二极管温度传感器

仪器信息网二极管温度传感器专题为您提供2024年最新二极管温度传感器价格报价、厂家品牌的相关信息, 包括二极管温度传感器参数、型号等,不管是国产,还是进口品牌的二极管温度传感器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二极管温度传感器相关的耗材配件、试剂标物,还有二极管温度传感器相关的最新资讯、资料,以及二极管温度传感器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

二极管温度传感器相关的厂商

  • 深圳易创电子科技有限公司,是一家专业研发、生产、销售光电传感器及其智能化产品的高新技术企业。同时,我们是滨松(HAMAMATSU)、欧司朗(OSRAM)、威世(VISHAY)、亿光 (EVERLIGHT)、夏普(SHARP)、OSI Optoelectronics、First Sensor等知名厂商长期信赖的合作伙伴。 我们的产品主要有硅光电二极管、微型光谱仪、颜色传感器、 Photo IC、APD雪崩光电二极管、PMT光电倍增管等,广泛应用于医疗仪器、自动化、消防、科研等领域。 我们凭借强大的技术研发实力,为客户提供定制化服务,并致力于开发新产品,发展新应用。 易创是您值得信赖的工业传感器和技术服务提供商,专业提供滨松光电传感器等,为中国工业测量传递价值!
    留言咨询
  • 武汉搏盛科技有限公司是以传感、测控、自动化技术为主要发展方向的高科技公司,是为OEM厂商和自动化领域经销商提供产品销售和技术支持的公司。产品涵盖了光学、电学、力学、热学、磁学、声学传感器领域里的元件、模块和变送器,以及二次仪表和自动化控制设备,广泛应用于机械制造、工业过程控制、汽车电子产品、通信电子产品、消费电子产品和专用设备等各领域。 本公司产品主要两大类: 一、应用于精密分析、环保监测、生物光子、生命科学、药物研究、临床应用诊断、工业测控、激光加工、高能物理、宇宙研究、地矿探测等诸多领域的光电半导体。产品包括光电池/硅光电二极管(紫外增强近红外型、蓝光增强近红外型、可见光红外抑制型、可见光抑制近红外型)、进口PIN光电二极管、进口APD雪崩光电二极管、四象限探测器、PSD位置传感器……特点:响应快,暗电流低。特殊规格、参数可接受订制。 二、应用于塑胶、轻工、鞋业、纺织、化工、石油、烟草、食品、治金、电力等各种工业机械设备及自动化流水线上,作限位、定位检测、自动计数、测速、自动保护、信号传送、保护、隔离等功能的传感器。产品包括红外光电传感器、光纤放大器、光纤管、接近开关、磁性开关、光幕传感器、激光传感器、压力传感器、电量隔离传感器、导轨开关电源…… 目前,为配合广大客户的货期需求,公司常规产品均备有库存,并配备专业的产品应用工程师配合销售工程师参与客户的项目现场为客户提供技术支持、产品安装及售后服务,将“快速、创新,服务、团队,分享、价值”的经营理念落实到实处,本公司依托中部掘起政策,已成为华中乃至西部地区自动化领域首选供货商,销售业绩蒸蒸日上,值此佳机,更坚定了我们实现“传感、测控、自动化专家”的使命。 武汉搏盛科技有限公司人本着诚信引领未来、拼搏造就昌盛的宗旨为实现客户的理想锲而不舍,不懈努力。 企业宗旨:诚信引领未来,拼搏造就昌盛 经营理念:快速 创新 服务 团队 分享 价值 服务优势:产品建议服务 产品配套服务 产品一站服务
    留言咨询
  • 安徽天光传感器有限公司创建于1991年,占地面积22000平方米。主要研发、生产、销售:称重传感器,电力覆冰检测传感器,扭矩传感器,拉力传感器,轴销传感器,压力传感器,拉压力传感器以及相配套测控仪表等产品。二十多年来天光不断吸取国内外的先进技术,引进国外领先的设备与工艺,学习与吸收现代企业管理理念,先后研发、生产了百余种测力传感器及配套仪器仪表,产品广泛应用于军工、航空航天、油田、交通、医药、冶金建材、教学等行业的计量与自动化过程中的检测等方面,其半导体应变计的生产工艺、设备及产量为国内领先,已申报发明专利。2008年我公司荣幸为北京奥运会主体育场鸟巢提供专用传感器,并获得好评。 陈圆圆180 5523 0933
    留言咨询

二极管温度传感器相关的仪器

  • DT-670系列硅二极管温度传感器在更宽的温度范围内可提更高的精度。DT-670系列传感器符合标准电压-温度响应曲线,因此该系列可互换,且对于许多应用不需要单独标定。SD封装中的DT-670传感器有四个误差等级,其中三个适用于1.4 K至500 K温度范围内的通用低温应用,另一个可为30 K至室温的应用提供卓越的精度。DT-670传感器也有第七个公差带,B和E,只能作为裸芯片使用。对于需要更高精度的应用,DT-670-SD二极管可在整个1.4 K至500 K温度范围内进行标定。DT-670-SD√ 1.4 K-500 K温度范围内具有超高精度√ 30 K-500 K温度范围内极小误差√ 坚固可靠的SD封装设计,可承受重复热循环并尽可能地减少传感器自发热√ 符合标准曲线DT-670温度响应曲线√ 多种封装选项DT-670E-BR√ 温度范围1.4 K-500 K√ 裸装传感器是尺寸极小、热响应时间超快的二极管传感器√ 无磁传感器DT-621-HR√ 温度范围:1.4K-325K*√ 无磁封装√ 用于表面安装的裸露平面基板* 标定的低到1.4K,未标定的(曲线DT-670)低到20KDT-670E-BR极小尺寸+超快热响应DT-670E-BR裸片传感器提供了硅二极管产品中更小的物理尺寸和更快的热响应时间。这对尺寸和热响应时间至关重要的应用来说是一个重要的优势,包括用于蜂窝通信的焦平面阵列和高温超导滤波器。 DT-621-HR微型硅二极管DT-621传感器组件在其有效范围内显示出精确、单调的温度响应。传感器芯片与环氧圆顶直接接触,导致20 K温度下测试电压升,并阻止全量程曲线DT-670一致性。所以对于低于20 K的使用,需要标定。二极管测温二极管测温是基于在恒定电流(通常为10 µ A)下偏置的p-n结中正向电压降的温度依赖性。由于电压信号相对较大,在0.1V和6V之间,因此二极管易于使用,仪器操作也很简单。 Lake Shore SD封装:业界极坚固、多功能的封装SD封装直接将传感器与蓝宝石底座安装、气密密封和焊接Kovar导线,是业内极其坚固耐用、用途广泛的低温温度传感器,具有极佳的样品与芯片连接性能。该设计使导线上的热量可以绕过芯片,因此可以在 500 K 温度下工作数千小时(取决于型号),并且与大多数超高真空应用兼容。它可以铟焊到样品上,而不会改变传感器的标定。如果需要,也可提供不带Kovar引线的 SD 封装。DT-670温度传感器温度特性 典型的DT-670电压特性 典型的DT-670灵敏度特性DT-670误差带曲线
    留言咨询
  • 激光二极管温度控制器,12 W特性兼容传感器:热敏电阻、AD590/AD592、LM335TEC输出(低噪声):±2 A / 12 W温度范围从-45 °C到+145 °C(AD590)或从10 Ω到200 KΩ(热敏电阻)温度分辨率:0.01 °C(IC传感器)或1 Ω(热敏电阻)温度稳定性:≤0.002 °C分别调整控制回路的P、I和D值,实现最短的温度稳定时间恒温工作模式通过TUNE IN输入进行模拟控制可调节的TEC电流限制检测错误或缺失的温度传感器,断开TEC连接符合RoHS应用用于干涉和光谱应用中激光二极管的精确温度稳定探测器制冷,降低噪声非线性晶体的温度稳定工业系统的温度稳定通过外部输入控制温度设定值,以主动稳定激光器的波长产品介绍TED200C是一款设计用于驱动半导体制冷片(TEC)元件的精密温度控制器,电流高达到±2 A。它支持几乎所有的常用温度传感器,并且可适应不同的热负载。其具有一系列防护措施和错误指示器,保护相连的TE制冷片和激光二极管不受损坏。为了便于连接外部设备或集成到控制回路中,TED200可以通过模拟电压输入和输出进行控制。如电流达到±15 A,请查看TED4000温度控制器系列。Thorlabs建议每24个月重新校准这些设备,并且Thorlabs提供工厂重新校准服务。如需订购此服务,请查看页面最下方并选择型号CAL-TED2。注意:升级过的TED200C已通过RoHS认证。其它特性与旧款TED200几乎相同。规格参数
    留言咨询
  • 光电二极管 400-860-5168转2255
    光电二极管 Related Products Thorlabs提供一系列分立光电二极管和经过校准的光电二极管。其中包括铟镓砷(InGaAs)光电二极管,磷化镓 (GaP)光电二极管,硅(Si)光电二极管, 和锗(Ge)光电二极管。我们也提供一些专用的光电二极管。例如DSD2双波段光电二极管,它在一个包装内同时提供硅光电二极管和铟砷化镓光电二极管,两者结合起来可以达到400到1700纳米的波长范围。FGA20是一个具有高响应率的铟镓砷光电二极管,波长范围从1200到2600纳米,能够探测到的波长范围比典型的铟镓砷光电二极管的1800纳米要高。我们也提供FGAP71,它是一种磷化镓(GaP)光电二极管,它的波长范围是我们所提供的光电二极管中最短的,从150纳米到550纳米。磷化镓光电二极管-紫外波长Zoom超短波长范围(150至550纳米)快速上升时间安装在带有蓝宝石窗口的密封封装内型号 #波长范围(nm)有效面积二极管封装类型b上升/(下降)時間a噪音等效功率(W/Hz1/2)暗电流接合电容aFGAP71150 - 5504.8 mm2(2.5 mm x 2.5 mm)-1 ns (140 ns)@ 5 V1.0 x 10-14@ 440 nm10 nA (最大)@ 5 V-a) 典型值 RL=50欧姆b) 详细的引脚配置请参见规格表ください。硅光电二极管-可见光波长ZoomFDS02特性:直接光纤耦合FC/PC封装系统,并且保持高速特性FDS010特性:紫外级融石英窗口,提供低至200纳米的灵敏度范围FDS100特性:TO-5型金属封装中最大的传感器FDS1010特性:安装在绝缘的陶瓷衬底上,在本系列中具有最大有效面积。型号 #波长范围(nm)有效面积二极管封装类型b上升/(下降)时间aNEP(W/Hz1/2)暗电流(典型値)结电容aFDS02 400 - 11000.25 mmTO-46FC/PC Connector47 ps (246 ps) @ -5 V9.3 x 10-1535 pAd @ 5 V0.94 pF@ 5 VFDS010200 - 11000.81 mm2(Ø 1 mm)TO-5/PIN@ 20 V5.0 x 10-14@ 900 nm2.5 nA10 pF@ 0 VFDS100350 - 110013 mm2(3.6 mm x 3.6 mm)TO-5/PIN10 ns (10 ns)@ 20 V1.2 x 10-14@ 900 nm20 nA20 pF@ 1VFDS1010400 - 1100100 mm2(9.7 mm x 9.7 mm)Ceramic Wafer45 ns (45 ns)@ 5 V5.5 x 10-13@ 900 nm0.6 µ A@ 5V375 pF @ 5Va) 典型値. RL = 50 欧姆b) 详细引脚配置请参看专门规格表d) 最大500 pA铟镓砷光电二极管&mdash 近红外到红外波长ZoomFGA04特性:直接光纤耦合FC/PC封装系统,并且保持高速特性FGA10特性:高速、有效面积大。FGA20特性:波长范围长FGA21特性:本系列中有效面积最大的产品。型号波长范围(nm)有效面积二极管封装形式b上升(下降)时间aNEP(W/Hz1/2)暗电流(典型值)结电容aFGA04c800 - 18000.008 mm2(Ø 0.1 mm)TO-46 w/ FC/PC Connector100 ps (100 ps)@ 5 V1.5 x 10-15@ 1550 nm0.5 nA@ 5 V1.0 pF @ 5 VFGA10700 - 18000.81 mm2(Ø 1 mm)TO-5/PIN10 ns (10 ns)@ 5 V2.5 x 10-14@ 900 nm100 nA @ 5 V (max)80 pF @ 0 VFGA201200 - 26000.79 mm2(Ø 1 mm)TO-18/PIN23 ns (23 ns)@ 1 V2.0 x 10-1275 µ A @ 1 V (max)200 pF @ 1 VFGA21800 - 18003.14 mm2(Ø 2 mm)TO-5/PIN66 ns (66 ns)@ 0 V3.0 x 10-14@ 2300 nm200 nA @ 1 V500 pF @ 0 Va)典型値.RL=5欧姆b) 详细的引脚配置请参见规格表。c) 探测器本身的损伤阈值为70毫瓦(连续光)然而,封装内部的电线(非导线)在光电流超过10毫安的情况下可能会熔化,将会造成装置失效。当将FGA04用于更高功率的应用时,该区域中探测器具有高的响应率,请考虑使用 光纤衰减器。t锗光电二极管-近红外波长ZoomFDG03具有大有效面积,为TO-5封装。FDG05为陶瓷衬底并具有高速特性。FDG1010为陶瓷衬底,其上具有最大的有效面积。请注意,FDG05和FDG1010上的引线是通过导电的环氧树脂连接到传感器上,因为焊接会破坏传感器。这使得连接比较脆弱。参看内附的操作说明保护连接处。型号 #波长范围(nm)有效面积二极管封装类型b上升/(下降)时间aNEP(W/Hz1/2)暗电流(典型值)结电容aFDG03800 - 18007.1 mm2(Ø 3 mm)TO-5/PIN500 ns (500 ns)@ 3 V1.0 x 10-12@ 1550 nm4.0 µ A@ 1 V4 nF @ 1 VFDG05800 - 180019.6 mm2(Ø 5 mm)Ceramic Substrate220 ns@ 3 V4.0 x 10-12@ 1550 nm40 µ A @ 3 V3 nF @ 5 VFDG1010800 - 1800100 mm2(10 mm x 10 mm)Ceramic Substrate3.5 µ s@ 1 V4.0 x 10-12@ 1550 nm50 µ A (max.)@ 0.5 V30 nF @ 0.5 Va) 典型值。 RL=50欧姆b) 详细引脚图请参看规格表 双波段探测器Zoom 双探测器芯片设计-硅在铟镓砷上-具备宽探测范围4引脚的TO-5型封装大有效面积型号 #波长范围(nm)有效面积二极管封装类型b上升/(下降)时间aNEP(W/Hz1/2)典型暗电流结电容aDSD2400 - 11001000 - 1700Ø 2.54 mmØ 1.5 mmTO-5/PIN4 µ s (典型値)(两层)1.9 x 10-142.1 x 10-13-450 pF300 pFa) 典型値 RL =50欧姆b) 详细引脚图请参看规格表
    留言咨询

二极管温度传感器相关的资讯

  • imec集成薄膜固定光电二极管以实现卓越的短波红外成像传感器
    2023年8月14日在比利时鲁汶,imec作为纳米电子学和数字技术领域的全球研发和创新中心宣布成功集成了固定光电二极管结构到薄膜图像传感器中。通过添加固定光电栅和传输栅,薄膜成像器超过一微米波长的吸收质量终于可以被利用,以一种成本效益的方式解锁感知可见光之外光线的潜力。检测可见光范围之外的波长,例如红外光,具有明显的优势。应用包括自动驾驶汽车上的摄像头,以“看穿"烟雾或雾霭,以及用于通过面部识别解锁智能手机的摄像头。虽然可见光可以通过基于硅的成像器检测,但需要其他半导体材料来检测更长的波长,比如短波红外线(SWIR)。使用III-V材料可以克服这一检测局限。然而,制造这些吸收体的成本非常高,限制了它们的使用。相比之下,使用薄膜吸收体(如量子点)的传感器最近出现为一个有前景的替代方案。它们具有良好的吸收特性和与传统CMOS读出电路集成的潜力。尽管如此,这种红外线传感器的噪声性能较差,导致图像质量较差。早在20世纪80年代,固定光电二极管(PPD)结构就在硅CMOS图像传感器中引入。该结构引入了一个额外的晶体管栅极和一个特殊的光检测器结构,通过该结构, charges可以在积分开始前全部排空(允许在没有kTC噪声或前一帧影响的情况下复位)。因此,由于噪声更小、功耗性能更好,PPD主导了基于硅的图像传感器的消费者市场。 在硅成像之外,至今还不可能集成此结构,因为难以混合两种不同的半导体系统。现在,imec在薄膜图像传感器的读出电路中成功集成了PPD结构。 一种SWIR量子点光电检波器与一种氧化铟镓锌(IGZO)薄膜晶体管单片集成成PPD像素。 随后,该阵列被进一步处理在CMOS读出电路上以形成一个完整的薄膜SWIR图像传感器。 imec的“薄膜固定光电二极管"项目负责人Nikolas Papadopoulos 表示:“配备4T像素的原型传感器表现出显着低的读出噪声6.1e-,相比之下,传统的3T传感器超过100e-,证明了其良好的噪声性能。" 因此,红外图像的拍摄噪声、失真或干扰更小,准确性和细节更高。imec像素创新项目经理Pawel Malinowski补充说:“在imec,我们正在红外线和成像器的交汇处处于地位,这要归功于我们在薄膜光电二极管、IGZO、图像传感器和薄膜晶体管方面的综合专业知识。通过实现这一里程碑,我们克服了当前像素架构的局限性,并展示了一种将性能最佳的量子点SWIR像素与经济实用的制造方法相结合的方法。下一步包括优化这项技术在各种类型的薄膜光电二极管中的应用,以及扩大其在硅成像之外的传感器中的应用。我们期待通过与行业伙伴的合作进一步推进这些创新。“研究结果发表在2023年8月《自然电子学》杂志"具有固定光电二极管结构的薄膜图像传感器"。初步结果在2023年国际图像传感器研讨会上呈现。原文: J. Lee et al. Thin-film image sensors with a pinned photodiode structure, Nature Electronics 2023.摘要使用硅互补金属氧化物半导体技术制造的图像传感器广泛应用于各种电子设备,通常依赖固定光电二极管结构。 基于薄膜的光电二极管可以具有比硅器件更高的吸收系数和更宽的波长范围。 但是,它们在图像传感器中的使用受到高kTC噪声、暗电流和图像滞后等因素的限制。 在这里,我们展示了具有固定光电二极管结构的基于薄膜的图像传感器可以具有与硅固定光电二极管像素相当的噪声性能。 我们将一种可见近红外有机光电二极管或短波红外量子点光电二极管与薄膜晶体管和硅读出电路集成在一起。 薄膜固定光电二极管结构表现出低kTC噪声、抑制暗电流、高满量容和高电子电压转换增益,并保留了薄膜材料的优点。 基于有机吸收体的图像传感器在940 nm处的量子效率为54%,读出噪声为6.1e–。
  • 光电二极管中的带隙之争:直接与间接材料的能量之战
    直接带隙和间接带隙是固体材料中两种不同类型的能带结构,它们在电子的能级分布和电子激发行为上有显着差异,影响着器件的效率、响应速度和应用场景。工作原理直接带隙光电二极管直接带隙指的是材料的价带(valence band)和导带(conduction band)的能级在动量空间中的最小距离发生在相同的动量值(通常是在动量为零处)。换句话说,电子在从价带跃迁到导带时,其动量不会发生显着变化,这种跃迁过程不需要额外的动量(或波矢)。因此,直接带隙材料通常在吸收或发射光子时具有高效率,能量损失较小。例如,常见的直接带隙材料包括氮化镓(GaN)和砷化镓(GaAs)。直接带隙材料的光电二极管利用其电子从价带到导带的直接跃迁特性。当光子(光量子)击中材料并激发电子从价带跃迁到导带时,电子和空穴对会迅速分离并在电场作用下产生电流。这种跃迁过程不需要额外的动量,因此直接带隙材料在光电二极管中表现出高效的光电转换效率和快速的响应速度。例如,氮化镓(GaN)和砷化镓(GaAs)等直接带隙材料被广泛用于高速光通信、激光雷达和高频光电探测器等应用中。 间接带隙光电二极管间接带隙则是指材料的价带和导带的能级在动量空间中的最小距离发生在不同的动量值上。在这种情况下,电子在从价带跃迁到导带时,除了能量外还必须具备额外的动量(波矢)以保持能量守恒。这使得在光子吸收或发射时,电子可能会通过与晶格振动(声子)相互作用来释放或吸收额外的动量。因此,间接带隙材料通常在吸收或发射光子时会有较大的能量损失。典型的间接带隙材料包括硅(Si)和锗(Ge)。 间接带隙材料的光电二极管则需要额外的动量来实现电子的跃迁。这种额外的动量通常是通过与晶格振动(声子)相互作用来获得,因此在光电转换过程中会引入更大的能量损失。典型的间接带隙材料如硅(Si)和锗(Ge),虽然其光电转换效率较低,但由于在集成电路、传感器和太阳能电池等应用中具有成熟的制造技术和低成本的优势,仍然被广泛使用。研究方向直接带隙材料的研究方向包括:提高效率和响应速度: 进一步优化直接带隙材料的电子结构和晶体质量,以提高光电转换效率和响应速度。新型器件架构: 探索新型光电二极管的结构设计,如量子阱结构和纳米结构,以改善光电性能。应用拓展: 将直接带隙材料应用于更广泛的光电子器件中,如高功率激光二极管和光伏电池。间接带隙材料的研究方向包括:提高光电转换效率: 探索通过材料工程和表面修饰等方法提高间接带隙材料的光电转换效率。减小能量损失: 研究如何减少光子吸收到电子-空穴对生成之间的能量损失,以提高器件性能。集成电路应用: 开发新型间接带隙材料的光电子集成电路应用,包括在传感器和数据通信中的应用。直接带隙和间接带隙在光电二极管中的不同应用和研究方向反映了它们在材料科学和光电子技术中的重要性和多样性。随着技术的发展和对能源效率的不断追求,研究人员和工程师在不同的材料选择和器件设计中持续探索和优化,以满足不同应用场景下的需求和挑战。光伏检测请搜寻光焱科技
  • 科学家发明高效紫外发光二极管
    图中光学照片显示的是在压电光电子效应的作用下,紫外发光二极管的发光强度随施加的应变的增加而增加。下图显示的利用能带理论解释压电光电子效应对p-n结处能带结构和载流子输运过程的调制和改变。(图片提供:王中林)  紫外半导体发光二极管在化学、生物、医学和军事领域具有广泛的应用,目前这种材料的内量子效率虽然可达到80%,但外量子效率只有3%左右。如今,基于压电光电子学效应,美国佐治亚理工学院讲席教授王中林课题组发明了一种新型高效紫外半导体发光二极管,在合适应用作用下外量子效率可达到7.82%,其光发射强度、注入电流能力和电—光转换效率均成倍提高。新成果发表在8月在线出版的《纳米快报》上。  王中林表示,新成果还可以扩展到从紫外到红外的整个光谱范围内的由压电材料制备的半导体发光二极管,它们将在发光二极管、光电池和太阳能电流、人机界面、纳米机器人、微—纳机电系统、人机交互等领域得到广泛应用。  压电光电子学是压电效应、光子特性和半导体特性三相耦合的一种效应,它通过应变引起的压电势来调节和控制电光过程,或者反过来利用电光过程调节和控制力的作用。该效应由王中林于2009年首次发现。  王中林小组进一步把光引进压电电子学器件,致力于开发和研究力、电和光三相耦合器件。他们发现压电效应可优化光电池,提高光探测器的灵敏度。而最近的研究表明压电效应还可以显著提高氧化锌微纳米线发光二极管的电子—空穴复合效率,从而显著提高发光性能。这些力、电、光三相耦合的研究构成了一个全新的研究领域:压电光电子学(piezo-phototronics)领域。据王中林介绍,力、电、光三相中的两相耦合比如光电、力电和光力耦合效应已经获得了人们的广泛关注和大量研究,很多基于这些耦合效应的新型纳米器件被研制出来。这是一个远比两相耦合复杂的耦合系统,因此有更多有趣的具有重大研究价值的效应需要人们去探索,更多的器件等待人们去开发。  研究人员将压电光电子学效应应用于紫外半导体发光二极管性能的改造中。半导体发光二极管的光发射由载流子的注入、复合和出射效率等决定。薄膜型宽禁带半导体制备的紫外发光器件,其内量子效应虽然可达到80%,但外量子效率只有3%左右。王中林表示,这主要是由于全反射限制的光出射效率比较低引起的。他和浙江大学的访问学者杨青博士经过精心设计,在N型氧化锌纳米线衬底单根微纳米线发光二极管中引入压电势,发现由压电势引起的界面处的能带改变会形成载流子沟道,从而将载流子捕获在界面附近,提高载流子的浓度和复合效率,进而提高器件外量子效率。他们制备的未加外应力的发光二极管的外量子效率达到1.84%。在固定电压下,对器件施加0.093%的压应力,可以使光发射强度和注入电流分别提高17倍和4倍,相应的电—光转换效率提高4.25倍。合适应力作用下外量子效率达到7.82%,和纳米线增强的复合量子阱LED效率相当,远远超过已报道的简单p-n结纳米线半导体光发射二极管外量子效率。  王中林表示:“我们所发明的这些氧化锌纳米器件可整合成一个自主发电、自动控制的智能纳米系统 完全基于氧化锌纳米线,我们能创建具有记忆、处理和感应能力的复杂系统,系统所需要的电能均取自外部环境。希望有一天,人类能将纳米尺度的发电机、传感器、光电子器件和逻辑运算器件有机地集成起来,实现自驱动和自主决策的智能纳米系统。”

二极管温度传感器相关的方案

  • 坚固的外腔二极管激光器及其在水蒸气和饱和吸收铷光谱中的应用
    与传统激光器相比,二极管激光器通常体积小、结构紧凑、可靠、易于操作,适用于电子高频调制和温度调谐。然而,许多商用标准二极管激光器的调谐特性远非理想。采用法布里-珀罗(FP)标准激光二极管的ECDL可以提供一种有吸引力的替代方案。这项工作的目的是优化Littman和Littrow配置(方案1)中ECDL的优化设计,以用于坚固的传感器应用。用水蒸气和铷饱和吸收光谱法演示了ECDL的性能。方案1展示了Littman和Littrow ECDL的设计。对于Littrow配置,安装衍射光栅,使一阶衍射光反射回激光器,而零阶衍射光耦合。对于Littman配置,以一阶衍射的光通过一个误差或棱镜反射回光栅。在这两个设计中,都使用了带有和不带有抗反射(ar)涂层的激光二极管。
  • 硅光电二极管探测器EUV响应的温度依赖性
    使用同步加速器和实验室辐射源测量了硅光电二极管在3至250nm波长范围内从-100℃到+50℃的响应性。研究了两种类型的硅光电二极管,具有薄氮化二氧化硅表面层的AXUV系列和具有薄金属硅化物表面层的SXUV系列。根据波长的不同,响应率随着温度的升高而增加,AXUV光电二极管的速率为0.013%/C至0.053%/C,SXUV光电二极管为0.020%/C至0.084%/C。响应度的增加与硅带隙能量的减少相一致,这导致对产生能量的增加。这些结果对于极紫外(EUV)光刻步进器和光源中的剂量测量尤其重要,因为所涉及的高EUV强度通常会导致探测器温度增加。
  • 利用激光二极管进行光输出功率的建模方法
    本文提出了一种激光二极管光输出功率的建模方法,包括其对温度的依赖性。本研究使用的设备是一个40W的Monocrom二极管,发射波长为808nm的光,带有一个19个发射器的CS安装激光板条,使用Monocrom的夹紧方法安装。本研究的目的是提出激光二极管器件的Pspice模型,主要关注光学输出功率随温度的变化,并允许其计算机模拟。还要建立一个表征系统,以获得光学模型数学表达式所需的参数值。因此,本文解释了所提出的激光条形二极管光输出功率模型生成方法及其参数值的获取方法、光输出功率测量装置及其校准、所获得的Pspice模型及其仿真,以及能够获得具有短上升时间电流斜率的必要参数的表征系统。最后,给出了评价结果和相关结论。

二极管温度传感器相关的资料

二极管温度传感器相关的试剂

二极管温度传感器相关的论坛

  • 硅光二极管是硅光电池吗?

    看到网上及论坛内不少说这两种是一样的,也有说是不一样的http://bbs.instrument.com.cn/shtml/20071107/1050063/硅光电池(硅光二极管)是一个大面积的光电二极管,它被设计用于把射到它表面的光转化为电能,因此,可用在光电探测器和光通信等领域。特点:当它照射光时会流过大致与光量成正比的光电流. 用途:1.作传感器用时,可广泛用于光量测定和视觉信息,位置信息的测定等. 2.作通信用时,广泛用于红外线遥控之类的光空间通信,光纤通信等. 3.紫蓝硅光电池是用于各种光学仪器,如分光光度计、比色度计、白度计、亮度计、色度计、光功率计、火焰检测器、色彩放大机等的半导体光接收器;紫蓝硅光电池具有光电倍增管,光电管无法比拟的宽光谱响应,它特别适用于工作在300nm-1000nm光谱范围的各种光学仪器对紫蓝光有较高的灵敏度、器件体积小、性能稳定可靠,电路设计简单灵活,是光电管的更新换代产品。目前也有可以使用到190-1100nm的产品,但紫外能量弱一些,光谱带宽不能太小,已经有很多厂家在紫外可见分光光度计上用了。 网上硅光电池是发电的硅光电二极管只要是用光来控制电流 本身几乎不发电另外光电二管管与硅光电二极管有什么区别?

  • 红外测温仪里的红外线温度传感器仪器对温度环境有影响吗?

    红外测温仪里有一种叫红外线温度传感仪器,这种新型温度传感器的测量灵敏度为:ΔT=ΔL/L(α1-α2),,△L就是红外位移传感器对有机玻璃长度测量的灵敏度。它们的主要作用是:利于高精度的螺旋测微器进行定标,最终得到我们想要的,较精度(3×10-7m)的位移测量仪。  我们采用微品玻璃陶瓷材料制成一个圆筒,这种微晶玻璃陶瓷材料具有真空性好、耐高低温、绝缘和耐酸碱腐蚀等性能,其基本性能指标如下:使用温度-273℃~1000℃体积电阻率1.08x1014Ω·cm,热膨胀系数为αl=8.6x10-6/℃,微品玻璃陶瓷抗热冲击性能非常好,从800℃急冷至0℃不破碎,200℃急冷到0℃强度不变化。  在筒内的一端固定一根长L=10cm的薄有机玻璃圆筒,在筒内另一端固定一个红外位移传感器,并且让有机玻璃棒的自由端将红外接收管的接收面遮住一半,使其工作在线性度最好的区域。由于有机玻璃的热膨胀系数为α2=1.7x10-4/℃,两者相差达2个数量级,所以当温度变化时,我们可以认为有机玻璃在陶瓷卡材料上的相对位移可以忽略,故有机玻璃的自由端同红外位移传感器之间的相对位置变化将改变红外接收管的有效接收面积。从而使位移传感器输出电压也随之改变。这种新型温度传感器的测量灵敏度为:  ΔT=ΔL/L(α1-α2)  其中,△L为红外位移传感器对有机玻璃长度测量的灵敏度。  红外位移传感器,主要机构由红外发光二极管发射和接受装置,数据放大去噪部分以及数据采集处理系统组成。我们可以看到它是利用红外光电二级管的光电转换规律,通过其遮挡的光通量与输出电流的关系确定遮挡体。能将微小的温度转换成电压的变化。在运用放大电路将其进行放大处理。结合数据采集卡建立电压信号与温度的函数关系。最后利于高精度的螺旋测微器进行定标,最终形成我们可以得到一个具有较高测量精度(3×10-7m)的位移测量仪。  由于光电转换的电流较小而且红外发光二极管的功率也较低,因此我们可以认为红外位移传感器不会对测量的温度环境有影响。  从这里我们知道,红外线温度传感仪器是测量精密度比较高的红外测温工具,它对温度环境不受影响。

二极管温度传感器相关的耗材

  • SI440硅二极管温度传感器
    Si-440硅二极管温度传感器适合在测量较宽温度范围时应用,在高温度的达500K。SI440有多种封装形式,适合在不同结构中使用,其CAP封装传感器是目前世界上体积最小的二极管传感器。温度范围:1.5K-500K激励电流:10uA重复性:75mK @4.2K, 0.35K @77K, 0.25K @273K磁场影响:0.1T@40K以下不建议使用灵敏度:38mV/K@4.2K1.7mV/K@77K2.3mV/K@273K标准误差范围:1.5K-30K30K-100K100K-400K±0.25K±1.0K±2.0K校准:R级 4.2K-500KRR级1.5K-500K封装形式:典型温度响应及灵敏度曲线:典型用户:中科院物理所中科院合肥物质科学研究院北京航空航天大学中国科学技术大学中科院合肥物质科学研究院中国科学院大连化学物理研究所清华大学山东大学华南理工大学北京大学北京大学浙江大学西安交通大学香港大学人民大学东南大学香港浸会大学兰州近物所山东大学复旦大学中国科学技术大学 中国科学技术大学浙江大学西安交通大学复旦大学中科院物理所复旦大学物理系上海大学北京大学复旦大学物理系北京邮电大学中国科学院上海应用物理研究所中科院物理所中国科学技术大学中科院合肥物质科学研究院北京大学中科院物理所北京理工大学云南大学北京工业大学福建物质结构研究所中科院物理所山西大学物理电子工程学院厦门大学北京师范大学上海交通大学北京大学清华大学中山大学南京大学南京大学清华大学中科院理化所复旦大学香港中文大学南京大学复旦大学北京大学中科院物理所扬州大学中科院理化所北京工业大学广东工业大学
  • Cryogenic Control System Si410型硅二极管温度传感器
    Si410型硅二极管温度传感器 科学仪器公司(Scientific Instruments)的Si410型硅二极管传感器工作温度范围宽,尺寸小。在很宽的温度范围内是线性的,在低温范围灵敏度高。硅二极管传感器和标准的V/T曲线可互换。Si430硅二极管传感器在测量温度范围很宽时有很大的应用价值。他们和Si430在低于400K时可以互换,但能经受住高温至500K。新的可用于CAP安装(电容式安装)的封装后的二极管是目前市场上体积最小的。尺寸大小 下列的尺寸是标准的.用户可以定制另外的安装模式和装配方式。使用温度范围:1.5K-450K灵敏度:40mv/K电极引线材料磷青铜线双极引线或四极引线,粘合线,聚酰亚胺包层,引线标准:32AWG(美线标)或36AWG(美线标),导线有色标。磷青铜线有良好的导电性能,但导热性能较差。电阻率为2.7Ohms/feet。标准铜线双极引线,Teflon(特氟纶)包层,引线标准:30AWG(美线标)四极引线,Teflon(特氟纶)包层,引线标准:36AWG(美线标)导线有色标。铜线有良好的导电和导热性能。电阻率为0.6 milli-Ohms/feet。锰铜线双极引线或四极引线,粘合线,聚亚安酯包层,引线标准:36AWG(美线标)或36AWG(美线标),导线没有色标。磷青铜线有良好的导电性能,但导热性能较差。电阻率为11.8 Ohms/feet。锰铜线使用不方便。电极引线配置双极引线配置该配置没有电极引线电阻补偿,因此会引入微量传感器电阻/电压误差。误差大小和引线长度成正比。四极引线配置 该配置可以通过补偿电极引线电阻达到最高精度。传感器精度/互换性 我们的传感器具有&ldquo 分组&rdquo /&ldquo 互换&rdquo 的优点。目前我们可提供五个级别的互换/精度。非校准型非校准传感器提供给客户作为该类特殊传感器的代表,但没有具体的校准信息。分组型一些传感器表现出和标准曲线可互换的电阻和输出电压曲线。科学仪器公司(Scientific Instruments)提供的分组传感器包括以下几种:Si-410 硅二极管RO-105 氧化]钌RO-600氧化]钌我们通过透彻地分析和理解传感器材料的性能,从而有能力提供可互换的传感器。分组传感器的最根本的优点是他们都遵从标准的V/T 或 R/T 曲线,从而省去为单独每一个传感器校准的费用。每一个Si-410传感器都在液氦、液氮和冰下测试,每一个传感器在液氦中测试时,必须可以在误差± 0.01 K范围内重复十次以上,然后根据下表分组:校准型 除了热电偶外,科学仪器公司(Scientific Instruments)可以为所有传感器单独提供校准。传感器被放入校准低温保持器中,用NIST标准(而非ITS-90标准)来记录数据。备注标准配置 Si-410和Si-420型传感器通常安装在一个镀金的铜容器中,有四根36AWG(美线标)磷青铜线电极引线,采用聚酰亚胺包层,带有色标。容器直径0.093&rdquo ,长0.25&rdquo .还可以用最优惠的价格提供各类不同长度的磷青铜线或锰铜线。也可提供其他类型的封装,可以联系本公司咨询具体的要求。客户要求的校准每一个单独的Si-410 型传感器可以在10或100 mA下在不同温度校准,可以达到以下精度:± 0.05 K from 1.5 K to 25 K ± 0.10 K from 25 K to 450 K
  • SI410硅二极管温度传感器
    Si-410型硅二极管传感器是Scientific Instruments一款经典的温度传感器,其工作温度范围宽,尺寸小,在很宽的温度范围内V/T曲线是线性的,在低温范围灵敏度高。在航天及科研领域应用广泛。温度范围:1.5K-450K激励电流:10uA灵敏度:40mV/K引线规格:PHBR(磷青铜)线双线32/36AWG或4线32/36AWG纯铜线双线30AWG或4线36AWG锰铜线双线36AWG或4线36AWG精度级别:SI410提供4种不同精度级别供客户选择Group AA: ± 0.1K from 1.5K to 25K ±0.5K from 25K to 450KGroup A: ± 0.3K from 1.5K to 25K ±0.5K from 25K to 450KGroup B: ± 1.0K from 1.5K to 25K ±2.0K from 25K to 450KGroup C: ± 0.5K from 1.5K to 25K ±1.0K from 25K to 450K校准:SI410可在10uA或100uA下进行温度校准获得更高精度± 0.05K from 1.5K to 25K±0.10K from 25K to 450K封装形式:典型温度响应曲线:典型用户:中科院物理所中科院合肥物质科学研究院北京航空航天大学中国科学技术大学中科院合肥物质科学研究院中国科学院大连化学物理研究所清华大学山东大学华南理工大学北京大学北京大学浙江大学西安交通大学香港大学人民大学东南大学香港浸会大学兰州近物所山东大学复旦大学中国科学技术大学 中国科学技术大学浙江大学西安交通大学复旦大学中科院物理所复旦大学物理系上海大学北京大学复旦大学物理系北京邮电大学中国科学院上海应用物理研究所中科院物理所中国科学技术大学中科院合肥物质科学研究院北京大学中科院物理所北京理工大学云南大学北京工业大学福建物质结构研究所中科院物理所山西大学物理电子工程学院厦门大学北京师范大学上海交通大学北京大学清华大学中山大学南京大学南京大学清华大学中科院理化所复旦大学香港中文大学南京大学复旦大学北京大学中科院物理所扬州大学中科院理化所北京工业大学广东工业大学
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制