面取得进展
    近期,中国科学院合肥物质科学研究院安徽光学精密机械研究所副研究员许振宇团队在激光外差光谱技术研究中获进展。相关研究成果发表在《光学通信》(Optics Letters)上。  激光外差光谱仪因具有高光谱分辨率、体积小、易集成等优点,已经逐渐发展成为与地基傅里叶变换光谱仪互补的温室气体柱浓度与廓线测量工具。激光外差光谱技术因受限于光学天线理论,无法通过增加光学接收口径的方法提高外差信号信噪比,这导致高分辨率激光外差探测中气体廓线测量精度受限。对此,研究人员提出基于半导体光放大技术的微弱太阳光放大方法,解决了高分辨率激光外差探测中光学天线理论限制的外差信号信噪比提高问题。研究结果表明,相比于传统的高分辨率激光外差光谱仪,所研发的基于半导体光放大的高分辨率激光外差光谱仪的弱光信号探测和气体浓度测量精度得到大幅提升。  该研究有助于提高高分辨率激光外差光谱仪的性能,在大气温室气体传感等方面具有巨大应用潜力。  相关研究工作获得国家自然科学基金、国家重点研发计划等项目的资助。  论文链接基于半导体光放大技术的激光外差光谱仪实验装置示意图信号对比测量结果
  • 科学岛团队在高分辨率激光外差光谱技术研究方面取得新进展
    近期,中科院合肥研究院安光所许振宇副研究员课题组科研人员在激光外差光谱技术研究中取得新的突破,相关研究成果发表在《光学通信》(Optics Letters)上,且该论文被编入编辑精选(Editor’s Pick)。   激光外差光谱仪因具有高光谱分辨率、体积小、易集成等优点,已经逐渐发展成为与地基傅里叶变换光谱仪互补的温室气体柱浓度与廓线测量工具。激光外差光谱技术因受限于光学天线理论,无法通过增加光学接收口径的方法提高外差信号信噪比,这导致高分辨率激光外差探测中气体廓线测量精度受限。对此,安光所科研团队邓昊博士后首次提出基于半导体光放大技术微弱太阳光放大方法,解决了高分辨率激光外差探测中光学天线理论限制的外差信号信噪比提高问题。研究结果表明所研发的基于半导体光放大的高分辨率激光外差光谱仪相比于传统的高分辨率激光外差光谱仪在弱光信号探测以及气体浓度测量精度方面得到大幅提升。   该研究提高了高分辨率激光外差光谱仪的性能,在大气温室气体传感等方面具有巨大的应用潜力。   邓昊博士后是论文第一作者,许振宇副研究员与阚瑞峰研究员是论文通信作者。该研究获得国家自然科学基金、国家重点研发计划等项目的资助。基于半导体光放大技术的激光外差光谱仪实验装置示意图信号对比测量结果
  • 高分辨率激光外差光谱技术新突破!信号探测和测量精度双双大幅提升
    近日,中科院合肥研究院安光所许振宇副研究员课题组科研人员在激光外差光谱技术研究中取得新的突破,相关研究成果发表在《光学通信》(Optics Letters)上,且该论文被编入编辑精选(Editor’s Pick)。激光外差光谱仪因具有高光谱分辨率、体积小、易集成等优点,已经逐渐发展成为与地基傅里叶变换光谱仪互补的温室气体柱浓度与廓线测量工具。激光外差光谱技术因受限于光学天线理论,无法通过增加光学接收口径的方法提高外差信号信噪比,这导致高分辨率激光外差探测中气体廓线测量精度受限。对此,安光所科研团队邓昊博士后首次提出基于半导体光放大技术的微弱太阳光放大方法,解决了高分辨率激光外差探测中光学天线理论限制的外差信号信噪比提高问题。研究结果表明所研发的基于半导体光放大的高分辨率激光外差光谱仪相比于传统的高分辨率激光外差光谱仪在弱光信号探测以及气体浓度测量精度方面得到大幅提升。该研究提高了高分辨率激光外差光谱仪的性能,在大气温室气体传感等方面具有巨大的应用潜力。基于半导体光放大技术的激光外差光谱仪实验装置示意图信号对比测量结果文章链接:https://opg.optica.org/ol/fulltext.cfm?uri=ol-47-17-4335&id=493999
  • 崂应3023Y紫外差分烟气分析仪 入选2022年度第一批青岛市创新产品
    近日,青岛市工业和信息化局公示了2022年度第一批青岛市创新产品,崂应自主研发生产的崂应3023Y紫外差分烟气分析仪荣膺其中。崂应3023Y型 紫外差分烟气分析仪青岛市创新产品 青岛市创新产品是青岛市工业和信息化局为鼓励支持企业研发新技术、新产品、新工艺,加大企业创新产品推广应用力度,促进创新产品市场化和产业化,按照《青岛市创新产品推荐目录编制工作指南(试行)》(青工信规〔2021〕1号)和《关于组织编制青岛市创新产品推荐目录(2022年度第一批)的通知》等文件要求,组织企业进行申报并经形式审查、专家评审等环节评选而出。 创新是企业生存与发展的根本。该奖项是对我司创新能力和产业化能力的肯定,也将继续推动我司不断创新发展,迈上新台阶!
  • Science:纳米范德瓦尔斯材料上的红外双曲变面研究
    2018年2月,西班牙Rainer Hillenbrand教授在《Science》上发表了题为:Infrared hyperbolic metasurface based on nanostructured van der Waals materials的全文文章,发现纳米范德瓦尔斯材料上的红外双曲变面特性,在红外可变平台设备的开发中取得重要进展。文章中Hillenbrand团队利用超高分辨散射式近场光学显微镜neaSNOM,对纳米氮化硼薄膜表面进行了精细扫描。该类型薄膜表面一般具有光学超表面特性,同时可以支持深度亚波长尺度的声子化激元。研究者在在这样的纳米结构基础上,通过neaSNOM优于10nm空间分辨率的光谱和近场光学图像观测到了发散化子束的不规则波前,如下图所示。图1 A为该项工作的原理示意,图1 B为该结构的形貌表征;图1 C、D为近场强度信号在该结构中的纳米成像并分辨对应HMS(实线)及hBN(虚线)结果。这些表征结果描述了hBN光栅功能面内的HMS。图1:散射式近场光学显微镜(neaSNOM)下声子化激元在20纳米的hBN-HMS的成像结果。C、D 即为近场强度信号在该结构中的纳米成像并分辨对应HMS(实线)及hBN(虚线)结果。该工作在光学超表面光学性质的研究,对于控制材料的等离子体化激元有着突出的意义,其中利用到一种特的相位和振幅信号分离技术,这种技术是超高分辨散射式近场光学显微镜neaSNOM申请,如下图,HMS-PHPs的波前成像结果显示其发散化子束的不规则波前,是双曲化子的重要特征。近场增强和限制可以有效操纵交换表面发射的热辐射。该项研究成果揭示了各向异性材料中化基元的不规则波前,与此同时,该类型纳米结构尺寸的范德华材料拥有优异的双曲线性质,使得红外可变平台设备的开发在未来的研究中将进一步成为可能。图2:散射式近场光学显微镜(neaSNOM)下HMS-PHPs的波前成像结果。C中近场成像结果获取于w = 1430 cm-1单色波长激发。★ 科普小知识 ★neaSNOM是德国neaspec公司推出的三代散射式近场光学显微镜(简称s-SNOM),其采用了化的散射式核心设计技术,大的提高了光学分辨率,并且不依赖于入射激光的波长,能够在可见、红外和太赫兹光谱范围内,提供优于10nm空间分辨率的光谱和近场光学图像。由于其高度的可靠性和可重复性,neaSNOM业已成为纳米光学领域热点研究方向的科研设备,在等离基元、纳米FTIR和太赫兹等众多研究方向得到了许多重要科研成果。★ 超高分辨成像技术的诸多特点,你知道吗? ★◆ neaSNOM是目前上成熟的s-SNOM成像产品◆ 保护的散射式近场光学测量技术——有的高10 nm空间分辨率◆ 的高阶解调背景压缩技术——在获得10nm空间分辨率的同时保持高的信噪比◆ 保护的干涉式近场信号探测单元◆ 的赝外差干涉式探测技术——能够获得对近场信号强度和相位的同步成像◆ 保护的反射式光学系统 ——用于宽波长范围的光源:可见、红外以至太赫兹◆ 高稳定性的AFM系统,——同时优化了纳米尺度下光学测量 ◆ 双光束设计——高的光学接入角:水平方向180°,垂直方向60°◆ 操作和样品准备简单 ——仅需要常规的AFM样品准备过程相关产品及链接1、超高分辨散射式近场光学显微镜:http://www.instrument.com.cn/netshow/SH100980/C170040.htm 2、纳米傅里叶红外光谱仪 Nano-FTIR:http://www.instrument.com.cn/netshow/SH100980/C194218.htm
  • 扫描近场光学显微技术(SNOM)书写的发展史诗
    “扫描近场光学显微技术” 早由科学研究工作者Edward Hutchinson Synge提出。根据观察到的在一定压力下电弧发出的通过孔径仅为100nm的强聚焦平面光,他认为,利用这种小孔径可以使光在样品表面进行逐点扫描成像,同时采集被测量物质的光学信息,并大胆预测这一技术的实现将是照明探测研究领域中的巨大突破。在1956年和1972年,John A.O' Keefe与Ash and Nicholls进一步完善了该理论,并提出小孔探测原件尽可能接近样品表面将有助于该技术的实现。1984年,台利用可见光辐射进行测量的近场光学显微镜由Pohl等制造并使用,该显微镜通过探针在样品表面保持数十纳米的距离采集反馈信息,并在两年后实现了高分辨成像。 然而,传统近场光学显微镜由于瑞利衍射限(Rayleigh limitation),其分辨率不仅受到孔径尺寸的制约,也受到入射光波长1/2的限制。因此,对于sub-um的纳米材料检测成像时,传统近场光学显微镜只能采用有限波长范围的可见光,且难以获得高清图像信息。在中红外领域,近场光学显微技术对纳米结构几乎没有用武之地。 散射式近场光学显微镜利用AFM探针对激光光束聚焦照明,在针附近激发一个纳米尺度的增强近场信号区域。当针接近样品表面时,由于不同物质的介电性质差异,近场光学信息将被改变。通过背景压制技术对采集的散射信号进行解析,就能获取到样品表面的近场光学谱图并进行成像。该技术突破了传统孔径显微的限制,其分辨率仅由AFM探针针的曲率半径决定。 德国Neaspec公司提供的新一代近场光学显微镜NeaSNOM采用了这一散射式技术,高分辨率可达10nm,并通过式的赝外差数据分析模式,同时解析强度和相位信号,解决了纳米材料尤其是在红外光谱范围的近场光学成像难题。 利用赝外差技术实现了近场光学显微镜对强度和相位的同时成像 近五年以来(2011年至今)散射式近场光学显微技术在局域表面等离子激元,无机材料表面波传导,二维材料声子化,近场光电流,半导体载流子浓度,高分子材料鉴别和生物样品成像等领域研究得到了广泛的应用,已然成为推动光学物理、材料应用发展的重要工具。 2016年,A.Y. Nikitin等通过波长10-12μm激发裁剪后的石墨烯纳米谐振器,得到了大量共存的Fabry–Perot mode信息。通过理论分析其两种等离子模式,即sheet plasmon和edge plasmon,发现后者体积仅为激发波长的10^-8倍。并通过理解edge plasmon的原理,可以促进一维量子发射器的开发,等离子激元和声子在中红外太赫兹探测器的研究,纳米图案化拓扑缘体等领域的进一步发展。 文章中5nm厚SiO2上的不同尺寸(394 × 73 nm (a), 360 × 180 nm (b) and 400 × 450 nm (c))石墨烯纳米谐振器,在11.31μm波长下的近场成像 石墨烯由于其特性能被广泛的认可为具发展潜能的下一代光电设备材料,然而其纳米别性能的变化影响了宏观行为,高性能石墨烯光电器件的开发受到了大制约。AchimWoessner等结合红外近场扫描纳米显微镜和电子读取技术,实现了红外激发光电流的成像,并且精度达到了数十纳米别。通过研究边际和晶界对空间载流子浓度和局域热电性质的影响,实验者证明了这一技术对封闭石墨烯器件应用的益处。 近场光电流的工作原理示意图以及中从晶粒间界处得到的光电流实际测量结果 NeaSNOM是市场一款散射型扫描近场光学显微镜,化的散射式核心设计技术,大的提高了光学分辨率,并且不依赖于入射激光的波长,能够在可见、红外和太赫兹光谱范围内,提供优于10nm空间分辨率的光谱和近场光学图像。 NeaSNOM中嵌入的一系列化探测和发光模块,保证了谱图的可靠性和可重复性,成为纳米光学领域热点研究方向的科研设备。 【NeaSNOM样机体验与技术咨询,请拨打:010-85120280】 相关产品:超高分辨散射式近场光学显微镜:http://www.instrument.com.cn/netshow/C170040.htm纳米傅里叶红外光谱仪:http://www.instrument.com.cn/netshow/C194218.htm
  • Nature:丝纤蛋白电调控构象转变及光刻应用的纳米红外研究
    蚕和蜘蛛生产的丝蛋白纤维以其无与伦比的机械强度和其源于天然结构中丰富的β折叠晶体所产生的可扩展性而为著名。受到传统的成像技术低化学敏感和低空间分辨的限制,在纳米尺度对丝蛋白纤维中的β折叠构象转变的研究具有大的挑战。近期,中科院微系统所陶虎教授带领的研究团队利用neaspec公司的近场光学显微镜(neaSNOM)高化学敏感和10 nm空间分辨的优势,在纳米尺度近分子水平研究了电调控下丝蛋白中的多形态转变。该工作发表在高水平的Nature Communication杂志上。该研究小组通过neaspec公司的散射型近场光学显微镜(s-SNOM)配合1495cm-1和1790cm-1可调谐中红外QCL激光器(图1d),采用的伪外差近场成像技术,对硅基底上尺寸约为10–350 nm的含高密度β折叠丝蛋白聚集体(图1e形貌),进行了纳米尺度的红外成像研究。从近场相成像图(图1f)中可以看出,在1631cm-1激光下,富含β折叠结构的丝蛋白与硅基底具有很强的对比。该对比主要源于β折叠结构中的二结构amide I在1631cm-1激光下的强烈吸收。然而,在1710cm-1激光下,近场相图(图1g)对比消失,显示该波长下丝蛋白结构小的红外吸收。同时通过不同波长下,对富含β折叠结构的透明丝蛋白的近场相信号变化研究,绘制出了波长与近场相信号变化的曲线(图1h),从曲线中可以明显看出1631cm-1激光下的丝蛋白的强烈吸收信号,与早期其他研究结果一致。图1 电调控下丝蛋白中纳米尺度下的多形态转变该研究在纳米尺度实现了蛋白质结构转换的探测,结合纳米精度的电子束光刻技术能为我们在二维及三维尺度实现丝蛋白的结构控制提供有力的方法;同时该工作为开启纳米尺度的蛋白质结构研究和探究蛋白质电诱导构象变化的临界条件铺平了道路;为未来设计基于蛋白质的纳米结构提了供新的规则。在取得前期研究成果的基础上,该研究团队再次利用neaspec公司的近场光学显微镜(neaSNOM)研究了不同类型的丝蛋白不同曝光时间的红外吸收响应,并成功实现了基于蛋白生物材料的光刻蚀平板印刷技术。该研究成果以全文的形式发表在Advanced Science杂志上。研究人员利用s-SNOM的直接成像和化学识别功能,突破了传统FTIR空间分辨率的限制,在纳米尺度下探索了UV曝光下薄层蛋白局域化学结构的变化。在1635cm-1波长下,获得了不同曝光时间样品UV–Silk30, UV–Silk90,UV–SilkHTP和UV–LC的相应近场相成像(图2d)。结果显示相对比度(丝蛋白和硅)随着曝光时间增加而减弱表明交联度的不断增加。另外,不同蛋白微米图案中吸收信号和曝光时间的关系曲线(图1e)显示,不同蛋白与曝光时间表现出随交联度变化的不同行为。例如:UV–Silk30的吸收强度线性随曝光时间增加而减小,表明交联度随曝光时间而持续增加。图2 UV-silk和UV-LC的FTIR和s-SNOM表征 截止今年11月17日,以neaspec稳定的产品性能和服务为支撑,通过neaspec国内用户的不断努力,近两年的时间已发表了关于近场光学成像和光谱的文章近30篇,其中超过半数发表在Nature Communication 、Advance Materials、ACS Nano、ACS Photonics和 ACS Sensor 及Nature子刊Light:Science & Application 等高水平期刊。伴随更多的研究者信赖和选择neaspec近场和光谱相关产品, neaspec国内用户的持续增加,坚信neaspec国内用户将在2018年取得更加丰厚的研究成果。人物介绍陶虎研究员于2016年荣获由《科学中国人》颁发的“科学中国人年度人物”奖项, 同时已在国际知名期刊和会议发表学术论文50余篇,近5年ISI总引用达1000多次,多项创新前沿成果受到了国际同行广泛关注和评价。他曾多次受邀在哈佛大学、杜克大学、麻省理工林肯实验室、美国洛斯阿拉莫斯实验室等国际知名学府和研究机构作特邀学术报告,其研究成果被Science、Nature、Nature Materials等国际期刊多次专题报道。 参考文献 1. Nanoscale probing of electron regulated structural transitions in silk proteins by near field IR imaging and nano-spectroscopy, Nature Comm. 7:130792. Precise Protein Photolithography (P3): High Performance Biopatterning Using Silk Fibroin Light Chain as the Resist, Adv. Sci. 2017, 1700191. 相关产品及链接 1、超高分辨散射式近场光学显微镜:http://www.instrument.com.cn/netshow/SH100980/C170040.htm2、纳米傅里叶红外光谱仪:http://www.instrument.com.cn/netshow/SH100980/C194218.htm3、太赫兹近场光学显微镜:http://www.instrument.com.cn/netshow/SH100980/C270098.htm
  • 7项中科院仪器功能开发项目通过验收
    近日,中国科学院合肥战略能源和物质科学大型仪器区域中心承担的2012年度7项中科院仪器设备功能开发技术创新项目全部通过验收。这些项目中,四个项目为合肥研究院承担,三个为中科大承担。  中科院仪器设备功能开发技术创新项目是贯彻落实中国科学院技术支撑系统建设工作会议精神和《中国科学院技术支撑系统建设实施方案》,组织实施的仪器设备新功能、新方法的技术创新项目。目的是鼓励并支持青年技术人员开展仪器设备新功能、新方法的技术创新研究,提高仪器研发水平,促进原始性科技创新成果的产出,充分发挥大型仪器资源的使用效率。  受中国科学院条件保障与财务局委托,合肥区域中心组织专家对7个项目分别进行了现场验收。按照项目验收流程,验收专家组听取了项目负责人的工作报告和测试报告,并现场核查了仪器装备新功能的运行情况。7个项目均实现了实施方案的功能和技术指标要求,完成了实施方案规定的各项任务,顺利通过验收。  &ldquo 极低温变温系统超导线低温试验功能研发&rdquo 项目,通过研发更高临界电流的测试平台、高精准度变温临界电流测试系统以及更方便经济合理的RRR测试平台,为超导材料的应用提供一个更加完整,可靠的实验平台,满足用户更多需求。  &ldquo 应用于材料试验机的位移场实时光测系统开发&rdquo 项目,开发了一套应用在现有材料试验机上的位移场光测系统及配套的控制和分析软件,实现了试样全场位移信息的非接触测量,扩展了材料试验机的测试内容和测试范围。  &ldquo 基于HRTEM开发的原位低温样品杆&rdquo 项目,通过改造低温样品杆,研制控制部件和真空转接口,实现了在HRTEM中低温观察样品功能。  &ldquo 共聚焦拉曼光谱仪的AFM同步系统功能开发&rdquo 项目,通过新增633 nm激光器,升级XYZ三维移动平台,扩大了拉曼仪器扫描范围,并能够用于活体细胞成像及拉曼检测 通过光纤与原子力系统联用,实现了在原子力成像的同时对样品的拉曼光谱采集。  &ldquo 液相色谱-原子荧光联用技术及其应用研究&rdquo 项目,通过设计样品在线分析流路,寻找砷、汞元素形态的高效提取方法,研究不同形态的分离方法,从而建立了砷、汞元素形态的分析方法,并成功地用于实际样品的在线检测。  &ldquo 毛细管电泳筛选适配体半自动化体系的建立&rdquo 项目,通过毛细管内壁修饰实现了小分子、蛋白质以及细胞的偶联,提高了靶标分子与核酸分子有效结合,缩短筛选周期。  &ldquo 利用激光频率锁定技术压窄中红外差频激光线宽&rdquo 项目,基于低压碘分子吸收以及数字PID技术,成功实现了Nd:YAG激光器的频率锁定,获得了线宽小于2MHz的中红外差频激光输出,为开展中红外波段大气分子高分辨率吸收光谱研究提供良好的实验平台。项目验收详细报道: http://sepsc.kjtj.cas.cn/xwdt/kyjz/201404/t20140430_230935.html (极低温变温系统超导线低温试验功能研发)http://sepsc.kjtj.cas.cn/xwdt/kyjz/201404/t20140416_171222.html (应用于材料试验机的位移场实时光测系统开发)http://sepsc.kjtj.cas.cn/xwdt/kyjz/201404/t20140430_230934.html (基于HRTEM开发的原位低温样品杆)http://sepsc.kjtj.cas.cn/xwdt/kyjz/201404/t20140430_230946.html (共聚焦拉曼光谱仪的AFM同步系统功能开发)http://sepsc.kjtj.cas.cn/xwdt/kyjz/201404/t20140416_171245.html (液相色谱-原子荧光联用技术及其应用研究)http://sepsc.kjtj.cas.cn/xwdt/kyjz/201404/t20140416_171249.html (毛细管电泳筛选适配体半自动化体系的建立)http://sepsc.kjtj.cas.cn/xwdt/kyjz/201404/t20140416_171219.html (利用激光频率锁定技术压窄中红外差频激光线宽)
  • 两项紫外新标准即将发布,这几项重点内容你有必要提前知道!
    近期,生态环境部发布了关于征求《固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿)》、《固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿)》两项国家环境保护标准意见的函。 崂应3023型 紫外差分烟气综合分析仪参与了两项新标的验证工作,且崂应作为“征求意见单位”之一,对于标准进行了认真深入的研究和讨论,对于即将发布的两项紫外新标准,这几项重点内容你有必要提前知道!第1项适用范围 崂应3023型 紫外差分烟气综合分析仪参与标准验证的数据表明,其 NO、NO2和SO2的检出限均优于标准的检出限。第2项 规范性引用文件 两项标准的规范性引用文件《便携式二氧化硫和氮氧化物紫外吸收法测量仪器技术要求及检测方法》尚未发布,但是崂应3023型 紫外差分烟气综合分析仪已经按照该标准要求完成适用性检测。第5项 干扰和消除 此处推荐崂应3023型 紫外差分烟气综合分析仪,干扰消除措施完善,完全满足标准要求:针对颗粒物该仪器主机和取样管都有过滤芯,过滤粒径5μm,完全满足标准要求。针对废气冷凝该仪器配有专用的崂应1030型烟气预处理系统,采样管和传输管都具有加热功能,温度范围在120~160℃,且温度可调节。针对不同成分干扰该仪器采用提取差分信号计算方法消除干扰。第6项试剂和材料第7项仪器和设备第9.1项仪器的气密性检查第9.2项仪器校准 崂应3023型 紫外差分烟气综合分析仪不仅具有零点校准、量程校准和多点校准功能,且零点校准可以选择清洁空气或者纯氮气,更方便用户选择。第9.3项样品测定紫外吸收法为何如此受关注?紫外吸收法是目前相对先进的SO2、NOx等气体检测技术,特别适合超低排放工况。相比红外吸收法,紫外吸收法的方法检出限更低,可直接检测NO2,不受水汽干扰。相对于电化学传感器,紫外吸收法具有寿命长,维护成本低,性能稳定,抗交叉干扰能力强等优势。除了参与标准验证的崂应3023型 紫外差分烟气综合分析仪,即将面市的崂应3023Y型 紫外烟气分析仪也完全满足两项紫外新标的要求。崂应3023Y型 紫外烟气分析仪?自主研发紫外差分烟气分析模块(检出限更低,且量程可定制)?主机和取样管一体式设计?采用热湿法,消除SO2和NO2的溶解损失?实时检测烟气湿度,同时显示干/湿基浓度?支持手操器遥控和主机按键触控两种操控模式“由于《固定污染源废气 氮氧化物的测定 紫外吸收法(征求意见稿)》和《固定污染源废气 二氧化硫的测定 紫外吸收法(征求意见稿)》尚处于意见整改阶段,以上针对征求意见稿的分析内容仅供参考,具体内容请以最终发布稿为准。届时,崂应会再次为您详细解析,敬请期待!”
  • 锐意发布锐意自控_锅炉大气污染物监测系统 Gasboard-9081新品
    产品名称:锅炉烟气排放监测系统(高配版)  产品型号:Gasboard-9081   锅炉烟气排放监测系统是基于紫外差分吸收光谱气体分析技术、非分光红外气体分析技术及长寿命电化学传感技术,配备一体化、自动化的采样预处理单元及控制单元,可同时在线测量烟气中NO、SO2、O2、CO、CO2的气体浓度,是一款专用于锅炉大气污染物排放及能效控制的在线监测设备,符合国家和地方环保部门的监管要求。   超低量程设计、测量精度高  采用紫外差分吸收光谱气体分析技术,仪器抗干扰能力强,多组分测量气体无交叉干扰;测量范围小于200mg/m3,满足国家和地方环保标准及超低排放监测需求。    燃烧效率监测、降低能耗  可自动计算、显示过量空气系数和燃烧效率,并自动存储测量数据,为调节工业现场燃烧工况提供依据。    多级除尘除湿、性能稳定  内置流量计、过滤器、冷却装置等组成的预处理系统对样气进行多级处理,保证分析系统的可靠性。    可燃气体监测、安全生产  采用非分光红外气体分析技术在线实时监测CH4气体体积浓度,可监测开炉点火前、停炉灭火后及持续运行过程中CH4浓度超标等情况,对现场的作业安全起到了预防作用。    全自动化控制、操作简单  采用控制卡为核心控制元件,OMRON中间继电器作为输出元件,自动完成采样、排水、故障处理等操作,实现24小时无人值守;仪器采用触摸屏设计,界面操作快速便捷。    多种通讯输出,应用更智能  自动存储测量数据,具备查询功能;数据可通过RS-232或RS-485、4-20mA输出接口传输到上级集中控制系统;含声光报警输出(可选配声光报警器),及时提醒故障、超排信息。   燃气锅炉烟气排放监测,低氮改造环保监测、能效监测,低氮燃烧器尾气中氮氧化物的浓度监测,燃烧法的VOCs治理项目尾气中的氮氧化物监测等。创新点:  采用国际领先的紫外差分吸收光谱气体分析技术、非分光红外气体分析技术及长寿命电化学传感技术,配备一体化、自动化的采样预处理单元及控制单元,可同时在线测量烟气中NO、SO2、O2、CO、CO2的气体浓度,是一款专用于锅炉大气污染物排放及能效控制的在线监测设备,符合国家和地方环保部门的监管要求。  多级除尘除湿、性能稳定  内置流量计、过滤器、冷却装置等组成的预处理系统对样气进行多级处理,保证分析系统的可靠性。  全自动化控制、操作简单  采用控制卡为核心控制元件,OMRON中间继电器作为输出元件,自动完成采样、排水、故障处理等操作,实现24小时无人值守。  超低量程设计、测量精度高  测量范围小于100mg/m3,满足国家环保标准及超低排放监测需求。  多种通讯输出,应用更智能  数据可通过RS-232或RS-485、4-20mA输出接口传输到上级集中控制系统,为实现远程监测、工艺调整提供实时依据;含声光报警输出(可选配声光报警器),及时提醒故障、超排信息。锐意自控_锅炉大气污染物监测系统 Gasboard-9081
  • 最新应用 | 纳米分辨傅里叶红外光谱与成像技术(nano-FTIR & neaSNOM)助力科学家实现单病毒膜渗透行为研究进展
    免疫缺陷病毒(即艾滋病毒,HIV),埃博拉病毒、流行性感冒病毒(IFV)和冠状肺炎病毒等致命性病毒对人类健康和公共卫生构成了持续的威胁。因此,关于病毒开展的各方面研究备受关注。其中,包膜病毒的细胞膜渗透行为是病毒进入宿主细胞,感染宿主细胞等一系列事件中的关键步骤。在病毒进入宿主细胞的过程中,包膜病毒如何与宿主细胞受体相互作用以及病毒膜包膜自身如何经历结构变化,终进入宿主细胞的病毒-细胞膜渗透行为的研究,能为开发新型抗病毒疗法和疫苗提供有利信息。近年来,流感病毒(IFV, 结构示意图1)已被用作包膜病毒的原型来研究病毒进入宿主细胞的过程。IFV中血凝素(HA)是嵌入IFV包膜的主要表面糖蛋白。 HA负责IFV与宿主细胞受体的连接,并在病毒进入过程中参与介导膜融合。众多研究已经为靶标和病毒膜之间的融合机制建立了一个公认的模型。该模型认为只有在靶标和病毒膜发生膜融合时才可形成孔从而介导病毒-细胞膜渗透行为。然而,其他报道也观察到在融合发生之前靶标和病毒膜的破裂。此外,关于腺病毒蛋白与宿主细胞的研究显示,宿主细胞膜可能在没有膜融合的情况下被破坏而进入病毒。另一方面,病毒包膜和靶宿主细胞膜具有不同的化学组成或结构,各个膜中形成孔的要求不同,因此靶宿主或病毒膜破裂也可能立地被诱导。图1 流感病毒示意图 (百度百科)综上所述,关于病毒-细胞膜渗透行为的机理还存在一定的争议,明确单个病毒与宿主细胞的复杂融合机制,可为设计抗病毒化合物提供有利信息。然而,常规的病毒整体融合测定法是对膜融合事件的集体响应,不能对细微、尤其是在纳米尺度复杂的融合细节进行直接和定量的研究,因此无法直接量化一些可以通过研究单个病毒、纳米尺度表面糖蛋白和脂包膜来获得的融合细节。例如,病毒感染过程在分子水平上引起的病毒膜和宿主细胞膜的化学和结构组成改变,可以通过分子特异性红外光谱技术来探测。然而,单个病毒、表面糖蛋白和脂包膜尺寸小于红外光的衍射限,限制了单个病毒的红外光谱研究。因此,找到一个既可以提供纳米高空间分辨率,还能探测机械、化学特性(分子特异红外光谱)和环境影响的工具,使其可在单病毒水平上研究病毒膜融合过程是十分重要的。德国neaspec公司经多年研发的纳米分辨傅里叶红外光谱和成像系统(nano-FTIR & neaSNOM)采用化的散射式核心设计和准外差技术以及特的宽光谱高能激光器(光谱范围:650—4000 cm-1),基于传统傅里叶红外光谱的核心原理,使得光谱和成像信息直接源于光学信号,无需光-热、光-力等复杂信号的转换,能对空间分辨率低至10 nm的样品进行直接的红外光谱及成像测量,提供与传统傅里叶光谱完全一致的红外光谱测量结果。因此,德国neaspec公司的纳米分辨傅里叶红外光谱与成像系统可实现高分辨率单个病毒、表面糖蛋白和脂包膜的原位光谱、化学图谱和结构鉴定,以及病毒与环境触发因素和细胞的相互作用研究,是单病毒水平上研究病毒膜融合过程的工具。图2 德国neaspec公司纳米分辨傅里叶红外光谱与成像系统( nano-FTIR & neaSNOM)实物图来自美国乔治亚大学和乔治亚州立大学的Sampath Gamage和Yohannes Abate等研究者采用 nano-FTIR & neaSNOM研究了单个原型包膜流感病毒X31在不同pH值环境中发生的结构变化。同时,还定量评估了在环境pH值变化期间,抗病毒化合物(化合物136)阻止病毒膜破坏的有效性,提供了一种抑制病毒进入细胞的新机制。nano-FTIR和neaSNOM对流感病毒 X31的近场红外光谱及成像研究提供了高空间分辨的优异光谱和成像结果,具体结果如下:1. 能清楚观察到单个流感病毒的形貌(高度20-30 nm, 大小约70-100 nm);2. 不同红外波长下病毒红外吸收对比明显;3. HA富集在病毒包膜外(对比图3 中f和g:包膜外1088 cm-1无红外吸收信号,1659 cm-1 有红外吸收信号,蛋白质在1659 cm-1 有吸收而在1088 cm-1没有);4. nano-FTIR 能获取到病毒蛋白红外光谱(1500-1750 cm-1范围 Amide I 和Amide II 峰);5. nano-FTIR 能获取到病毒的脂类、磷酸盐和RNA的红外光谱(1290-1050 cm-1范围)。图3 流感病毒的neaSNOM近场光学红外成像 (pH 7.4) a):实验示意图;b):病毒形貌成像(标尺 100 nm);c-e):不同红外波长下近场光学相位成像(红外吸收);f) 和 g):b,c)和 b, e)红色虚线相应的截面分析图4 流感病毒的nano-FTIR光谱及高光谱成像(pH 7.4)A):nano-FTIR红外吸收光谱(pH 7和pH 5); B):病毒形貌及高光谱成像(标尺 100 nm) 综上所述,在该研究工作中,作者对单个流感病毒颗粒进行了光谱和成像实验,研究了各种pH值变化环境中以及与抗病毒化合物相互作用时病毒蛋白和脂质双层的化学和结构变化。结果表明在不存在靶细胞膜的情况下,降低pH环境依然会造成病毒包膜破裂,这与当前的病毒融合模型相反。此外,融合抑制剂化合物136可以有效阻止低pH环境引起的病毒包膜破坏。除流感病毒外,德国neaspec公司提供的nano-FTIR和neaSNOM技术同样可能适用于其他包膜病毒(例如,HIV、冠状肺炎病毒等)的研究,并能为基础病毒学研究提供新思路。 参考文献:[1] Sampath Gamage, Yohannes Abate et al., Probing structural changes in single enveloped virus particles using nano-infrared spectroscopic imaging, PLOS ONE.
  • 我国高精度平面刻划光栅已自主可控 国产光谱仪器研发迎来新时代——访中科院长春光学精密机械与物理研究所 李晓天副研究员
    p style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  作为光谱仪器的核心部件,光栅的地位举足轻重。近年来,针对我国机械刻划光栅的刻划面积及精度不足等问题,中科院长春光学精密机械与物理研究所(以下简称:长春光机所)开展了一系列的技术攻关,不仅成功研制出大型高精度光栅刻划机,而且该刻划机已成功制作出刻划面积为400mm× 500mm的世界最大面积中阶梯光栅。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  为了更深入的了解我国光栅及光谱仪器的研究现状及未来发展态势,仪器信息网编辑特别邀请到中科院长春光学精密机械与物理研究所李晓天副研究员给大家分享其在光栅及光谱仪器研发过程中的经验。/span/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 356px " src="https://img1.17img.cn/17img/images/202007/uepic/6a4b4291-b891-4b13-b4aa-d667cb197457.jpg" title="微信图片_20200710094424.png" alt="微信图片_20200710094424.png" width="450" height="356" border="0" vspace="0"//pp style="text-align: center "strong中科院长春光学精密机械与物理研究所 李晓天副研究员/strong/pp style="text-align: justify "span style="font-size: 14px "span style="font-family: 楷体, 楷体_GB2312, SimKai "  李晓天,博士生导师,九三社员,Opt. Express等10余个权威SCI期刊审稿专家。自2006年参加工作,主要从事光电检测、衍射光栅及其在光谱技术领域应用研究等科研工作,作为项目负责人获批空间外差拉曼方面的国内第一个自然科学基金青年基金和第一个面上项目,以及吉林省技术攻关项目等 作为分系统或子课题负责人承担国家973课题、国家重大科研装备研制项目等,曾获“航天科技四院杰出青年”、“吉林省科技进步一等奖”、“吉林省青年文明号”等荣誉。获授权发明专利28项,其中第一发明人12项 在Opt.Express等权威SCI/EI期刊发表论文40余篇,其中第一/通讯作者16篇。培养的博士和硕士研究生获得国家奖学金、中科院院长奖、中科院新生奖等10余种奖励,其中一名学生连续两年获国家奖学金后公派留学于美国哈佛大学/span。/span/pp style="text-align: justify "  span style="color: rgb(255, 0, 0) "strong我国高精度平面刻划光栅已处于国际领先水平/strong/span/pp style="text-align: justify "  衍射光栅是最重要的一类光学色散元件,它是绝大多数光谱仪器的核心器件,其精度高低直接决定光谱仪器性能的优劣。按制作方法, 衍射光栅可分为机械刻划光栅、离子束刻蚀-全息光栅、体全息光栅等。随着国家支持力度的加大,我国各类光栅制作技术均有显著提升,与国外最高水平的差距也越来越小,特别值得一提的是,我国的机械刻划光栅制作技术已达到国际领先水平。/pp style="text-align: justify "  机械刻划光栅的性能主要由光栅刻划机的运行精度决定。据李晓天介绍,光栅刻划机是制作光栅的母机,机械刻划光栅主要是通过光栅刻划机的金刚石刻刀在光栅基底的膜层上挤压成形出一系列具有一定规则形状和间距的刻槽,在此期间,刻划机的基底工作台要不断进行精密进给运动,而金刚石刻划刀要不断进行往复运动,光栅刻划的定位精度要达到纳米量级。因此部件的加工装调精度要求极高,运行保障环境要求也极为苛刻,光栅刻划机也被誉为“精密机械之王”。/pp style="text-align: justify "  李晓天开展的光栅研究主要是针对机械刻划光栅,采访中他给大家详细介绍了自己在这方面的工作。据介绍,李晓天通过仿真分析和科研经验等,指出国产光栅刻划机刻划系统结构不够稳定是导致刻划出的光栅杂散光较大的主要原因之一,最终通过大量的实验验证了这一结论 据此,他在导师唐玉国研究员等前辈的悉心指导下,在国内率先开展了光栅刻划系统误差修正技术研究,最终使得刻划出的光栅杂散光从10sup-3/sup量级降低至可达10sup-5/sup量级,此外他还开展了衍射波前主动补偿、光栅性能实时检测技术等研究工作,有效提高了光栅刻划机及刻划光栅的性能。目前,李晓天及其所在的大光栅团队已研制出高精度大光栅刻划机1台,主要性能指标为:最大刻划面积:400mm× 500mm;最高刻槽密度:6000线/mm;仪器运行的短期定位误差:≤3.0nm(1σ),并已成功制作出刻划面积为400mm× 500mm的世界最大面积中阶梯光栅,获得“吉林省科技进步一等奖”、“吉林省青年文明号”等荣誉。相关成果被中央电视台新闻联播、人民日报、科技日报、经济日报、光明日报等多家媒体进行报道。/pp style="text-align: justify "  谈到其开展的光栅相关工作,李晓天自豪的说,“就光栅定制而言,我们光栅产品价格要比国外产品低的多,国内的一些企业获得信息后,原本计划在国外采购的光栅也改为从我们单位定制采购了。”据悉,长春光机所的刻划光栅产品已在北京博晖创新光电公司、浙江大学、加拿大多伦多大学、中科院西安光机所、中科院上海技物所等单位研制的光谱仪器中得到了成功应用。其中,加拿大多伦多大学将他们研制的红外中阶梯光栅与美国Bach公司制作的194线/mm中阶梯光栅进行了对比,结果发现该光栅性能优于美国Bach公司产品,其中TM波的光栅衍射效率高出约20%左右;北京博晖创新光电公司将长春光机所的光栅产品与其购买的一块国外产品进行了对比,发现长春光机所的光栅产品性能更优。/pp style="text-align: justify "  span style="color: rgb(255, 0, 0) "strong以光栅自主创新促进光谱仪器进步 核心部件国产化率亟待提升/strong/span/pp style="text-align: justify "  作为光谱仪器的核心部件,光栅技术的深入对光谱仪器的开发具有重要的指导意义。在完成了光栅刻划机研制之后,李晓天的研究重心转向光栅应用技术,其曾参与了中阶梯光栅光谱仪、光栅杂散光测量仪、傅立叶变换型光栅衍射效率测量仪和成像光谱仪等研究工作。特别是近几年,他开始了拉曼光谱技术的研究工作。对此,李晓天表示说,由于拉曼光谱不怕水,可以在水溶液或者水环境中实现物质的检测,做完拉曼光谱仪技术的基础研究工作以后,下一步的工作重点是要将其应用到生物医学、星际探测等与国计民生息息相关的重要领域中。/pp style="text-align: justify "  现有的拉曼光谱技术,如色散型拉曼光谱仪因存在入射狭缝,导致其在高光通量、高分辨率、宽波段、无运动部件等性能方面难以兼顾。为解决以上影响拉曼光谱技术发展的关键问题,李晓天从2015年开始研发可兼具高光通量、高分辨率等以上性能的新型空间外差拉曼光谱仪,并作为项目负责人成功获批了空间外差拉曼光谱方面的国内第一个自然科学基金青年基金项目和第一个面上项目。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 600px height: 312px " src="https://img1.17img.cn/17img/images/202007/uepic/0dc5b33a-9e92-4c9a-8052-ddb610c8743b.jpg" title="微信图片_20200710094022.png" alt="微信图片_20200710094022.png" width="600" height="312" border="0" vspace="0"//pp style="text-align: center "strong拼接光栅型空间外差拉曼光谱仪原理样机(左)及硫磺样品的外差拉曼干涉图(右)/strong/pp style="text-align: justify "  据介绍,空间外差拉曼光谱仪无入射狭缝,且整个仪器没有运动部件。通过探测器单次测量及分析,即可获得全波段的待测物拉曼光谱信息。而且仪器结构紧凑,其除探测器以外的核心光学模块的尺寸可以做到15cm× 15cm以内,因此仪器可兼具高光通量、高分辨率、宽波段、无运动部件等性能。空间外差拉曼光谱仪将在待测物拉曼信号较弱、有限载荷使用条件以及待测环境条件恶劣等方面具有较好的应用前景,此外在透射拉曼光谱领域也可以发挥其优势。/pp style="text-align: justify "  在拉曼光谱仪研究过程中,李晓天提出光栅拼接型空间外差拉曼及LIPS光谱仪、中阶梯光栅型空间外差拉曼光谱仪和空间外差型太赫兹拉曼光谱仪等新型仪器结构,并带领团队突破关键理论与技术,设计出具有棱镜视场展宽能力的高光通量空间外差拉曼仪器原理样机,其测得的硫磺等样品信号强度可达同等分辨率和测量波段范围的传统色散型仪器的100倍;给出基于三阶极小值和多子区间分割的光谱背景扣除算法,可有效解决背景光干扰等对拉曼光谱测量的影响 提出通过光阑和光学陷阱等抑制仪器杂散光的方法;提出基于中阶梯光栅多级次锥面衍射的空间外差拉曼光谱仪结构等等。/pp style="text-align: justify "  近几年,国内的一些知名企业和院校纷纷开展了拉曼光谱仪器研发工作,使得我国拉曼光谱仪研发力量得到了较大的提高,但整体来说与国际最高水平仍存在一定差距,在全球市场中所占份额较低。对此,李晓天分析到,光栅等拉曼光谱仪的核心光学元件在国产拉曼光谱仪中的国产化率并不高,主要原因是我国光栅技术水平的提升是在近几年发生的,目前国内的科研院所和企业大多还不清楚国内的机械刻划光栅水平已得到显著改善且定制价格远低于国外产品这一事实。相信随着时间的推移,我国拉曼光谱仪产品中的光栅国产化率会得到大幅度提升。此外,李晓天也提到,除了光栅以外,拉曼滤光片也是仪器的核心元件,特别是低波数拉曼滤光片尚未实现高性能产品国产化,制约着相应仪器的发展。/pp style="text-align: justify "  span style="color: rgb(255, 0, 0) "strong国产光栅及光谱仪发展展望: 一代光栅对应着一代光谱仪/strong/span/pp style="text-align: justify "  从核心部件到仪器整机,李晓天在光学仪器研发领域已经工作了10余年。据悉,未来他还将继续开展新型高端光栅光谱仪研究工作,在高分辨率、高通量、高灵敏度光谱仪器研制方面继续开展深入的研究。不仅如此,他还计划尝试开展拉曼光谱技术在生物医学等领域的应用研究。/pp style="text-align: justify "  采访中,李晓天指出,目前国内的光栅刻划机只能刻划平面光栅,但是国内外市场对凹面光栅和凸面光栅等非平面光栅的需求也日益迫切,若能采用光栅刻划机进行非平面光栅研制,将能够有效解决现有的非平面光栅的衍射效率等性能难以满足诸多领域使用需求的难题,所以希望国家或地方政府可以对非平面光栅刻划机的研制进行专项资金投入。再者,国内外天文望远等领域对更大面积光栅仍有使用需求,不过如果直接研制可以刻划更大面积光栅的刻划机,对机械和精密控制等技术具有更高需求,需要的资金投入也较多,因此发展投入相对较低的大光栅拼接复制技术也是未来光栅技术的重要方向。此外,超环面光栅、大面积体全息光栅等其它光栅技术也应该开展深入研究。/pp style="text-align: justify "  对于我国光谱仪器研发的现状,李晓天分析到,衍射光栅是光栅光谱仪器的核心元件,在仪器研发中意义重大。但是现在国内大多数仪器厂家和单位在进行光谱仪器设计时,往往先在现有产品中选择一个测量波段等指标相对适合的光栅产品,然后根据该光栅参数进行仪器设计,这将导致仪器设计存在一定局限性。李晓天指出,大家应充分发挥光栅在光谱仪器研制中的重要作用,如根据仪器光路结构,去优化光栅参数再去定制该光栅,将大大提高仪器性能。一代光栅对应着一代光谱仪,若能进一步提出新的光栅设计参数或者新的光栅类型,则有望产生新一代光谱仪器!以新型的中阶梯光栅、离子束-刻蚀全息光栅、体全息光栅、超环面光栅、各类其它非球面光栅以及特殊类型光栅为核心元件的光谱仪器将逐步登上我国的历史舞台。/pp style="text-align: justify "  此外,对于大家关注的科研成果转化问题,李晓天也谈到,我国在光谱仪器研发方面已具有多年的经验积累,也取得了较好成绩,但是,企业与科研院所之间存在一定的技术脱节,也就是说科研院所把光谱仪器研发后,并没有与企业形成较好的对接。不过,他也提到,目前国家已经形成一些激励政策,相信未来科研院所和企业会形成的良好合作模式。/pp style="text-align: justify "span style="font-family: 楷体, 楷体_GB2312, SimKai "  附注:李晓天副研究员课题组隶属于国家光栅制造与应用工程技术研究中心(简称为国家光栅工程中心),该中心拥有60年以上的光栅研制及光谱仪器研发经验,具有完善的光栅制造设备、丰富的光学设计及精密装调技术、光谱仪标定设备、精密微动工作台、精密光学检测仪器、光学系统计算辅助装调设备等,具有自主研制高刻线密度光栅、中阶梯光栅和多种全息光栅等能力。先后研制出中型和大型摄谱仪、红外分光光度计、紫外分光光度计、大型真空紫外单色器、空间太阳紫外光谱辐照监视器、可见和红外高分辨率成像光谱仪、中阶梯光栅光谱仪、凸面光栅光谱仪、微型生化分析仪、近红外水分分析仪、近红外粮食成分分析仪、荧光在线水中油测试仪等仪器。/span/p
  • 从问题出发 拉曼光谱仪器成果凸显 —— 第二十二届全国光散射学术会议报告集锦
    仪器信息网讯 2023年9月23日,由中国物理学会光散射专业委员会主办、河南大学承办、陕西师范大学协办的第二十二届全国光散射学术会议在河南开封召开。此次会议邀请了国内外光散射,以及相关光谱原理和技术领域的诸多知名专家学者,共同探讨光散射领域的最新研究成果和发展趋势,吸引了近500人注册参会。值得一提的是,为了解决科研和实际应用中的难题,多位专家在仪器技术开发方面做了系列探索,并产出了相关的成果,吸引参会代表关注。部分报告内容分享如下:中国科学院半导体研究所 谭平恒研究员《显微共焦拉曼光谱模块及其应用》现场仪器展示:显微共焦拉曼光谱模块鉴于市场上显微共焦拉曼光谱仪的昂贵价格,是否能设计一套显微共焦拉曼光谱测量模块,可与任何光谱仪耦合成一套成本低、操作简便、光路布置合理以及后期升级方便的多功能显微共焦光谱仪是众多研究者迫切盼望的事情。22日的会前特邀讲座环节,中国科学院半导体研究所谭平恒研究员分享了其课题组的仪器成果,并在会议同期做了仪器展示。据介绍,在近25年拉曼光谱研究经验基础上,谭平恒研究员的课题组成功研制了显微共焦光谱测量模块,连续多年入选《中国科学院自主研制科学仪器》产品名录,可以实现从拉曼光谱仪到布里渊光谱仪耦合,从高信号透过率到低波数信号测量,从近红外激光到深紫外激光激发,从光栅光谱仪到光纤光谱仪耦合,从高温热台到极低温恒温器应用,从光谱多信号出口到高性价比多功能集成与升级方案,从实验室照明状态下调试和测试到超低背景噪声光谱实现等功能。中国科学院上海微系统与信息技术研究所 陈昌研究员《芯片级拉曼光谱仪的机遇与挑战》微型拉曼光谱仪使拉曼技术在更广泛的无损快速检测场景中得以应用。陈昌研究员在报告中从原理、小型化、应用等方面对色散型光栅光谱仪、迈克尔逊干涉光谱仪、空间外差干涉光谱仪等的优缺点进行了分析,并详细介绍了微型化、高性能拉曼光谱仪面临的挑战,包括高通量、高光谱分辨率等。为了攻克难题,陈昌研究员的实验室汇聚了8大类30多台拉曼光谱仪。经过课题攻关 ,其课题组开发了芯片级的空间外差拉曼光谱仪。据介绍,该产品核心部件轻于1克,实现了若干个物质的拉曼光谱重构。北京理工大学 崔晗教授《激光空间偏移/差动共焦拉曼光谱技术及应用》传统拉曼光谱技术的探测深度只有几百微米,仅可用于样品表层信息的探测,而空间偏移拉曼光谱(SORS)技术通过收集离激发光轴有一定偏移量的轴外拉曼光谱,可实现样品内部深层信息的探测。北京理工大学崔晗教授课题组提出了一种将空间偏移拉曼光谱技术与空间外差光谱技术(SHS)相结合的空间偏移外差拉曼光谱(SHORS)的方法,以对现有空间偏移拉曼光谱技术的性能进行改善。与采用光栅色散型光谱仪的空间偏移拉曼光谱技术相比,空间偏移外差拉曼光谱技术将系统的灵敏度提高了约一个数量级,为其在生物医学、地质考古等领域的进一步应用提供了技术途径。不仅如此,该课题组还基于差动共焦定焦技术构建了系列差动共焦拉曼光谱仪,实现了微区三维几何形貌和光谱信息的同步原位探测,提高了系统定焦能力,改善了系统抗漂移能力。除了以上的报告之外,还有很多老师分享了在拉曼光谱仪器技术、方法开发方面所做的系列工作,如力学拉曼光谱、紫外共振拉曼光谱、原位高温拉曼光谱、时间门控拉曼光谱等。24日,雷尼绍、牛津仪器、赛默飞、天美仪拓、光谱时代、HORIBA、长光辰英、鉴知技术等仪器企业也将分享最新的产品和技术。为期3天的报告还在继续,相关的新技术新成果精彩纷呈,鉴于篇幅的原因不能一一描述,仪器信息网也将给大家持续分享会议的精彩内容,敬请期待!
  • 众瑞仪器发布ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)新品
    ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)产品简介ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)采用紫外差分吸收光谱技术测量烟气中的SO2、NO、NO2和NH3,可选O2、CO、CO2、H2S传感器测量气体浓度,不受烟气中水蒸气影响,具有较高的测量精度和稳定性,特别适合高湿低硫工况测量。其中紫外差分吸收模块在热湿状态下进行测量,避免除水造成的烟气组分损失。整机采用一体便携式设计,采样管和主机为一体,携带方便。可供环境监测部门对各种锅炉排放的气体浓度、排放量进行检测,也可应用于工矿企业进行各种有害气体浓度的测量。参考标准JJG968-2002 烟气分析仪检定规程HJ/T 397-2007 固定源废气监测技术规范DB37/T 2704-2015 固定污染源废气氮氧化物的测定紫外吸收法DB37/T 2705-2015 固定污染源废气二氧化硫的测定紫外吸收法DB37/T2641-2015 便携式紫外吸收法多气体测量系统技术要求及检测方法HJ 973-2018 固定污染源废气 一氧化碳的测定定电位电解法GB13233-2011 火电厂大气污染物排放标准Q/0214 ZRB009-2017 烟气综合分析仪GB/T 37186-2018 气体分析 二氧化硫和氮氧化物的测定 紫外差分吸收光谱分析法HJ 1045-2019 固定污染源烟气( 二氧化硫和氮氧化物 )便携式紫外吸收法测量仪器技术要求及检测方法功能特点采用热湿法紫外差分原理检测SO2、NO、NO2和NH3,适合高湿低硫工况,完全避免冷凝除湿造成的烟气组分损失;带有皮托管、烟温传感器接口,能够自动测量烟温、流速和含湿量;内置含湿量传感器,可同步测量含湿量,实时折算干态浓度选配传感器(CO、CO2、H2S);内置电池,采样结束后自动完成反吹功能;内置蓝牙,通过手机或平板进行人机交互、数据存储;采样分析一体式结构,便携性好;数据显示和接口丰富:蓝牙打印、U盘导出、100万条数据存储、排放量折算、浓度折算;内置高效冷凝除水模块,防止O2传感器进水损坏,蠕动泵排水,自动化程度高;预热时间短,可以在现场快速达到测量要求;自主知识产权的高稳定吸收池,采用前端维护和调整结构,可靠性高,非专业人员也可进行气室擦拭和维护。采用钛合金真空隔热管,隔热效果好;配有高温探针,满足不同烟温工况。 创新点:ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)采用紫外差分吸收光谱技术测量烟气中的SO2、NO、NO2和NH3,可选O2、CO、CO2、H2S传感器测量气体浓度,不受烟气中水蒸气影响,具有较高的测量精度和稳定性,特别适合高湿低硫工况测量。其中紫外差分吸收模块在热湿状态下进行测量,避免除水造成的烟气组分损失。ZR-3211型便携式紫外烟气综合分析仪(H款,热湿法)
  • 多项环境监测技术入围2012国家先进及鼓励发展技术目录
    近日,环保部下发《2012年国家先进污染防治示范技术名录》和《2012年国家鼓励发展的环境保护技术目录》,在这两个文件中,多项环境监测技术入选其中。  入选《2012年国家先进污染防治示范技术名录》的环境监测技术技术名称工艺路线主要技术指标适用范围水体藻类原位荧光快速监测技术该技术根据藻类活体激发荧光光谱的特征对淡水藻类进行分类,通过光谱的拟合实现对绿色藻、蓝色藻和棕色藻浓度的分类测量,该方法集成了光信号调制技术、荧光信号检测技术和计算机技术。藻类测量种类为3 种(绿藻、蓝藻、棕藻)、测量范围为0~100μg/L、测量灵敏度为0.1μg/L。适用于环境监测、饮用水安全监测。气态污染物傅立叶红外自动/在线监测技术该技术利用傅里叶变换监测在红外光谱区具有吸收峰的气态污染物,通过便携或在线,或者采集样品或开放光路进行监测分析。检测污染物10~20 种,监测范围为50~500m,动态范围响应为ppb 级到ppm 级,检测精度优于5%,响应时间小于3min,分辨率小于4/cm。适用于固定污染源监测。固定污染源排放烟气汞(气态)在线监测技术烟气经稀释探头采样、高温管线传输,在汞价态转换器中将离子态的汞转化为元素汞,转换后的采样气进入汞荧光分析仪,在汞荧光分析仪中通过冷蒸汽原子荧光光谱技术(CVAFS)测定烟气中元素汞(Hg0)和气态总汞(HgT)的浓度。监测成份:元素汞(Hg0)、离子汞(Hg2+)、气态总汞(HgT);测量范围:0.1~500μg/m3;检出限:0.1μg/m3 量级;响应时间:180~360s;伴热管线:温度180oC ,PFA,最长100 米;样气接触材料:PTFE、PFA 或者惰性不锈钢;工作温度:-20~50℃。适用于燃煤电厂、市政、医疗废物焚烧炉,各类金属熔炼炉、水泥厂等烟气排放现场的元素汞(Hg0)、离子汞(Hg2+)、气态总汞(HgT)的在线监测。在线脱硝监测技术该技术采用稀释抽取采样分析法,稀释后的样气通过采样管线正压传送到NOX自动监测仪器或NOX-NH3自动监测仪器测量浓度测量主要参数包括NO、NO2、NOX、NH3 和O2,系统稀释比为50 ~ 250 , 零点漂移小于±2.5%F.S.,量程漂移小于±2.5%F.S.,响应时间小于200s,示值误差小于±5%F.S.。适用于电厂、供热、钢铁、冶金、水泥和化工等行业氮氧化物的在线监测。氮氧化物非分散红外在线监测技术该技术利用非分散红外检测原理,通过被测气体对红外光谱的吸收,得出被测气体浓度。量程50~2000ppm,重复性±0.5%F.S.,零点漂移为±1.0%F.S.。NH3 测量量程为0~100mg/m3,零点漂移小于±1% F.S.。适用于电厂、供热、钢铁、冶金、水泥和化工等行业氮氧化物的在线监测。紫外差分法氮氧化物在线监测技术该技术利用紫外差分原理测NOX,利用半导体激光吸收光谱技术原理测NH3。紫外差分原理测NOX:量程(0~300~5000)ppm,线性误差小于±1%F.S.,响应时间小于2s。半导体激光吸收光谱技术原理测NH3:量程(0~5~10)ppm,响应时间小于1s,线性误差小于±1%F.S.,重复性误差小于±1%F.S.。适用于电厂、供热、钢铁、冶金、水泥和化工等行业氮氧化物的在线监测。在线VOC 监测技术该技术运用气相色谱(GD/FID/PID)、气相色谱/质谱(GC/MS)的原理,实现对大气中挥发性有机物的连续采样和测量,并进行定性定量分析,形成整套具有自主知识产权的大气中挥发性有机物在线监测系统。CO2量程 0~1000ppm;零点漂移 ±0.1ppm/d,量程漂移 ±2.0%F.S./d。CH4量程 0~100ppm或0-1000ppm;线性小于 1%。O3线性 ±1.0%F.S.;零点漂移小于±1.0%F.S./d 。适用于环境空气质量监测、污染源现场监测、工况企业过程控制,以及气象、科研、化工园区、居住场所气体监测。红外-紫外法在线温室气体监测技术该技术利用红外和紫外吸收测量原理,通过被测气体对红外或紫外光谱的吸收,得到CO2、O3 等气体的监测数据。CO2 量程0~1000ppm,零点漂移±0.1ppm/d,量程漂移 ±2.0%F.S./d。CH4 量程为(0~100)ppb或( 0 ~ 1000 ) ppb,线性小于 1% 。O3 线性±1.0%F.S.,零点漂移小于±1.0%F.S./d 。适用于环境空气监测研究、工业过程控制及各种科研领域环境大气温室气体的监控。在线温室气体监测技术该技术采用半导体激光气体CO2分析仪测定CO2,气相色谱法CH4、非CH4 总烃分析仪测定CH4、非CH4 总烃。半导体激光气体CO2 分析仪:量程(0~2000)ppm 或0~100%VOL,响应时间小于1s,线性误差小于±1%F.S.,重复性误差小于±1%F.S.;气相色谱法CH4、非CH4 总烃分析仪:检出限甲烷0.1ppm、非甲烷总烃 50ppb , 可选量程甲烷0.1~10ppm 或0.1-1000ppm 、非甲烷总烃0.05~100ppm ,分析周期30s,重现性±1%F.S.。适用于排气管中CO2、CH4、非CH4 总烃分析,大气中CH4、非CH4 总烃分析。气相色谱-质谱联用重金属检测技术采用四极杆质谱技术,保留了被测物谱图的完美匹配性及定量的稳定性;同时又克服了传统的GC/MS 中真空泵对环境要求苛刻的局限性,可检测纳克/升(ppt)范围的化学物质。检测元素范围为Al~U,绝对检测下限为(0.1~10)ng(铅、镉、汞、铬、镍、砷);浓度检测下限为(0.1~10 )ng/m3(元素同上,采样时间小于1h);准确度Er 为±20%(元素含量100ng);重复性小于4%(浓度大于500ng/m3)。适用于水体、土壤中重金属的检测。气相色谱-质谱联用应急检测技术采用离子阱质量分析器,具有时间串联多级质谱功能,能有效地抵抗复杂基质的干扰;特有的低热容气相色谱(LTM-GC)技术、电子压力控制模块(EPC)和多阶程序升温技术构建成具有高稳定度和检测重复性的高性能小型色谱单元;实现色谱柱的快速程序升温,缩短分析时间、改善分析性能;专门的脉冲式内离子源技术(PIIS)提高质谱的灵敏度,自动增益控制(AGC)功能使仪器具有6 个数量级的动态范围。最快扫描频率为10000Hz;质量范围为(15~55)amu;多级质谱:MSN,N 大于3;单次分析时间小于10s(单质谱模式),单次分析时间小于15min(色谱-质谱联用模式)。适用于环境应急监测、公共安全、公安刑侦、军队防化、食品安全现场检测。空气中重金属(颗粒态)在线监测技术该系统基于卷膜带采样方式,通过滤膜过滤、富集空气颗粒物中的重金属污染物,采用XRF 技术快速、无损分析滤膜中过滤的重金属污染物含量M,用质量流量计记录通过滤膜的气体体积V,将两者相除(C=M/V),即可得到大气中Pb、Cr、Hg(气态Hg、颗粒态Hg)、Cd、As 等26 种重金属污染物的含量。测量范围:0~100μg/m3;检出限:ng/m3 量级;采样分析时间:10~300min 可选。适用于工业污染区、城市居民区等大气颗粒物中的重金属污染物在线监测。烟气中重金属(颗粒态)在线监测技术烟气经过高温采样后,通过滤膜过滤,将颗粒态及所含金属元素富集在滤膜上,用XRF 分析仪检测滤膜上富集的金属污染物元素含量M,同时用流量计记录通过滤膜的烟气体积V,两者相除(C=M/V)即可得到烟气中重金属污染物的含量信息(单位:μg/ m3)。测量范围:0.1μg/m3~2000μg/m3;检出限:0.1μg/m3 量级;采样分析时间:10~120min 可选。适用于燃煤电厂、水泥厂、工业锅炉、垃圾焚烧炉及各类金属熔炼炉等烟气中重金属在线监测。入选《2012年国家鼓励发展的环境保护技术目录》的环境监测技术技术名称工艺路线主要技术指标适用范围水中重金属在线监测技术连续自动采集水样并对水样进行处理,采用电化学或光度分析法对处理后的样品进行定量分析,如镉、铅、砷、锌、铜、镍、六价铬、钴、锰、汞等重金属。系统具有自动校准功能,性能指标应达到:准确度,小于±10%;重复性,小于±5%;24 小时零点漂移,小于±5%;24 小时量程漂移,小于±5%;取样测量周期,小于30min。适用于固定污染源和地表水中重金属监测。简易瞬态工况(质量法)排放检测系统该技术使用涡结流量计和氧气稀释比计算瞬态测试过程中每秒废气排放体积,通过气体分析仪采集逐秒数据,并和气体流量数据在时间上进行对齐,来计算逐秒的污染物排放质量(g/s),最后计算总的污染物排放质量结果,并发送至主机,计算得出每种污染物每公里的排放质量。技术误判率低于5%,能基本反映车辆实际行驶的排放特征。适用于机动车尾气检测。烟气水分在线监测技术该技术运用阻容法原理,采用在线扩散方式,可以长期在线监测烟气的含湿量。温度测量范围为0~180℃,水分测量范围0~40vol%,响应时间小于3s。适用于电力、钢铁、石化、水泥等固定污染源烟气排放的在线监测。填埋场防渗层渗漏检测预警系统该技术通过对填埋场、固体废物暂存库防渗层进行在线检测,及时发现防渗层渗漏并进行后期处理。该技术解决了填埋场防渗层渗漏点的定位问题,根据模型计算定位漏洞位置。漏洞定位精度低于50cm,检出率大于95%。适用于垃圾填埋场、固体废物暂存库、景观、河道防渗层渗漏在线检测。重金属污染的应急监测与环境风险评估技术该技术集重金属现场原位监测、全球定位系统(GPS)和地理信息系统(GIS)、空间制图和风险评价系统于一体,实现污染场地的现场原位快速监测和环境风险评价。在现场应用时,可快速监测重金属浓度和甄别高污染风险区域,并实时生成可视化的土壤重金属浓度空间分布图。该技术可以在3min 之内同时原位分析十几种污染元素的含量,每天可以检测200~500 个样、3000~6000 项次,比传统分析方法的速度至少提高100 倍以上。适用于重金属污染的快速现场监测与风险评价和预警,及固体废物、土壤和沉积物的环境污染事故监测。  以下是公告全文:关于发布《2012年国家先进污染防治示范技术名录》和《2012年国家鼓励发展的环境保护技术目录》的公告  为贯彻落实《国务院关于加强环境保护重点工作的意见》(国发〔2011〕35号),加快环保先进技术示范、应用和推广,我部组织编制了《2012年国家先进污染防治示范技术名录》和《2012年国家鼓励发展的环境保护技术目录》,现予发布。  《国家先进污染防治示范技术名录》所列的新技术、新工艺在技术方法上具有创新性,技术指标具有先进性,已基本达到实际工程应用水平。《国家鼓励发展的环境保护技术目录》所列的技术是已经工程实践证明的成熟技术。  2010年发布的《国家先进污染防治示范技术名录》和《国家鼓励发展的环境保护技术目录》同时废止。  附件:  1.2012年国家先进污染防治示范技术名录  2.2012年国家鼓励发展的环境保护技术目录  二○一二年七月五日  去论坛讨论:国家先进监测技术,“真先进”还是“真笑话”?
  • 崂应环博会大放异彩 成功斩获三项大奖
    导读:传承16届精彩,见证环保强力。2016年5月5日,亚洲大环保展——IE expo 2016第十七届中国环博会于上海新国际博览中心隆重开幕。作为亚洲具影响力、高品质的环境技术交流盛会,IE expo 2016中国环博会荟集全球污水处理、固体废弃物处理、资源回收利用、大气污染治理、室内空气污染治理、环境监测等环境污染治理领域的前沿技术与新解决方案。环境监测领域领军企业青岛崂应携众多新品盛装登场,在水与污水展区、固废与资源回收展区、大气治理展区等多个展区有所表现,为环境服务和污染治理提出自己的解决方案。 展会现场见真章,崂应凭借雄厚的技术力量、完善的管理体系、健全的营销与服务网络以无可争议的实力斩获人气品牌、精锐新品、风云人物三项大奖。崂应3023型紫外差分烟气综合分析仪、崂应3012H-D型便携式大流量低浓度烟尘自动测试仪和崂应3026型红外烟气综合分析仪同时荣获新锐新品奖。这是对崂应强大实力和不懈努力的高度肯定,亦是对其锐意创新、不断进取精神的褒奖。现场工作人员告诉记者,本次展会,崂应重点推出便携式大流量低浓度烟尘自动测试仪、红外烟气综合分析仪、紫外差分烟气综合分析仪、废气智能二噁英采样仪和超小型自动烟尘气快速测试仪等多款新品。 崂应3023型 紫外差分烟气综合分析仪(获精锐新品奖)这款仪器是以紫外差分吸收光谱分析技术(DOAS)为核心的新型产品,主要用于固定污染源排气中NOx、SO2、CO、O2等成分浓度的现场分析。具有温度漂移小、测量精度高、可靠性强、响应时间快、抗干扰能力强、使用寿命长等优点。特别适合低温、高湿、低浓度排放的各种锅炉、烟道、工业炉窑等固定污染源中烟气成分的现场分析。 崂应3026型 红外烟气综合分析仪 (获精锐新品奖) 作为本次斩获新锐新品奖之一的这款红外烟气综合分析仪是采用进口长光程多组分检测器件,以非分散红外吸收法(NDIR)为核心的新型产品。主要用于固定污染源排放中NOx、SO2、CO、O2、CO2等烟气成分的分析,尤其适合低温、高湿、低浓度排放等现场监测,具有测量精度高、响应时间快、抗干扰能力强、使用寿命长等特点。崂应3012H-D型 便携式大流量低浓度烟尘自动测试仪(获精锐新品奖) 本款仪器应用皮托管平行采样法采集固定污染源排气中的颗粒物,用过滤称重法测定质量。采用数据输入输出通道隔离及取样管接地线设计,防静电、抗干扰能力强。崂应3030型 废气智能二噁英采样仪 工作人员告诉本网记者,这款废气智能二噁英采样仪可应用于废气污染源中二噁英类物质样品的采集,在危险废物焚烧处置设施、医疗废物焚烧处理设施和水泥窑共处置危险废物设施、建设项目竣工环境保护验收、监督性检测过程中的二噁英类检测、生活垃圾焚烧设施二噁英排放检测以及其它可应用的场合。崂应3012H-X型 超小自动烟尘(气)测试仪 该仪器体积超小,重量超轻,应用皮托管等速采样重量法捕集管道中颗粒物,应用定电位电解法定性定量测定烟气成份,跟踪精度高;设计高效气水分离器,提高干燥剂使用效率;独有的高性能采样泵,耐腐蚀、高负压,可以在恶劣工况下持续的工作,寿命长;高亮、宽温OLED显示屏,适合低温野外环境,良好人机交互界面,操作简单,适应性强;
  • 盘点:这些年近红外发生的那些事
    近红外光谱分析技术是一项基于近红外光谱技术与化学计量学分析模型技术的综合分析技术,可实现对含有C-H、N-H、O-H等有机官能团的样品进行快速、无损、定性/定量分析,是现场快速筛查和加工过程实时检测的理想手段。近红外光谱仪广泛应用于农业、饲料、粮油、食品、石油化工、环境等行业。  近红外光谱是近20年来发展最为迅速的高新分析技术之一。我国从20世纪80年代开始进行近红外光谱的研究和应用工作,90年代后期以产业链的方式逐渐应用于农业、石化、制药和食品等多个领域,在农业生产和科研中逐渐发挥着越来越重要的作用。据统计,目前中国保有的进口品牌近红外光谱仪器在2700台左右,而国产的近红外光谱仪器约500台。中国目前还只有小部分企业单位购买了近红外光谱仪器,市场增长空间非常大。  近年来,我国近红外光谱分析技术无论在研发还是应用方面都取得了长足进展。本文从近红外光谱领域发生的大事件、仪器及应用开发项目、仪器公司战略布局、销售大单、新技术新产品等方面,大略盘点了近年来近红外光谱方方面面发生的事情。  盘点一:近红外光谱领域发生的大事件  (1)2012年11月27日-29日,由近红外光谱专业委员会组织申报的&ldquo 我国近红外光谱分析关键技术问题、应用与发展战略&rdquo 第446次香山科学会议学术讨论会在京成功召开。会议围绕:a、近红外光谱仪器制造关键技术;b、国计民生重要物资品质安全与近红外分析;c、近红外分析与典型流程工业应用现状与发展趋势;d、近红外分析在环境医学领域等中心议题进行了深入讨论。袁洪福研究员作了题为&ldquo 中国近红外光谱分析关键技术问题、应用与发展战略探讨&rdquo 的主题评述报告。  (2)2014年4月15日,国家标准GB /T29858&ldquo 分子光谱多元校正分析通则&rdquo 正式颁布实施。  (3)2014年9月,中国仪器仪表学会近红外光谱分会正式宣告成立。袁洪福为分会理事长,褚小立等15位专家为副理事长,刘慧颖为常务副理事长,韩东海兼任秘书长,马放均、唐海霞为副秘书长 常务理事35名、理事61名 陆婉珍院士等为分会顾问 仪器信息网为分会挂靠单位。(注:2009年6月6日中国仪器仪表学会分析仪器分会近红外光谱专业委员会成立。)  (4)2014年9月,全国第五届近红外光谱学术会议成功召开。来自近红外光谱相关领域的专家学者、仪器用户等240多人参加了会议。会议共录用论文117篇,其中口头报告50篇,墙报22篇。赛默飞、布鲁克、瑞士万通、聚光科技等13家国内外相关的仪器公司参加同期的展览会。(注:2006年11月全国第一届近红外光谱学术会议;至今,近红外光谱分会已经连续成功举办了5届全国近红外光谱学术会议 2010年在上海召开了第二届亚洲近红外光谱学术会议。)  (5)2015年1月9日,近红外光谱分会多位顾问和理事荣获2014年国家科学技术奖。湖南大学俞汝勤院士参与的《功能核酸分子识别及生物传感方法学研究》获国家自然科学奖二等奖 清华大学罗国安、杨辉华教授参与的《中药注射剂全面质量控制及清开灵、舒血宁、参麦注射液中的应用》获国家科学技术进步奖二等奖 华中科技大学骆清铭教授主持的《单细胞分辨的全脑显微光学切片断层成像技术与仪器》获国家技术发明奖二等奖 浙江大学瞿海斌教授参与的《中成药二次开发核心技术体系创研及产业化》获国家科学技术进步奖一等奖。  盘点二:近红外光谱仪器及应用开发项目  (1)在2014年,两项近红外光谱仪器开发项目成功入围&ldquo 国家重大科学仪器设备开发专项&rdquo ,两个项目分别是:四川威斯派克科技有限公司牵头的&ldquo 便携傅立叶近红外光谱仪开发及应用&rdquo 、聚光科技(杭州)股份有限公司牵头的&ldquo 光栅型近红外分析仪及其共用模型开发和应用&rdquo 。(科技部、财政部2011年首次启动&ldquo 国家重大科学仪器设备开发专项&rdquo 。该专项强调面向市场、面向应用、面向产业化,重点支持具有市场推广前景的重大科学仪器设备开发。)  傅立叶变换型与光栅扫描型两种近红外光谱仪器都包含在内了,并且国家重大科学仪器设备开发专项支持力度非常大,每个项目支持资金都在数千万元以上,相信此举必会对国产近红外光谱仪器技术与应用的发展产生积极影响。据了解,威斯派克公司研制的样机已经在相关研究单位进行试用,其样机的性能指标等较好。(注:威斯派克科技有限公司将在四川省射洪县投资建设红外光谱等检测设备产业化项目,项目总投资30亿元人民币。项目投产后,预计年销售收入达到10亿元、利税4亿元。)  (2)2013年9月,&ldquo 十二五&rdquo 国家科技支撑计划项目&ldquo 数字化粮食物流关键技术研究与集成&rdquo 项目开题,该项目批复总经费8630万元。其中聚光科技(杭州)股份有限公司是子课题&ldquo 粮食收储近红外检测技术设备及组网研究开发&rdquo 的参与单位之一。  (3)2014年8月,北京市科委网站发布公告,北京凯元盛世科技发展有限责任公司中标&ldquo 近红外果品品质快速无损检测装备研发(招标编号:NF2014-14)&rdquo 课题。课题研究目的是开发适合京郊主要果品(梨、苹果、桃等)品质近红外快速无损检测方法及仪器设备,并在京郊果品主要产区进行应用示范。北京市科委资助资金人民币210万元。  盘点三:近红外光谱仪器公司战略布局  (1)2013年初,瑞士万通(Metrohm)宣布与福斯公司(Foss)签署战略合作协议。根据协议,Metrohm将成为Foss近红外仪器在化工、石化、制药、环保等领域的全球唯一战略合作伙伴。(多年以来,Metrohm一直专注于电化学和离子分析领域的产品研发和销售。)  (2)2013年11月,海能仪器正式与美国联合科学(Unity)公司签订中国区域的独家战略合作伙伴。由海能全权负责该品牌产品在中国区域的市场推广、技术、销售模型建立以及应用支持工作。  (3)2014年5月,瑞士步琦有限公司宣布收购德国NIR-Online GmbH。NIR-Online GmbH的核心竞争力在于开发了在线NIR及光学系统解决方案,用于在广泛的工业应用中实现过程优化。瑞士步琦通过此次收购将其技术组合从实验室领域拓展到了过程控制领域。  (4)2014年6月,德祥科技与德国ZEUTEC公司签约协议,作为其中国区的独家代理商,将全权负责其产品在中国的市场推广、销售及售后服务。德国ZEUTEC Opto-Elektronik GmbH公司致力于开发和生产专业的光谱仪系统,包含常规实验室近红外分析仪和应用分析方案。  (5)2014年11月,珀金埃尔默(PerkinElmer)宣布以2.66亿美元收购瑞典波通仪器(Perten),进一步补充其在食品质量检测领域的实力,更进一步加强巩固了公司在食品农业领域的领导地位。  (6)据了解,利曼中国已经和 美国 ZELTEX 公司签约,成为其中国区独家代理。Zeltex公司专业制造便携式手持近红外谷物、种子分析仪,可在现场快速无损检测其中的蛋白质、脂肪及水分,在近红外领域拥有超过30项专利。  盘点四:近红外光谱仪器销售大单  (1)2013年6月,聚光科技在湖北省粮油行业的总经销商仅6月份一个月就已在湖北省油菜籽行业创下10套近红外分析仪(SupNIR-2720型)的销售佳绩。  (2)2013年12月,聚光科技实验室业务发展事业部签订30台近红外分析仪采购订单,该批仪器将在种业领域应用,用于种子的真实性快速鉴别。该种子鉴别系统由聚光科技与中科院半导体所合作开发,中国农业大学严衍禄教授给予大力支持。  (3)2014年5月,布鲁克宣布最近从中国两家领先的饲料生产企业获得了25台TANGO FT-NIR和23台MATRIX-I型FT-NIR采购订单。大北农科技集团(DBN),是中国一家领先的饲料和种子产品生产厂家,订购了25台TANGO光谱仪用于遍布中国各地的产品基地的原材料和成品分析。新希望六和集团,中国最大的饲料生产商,采购了23台布鲁克 MATRIX-I傅立叶变换近红外光谱仪,以补充现有的67台布鲁克光谱仪。  盘点五:近红外光谱新产品  (1)2013年4月,美国JDSU公司目前市场上商品化体积最小的近红外光谱仪登陆中国。该产品所采用的线性渐变滤光片(LVF,Linear Variable Filter)是一种特殊的带通滤光片,使用了JDSU的光学镀膜和制造技术,制作时特意向特定方向形成楔形镀层,滤光片的穿透波长在楔形方向发生了线性变化,从而起到分光作用。在45*42mm大小的体积中,该产品包含了光源、滤光片、检测器等,完全不需要其他移动部件,其中光源采用双集成真空钨灯,检测器采用128线元非制冷铟镓砷(InGaAs)二极管阵列检测器,由USB供电(在5伏电压是电流小于500毫安)。  (2)2013年7月,江苏大学陈斌教授领衔的近红外工作室开发出Windows系统的【基于JDSU微型近红外光谱仪的分析与检测系统】软件。在此基础上,该团队成功开发了基于安卓系统掌上设备的快速检测软件系统的开发研究。能够用安卓手机、平板控制光谱仪的采谱、结合输入的模型,对光谱进行预处理(平滑、求导、正规化等),PLS等计算,从而实现检测指标的实时显示。  (3)2013年8月,德国Centec推出近红外光谱在线监测饮料中的二氧化碳,传感器是基于衰减全反射(ATR)技术。  (4)2013年8月,赛默飞推出用于饲料现场快速分析的手持近红外光谱仪microPHAZIR AG。microPHAZIR AG分析仪预置有产业领先的INGOTTM饲料配料数据库,可准确分析蛋白质、水分、油分、灰分、纤维、淀粉、和其他参数。  (5)2013年9月,日立高新技术公司发布了UH4150 紫外/可见/近红外分光光度计。  (6)2013年10月,布鲁克继2011年首先推出了世界上第一台小型化傅立叶变换近红外光谱仪&mdash &mdash TANGO-R之后,推出新一代小型化TANGO-T近红外光谱仪,该款产品是针对液体样品设计的,主要应用于石化、石油以及食用油的相关检测。  (7)2013年11月,海洋光学在中国市场发布了近红外新品:AccuNIR2100台式果品近红外分析仪,AccuNIR2200便携式果品近红外分析仪,AccuNIR3100 近红外燃油品质分析仪。这一技术的推广应用对于提高果品的种植管理水平,以及采摘、储运、经销过程中的质量监管具有重要意义。AccuNIR3100 近红外燃油品质分析仪适用于各种油品应用环境,从生产加工到存储,甚至是对油品研究的实验分析都能大显身手。  (8)2013年12月,滨松光子株式会社开发出新型多碱光阴极,其近红外灵敏度很高,将用于下一代微型PMT。产品可方便地集成到仪器中,期待能够有助于医学分析和环境监控等高精度私用仪器的开发。  (9)2014年1月,岛津与SPI( Summit Pharmaceuticals International)公司签订了以开发岛津手提式小动物用近红外荧光成像系统(使用1000 nm以上波长)新应用为目的的共同开发协议。  (10)2014年7月,波通公司发布新型近红外谷物分析仪Inframatic 8800,用于农田现场使用。Inframatic 8800采用固态硬盘和二极管阵列技术,光学部分没有任何的移动部件,更好地满足仪器的准确性和重复性的高要求。  (11)2014年10月,美国 ZELTEX 公司推出ZX-50IQ 手持近红外谷物分析仪,可在现场(田间、粮仓、卡车)快速、准确地无损检测其中的蛋白质、脂肪及水分,适用于分析小麦、大麦、玉米、大豆、油菜籽、豆粕等。  (12)福斯在2014年推出了一款近红外仪器Infratec NOVA谷物面粉分析仪,Infratec NOVA使用近红外透射技术,能够同时检测大宗粮油商品的多项参数指标(水分、蛋白、油脂、淀粉等)。(撰稿人:刘丰秋)
  • 湖北锐意推出碳通量气体检测、发动机排放检测及燃气热值分析等高端气体分析仪器
    9月28日,中国人民银行宣布为贯彻落实国务院常务会议关于支持经济社会发展薄弱领域设备更新改造的决策部署,设立了2000亿元以上设备更新改造专项再贷款,政策面向教育、实训基地、节能降碳改造升级、新型基础设施等十大领域。四方光电股份有限公司(688665.SH)旗下全资子公司湖北锐意自控系统有限公司(以下简称“湖北锐意”)是一家专业提供气体成分及流量测量方案的高新技术企业,基于四方光电核心气体传感技术平台的优势,开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业。湖北锐意针对国家政策以及当前研究热点问题,选择碳通量气体检测、发动机排放检测及燃气热值分析三个重点方向,推荐以下行业解决方案。一、碳通量气体检测解决方案实现“碳达峰”“碳中和”是国家做出的重大战略决策。通过监测数据可以预测未来的气候变化趋势和评价生态系统碳循环对全球变化的响应与适应特征,为“双碳”目标的达成提供参考数据,为现代地球系统科学、生态与环境科学关注的重大科学问题提供研究依据。碳通量在线监测网络主要包含土壤温室气体通量测量和大气环境涡度协方差测量系统两种方法。湖北锐意依托气体分析传感器平台优势,分别开发了土壤碳通量分析仪与大气环境涡度协方差测量系统。(一)土壤碳通量分析仪土壤生态系统中的碳元素主要是通过土壤呼吸来实现碳循环,对土壤呼吸过程中CO2释放量的准确监测是评价生态系统中碳汇过程的关键。通量测定法是最为常用的测定方法,即直接测定土壤和大气间的CO2交换量,也是评价土壤生态系统碳循环过程的关键。国家正在积极推动“双碳”政策,碳监测为碳计量提供准确的基础数据。垃圾填埋场、污水处理厂和煤矿等区域的无组织碳排放是碳监测的难点之一。土壤碳通量分析仪利用非分光红外气体分析技术(NDIR)测量CO2浓度、可调谐半导体激光吸收光谱技术(TDLAS)测量CH4、N2O浓度。仪器外形小巧便携,方便获取多个不同点位的数据,完成不同空间与高度限值的测量要求,支持长期、连续、准确的测量。主要应用于土壤碳通量监测、森林碳通量监测、温室气体排放监测、空气质量监测、城市污染气体排放监测、固定污染源排放监测;高校关于环境科学、农业学与林业学相关研究等。(据测量场景不同可选配多款型号气体测量室)土壤碳通量分析仪技术参数(二)大气环境涡度协方差测量系统涡度协方差(又称涡动相关法)技术是测量和计算大气边界层内垂直湍流通量的重要大气测量技术。大气环境涡度协方差测量系统结合多款气体分析仪与超声风速仪,模块化设计,外形小巧,安装灵活。相互无干扰,专为高空监测而设计。通过对微气象中的三维风速与气体浓度进行精确测量,完成对生态系统与大气之前湍流交换的监测,即时收集流动畸变数据。适用于边界层气象研究、生态系统温室气体含量监测、野外大气监测、碳水循环研究、空气通量研究、遥感数据验证等。图左:开路式(CO2/H2O)气体分析仪图中:开路式(CH4)气体分析仪图右:三维超声风速仪大气环境涡度协方差测量系统技术参数二、发动机排放检测解决方案内燃机工业是我国重要基础产业,也是节能减排的重点领域。近年来,我国已经颁布和实施了GB 18352.6-2016(轻型车国六)、GB 17691-2018(重型车国六)和GB 20891-2014的2020年修改单(非道路移动机械国四)等移动源新生产车排放法规以及GB 18285-2018(汽油车)、GB 3847-2018(柴油车)和GB 36886-2018(非道路移动机械)等在用车排放法规。其中引领内燃机行业技术发展的是新生产车排放法规,该法规体系中要求的高精度发动机排放检测设备,主要包括全流稀释排放测试系统和便携式排放测试系统,目前都是主要依赖国外进口产品。由于设备构成十分复杂且涉及多项高精度测量技术,进口设备往往十分昂贵,全流稀释排放测试系统单套价格通常会达到数百万元甚至是千万元以上,便携式排放测试系统单套价格也通常会达到百万元以上。进口设备不仅价格贵,还存在供货周期长、使用成本高等问题,显然不能完全满足我国作为内燃机产销第一大国的实际需求。湖北锐意依托气体成分流量仪器仪表研发平台基础优势,结合近20年发动机排放分析仪研发经验,吸收国际先进应用经验,对关键技术进行攻关突破,战略性加大投入,成功研发了全流稀释排放测试系统、便携式排放测试系统以及非常规气体分析仪等全系列产品,具有技术先进、功能齐全、测量准确、性能稳定、兼容性强和高效服务等特点,可满足科研机构、制造企业和检测机构等国内外用户的各种应用需求。(一)全流稀释排放测试系统基于全流稀释排放测试系统的实验室标准工况排放测试是我国移动源排放法规体系中被广泛采用的标准方法,湖北锐意针对性开发了Gasboard-9802发动机排放全流稀释定容采样系统(CVS)及其配套的Gasboard-9801发动机排放测试系统。Gasboard-9801发动机排放测试系统结合高精度氢火焰离子化检测技术(HFID)、紫外差分吸收光谱技术(UV-DOAS)、非分光红外技术(NDIR)、长寿命电化学传感器技术(ECD)与凝结核粒子计数技术(CPC),同时测量发动机排气中THC、NOx、CO、CO2、O2等气体体积浓度及颗粒物数量浓度,其超低量程同时具备准确性高和响应速度快的特点,完全满足排放法规技术要求以及实际应用需求。Gasboard-9802发动机排放全流稀释定容采样系统(CVS)具有功能齐全、准确性高和自动化程度高等特点,适用于轻型车、重型车和非道路移动机械等各种移动源国家排放法规,可满足各种工况下不同排量和不同燃料类型内燃机的法规排放测试试验需求。目前,湖北锐意的全流稀释排放测试系统设备已经逐步成功应用于科研机构、发动机制造企业、轻型汽车制造企业、摩托车制造企业及相关检测机构等。Gasboard-9801发动机排放测试系统技术参数应用案例1、 武汉某知名高校醇氢发动机排放测试研究项目2、 常州某大型发动机制造企业实验室排放气体检测项目(二)便携式排放测试系统基于便携式排放测试系统的实际工况车载排放测试是一种更能反映移动源真实排放水平的排放测试方法,已经被我国轻型车、重型车和非道路移动机械排放法规引入作为标准方法的重要补充,正在法规检测和市场监督抽查等应用场景中发挥越来越重要的作用。湖北锐意针对性开发了符合法规要求的Gasboard-9805便携式排放测试系统(PEMS)。该系统采用全自主的核心传感器分析技术,可实现排放物CO、CO2、NO、NO2、THC和PN浓度测量,以及排气流量、GPS数据、环境温湿度、大气压力的测量,并具备测试过程引导、自动计算排放总量、导出测试报告等功能。依托自主搭建的排气质量流量标定系统和颗粒物PN分析仪标定系统等关键标定平台,为便携式排放测试系统的溯源标定和质量检验提供了保障。目前,湖北锐意便携式排放测试系统已经成功应用于科研机构、机动车和非道路移动机械制造企业及相关检测机构等。Gasboard-9805便携式排放测试系统技术参数应用案例1、浙江某大型农用机械制造企业车载排放测试项目(三)非常规气体分析仪发动机尾气中NH3和N2O等非常规气体污染物排放已经成为当前国际研究热点和排放法规检测项目。湖北锐意分别采用高温紫外差分吸收光谱技术(UV-DOAS)和可调谐半导体激光吸收光谱技术(TDLAS)成功开发了发动机原排直采NH3分析仪和N2O分析仪,已应用于新能源发动机研发工作。NH3和N2O分析仪技术参数(四)在用车排放检测系统湖北锐意基于双光束红外(NDIR)、微流红外(NDIR)、非分光紫外(UV-DOAS)等核心气体传感技术,自主研发了包括气体传感器平台、尾气分析仪、透射式烟度计、振动式发动机转速表的在用车排放检测整体解决方案。产品具有高精度、稳定性好,抗干扰能力强等特点,满足: GB 18285-2018,GB 3847-2018,GB 7258-2017,GB 7258-2017,GB 20891-2014等国标以及JJF 1375,JJG 688-2017,HJ 1014-2020等技术要求。产品广泛应用于机动车检测机构、汽车制造厂、汽车修理厂、科研机构、环保执法部门等。三、燃气热值分析解决方案天然气、沼气以及工业生产中可燃气体的高效利用对节能减排具有十分重要的意义。准确测量可燃气体成分及热值并自动优化控制燃烧过程是提高燃烧效率和控制排放污染的重要途经。天然气等碳氢燃料的气体成分分析主要依赖气相色谱法,但该方法的响应时间达90s以上,往往不能满足大多数场合的实时控制应用需求。湖北锐意在气体分析传感器平台优势基础上吸收国际先进的产品设计理念和应用经验,并结合国内应用需求,自主研发了以光谱吸收技术原理为主的一系列气体成分及热值在线测量设备,具有精度高、响应快、功能齐全等特点,可满足石油天然气、沼气、污水气体系统、垃圾填埋、玻璃陶瓷、化工、电厂和内燃机等领域应用。(一)激光拉曼光谱气体分析仪激光拉曼光谱法可以使用一个激光光源同时探测除惰性气体之外的所有气体分子,是一种非常有潜力的过程气体成分在线监测技术。但激光拉曼光谱法的特征信号较弱,一定程度上限制了该技术在气体检测领域的广泛应用。2012年四方光电牵头承担 “激光拉曼光谱气体分析仪的研发与应用”国家重大科学仪器设备开发专项,解决了检测信号弱等诸多难题,成功开发了LRGA-6000激光拉曼光谱气体分析仪。设备融合10项授权发明专利,通过对仪器的发生装置、收集装置、探测装置等核心硬件进行激光功率增加、气体压力提高、作用光程增长、散射光大范围收集等技术创新,以及采用基于Ar基底自动扣除、基于标定气体干扰自动修正等激光拉曼特有的软件算法,消除环境温度、压力、干扰气体等对被测气体的影响,实现了对低密度过程气体的高精度监测,已广泛应用于天然气、乙烯裂解气、生物质燃气、变压器油溶解气、煤化工等各大领域。在热值监测领域,激光拉曼光谱技术具有突出优势。以往旧式热值仪往往只能监测总碳氢化合物的热值总量且易受水分影响,而湖北锐意激光拉曼光谱气体分析仪可以分别监测显示各组分热值,采用的特征指纹谱技术具有极强的抗干扰能力。在气体监测领域可取代气相色谱(GC)与质谱(MS):LRGA-6000激光拉曼光谱气体分析仪技术参数LRGA-3100激光拉曼光谱气体分析仪技术参数应用案例1、武汉某大型轧钢厂加热炉热值监测项目2、 非洲某大型天然气开采监测项目(二)煤气分析仪(便携型)湖北锐意煤气分析仪可同时监测8种气体浓度并自动计算显示煤气/天然气热值,且多组分同时测量无交叉干扰。据以往用户使用案例的监测结果统计来看,湖北锐意煤气分析仪在热值监测方面平均为用户节省约10%的燃烧热能,此数据反应到庞大的工业产量基数上,为用户企业节省了十分可观的燃料成本。湖北锐意红外气体分析技术包含公司授权专利12项。其中消除交叉气体干扰技术集成非分光红外气体传感器(针对CO、CO2、CH4和CnHm检测)、热导H2传感器以及电化学O2传感器,并通过软件进行修正得到准确的八组分浓度数据并计算热值。基于该技术开发的煤气分析仪能够与昂贵的在线气相色谱仪作用相当,省却了载气等长期耗材,并具备热值分析功能。主要应用于煤化工、钢铁冶金等领域的煤气成分及热值测量、高校科研院所的气体取样分析以及新能源行业的气体成分测量等。Gasboard-3100P煤气分析仪技术参数应用案例1、抚顺某石油化工研究院生物质原料热解实验室检测项目(三)便携红外天然气热值分析仪天然气作为一种新型清洁燃料也是一种混合气体,不同气源生产的天然气组分会有所不同,在天然气用作燃料时,因组分不同导致其热值出现差异。目前无论是工业还是民用,都对天然气具有依赖性。对燃烧过程中气体浓度及热值的连续监测,可精确了解天然气的燃烧效率,对于降低企业生产成本、改善大气环境、实现可持续经济发展等具有积极作用。湖北锐意便携式红外天然气热值分析仪可同时测量多种气体浓度,并自动计算天然气热值,可取代燃烧法热值仪。相较于适用于高校与职业院校教学科研/实验实训、燃气具生产企业、燃气计量检测部门、节能监测部门、环保和配气等行业、天然气公司、液化气厂、液化气站等。Gasboard-3110P便携式红外天然气热值分析仪技术参数
  • 湖北锐意推出碳通量气体检测、发动机排放检测及燃气热值分析等高端气体分析仪器
    9月28日,中国人民银行宣布为贯彻落实国务院常务会议关于支持经济社会发展薄弱领域设备更新改造的决策部署,设立了2000亿元以上设备更新改造专项再贷款,政策面向教育、实训基地、节能降碳改造升级、新型基础设施等十大领域。四方光电股份有限公司(688665.SH)旗下全资子公司湖北锐意自控系统有限公司(以下简称“湖北锐意”)是一家专业提供气体成分及流量测量方案的高新技术企业,基于四方光电核心气体传感技术平台的优势,开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业。湖北锐意针对国家政策以及当前研究热点问题,选择碳通量气体检测、发动机排放检测及燃气热值分析三个重点方向,推荐以下行业解决方案。一、碳通量气体检测解决方案实现“碳达峰”“碳中和”是国家做出的重大战略决策。通过监测数据可以预测未来的气候变化趋势和评价生态系统碳循环对全球变化的响应与适应特征,为“双碳”目标的达成提供参考数据,为现代地球系统科学、生态与环境科学关注的重大科学问题提供研究依据。碳通量在线监测网络主要包含土壤温室气体通量测量和大气环境涡度协方差测量系统两种方法。湖北锐意依托气体分析传感器平台优势,分别开发了土壤碳通量分析仪与大气环境涡度协方差测量系统。(一)土壤碳通量分析仪土壤生态系统中的碳元素主要是通过土壤呼吸来实现碳循环,对土壤呼吸过程中CO2释放量的准确监测是评价生态系统中碳汇过程的关键。通量测定法是最为常用的测定方法,即直接测定土壤和大气间的CO2交换量,也是评价土壤生态系统碳循环过程的关键。国家正在积极推动“双碳”政策,碳监测为碳计量提供准确的基础数据。垃圾填埋场、污水处理厂和煤矿等区域的无组织碳排放是碳监测的难点之一。土壤碳通量分析仪利用非分光红外气体分析技术(NDIR)测量CO2浓度、可调谐半导体激光吸收光谱技术(TDLAS)测量CH4、N2O浓度。仪器外形小巧便携,方便获取多个不同点位的数据,完成不同空间与高度限值的测量要求,支持长期、连续、准确的测量。主要应用于土壤碳通量监测、森林碳通量监测、温室气体排放监测、空气质量监测、城市污染气体排放监测、固定污染源排放监测;高校关于环境科学、农业学与林业学相关研究等。(据测量场景不同可选配多款型号气体测量室)土壤碳通量分析仪技术参数(二)大气环境涡度协方差测量系统涡度协方差(又称涡动相关法)技术是测量和计算大气边界层内垂直湍流通量的重要大气测量技术。大气环境涡度协方差测量系统结合多款气体分析仪与超声风速仪,模块化设计,外形小巧,安装灵活。相互无干扰,专为高空监测而设计。通过对微气象中的三维风速与气体浓度进行精确测量,完成对生态系统与大气之前湍流交换的监测,即时收集流动畸变数据。适用于边界层气象研究、生态系统温室气体含量监测、野外大气监测、碳水循环研究、空气通量研究、遥感数据验证等。图左:开路式(CO2/H2O)气体分析仪图中:开路式(CH4)气体分析仪图右:三维超声风速仪大气环境涡度协方差测量系统技术参数二、发动机排放检测解决方案内燃机工业是我国重要基础产业,也是节能减排的重点领域。近年来,我国已经颁布和实施了GB 18352.6-2016(轻型车国六)、GB 17691-2018(重型车国六)和GB 20891-2014的2020年修改单(非道路移动机械国四)等移动源新生产车排放法规以及GB 18285-2018(汽油车)、GB 3847-2018(柴油车)和GB 36886-2018(非道路移动机械)等在用车排放法规。其中引领内燃机行业技术发展的是新生产车排放法规,该法规体系中要求的高精度发动机排放检测设备,主要包括全流稀释排放测试系统和便携式排放测试系统,目前都是主要依赖国外进口产品。由于设备构成十分复杂且涉及多项高精度测量技术,进口设备往往十分昂贵,全流稀释排放测试系统单套价格通常会达到数百万元甚至是千万元以上,便携式排放测试系统单套价格也通常会达到百万元以上。进口设备不仅价格贵,还存在供货周期长、使用成本高等问题,显然不能完全满足我国作为内燃机产销第一大国的实际需求。湖北锐意依托气体成分流量仪器仪表研发平台基础优势,结合近20年发动机排放分析仪研发经验,吸收国际先进应用经验,对关键技术进行攻关突破,战略性加大投入,成功研发了全流稀释排放测试系统、便携式排放测试系统以及非常规气体分析仪等全系列产品,具有技术先进、功能齐全、测量准确、性能稳定、兼容性强和高效服务等特点,可满足科研机构、制造企业和检测机构等国内外用户的各种应用需求。(一)全流稀释排放测试系统基于全流稀释排放测试系统的实验室标准工况排放测试是我国移动源排放法规体系中被广泛采用的标准方法,湖北锐意针对性开发了Gasboard-9802发动机排放全流稀释定容采样系统(CVS)及其配套的Gasboard-9801发动机排放测试系统。Gasboard-9801发动机排放测试系统结合高精度氢火焰离子化检测技术(HFID)、紫外差分吸收光谱技术(UV-DOAS)、非分光红外技术(NDIR)、长寿命电化学传感器技术(ECD)与凝结核粒子计数技术(CPC),同时测量发动机排气中THC、NOx、CO、CO2、O2等气体体积浓度及颗粒物数量浓度,其超低量程同时具备准确性高和响应速度快的特点,完全满足排放法规技术要求以及实际应用需求。Gasboard-9802发动机排放全流稀释定容采样系统(CVS)具有功能齐全、准确性高和自动化程度高等特点,适用于轻型车、重型车和非道路移动机械等各种移动源国家排放法规,可满足各种工况下不同排量和不同燃料类型内燃机的法规排放测试试验需求。目前,湖北锐意的全流稀释排放测试系统设备已经逐步成功应用于科研机构、发动机制造企业、轻型汽车制造企业、摩托车制造企业及相关检测机构等。Gasboard-9801发动机排放测试系统技术参数应用案例1、 武汉某知名高校醇氢发动机排放测试研究项目2、 常州某大型发动机制造企业实验室排放气体检测项目(二)便携式排放测试系统基于便携式排放测试系统的实际工况车载排放测试是一种更能反映移动源真实排放水平的排放测试方法,已经被我国轻型车、重型车和非道路移动机械排放法规引入作为标准方法的重要补充,正在法规检测和市场监督抽查等应用场景中发挥越来越重要的作用。湖北锐意针对性开发了符合法规要求的Gasboard-9805便携式排放测试系统(PEMS)。该系统采用全自主的核心传感器分析技术,可实现排放物CO、CO2、NO、NO2、THC和PN浓度测量,以及排气流量、GPS数据、环境温湿度、大气压力的测量,并具备测试过程引导、自动计算排放总量、导出测试报告等功能。依托自主搭建的排气质量流量标定系统和颗粒物PN分析仪标定系统等关键标定平台,为便携式排放测试系统的溯源标定和质量检验提供了保障。目前,湖北锐意便携式排放测试系统已经成功应用于科研机构、机动车和非道路移动机械制造企业及相关检测机构等。Gasboard-9805便携式排放测试系统技术参数应用案例1、浙江某大型农用机械制造企业车载排放测试项目(三)非常规气体分析仪发动机尾气中NH3和N2O等非常规气体污染物排放已经成为当前国际研究热点和排放法规检测项目。湖北锐意分别采用高温紫外差分吸收光谱技术(UV-DOAS)和可调谐半导体激光吸收光谱技术(TDLAS)成功开发了发动机原排直采NH3分析仪和N2O分析仪,已应用于新能源发动机研发工作。NH3和N2O分析仪技术参数(四)在用车排放检测系统湖北锐意基于双光束红外(NDIR)、微流红外(NDIR)、非分光紫外(UV-DOAS)等核心气体传感技术,自主研发了包括气体传感器平台、尾气分析仪、透射式烟度计、振动式发动机转速表的在用车排放检测整体解决方案。产品具有高精度、稳定性好,抗干扰能力强等特点,满足: GB 18285-2018,GB 3847-2018,GB 7258-2017,GB 7258-2017,GB 20891-2014等国标以及JJF 1375,JJG 688-2017,HJ 1014-2020等技术要求。产品广泛应用于机动车检测机构、汽车制造厂、汽车修理厂、科研机构、环保执法部门等。三、燃气热值分析解决方案天然气、沼气以及工业生产中可燃气体的高效利用对节能减排具有十分重要的意义。准确测量可燃气体成分及热值并自动优化控制燃烧过程是提高燃烧效率和控制排放污染的重要途经。天然气等碳氢燃料的气体成分分析主要依赖气相色谱法,但该方法的响应时间达90s以上,往往不能满足大多数场合的实时控制应用需求。湖北锐意在气体分析传感器平台优势基础上吸收国际先进的产品设计理念和应用经验,并结合国内应用需求,自主研发了以光谱吸收技术原理为主的一系列气体成分及热值在线测量设备,具有精度高、响应快、功能齐全等特点,可满足石油天然气、沼气、污水气体系统、垃圾填埋、玻璃陶瓷、化工、电厂和内燃机等领域应用。(一)激光拉曼光谱气体分析仪激光拉曼光谱法可以使用一个激光光源同时探测除惰性气体之外的所有气体分子,是一种非常有潜力的过程气体成分在线监测技术。但激光拉曼光谱法的特征信号较弱,一定程度上限制了该技术在气体检测领域的广泛应用。2012年四方光电牵头承担 “激光拉曼光谱气体分析仪的研发与应用”国家重大科学仪器设备开发专项,解决了检测信号弱等诸多难题,成功开发了LRGA-6000激光拉曼光谱气体分析仪。设备融合10项授权发明专利,通过对仪器的发生装置、收集装置、探测装置等核心硬件进行激光功率增加、气体压力提高、作用光程增长、散射光大范围收集等技术创新,以及采用基于Ar基底自动扣除、基于标定气体干扰自动修正等激光拉曼特有的软件算法,消除环境温度、压力、干扰气体等对被测气体的影响,实现了对低密度过程气体的高精度监测,已广泛应用于天然气、乙烯裂解气、生物质燃气、变压器油溶解气、煤化工等各大领域。在热值监测领域,激光拉曼光谱技术具有突出优势。以往旧式热值仪往往只能监测总碳氢化合物的热值总量且易受水分影响,而湖北锐意激光拉曼光谱气体分析仪可以分别监测显示各组分热值,采用的特征指纹谱技术具有极强的抗干扰能力。在气体监测领域可取代气相色谱(GC)与质谱(MS):LRGA-6000激光拉曼光谱气体分析仪技术参数LRGA-3100激光拉曼光谱气体分析仪技术参数应用案例1、武汉某大型轧钢厂加热炉热值监测项目2、 非洲某大型天然气开采监测项目(二)煤气分析仪(便携型)湖北锐意煤气分析仪可同时监测8种气体浓度并自动计算显示煤气/天然气热值,且多组分同时测量无交叉干扰。据以往用户使用案例的监测结果统计来看,湖北锐意煤气分析仪在热值监测方面平均为用户节省约10%的燃烧热能,此数据反应到庞大的工业产量基数上,为用户企业节省了十分可观的燃料成本。湖北锐意红外气体分析技术包含公司授权专利12项。其中消除交叉气体干扰技术集成非分光红外气体传感器(针对CO、CO2、CH4和CnHm检测)、热导H2传感器以及电化学O2传感器,并通过软件进行修正得到准确的八组分浓度数据并计算热值。基于该技术开发的煤气分析仪能够与昂贵的在线气相色谱仪作用相当,省却了载气等长期耗材,并具备热值分析功能。主要应用于煤化工、钢铁冶金等领域的煤气成分及热值测量、高校科研院所的气体取样分析以及新能源行业的气体成分测量等。Gasboard-3100P煤气分析仪技术参数应用案例1、抚顺某石油化工研究院生物质原料热解实验室检测项目(三)便携红外天然气热值分析仪天然气作为一种新型清洁燃料也是一种混合气体,不同气源生产的天然气组分会有所不同,在天然气用作燃料时,因组分不同导致其热值出现差异。目前无论是工业还是民用,都对天然气具有依赖性。对燃烧过程中气体浓度及热值的连续监测,可精确了解天然气的燃烧效率,对于降低企业生产成本、改善大气环境、实现可持续经济发展等具有积极作用。湖北锐意便携式红外天然气热值分析仪可同时测量多种气体浓度,并自动计算天然气热值,可取代燃烧法热值仪。相较于适用于高校与职业院校教学科研/实验实训、燃气具生产企业、燃气计量检测部门、节能监测部门、环保和配气等行业、天然气公司、液化气厂、液化气站等。Gasboard-3110P便携式红外天然气热值分析仪技术参数
  • 崂应技术人员现场风采花絮(三)
    河北邢台监测站现场测试仪器:崂应3023型 紫外差分烟气综合分析仪 崂应3026型 红外烟气综合分析仪广东韶关某发电厂现场测试仪器:崂应3026型 红外烟气综合分析仪山东临沂某水泥厂现场测试仪器:崂应3023型 紫外差分烟气综合分析仪
  • 锐意自控基于微流红外、紫外NOX传感器的汽车排放尾气分析仪已通过多省计量认证
    p  汽车尾气排放分析仪是在汽车发动机正常运转时,对汽车排放的尾气进行检测、分析, 从而判断汽车发动机是否工作正常、排出的有害气体是否超出标准的一种仪器。作为机动车尾气检验以及维修机构的核心设备,这种仪器的质量和性能直接影响到对汽车尾气排放超标进行检查的效率和效果。因此,获得具有法定效力的计量认证证书是产品应用于市场的重要前提条件。/pp  随着新的汽车尾气排放检测法规《汽油车污染物排放限值及测量方法(双怠速及简易工况法)》GB18285-2018和《柴油车污染物排放限值及测量方法(自由加速法及加载减速法)》GB3847-2018的发布,汽车尾气分析检测逐渐标准化。凭借在环保领域多年的气体分析仪器仪表研发制造经验,湖北锐意自控全新推出测量精准度更高、稳定性更好的汽油车尾气排放分析仪Gasboard-5260和柴油车尾气排放分析仪Gasboard-5230。/ppspan style="font-size: 18px color: rgb(0, 176, 80) "strong新法规变化分析/strong/spanstrong style="font-size: 18px "/strong/pp  新法规规定,汽车尾气排放分析仪应至少能自动测量HC、CO、CO2、NO、O2五种气体浓度。在检测方法上也发生了较大的变化:一是规定原来的电化学法测量NOx的原理不再适用,必须用光学法原理测量 二是柴油车增加了NOx的检测。/pp  span style="color: rgb(255, 0, 0) "如何准确测量NOx?/span/pp  新标准的出台直接影响着NOx的测量,光学检测原理有非分光红外(NDIR)、微流NDIR、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS),原理不同测量的精度和结果也不同。除了检测原理不同外,还有两种测量方式的区别:一种是直接测量,把NOx分为NO 和NO2两个组分分别测量,测量浓度相加得到NOx 另一种是间接测量,采用转化炉将NO2转化为NO,通过测量NO间接得出NO2和NOx的浓度。/pp  此外,《柴油车污染物排放限值及测量方法(自由加速法及加载减速法)》GB 3847-2018中规定采用转化炉将NO2转化为NO时,转化效率应≥90%,对转化效率要定期检验,转化效率不合格的转化炉要及时更换。/pp  因此,采用转化炉间接测量法的汽车尾气分析仪会遇到以下问题:/pp  1、转化效率会影响测量精度,造成测量结果不准确 /pp  2、转化炉定期进行检测会增加作业成本 /pp  3、转化炉的使用寿命一般不超过一年,需定期更换。/ptable border="0" cellspacing="0" cellpadding="0" style="border-collapse:collapse margin-left:10px margin-right: 10px" width="648"tbodytr class="firstRow"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="79"p style="text-align:center line-height:150%"strongspan style="font-size:13px line-height:150% font-family:等线"特性/span/strong/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="302"p style="text-align:center line-height:150%"strongspan style="font-size:13px line-height:150% font-family:等线"直接测量spanNO/span、/span/strongstrongspan style="font-size:13px line-height:150% font-family:等线"NOsub2/sub/span/strongstrong/strong/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="266"p style="text-align:center line-height:150%"strongspan style="font-size:13px line-height:150% font-family:等线"间接测量spanNO/span、/span/strongstrongspan style="font-size:13px line-height:150% font-family:等线"NOsub2/sub/span/strongstrongspan style="font-size:13px line-height:150% font-family:等线"(转换炉)/span/strong/p/td/trtrtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="79"p style="text-align:center line-height:150%"span style="font-size:13px line-height:150% font-family:等线"准确性/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="302"p style="text-align:left line-height:150%"span style="font-size:13px line-height:150% font-family:等线"测量精度较高,spanNOx/span测量误差低至span style="background:white"± span4%/span/span/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="266"p style="text-align:left line-height:150%"span style="font-size:13px line-height:150% font-family:等线"测量精度受转化效率影响较大/span/p/td/trtrtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="79"p style="text-align:center line-height:150%"span style="font-size:13px line-height:150% font-family:等线"便利性/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="302"p style="text-align:left line-height:150%"span style="font-size:13px line-height: 150% font-family:等线"1/spanspan style="font-size: 13px line-height:150% font-family:等线"台仪器集成span2/span个测量平台,操作方便/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="266"p style="text-align:left line-height:150%"span style="font-size:13px line-height: 150% font-family:等线"1/spanspan style="font-size: 13px line-height:150% font-family:等线"台仪器外加span1/span台转换炉,操作繁琐/span/p/td/trtrtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="79"p style="text-align:center line-height:150%"span style="font-size:13px line-height:150% font-family:等线"成本效益/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="302"p style="text-align:left line-height:150%"span style="font-size:13px line-height:150% font-family:等线"无需更换后期耗材,后期免维护/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " width="266"p style="text-align:left line-height:150%"span style="font-size:13px line-height:150% font-family:等线"需定期更换转换炉,成本增加/span/p/td/tr/tbody/tablep style="text-align: center "strong表一、直测法VS转化炉法特性对比分析/strong/pp style="text-align: center "span style="font-size: 18px "strong/strong/span/ppspan style="font-size: 18px color: rgb(0, 176, 80) "strong锐意自控解决方案/strong/span/pp  湖北锐意自控系统有限公司自汽车尾气排放检测新国标发布以来,在核心气体传感器的测量原理及结构上取得突破。针对标准中规定的汽车尾气排放分析仪的检测组分、量程、精度的要求,以及市场普遍面临的NOx测量受水分干扰及转化炉转化效率影响的技术难点,成功研发出满足汽油车和柴油车尾气检测用的气体传感器平台。/pp  span style="color: rgb(255, 0, 0) "1、 采用微流NDIR技术直测NO/span/pp  目前国际上的微流红外气体传感器在使用过程中,测量结果随着温度变化,以及光源、探测器的老化等原因造成漂移。对此,湖北锐意自控在采用了隔半气室设计,分别设计了参考气室和测量气室,但是使用同一个光源和探测器,因此,可以通过光源通过参考气室和测量气室的信号比值来修正由于温度、光源老化、探测器老化等造成的信号漂移,从而提高微流红外气体传感器的测量精度和长期稳定性。/pp  此外,基于非分光红外(NDIR)测量NO、NO2易受水分干扰的问题,配备水分补偿调节装置,增加传感器对被测气体的响应灵敏度 通过调节叶片及线性修正,对H2O(气)干扰信号进行调整,使传感器受H2O(气)的影响相互抵消,从而消除H2O(气)的干扰,进一步保证测量的准确性。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 234px " src="https://img1.17img.cn/17img/images/202006/uepic/24ce5fd9-be58-465e-83c5-5411ae0dbd4f.jpg" title="图片.jpg" alt="图片.jpg" width="450" height="234" border="0" vspace="0"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "①红外光源 ②切光器 ③切光电机 ④测量气室 ⑤参比气室 ⑥检测器 ⑦微流传感器⑧第2组分检测器 ⑨信号处理及输出系统/span/pp style="text-align: center "strong图一 微流NDIR双气室技术原理/strong/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 293px " src="https://img1.17img.cn/17img/images/202006/uepic/aed0659f-3c0a-4edc-93bd-8bdffb75a6b6.jpg" title="22.jpg" alt="22.jpg" width="450" height="293" border="0" vspace="0"//pp style="text-align: center "strong图二 微流NDIR NO气体传感器/strong/pp  span style="color: rgb(255, 0, 0) "2、 非分光紫外(NDUV)直测NO2/span/pp  不同于红外(IR),紫外(UV)光谱吸收波段是纳米级别的,波长更短,波峰比较独立。非分光紫外(NDUV)可准确测量NO2气体浓度,不受水分干扰,精度更高,且非分光紫外(NDUV)相对于紫外差分吸收光谱(UV-DOAS)成本较低。采用非分光紫外(NDUV)直测NO2,成功打破汽车尾气检测中需配套NOx转化炉将NO2转化为NO,采用红外光学平台测量NO浓度,再通过NO浓度计算得出NO2浓度的局限性,更加节省系统集成空间及维护成本 且NO2测量更准确,不受转化效率的影响。/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 450px height: 299px " src="https://img1.17img.cn/17img/images/202006/uepic/f6bf8cf2-ddb5-4eed-a6d8-13e96be55e38.jpg" title="33.jpg" alt="33.jpg" width="450" height="299" border="0" vspace="0"//pp style="text-align: center "  strong图三 紫外吸收光谱/strong/pp  锐意自控的汽油车尾气排放分析仪Gasboard-5260和柴油车尾气排放分析仪Gasboard-5230采用微流NDIR直测NO、非分光紫外(NDUV )直测NO2,成功打破汽车尾气检测中需配套NOx转化炉将NO2转化为NO的局限性,更加节省系统集成空间及维护成本 且NO2测量更准确,不受转化效率的影响。微流NDIR、非分光紫外(NDUV)、非分光红外(NDIR)及电化学技术均为湖北锐意自控自主掌握。/ppspan style="font-size: 18px color: rgb(0, 176, 80) "strong新产品介绍/strong/span/pp  基于核心汽车尾气传感器平台,湖北锐意自控针对汽油车和柴油车的检测需求,成功开发出汽油车尾气排放分析仪Gasboard-5260和柴油车尾气排放分析仪Gasboard-5230。/ptable border="0" cellspacing="0" cellpadding="0" style="border-collapse:collapse margin-left:10px margin-right: 10px"tbodytr class="firstRow"td width="300" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center line-height:115%"span style="font-size:13px line-height:115% font-family:等线"湖北锐意自控汽油车尾气分析仪/span/pp style="text-align:center line-height:115%"span style="font-size:13px line-height: 115% font-family:等线"Gasboard-5260/span/p/tdtd width="283" style="border: 1px solid rgb(0, 0, 0) padding: 5px "p style="text-align:center line-height:115%"span style="font-size:13px line-height:115% font-family:等线"湖北锐意自控柴油车尾气分析仪/span/pp style="text-align:center line-height:115%"span style="font-size:13px line-height: 115% font-family:等线"Gasboard-5230/span/p/td/trtr style=" height:102px"td width="300" style="background: rgb(242, 242, 242) border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="102"p style="text-align: center"img style="max-width: 100% max-height: 100% width: 280px height: 210px " src="https://img1.17img.cn/17img/images/202006/uepic/5afda047-238b-4bfb-8334-58263b308cad.jpg" title="尾气分析仪.jpg" alt="尾气分析仪.jpg" width="280" height="210" border="0" vspace="0"//pp style="text-align:center line-height:115%"br//p/tdtd width="283" style="background: rgb(242, 242, 242) border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="102"p style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/bf78c478-51d3-480f-a564-e862ee53eb95.jpg" title="44.jpg" alt="44.jpg"//pp style="text-align:center line-height:115%"br//p/td/trtr style=" height:36px"td width="300" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"测量气体:spanHC/span、spanCO/span、spanCO2/span、spanNO/span、/spanspan style="font-size:13px line-height:115% font-family:等线"NOsub2/sub/spanspan style="font-size:13px line-height:115% font-family:等线"、spanO2/span/span/p/tdtd width="283" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="36"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"测量气体:spanCO2/span、spanNO/span、/spanspan style="font-size:13px line-height:115% font-family:等线"NOsub2/sub/span/p/td/trtr style=" height:39px"td width="300" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="39"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"测量原理:/span/pp style="text-align:left"span style="font-size:13px font-family:等线"HC/spanspan style="font-size:13px font-family:等线"、spanCO/span、spanCO2/span:非分光红外spanNDIR/span/span/pp style="text-align:left"span style="font-size:13px font-family:等线"NO: /spanspan style="font-size:13px font-family:等线"微流spanNDIR /span/span/pp style="text-align:left"span style="font-size:13px font-family:等线"NOsub2/sub/spanspan style="font-size:13px font-family:等线":非分光紫外spanNDUV/span/span/pp style="text-align:left line-height:115%"span style="font-size:13px line-height: 115% font-family:等线"O2/spanspan style="font-size: 13px line-height:115% font-family:等线":电化学/span/p/tdtd width="283" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="39"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"测量原理:/span/pp style="text-align:left"span style="font-size:13px font-family:等线"CO2/spanspan style="font-size:13px font-family:等线":非分光红外spanNDIR/span/span/pp style="text-align:left"span style="font-size:13px font-family:等线"NO/spanspan style="font-size:13px font-family:等线":微流spanNDIR/span/span/pp style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"NOsub2/sub/spanspan style="font-size:13px line-height:115% font-family:等线": /spanspan style="font-size:13px line-height:115% font-family:等线"非分光紫外spanNDUV/span/span/p/td/trtr style=" height:39px"td width="300" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="39"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"适用标准:/span/pp style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"《汽油车污染物排放限值及测量方法(双怠速及简易工况法)》spanGB18285-2018/span/span/p/tdtd width="283" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="39"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"适用标准:/span/pp style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"《柴油车污染物排放限值及测量方法(自由加速法及加载减速法)》spanGB3847-2018/span/span/p/td/trtr style=" height:34px"td width="300" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"检测方法:/span/pp style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线 background:white"汽车排放总量分析(/spanspan style="font-size:13px line-height: 115% font-family:等线"VMAS/spanspan style="font-size:13px line-height:115% font-family:等线")/span/ph3 style="margin-top:0 margin-right:0 margin-bottom:3px margin-left: 0 background:white"span style="font-size:13px font-family:等线 font-weight: normal"简易稳态工况法(/spanspan style="font-size:13px font-family: 等线 font-weight:normal"ASM/spanspan style="font-size:13px font-family:等线 font-weight: normal")/span/h3h3 style="margin-top:0 margin-right:0 margin-bottom:3px margin-left: 0 background:white"span style="font-size:13px font-family:等线 font-weight: normal"双怠速/span/h3/tdtd width="283" valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"pspan style="font-size:13px font-family:等线"检测方法:/span/ph3 style="margin-top:0 margin-right:0 margin-bottom:3px margin-left: 0 text-align:justify text-justify:inter-ideograph background:white"span style="font-size:13px font-family:等线 font-weight: normal"加载减速工况法(/spanspan style="font-size:13px font-family: 等线 font-weight:normal"Lugdowm/spanspan style="font-size:13px font-family:等线 font-weight: normal")/span/h3/td/trtr style=" height:34px"td width="300" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"p style="text-align:left line-height:115%"span style="font-size:13px line-height:115% font-family:等线"适用车型:汽油车/span/p/tdtd width="283" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="34"p style="line-height:115%"span style="font-size:13px line-height:115% font-family:等线"适用车型:柴油车/span/pp style="line-height:115%"span style="font-size:13px line-height:115% font-family:等线" /span/p/td/tr/tbody/tablep  根据汽车尾气排放分析仪的计量要求,湖北锐意自控对产品进行了充分严格的测试,已一次性批量通过河南省、湖北省、广西省计量院的检定。除上述三省外,湖北锐意自控正在加快推进全国其他省市的计量校准工作,以满足更多地区检测站(I站)和维修站(M站)的使用需求。/p
  • 为专家服务—崂应全国新技术交流会北京站成功召开
    仪器信息网讯 近日,青岛崂山应用技术研究所(以下简称&ldquo 崂应)全国巡回新技术交流会北京站在北京京仪大酒店顺利举行。此次交流会吸引了70多名来自第三方检测机构的技术人员和负责人参加,崂应多名技术人员针对崂应的产品的选型、使用、维护以及新技术进行了详细的讲解。技术交流会现场  崂应始创于1988年,产品主要为便携式烟尘烟气监测仪器及配套产品。崂应副总经理李靖女士、技术总监孙作福先生和沈阳客服站站长赵智先生分别针对崂应发展现状,环境空气、污染源监测仪器使用、维护及注意事项,低浓度颗粒物、挥发性有机物、重金属的监测等主题为大家进行了讲解。报告人:李靖副总经理、孙作福技术总监、赵智站长  随着环保趋严和技术进步,燃煤锅炉排放的颗粒物浓度大大降低,故固定污染源颗粒物测定的方法逐渐不能满足现有的测定需求。山东省率先颁布了《山东省固定污染源废气低浓度颗粒物的测定重量法》,填补了国内标准的空白。此标准以 &ldquo 崂应3012H-D&rdquo 型便携式大流量低浓度烟尘自动测试仪为专用机型。  烟气监测仪目前主要有四种测量原理:溶液吸收法、定电位电解法、紫外差分法、红外分析法。溶液吸收法即采用特定溶液对烟气成分进行吸收并带回实验室检测,此法的优势在于成本低,不存在气体间的交叉干扰等,但存在操作麻烦、无法直接读数、寒冷地区易结冰等问题。定电位电解法采用电解的原理对烟气中的气体进行检测,一分钟内即可完成检测过程,而且国家标准颁布较早,目前应用广泛。当然此方法在实际应用中也存在一定问题,如传感器有一定保质期需定期更换,不同气体同时测定时互相有干扰,尤其是干扰气体浓度变化较大时更给使用带来困难。紫外差分法和红外分析法都是光谱方法,响应速度快,同时价格也比较高。紫外差分法由于没有光学运动部件,因此防震效果好,且不受水蒸气的影响,但仪器整体质量较大。红外分析仪质量较小,但水蒸气有强烈干扰,可以说仪器前端的除水效果决定了仪器数据的准确度。这四种原理的便携式烟气分析仪,崂应都有相应的产品。   此技术交流会为崂应组织的系列活动,2015年已在浙江、福建、江苏、安徽、青岛等地成功举办,后续还将在全国各地巡回举办技术交流会。
  • 携手院士共筑中科光电未来——中科光电发起人-刘文清院士被特聘为“无锡市科学顾问”
    全市科技创新与人才大会现场  2018年9月7日,在无锡市人民大会堂召开了近十年来规格最高、规模最大的一次科技盛会——全市科技创新与人才大会。在此次大会上,市委市政府首次聘请了聚光科技(杭州)股份有限公司(以下简称“聚光科技”)下属子公司无锡中科光电技术有限公司(以下简称“中科光电”)发起人——刘文清院士等10位德高望重的院士担任“无锡市科学顾问”。为无锡的科学巨人提供了最强大脑,成为无锡科研生力军中又一批新的中流砥柱。 省委常委、市委书记李小敏为刘文清院士颁发聘书院士简介  刘文清,环境光学监测领域专家,中国工程院院士,中国科学院合肥物质科学研究院安徽光机所首席科学家、原所长,安徽大学物质科学与信息技术研究院院长。刘文清院士主要从事过超短脉冲激光器、激光遥感、激光散射成像、新型环境监测仪器、有害痕量气体光学与光谱学监测技术、环境监测仪器的研制与研究工作。  刘文清院士成功将光谱学技术应用于环境监测,开拓了中国环境光学监测技术新领域;发展了高灵敏环境监测新方法、新技术,达到了国际先进水平;研发了系列先进环境监测设备,促进了中国环境监测技术的进步。他主持开展了环境光学技术方法创新,建立了环境污染物的光谱特征数据库,研发了污染物光谱定量解析算法和工程化应用软件。利用发展的环境光学监测技术方法,研发了20多种常规污染物、污染源,VOCs,颗粒物,环境安全,水质污染在线监测技术设备,为改变中国长期以来环境自动在线监测设备依赖国外进口的局面发挥了带动作用。通过系统集成了大气污染立体监测技术,先后在北京、上海、广州、重庆等地开展大气污染外场监测示范应用,弥补传统地面监测数据在监测手段和监测范围的不足,为全面掌握大气污染的形成、演变和输送过程提供技术支撑,服务于长期的空气质量管理。地基平台大气环境监测技术的研发和应用,为中国开展空基平台大气环境遥感监测奠定了基础。  10年前,当“雾霾”一词还未进入公众视野时,专注环境光学研究的刘文清院士就以科学家独到的眼光,看好物联网技术与环境光学合作的前景,选择在无锡研发“大气立体监测”解决方案。2011年,刘文清院士团队与聚光科技共同发起创设了中科光电,在以刘文清院士为技术指导的大气环境立体监测团队,和以聚光科技为经营指导的管理团队共同努力下,中科光电成立短短7年时间,便一跃成为环境立体监测与应用这一细分领域的佼佼者。  “聚焦、专注,这是我与无锡合作成功的法宝。”刘文清说,放眼全市,创新的目光应更多投向细分行业领域,培养一批“叫得响、数得着”的“隐形冠军”。  中科光电作为环境立体监测这一细分领域中的佼佼者已入选无锡市首批瞪羚企业,刘文清听闻后既自豪也清醒:环境监测在我国起步较晚,与发达国家的技术水平还存在一定差距,“中科光电将秉承自主创新的理念,形成面向打赢蓝天保卫战提供综合解决方案与第三方服务的综合能力,力争3年内实现上市。” 中科光电入选无锡市首批瞪羚企业  刘文清院士还表露会参加将于2018年9月15日-2018年9月18日在无锡举办的世界物联网博览会。届时中科光电作为大气环境监测领域领先服务商,也将携最新的环境立体监测产品、创新技术及多种解决方案亮相展会现场。  中科光电由聚光科技与中国科学院合肥物质科学研究院(中国科学院安徽光学精密机械研究所)共同创建,是国家环境光学工程技术中心唯一的产业化平台,主要从事环境与气象领域高端监测仪器的技术研究、产品开发、集成应用及产业发展。  中科光电在聚光科技经营指导下,在中科院安光所刘文清院士团队技术支持下,坚持产学研一体化,将物联网技术与立体监测技术结合,构建了基于激光雷达、傅立叶红外光谱、紫外差分光谱为核心的多种技术平台,研发了大气颗粒物监测激光雷达(双波长三通道系列、高能扫描系列、双镜微脉冲激光雷达),大气臭氧探测激光雷达、拉曼激光雷达、多轴差分光谱仪、傅立叶变换红外光谱仪、超级站数据分析平台等多项具有自主知识产权的核心产品。同时,中科光电还拥有大气环境立体走航观测、大气环境监测执法、大气环境光化学立体监测、灰霾立体监测等多种解决方案,能为环保、气象和科研领域中的大气环境监测、监察、监管提供相关咨询、产品、解决方案和技术服务。
  • 近场光学显微镜,SiC纳米线发表一篇Nature!
    表面声子极化激元(SPhPs)是由红外光和光学声子之间的耦合产生的,被预测有助于沿极性薄膜和纳米线的热传导。然而,迄今为止的实验工作表明SPhPs的贡献非常有限。近日,美国范德比尔特大学Deyu Li教授研究团队通过测量没有覆盖Au金属层和覆盖了Au金属层的3C-SiC纳米线的样品的热导率,成功证实了SPhPs对其热导率大小的影响。由SPhPs的预衰减所引起的热传导增加甚至超过了兰道尔基于玻色-爱因斯坦分布所预测极限的两个数量级。这进一步揭示了SPhPs对材料热导率的显著影响,也打开了通过SPhPs调节固体中的能量传输的大门。文章以《Remarkable heat conduction mediated by non-equilibrium phonon polaritons 》为题,发表于Nature 期刊上。 本文中,研究者通过分辨率优于10 nm的近场光学显微镜对其手中的两类纳米线进行了表征。其中S1为缺陷较小的纳米线,而S2则为层错较多的纳米线。通过对纳米线进行865 cm-1中红外激光的赝外差成像(SNOM),研究者成功获得了两类纳米线的纳米级相位成像。如下图所示,在层错较多的Sample S2中,SPhPs的传播衰减非常迅速。而在结构缺陷较少的S1, 这种衰减则要小得多。Sample S1: Sample S2: 随后,作者通过将德国Neaspec公司的散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR联用,沿下图图a中的箭头方向对S1采集了610 - 1400 cm-1波数范围内的光谱。这一范围已经包括了3C-SiC纳米线全部的剩余射线谱带。其中对TO 和 LO 频率的较强振幅反馈和这种反馈沿箭头方向的衰减进一步证明了SPhPs在S1中的存在。以上结果表明层错的存在是使其成为SPhPs散射的决定性因素,而这种因素与温度的变化并不相关,进一步证明了在S1中,SPhPs是导致热导率变化的决定性因素。 值得注意的是,为了测量SNOM和Nano-FTIR,两类纳米线都被放置在了300 nm厚的SiO2薄膜基底上,相比单独存在的纳米线,放在SiO2薄膜基底上的两类样品的SPhPs的传播距离都大大减小,而信号衰减速度大幅增加,这对设备采集信号的信噪比和光学成像的空间分辨率都提出了更高的要求。 文中使用的散射式近场光学显微镜(s-SNOM)和纳米傅里叶红外光谱仪Nano-FTIR能够在10 nm的空间分辨率下实现对材料的红外光谱表征,且得到的光谱能与传统FTIR,ATR-IR的红外光谱一一对应。同时,该技术具有无损伤、无需染色标记、快速且适用性广等优点,为本实验的红外及光学成像等研究起到了关键性作用。 neaspec散射式近场光学显微镜(s-SNOM)及纳米傅里叶红外光谱仪Nano-FTIR 综上所述,通过使用Neaspec近场光学显微镜,研究者建立并证明了SPhPs传播和材料热导率变化的关联性。也为将来通过SPhPs调节固体材料的热传导提供了可能性。这种调节可以在很多薄膜材料中抵消尺寸效应并改进固态器件的设计。参考文献:[1]. Pan, Z., Lu, G., Li, X. et al. Remarkable heat conduction mediated by non-equilibrium phonon polaritons. Nature (2023). https://doi.org/10.1038/s41586-023-06598-0
  • 长坡厚雪,后疫情时代红外热像仪行业蓄势待发
    随处可见,红外设备飞入寻常百姓家2020年以来,红外热像仪行业经历了一场蓬勃发展的浪潮,突如其来的新冠疫情让无接触精准测温的红外热像仪设备遍布了社会的各个角落。在需求保持强劲增长趋势的背景下,高德红外、大华股份、海康威视等多家企业调整业务布局,快速进入红外热像仪测温设备市场,推出了一系列的红外热像仪测温设备,在疫情防控中发挥了巨大的作用。视频详情:走在抗“疫”前线的红外测温仪制造企业企业介绍中国电子科技集团有限公司(中国电科)2020年2月13日,为应对疫情,中国电科研发推出的“全过程无接触测温安检”“疫情区应急作业无人机”“密切接触者测量仪”等多款科技产品投入战“疫”一线,服务疫情防控。为满足疫情防控“早发现”需求,中国电科博微太赫兹公司在其利用太赫兹技术自主研发的智能安检系统基础上,又紧急研发出应对大客流的安检测温设备--“全过程无接触测温安检”一体机。疫情期间在上海地铁2号线率先启用,通行效率从300人/小时提升至1500人/小时,有效缓解了地铁人流聚集压力。此后在其他城市地铁、大型活动场馆、医院、海关、机场等投入使用。杭州海康威视数字技术股份有限公司海康威视于2008年开始热成像技术研发,并在2016年推出全系列热成像产品。2020年1月22日,在获悉湖北红外测温仪仍存在短缺情况后,海康威视又连夜调拨40台红外测温设备驰援武汉。该批产品已被安装在武汉市第七医院等地,协助进行高精度体温筛检。后续,海康威视陆续推出了适合多种场景的测温方案,并把价格控制在两三千到万元,做到即使小批量订单也做到随时发货。武汉华中数控股份有限公司华中数控在该领域长期耕耘,产品早在2003年非典就发挥重要作用,有近二十年历史,年销售收入在3000万元左右,国内市占率一直排名靠前。据悉,华中数控也负责了武汉雷神山医院“红外热成像智能体温检测系统”的主调试维护,同时国家工信部给与华中数控900台红外体温监测仪的生产任务。在经历了一次原材料告急之后,目前产能已爬升至100台/天以上。聚光科技(杭州)股份有限公司该公司旗下杭州谱育科技发展有限公司制造的AI智能型红外热成像分析系统使用非接触红外测温原理,有效辨别温差,可避免其他高温物体的干扰,具备效率高、精度高,智能识别等优点,可进行大面积监测筛查工作,快速精确识别高温人员。疫情期间其近百套由谱育科技制造的AI智能型红外热成像分析系统先后在北京首都机场、北京大兴机场等京津冀、长三角的机场、车站、医院等人员流动密集区域投入使用。武汉高德红外股份有限公司截至2020年2月,武汉高德红外股份有限公司复工员工已达1500人,占全部员工数的70%。近 2000余台高德红外人体测温产品安装到了包括武汉天河机场、武汉高铁站、湖北省人民医院、北京大兴国际机场、成都双流机场、成都东站、广州白云机场等在内的人流密集公共场所。天津九安医疗电子股份有限公司九安医疗电子股份有限公司研发中心技术立项横跨血压数据监测、血糖数据监测、体温数据监测、心血管系统监测等众多生理参数监测领域,以及脉冲、激光、红外、加热、生物电、物理、针灸等保健治疗领域。2020年1月28日,天津九安医疗电子股份有限公司已经全速投产。由于大量工人还在休假中,企业对在津管理人员和家属等200余人紧急进行了岗前培训,下线支援生产,红外测温仪日产量可达到5000个。浙江大立科技股份有限公司大立科技是专业从事非制冷红外焦平面探测器、红外热成像系统、智能巡检机器人、惯性导航光电产品研制的高新技术企业。是国内少数技术自主可控、完全知识产权、独立研发;从生产热成像核心器件、机芯组件到整机系统制造,并具有 完整产业链的专业制造商之一。2020年1月29日,工业和信息化部电子信息司组织浙江大立科技股份有限公司尽快向疫区供货,支援疫区前线。疫情期间支援了武汉中南医院、无锡机场、湖州火车站、温州机场火车站、上海中心大厦、深圳证交所、深圳医院、萧山机场等地。浙江大华股份有限公司大华热成像系统整体上采用高精度热成像摄像机+黑体方案,通过黑体的实时测温矫正保证相机测温精度。在热成像摄像机核心探测器上采用400*300分辨率探测器,实现更高图像质量、更大视场角与更广测温覆盖范围。在宜兴市政府,大华超高精度人体热成像测温系统经过现场测试实际温度,并与医用测温仪进行核验,误差仅在±0.1摄氏度。疫情期间大华超高精度人体热成像测温系统成功在杭州东站地铁站、上海火车站、上海虹桥机场、上海浦东国际机场、石家庄地铁、上海市政府、上海市公安局、湖北汉川医院、中南大学湘雅医院、上海市胸腔科医院等落地应用。烟台艾睿光电科技有限公司科创板企业睿创微纳的子公司烟台艾睿光电生产的在线式精确测温红外热像仪测温精度达±0.3℃,能在机场、火车站等公共场所快速筛查疫情发热人群。其生产的 AT300在线式精确测温红外热像仪和LT384网络型测温红外热像仪,疫情期间部署于机场、火车站、地铁、医院、学校等交通枢纽和公共场所。广州市倍尔康医疗器械有限公司广州市倍尔康医疗器械有限公司是一家致力于红外线传感技术研发、生产、销售和服务于一体的高新技术企业,是全球最大的“智能体温计”生产商之一。公司旗下有倍尔康(Berrcom)、裕港(Rycom)、心诺美迪(Snomd)三大品牌。在红外热像仪领域,高德红外以其卓越的竞争优势独领风骚。2020年,该公司的红外热像仪业务收入高达28.86亿元,展示了其在市场中的强大实力。此外,海康威视、睿创微纳和大立科技等民营企业也在迅速崛起,逐渐成为市场的重要参与者。回顾过去,在八九十年代,瑞典AGEMA、美国BAE、日本NEC等国外巨头长期在我国红外热像仪市场占据主导地位,他们通过强大的技术和品牌优势获取了大量的市场份额和利润。然而,随着时间的推移,这种情况逐渐发生了变化。疫情的爆发为国内红外热像仪厂商提供了重要的机遇。2020年,中国几大热成像实力厂商的市场占有率总和达到了44%,几乎占据了全球红外热像仪整机出货量的一半。这些中国厂商不仅满足了国内对红外热像仪的巨大需求,还积极拓展全球市场,展现出了强劲的发展势头。随着科技的持续创新和市场的需求不断增长,全球红外热像仪行业在近几年迎来了快速的发展。根据数据显示,2022年我国红外热像仪行业的总体市场规模达到了640.18亿元,并且预计在未来将以12%左右的年均复合增长率增长,到2025年市场规模将达到约930亿元。这一趋势反映了红外热像仪在各个领域的应用越来越广泛,并且市场需求持续增长。科技的不断进步为红外热像仪的制造和应用提供了更多的机会和可能性。同时,中国市场对红外热像仪的需求也在不断增长,成为全球红外热像仪市场的重要推动力。当前红外热像仪市场的价格波动主要受多方面因素影响,其中技术创新、市场需求、原材料价格等都在不同程度上对行业价格形成产生影响。然而,红外热像仪行业的发展受到更为深刻的变革所驱动,技术革新和市场拓展已经成为推动行业进步的核心动力。多点开花,场景应用升级未来可期由于仪器价格昂贵,且早先技术成熟度有限,最早的时候红外热像仪主要应用在军事领域,其最重要的应用是昼夜观察和热目标探测。直到20世纪60年代,随着低成本非制冷探测器的发展与成熟,才逐步被应用到民用领域,民用红外热像仪总消费额市场,自2014年起复合年增长率约10.3%,增长速度要高于军用领域。具体来看,其民用领域包括:电力检测、半导体检测、工业控制、医学诊断、安防、无人驾驶等。在工业领域,红外热像仪不仅可以预警设备故障,还能提高生产效率,降低能源浪费。例如,在冶炼行业中利用红外热像仪对高炉表面进行分区块的检测,并通过红外分析软件,可对得到的热图像进行温度分布的分析;在电子工业领域红外热像仪可在电路板研发初期对整个电路的温度分布情况进行掌控,方便工程师进行合理布局。在医疗领域,红外热像仪能够迅速测量人体体温,对于传染病的防控具有重要意义,如利用红外热像仪在海关出入境检疫口岸对大量出入境人群的体温进行非接触式快速测量,根据体温的变化及时发现病患,在SARS和禽流感期间发挥了巨大的作用。此外,在消防和安防领域,红外热像仪也在提高救援效率和保障安全方面发挥着不可替代的作用。其中,消防领域是世界上发达国家红外热像仪最大的民用市场。由于红外成像的透烟雾及测温特性,红外热像仪可应用于消防的火场救生和检测设备,用于确定火焰中心位置、燃烧程度和蔓延情况。随着智慧消防的推进,消防车和消防人员配备红外热像仪将成为趋势,消防市场或将成为红外热像仪最有前景的发展方向。红外探测在民用领域的应用应用领域主要用途安防监控广泛应用于商场、社区、银行、仓库等安全敏感区域的视频安全监控,尤其是夜间防范。个人消费普遍应用于户外探险、野外科考等活动,目前有部分厂商开发出手机外插件式成像仪,可用于日常测温、个人娱乐等。辅助驾驶安装于车、船等交通工具上,通过显示红外热像,为驾驶员提供前方路况的辅助观测信息,进而规避雾霾、烟尘、暴雨等道路交通安全隐患。车载热成像仪未来将是非常巨大的民用市场。消防及警用在地震、火灾、交通事故、飞机事故、海难等各种事故中用于搜索救援,警务人员可在夜间或隐蔽的条件下实施搜索、观察或追踪等。工业监测几乎可用于所有工业制造过程控制,尤其是烟雾环节下生产过程的监控、温控,有效保证产品质量和生产流程。电力监测用于观测机械及电气设备的运作状态,将设备故障以温度图像的形式表现出来,可以在设备高温损毁前找到危险源,提前进行检修 从而提高设备生产能力、降低维修成本、缩短停工检修时间。医疗检疫通过观测受病体或病变组织的温度差异情况,在群体中区分病体进行检查,在2003年的SARS疫情及之后的禽流感、甲型HIN1流感疫情防治中,红外热成像仪的应用对及时发现病体、避免疫情蔓延起到了至关重要的作用。此外,随着技术的不断发展,红外热像仪的应用领域还在不断扩展,如在无人机、自动驾驶、智能家居等领域也有着广阔的应用前景,这些多元化的应用领域为红外热像仪行业带来了巨大的市场潜力。与时俱进,人工智能引领产业变革红外热像仪的核心技术在于红外热成像技术,我国红外热成像技术起步极晚,真正进入大众视野是红外体温计的大面积应用。近年来,随着科技的进步,其性能不断提升,创新也在不断涌现,当前已经融入到工业测温、科学研究、石化产业、辅助驾驶及物联网等领域中,高分辨率、高灵敏度、多波段、智能分析等技术也成为了行业的发展方向。高分辨率技术的突破,使得红外热像仪能够更准确地捕捉温度变化,提升了测温精度和图像质量;高灵敏度技术则使得红外热像仪在低温差环境下仍能高效工作,适应更多的应用场景;多波段技术的引入使得红外热像仪可以捕捉不同波长的红外辐射,提供更多信息,满足不同领域的需求。近年来,伴随着行业智能化普及推进,智能分析技术也开始在红外热像仪设备中全面渗透,它不仅让监控设备具备自主感知、图像识别、深度学习能力,将安防监控的事后取证延伸到事前预警、事中快速处置、事后海量数据的证据链的检索等,从而极大程度提升监控的效率。在红外摄像机上加入智能分析功能,最大限度的解放了人力,目前它不仅实现对事件结果的高效分析和融合应用,还可以形成对事件内在发展规律的结果输出,辅助科学决策,快速解决实际的问题。当前在国内,很多红外热成像摄像机都加入了智能分析的功能,前端智能化已成为整个行业的未来和趋势,尤其是2023年初ChatGPT等人工智能技术热度的不断狂飙,红外热像仪行业发展将持续高歌猛进。深耕技术,创新是企业长盛不衰的源泉然而,快速的市场发展也带来了一系列挑战,如技术标准的频繁更新、市场需求的多样化、售后服务的提升等。在这种竞争环境下,企业需要不断创新,提升产品性能和质量,同时加强与用户的沟通和合作,以更好地满足不同行业的需求。高德红外是一个典型的例子,展示了在红外技术为核心的高科技创新行业深耕细作并坚持创新驱动发展的成果。在2018年至2022年期间,高德红外的研发费用分别为2.12亿元、2.58亿元、4.55亿元、3.71亿元和4.13亿元。如果加上2023年一季度的数据,近六年来公司的研发投入总额已超过18亿元,每年的研发投入占公司销售额的10%左右,投入力度持续加大。高额的研发投入为高德红外在红外领域带来了强大的竞争力和话语权,为公司带来了丰厚的回报。通过持续的技术创新和研发投入,高德红外已经完全掌握了集光、机、电、图像处理于一体的红外热像仪全系统设计技术,处于行业领先地位。目前,高德红外拥有国内专利12项,国际专利5项,专利申请权6项,以及计算机软件著作权1项。这些专利和知识产权的积累,进一步提升了公司在红外技术领域的竞争力。另外,排名第二的海康威视在研发费用和研发费用率的持续上升方面也表现出色。2018年至2022年期间,海康威视的研发费用分别为44.83亿元、54.84亿元、63.79亿元、82.52亿元和98.14亿元,而研发费用率分别为8.99%、9.51%、10.04%、10.13%和11.80%。在大额研发费用的投入下,海康威视的发明专利数量和研发人员数量也有了明显的增长。这一趋势表明,领先企业的研发投入对于推动企业乃至全人类的技术进步产生了切切实实的影响。海康威视的成功展示了持续的技术创新和企业研发投入对于一个企业的竞争力和行业地位的重要性。通过不断的技术创新和人才积累,海康威视在安防监控领域取得了卓越的业绩,并持续引领着行业的发展。当前,我国红外热像仪的渗透率仍然较低,然而我们对行业未来的发展充满信心。从技术角度来看,红外热像仪的发展目前还远未达到极限,这众多领域拥有广阔的发展空间和无限的可能性。未来,随着科技的不断进步和市场的不断拓展,红外热像仪的应用领域将更加广泛,市场需求也将持续增长。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制