余弦校正器

仪器信息网余弦校正器专题为您提供2024年最新余弦校正器价格报价、厂家品牌的相关信息, 包括余弦校正器参数、型号等,不管是国产,还是进口品牌的余弦校正器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合余弦校正器相关的耗材配件、试剂标物,还有余弦校正器相关的最新资讯、资料,以及余弦校正器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

余弦校正器相关的厂商

  • 深圳市安达仪器仪表有限公司主要经营各大品牌仪器仪表,适用于各大工厂和教育部门等使用,如PCB线路板厂,五金电镀厂,塑胶厂,五金首饰厂,半导体厂,玻璃厂等。我们拥有专业的服务团队,销售,安装,培训,售后服务,修理一条龙服务,使你买得放心,用得安心,无后顾之忧。一、测厚仪德国宏德X射线测厚仪,主要有型号:Compact eco , Compact 5 , Maxxi 4 , Maxxi 5,maxxi 5 pin等,配备DELL/联想电脑系统,HP打印机。韩国Micro Pioneer XRF-2000 X射线测厚仪,主要有型号:XRF-2000PCB,XRF-2000H,XRF-2000F等,配备DELL/联想电脑系统,HP打印机。俄罗斯孔铜测厚仪ITM-52(配备EP-30/EP-25/EP-20探头,探头连接线,校正器,标准片)手提式,经济实惠又方便美国进口KOCOUR品牌电解/库仑测厚仪(电位差测试仪)(model6000)及电解测试液和标准片美国进口START品牌铜箔测厚仪(SM6000)日本进口KETT品牌涂层测厚仪(LZ-990,;LE/LH/LZ-370等等型号涂层测厚仪)美国进口UPA品牌β射线涂镀层测厚仪(MP-700(已停产,服务仍在继续);MP-900(带霍尔效应功能)CMS(手持式);磁感应/电涡流涂层测厚仪(D-1500;D-3000;D-3000 PLUS);孔铜测厚仪/面铜测厚仪(CD-8);及各种涂镀层测厚仪标准片 二、水处理设备日本共立(KYORITSU)水质测试包/快速测试仪/污水测试包,各种元素齐全,如Cu离子,Fe离子,COD,PO4,NO3,NH4,Zn等。方便快捷,简单易学.一学即会。单项目水质计(DIGITAL PACK TEST )型号:DPM-简易水质测定组-铅 型号:SPK-Pb美国禾威(WALCHEM)水处理控制器:镀镍自动添加药水控制器(型号 WNI310 WNI410 WNI420) 镀铜/蚀铜自动添加药水控制器(型号 WCU310 WCU410 WCU420) PH/ORP传讯器 / 监控器备有W-130,W-230 ,WPH310 ,WPH320,WPH410,WPH420 电导率自动添加药水控制器WEC310,WEC410 锅炉水处理控制器。备有WBL300/310、WBL400/410、WCM300及WCM400/410。 Web Master ONE在线分析过程控制器 WEL探头电极等相关耗材配件 三、金相设备正置显微镜,倒置显微镜,配DELL/联想电脑系统,图像处理软件,进口CCD摄像头。美国EXTEC研磨抛光机(单盘,双盘),切割机美国EXTEC消耗品:抛光绒布,胶膜,砂纸,抛光膏,凝胶套件,切割液,切割碟等。 四、其它美国OMEGA SMD500,SMD600离子污染测试仪,(离子交换柱,校正液,LCD显示屏)。辐射表-美国进口Seintl(S.E.)品牌辐射测量表(MC1K,monitor4,inspector等)美国进口CalMetics品牌测厚仪标准片/校正片,标准片检定(含证书有效期一年).工业放大镜(台式,夹台式,落地式,折叠式,方形/圆形镜片)美国DICKSON温湿度记录仪/记录纸/记录笔美国进口Kwik-chek品牌孔径规(10A,20AM,30AM,40AM)美国KOCOUR品牌离心机,离心管,用于测定硫酸根离子美国ECI品牌电镀添加剂分析仪(QL-5E和QL-10E) 我们的服务宗旨是:客户至上,服务与质量并在,一起共创双赢.安达欢迎您来电咨询!
    留言咨询
  • 上海岑诺机械有限公司拥有来自全球最亲密的合作伙伴,拥有卓越的产品品质,拥有最快速高效的技术服务,我們的客戶遍及全球的每一個角落。我們始终坚持以诚信、创新、服务为宗旨, 为客戶創造价值,這是SPARK一直以来对您最大的承诺。  我们努力为客戶做好每一件事,想您所想,从而贏得广大客戶的信賴与支持。但我们並不因此而停留,仍然继续努力,并强化“安全高效、不断创新”的服务理念,致力于新产品的研制与开发!对産品与服务的继续优化和提升,未曾改变。  只有客戶滿意,我们才能滿意。  业精于勤,SPARK为冶金、石化、电力、矿山、铁路、船舶、建筑等行业的机械设备制造、安装、调试和检修提供优质的服务,兢兢业业为各企业保驾护航。   SPARK注重品质,注重服务,更注重与客户的未来。 主要品牌:SPARK斯帕克:液压油缸、拉马、液压泵、扭矩扳手、螺栓拉伸器、弯管机、压床、电设工具、电动葫芦、超高压工具; BEGA:轴承加热器、中频感应加热器、轴承冷态安装工具; EQUALIZER:法兰错位校正器、法兰分离器(微间隙、零间隙)、法兰闭合工具、顶升工具、分离工具; POWERRAM:液压油缸、拉马、液压泵; OMAR STAR星冠:拉马; ENERPAC恩派克:液压油缸、拉马、液压泵; POWER TEAM派尔迪:液压拉拔工具、液压油缸、液压泵; POSI LOCK宝赛罗:拉马; IZUMI:电设工具; KUDOS:螺母破切器。
    留言咨询
  • 400-860-5168转1930
    拥有业界最优质的全球产品代理资源, 50多家国际顶尖现场检测仪器实验室仪器厂商有坚实的合作伙伴关系,很好地保障了产品的质量及完善售后服务。 美国SKC公司中国总代理:美国SKC公司样品采样器系列,中国总代理 :SKC产品 / 空气采样器   SKC公司生产空气采样相关仪器已有40年历史,不仅提供您600种以上空气采样之专业产品,高低流量空气采样器、干式、皂膜流量校正器、充放电器、吸附管、滤纸、滤纸匣及附件、冲击瓶等,让您在采样时更方便、轻松并且更精确;更提供售前或售后服务,与您分享各项最新的空气采样技术与应用资料。SKC是世界上空气采样产品最大的制造与供应商,也提供世界领先的空气采样技术,生产制程更完全符合ISO-9002的国际品管需求。SKC公司所制造的空气采样器具多种型号供您选择,各种机型皆通过UL、CE或EX本质安全认证,并具阻抗电磁波与无线电波干扰(RFI/EMI)的功能。美国INTERSCAN公司 美国RAE公司 英国CASELLA公司 美国HACH 意大利HANNA公司 中国军事医学科学院卫生学环境医学研究所 北京中卫食品卫生科技公司 广州达元食品安全技术有限公司 美国Amale、美国Telaire、美国Sun Nuclear、美国IST公司、英国PPM、英国CROWCON、法国OLDHAM、德国TESTO、日本新宇宙、台湾泰仕、法国AES 美国AQUA Solutions 日本Atago 英国Bellingham Stanley (B&S) 德国Binder 英国Centurion 美国Cetac 加拿大Conviron 英国DH 美国EE 德国Elma 英国Endecotts 美国Entech 法国Erlab 日本Frontier 英国Genevac 德国Gerstel 美国Glas-Col 英国Glen Creston 瑞士Hamilton 德国Heidolph 德国HLC 韩国Ilshin 美国Innov-X 德国JAS 德国Kern 德国Lauda 德国LFE TOC 英国Lloyd 意大利Optika 美国Organomation 德国Petrotest 德国Pharmag 德国Pharma-test 美国Pickering 德国Pilodist 美国PMS 美国Polychromix 德国Postnova 美国PSI 加拿大Questron 德国Schmidt Haensch 德国Schott 美国Semba 美国Sonics 美国Spectro Inc 美国SRI 意大利Steelco 美国Thar 德国Thermconcept 英国Tintometer 以色列Tuttnauer 美国Viscotek 美国Welch 美国YSI
    留言咨询

余弦校正器相关的仪器

  • 日立发布的200kV球差校正透射电镜HF5000,具有高稳定冷场发射电子枪,自动球差校正器,可一键操作实现自动球差校正,HAADF-STEM分辨率可以达到0.78埃;可配置EDS双探头,固体角最大可达2.0sr;具备TEM、STEM,SEM和电子衍射等多种图像观测模式;镜筒和样品台经过了重新设计,显著提升了仪器的性能和稳定性......HF5000将是材料学、生命科学、半导体制造、石油煤炭等研究领域的可靠助手。特点:  1、高度自动化球差校正,尽量减少人员介入,适用于繁忙的分析测试中心或设备平台   2、三位一体呈现(TEM、STEM、SEM),内部结构成像和表面结构成像可同时进行同时获取   3、EDS超大球面角,无窗口探头。可实现快速,高灵敏度化学成分分析   4、前瞻性平台总体设计,为性能扩增预留选项,例如可扩增为气体环境电镜。参数配置:
    留言咨询
  • 2020年02月14日,日本电子(JEOL Ltd.)总裁兼首席运营官Izumi Oi宣布发布全新原子分辨率分析电子显微镜JEM-ARM300F2(GRAND ARM&trade 2),该电子显微镜将于2020年2月发布。■ 主要特点1 超高空间分辨率与能谱分析的组合优化。新开发的FHP2物镜极靴的特点如下:1)提高了能谱分析效率到两倍以上。2)低光学系数,低Cc系数和低Cs系数使得超高空间分辨率和高灵敏度X射线分析能够在一定范围的加速电压下执行。(保证的STEM分辨率:300kV时53pm,80kV时96pm)**在配置STEM扩展轨迹像差(ETA)校正器时2 用于物镜的超宽极靴(WGP)能谱分析灵敏度超高,原位扩展极强。1)WGP极靴的能谱固体角为2.2 sr。2)WGP极靴宽度可达6mm,更方便进行各种类型的原位实验。3 JEOL开发的12极子球差(Cs)校正器和自动校正软件。1)FHP2极靴,GRAND ARM&trade 2在300 kV时的STEM分辨率达到53 pm。2)WGP极靴,GRAND ARM&trade 2在300 kV时的STEM分辨率达到59 pm。3)JEOL COSMO&trade (自动校正软件)使快速,轻松执行像差校正成为可能。4 新式冷场发射枪(Cold-FEG)。GRAND ARM&trade 2配备了新式Cold-FEG,可从电子源提供较小的能量散布。稳定性更好。5 减轻外部干扰的外壳这种新外壳是减少外部干扰(例如气流,室内温度变化和噪音)的标准。■ 主要规格保证分辨率HAADF-STEM图像:53pm(带ETA校正器和FHP2)电子枪:冷场发射枪(Cold-FEG)加速电压标准:300kV和80kV能量色散X射线光谱仪大面积SDD(158mm 2):可以使用双探测器
    留言咨询
  • 余弦校正器 400-860-5168转6044
    余弦校正器 YOP-1026-01 描述余弦校正器是一种用于光谱辐射取样的光学元件,用于收集180°立体角内的光,从而消除了其它取样装置中由于光收集取样几何结构限制所导致的光学耦合问题。YOP-1026-01余弦校正器可以直接耦合 SMA905 接口,与光纤或光谱仪连接。有效直径3.9mm,采用进口PTFE材料,波长范围200~1100nm。可用于测量太阳辐射光、LED光、激光、环境光、以及对其它发光光源进行分析测试。特点可收集180°视场角的光采用聚四氟乙烯漫射材料可方便与光纤进行耦合应用测量UV-A和UV-B太阳辐射光、LED光、激光、环境光、以及 对其它发光光源分析测试。技术参数 更多精彩内容,请关注下方!
    留言咨询

余弦校正器相关的资讯

  • 【自传】像差校正电镜技术先驱之Maximilian Haider
    p style="text-align: justify text-indent: 2em "日前,2020年度科维理奖(Kavli Prize)揭晓,本年度科维理天体物理奖、纳米科学奖和神经科学奖,三个奖项分别授予七位科学家,以表彰他们在天体物理学、纳米科学和神经科学领域作出的杰出成就。a href="https://www.instrument.com.cn/news/20200602/540174.shtml" target="_self" style="text-decoration: underline "其中,纳米科学奖授予了对像差校正电镜技术的发展做出巨大贡献的四位欧洲科学家:Maximilian Haider、Knut Urban、Harald Rose和Ondrej L. Krivanek。/a/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/b9d1f53f-de22-4e55-bddf-c0c01576d0ad.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "strongMaximilian Haider,德国CEOS GmbH公司联合创始人/strong/ppstrong/strong/pp style="text-align: justify text-indent: 2em "作为科维理奖的获奖人之一,Maximilian Haider是奥地利的物理学家。在基尔大学获得学位后,他移居达姆施塔特(Darmstadt)攻读博士学位,并于1987年获得博士学位。仅仅两年后,他加入了海德堡欧洲分子生物学实验室(EMBL),在那里从事了博士学位的实验工作,成为物理仪器计划的组长,直到现在。/pp style="text-align: justify text-indent: 2em "他的研究兴趣集中在开发提高透射电子显微镜分辨率的方法上。在EMBL任职期间,他根据Harald Rose的理论工作开发了透镜系统原型,并开始与Rose和Knut Urban合作,拍摄了第一张经晶格校正的原子结构的TEM图像,成果于1998年发表。/pp style="text-align: justify text-indent: 2em "Haider于1996年在海德堡联合创立了CEOS GmbH公司,其目的是商业化生产像差校正器。他仍然是该公司的高级顾问,自2008年以来,他还是卡尔斯鲁厄工业大学的名誉物理学教授。/pp style="text-align: justify text-indent: 2em "他的工作获得了许多奖项,包括与Rose和Urban共同获得的Wolf奖和BBVA基础科学知识前沿奖,他还是英国皇家显微镜学会的荣誉院士。/pp style="text-align: center text-indent: 0em "span style="font-size: 20px "strongspan style="color: rgb(0, 112, 192) "【自传】/span/strong/span/pp style="text-align: justify text-indent: 2em "1950年,我出生于奥地利一个历史悠久的小镇,我的父亲Maximilian Haider和母亲Anna Haider在那里经营着一家父亲从爷爷手里接管的制表店,我的长兄此时已经步入了自己的人生轨道,成为了制表师。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 300px height: 260px " src="https://img1.17img.cn/17img/images/202006/uepic/e2d16dd2-a64c-4f1a-8242-d945013d069f.jpg" title="1960年,10岁的我在小学读书.png" alt="1960年,10岁的我在小学读书.png" width="300" height="260" border="0" vspace="0"//pp style="text-align: center "strong1960年,10岁的我在小学读书/strong/pp style="text-align: justify text-indent: 2em "span style="text-align: justify text-indent: 2em "为了扩大业务,我在童年时期,就被早早的认为应该成为一个眼镜师。因此,在14岁的时候,我开始在奥地利林茨做眼镜师学徒。/span/pp style="text-align:center"span style="text-align: justify text-indent: 2em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/edd1ed71-dcc3-45ac-9096-2bfcb6511b50.jpg" title="2.png" alt="2.png"//span/pp style="text-indent: 0em "span style="text-align: justify text-indent: 2em "/span/pp style="text-align: center "strong在奥地利林茨当学徒时(我是右边的最后一个人)/strong/pp style="text-indent: 0em "span style="text-align: justify text-indent: 2em "/span/pp style="text-align: justify text-indent: 2em "第一次眼镜师认证考试后,我意识到自己并不喜欢作为眼镜师的一生。因此,在接下来的几年中,我通过了几次考试,上了大学,并在我26岁的时候,开始在基尔大学和德国达姆施塔特工业大学学习物理。/pp style="text-align: justify text-indent: 2em "为了毕业论文,我联系了在理论粒子光学领域做研究的Harald Rose团队。当我还是一名眼镜师的时候就知道了电子光学中常见的像差,那时进行的像差校正项目更是深深的吸引住了我。我的任务是开发一种用于像差校正器的新型十二极元件,利用该元件生成所需的强四极和八极场。/pp style="text-align: justify text-indent: 2em "在达姆施塔特工业大学应用物理研究所,由Otto Scherzer和Harald Rose领导的两个小组正在进行一项长期计划,即利用四极、八极杆校正系统装置校正传统TEM的Cs和Cc像差。这种校正器的开发是在七十年代末,是像差校正的最新技术,但是无法证明这确实能提高分辨率。由于自制瞬变电磁法的不稳定性失败了,而不是由于像差的限制。/pp style="text-align: justify text-indent: 2em "因最后一位能够使用该仪器的科学家已离开本行业,所以在完成毕业论文之前,我必须学习如何操作复杂的仪器(最早的功能像差校正TEM):要控制大量电源的同时,还必须保持各种镜头的机械调节器稳定,整个系统的校准必须在没有计算机或CCD摄像机帮助的情况下手动进行。最后,该项目成功地证明了可以补偿Cs和Cc这两个像差,但未能显示出分辨率的提高。不过,该项目使我确信像差校正在未来可以提高分辨率,同时我也很清楚,人们应该只用足够的钱来购买最先进的TEM并首先对其进行研究以确保分辨率受到像差限制,否则,将会再次遇到相同的问题。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 299px " src="https://img1.17img.cn/17img/images/202006/uepic/eda0c272-eb6f-4790-9848-283409802f2c.jpg" title="3.png" alt="3.png" width="450" height="299" border="0" vspace="0"//pp style="text-align: center "strong1984年,我与Joachim Zach一起参加布达佩斯欧洲会议/strong/pp style="text-align: justify text-indent: 2em "取得文凭后,我继续在Rose小组工作,计划对现有的像差校正TEM进行改进。不幸的是,德国研究基金会(DFG)的资助提案被拒绝了,因为Harald Rose是一名理论家,而他申请的项目是一项具有实验挑战性的任务。/pp style="text-align: justify text-indent: 2em "此后不久,达姆施塔特像差校正项目的第二位“父亲”Otto Scherzer去世,项目也无法获得资金。因此,我在海德堡的欧洲分子生物学实验室(EMBL)任职,开发用于STEM的电子光谱仪。对于这种设备,像差的补偿也是必不可少的。/pp style="text-align: justify text-indent: 2em "1987年,随着针对专用STEM的高色散电子光谱仪的成功开发,以及与Rose小组的密切合作,我获得了博士学位。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 300px height: 367px " src="https://img1.17img.cn/17img/images/202006/uepic/2b221dc1-8442-4339-9aba-14d2a2db5ba4.jpg" title="4.png" alt="4.png" width="300" height="367" border="0" vspace="0"//pp style="text-align: center "strong1987年,我带着小女儿参加博士庆典/strong/pp style="text-align: justify text-indent: 2em "之后,我继续将现有的两个专用STEM用于TEM,因为实现像差校正系统来提高可用分辨率的想法并没有让我失望。然而,在全球范围内,电子光学在当时的物理学中失去了吸引力。emeriti被来自其他领域的科学家代替后,几个小组不得不关闭。同样,因为全球的几个像差校正项目都失败了,各资助机构也失去了兴趣,并且人们普遍认为,高分辨率电子显微镜(EM)的像差校正行不通,并且是“不可想象的”,尤其是对于商业仪器而言。/pp style="text-align: justify text-indent: 2em "唯一可行的选择似乎是通过增加加速电压来减小用于物体成像的电子波长。因此,仪器体积变大,价格也更昂贵了:仪器已经非常先进,材料科学领域的高分辨率证明可以达到300kV、400 kV甚至1.2 MV;分辨率的确可以提高,然而,在TEM中观察到的物体的光束损伤大大增加。/pp style="text-align: justify text-indent: 2em "虽然电子光学领域的工作并不受欢迎,但我不能忘记我长期以来的想法,即扫除达到亚埃分辨率道路上最大的障碍。在生物领域里,除了一些习惯使用SEM检查完整细胞的细胞生物学家之外,几乎没有人对我的这个想法感兴趣。/pp style="text-align: justify text-indent: 2em "然而,在一些内部资金和与半导体公司ICT(慕尼黑)的合作下,我们能够开始在EMBL内开发像差校正SEM。Rose团队的研究生Joachim Zach提出了一种像差校正SEM色谱柱的理论,该色谱柱的分辨率应从5-6 nm降低到1-2 nm。基于此,我们与ICT合作,包括在EMBL工作了两年的ICT科学家Stefan Lanio,设计并构造了一个像差校正器。/pp style="text-align: justify text-indent: 2em "在为SEM构造像差校正器的这段时间内,Arthur Jones退休了,我成为小组负责人,Joachim Zach加入了团队,并继续我们的研发。因为没有钱买现代的高分辨率扫描电镜,我们利用使用过的SEM,安装了带有肖特基发射器的新型电子枪。该电子枪具有更高的亮度和更小的能量宽度。我们的像差校正系统由四个复合的静电和磁多极(十二极)元件组成。该系统允许激发所有需要的四极场来调整校正器内的象散射线路径,并使线焦点位于元素2和3的中心,在这一点上,我们通过激发强的、几乎完全平衡的静电和磁性四极场来补偿色差。在这些元件上,我们还能够通过激发强八极杆场来补偿两部分的球差,球差的第三部分由元素1和4上的附加八极杆场补偿。/pp style="text-align: justify text-indent: 2em "1995年,我们终于能够证明物镜的色差和球面像差得到了完全补偿,并且在1 keV的加速能量下,分辨率从5.8 nm降低到了1.8 nm。这是有史以来第一次通过四极八极杆校正器提高分辨率。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/55af1aa6-e8b4-4aff-873c-09418f1763f1.jpg" title="5.png" alt="5.png"//pp style="text-align: justify text-indent: 2em "但是很明显,我们的SEM校正系统是为极低的能量设计的。TEMs的解决方案,即当电子通过一个薄物体时,使用更高的能量来产生主要的单次散射事件,仍有待发现。/pp style="text-align: justify text-indent: 2em "在1990年代初,用于高分辨率TEM和STEM的新型电子源(场发射源)在市场上可以买到。这些电子发射器具有较高的亮度和较小的一次能量宽度等优点,这与1980年代和Harald Rose进行的多次讨论中提出的想法相吻合:通过仅将系统集中在球差补偿上,可以降低像差校正器的复杂性,如果能将一次能量宽度保持在1ev以下,并且用能量约为200kev的电子对物体成像,就能将色差引起的对比度降低降到最低。/pp style="text-align: justify text-indent: 2em "早在1981年,Harald Rose提出了一种用于STEM的六极校正器,该校正器仅能补偿球差。他认为该校正器对于形成探针的电子束已经足够,因为它不允许TEM需要任何视野。/pp style="text-align: justify text-indent: 2em "1989年,在萨尔茨堡举行的显微镜会议是我们开发经Cs校正的TEM起点,此后由大众基金会资助:MPI斯图加特新订购的1.2 MeV TEM展示引发了一种方法的讨论,它能够提高TEM在材料科学中的分辨能,但是成本较高。Knut Urban是Forschungszentrum Julich的一名材料科学家,他迫切需要高分辨率的仪器,电子光学理论家Harald Rose和我讨论了为一个更便宜、具有更好分辨率和更少光束损伤项目筹集资金的可能性。/pp style="text-align: justify text-indent: 2em "1989年底,Rose扩展了STEM校正器概念,并提出了一种在物镜后面带有附加传输系统的六极校正器,以实现可接受的视野并将其应用于TEM中。/pp style="text-align: justify text-indent: 2em "1990年,他在《Optik》杂志上发表自己的想法,作为“球形校正半平面中压透射电子显微镜的概述”。/pp style="text-align: justify text-indent: 2em "与此同时,我们三个人继续讨论如何实现提出的校准器,1990年底,我们最终确定了大众基金会的拨款提案。在提交之前,我需要总干事的许可才能在EMBL内执行该项目——毕竟是分子生物学实验室,而不是物理研究所。但是由于所有的资助都是外部的,而且技术是前瞻性的,该仪器以后可以用于EMBL的结构研究,项目得到了许可。/pp style="text-align: justify text-indent: 2em "1991年夏天,这项建议预先获得接受,并将五年里分了两个项目:第一部分的任务是在最先进的TEM获得资金之前,对概念进行验证;1992年1月,我们开始了六极校正器得研制。因此,我们的两个像差校正项目并排运行:SEM项目旨在校正1.5 kV至0.5 kV之间的色差和球差,而TEM项目旨在消除80 kV至200 kV的球差。span style="text-indent: 2em "对于SEM项目,必须采用四极/八极校正器设计,而对于TEM项目,则要开发新的六极校正器。/span/pp style="text-align: justify text-indent: 2em "在1994年夏季的巴黎国际会议上,证明了遵循Harald Rose概述的六极校正器的原理。这为新TEM的筹资铺平了道路。/pp style="text-align: justify text-indent: 2em "1995年,仪器安装完毕,开始安装六极校正器。早在1995年底,Joachim Zach即可通过SEM像差校正器将分辨率从5.6 nm降低到1.8 nm。然而,与此同时,新的EMBL主任停止了物理仪器项目,这意味着我们组的所有合同,包括我自己的合同,将在1996年7月终止。看起来,我们已经快没有时间进行突破了。/pp style="text-align: justify text-indent: 2em "因此,我们与时间的竞赛开始了。1996年夏天,我们能够在TEM中显示六极校正器对球差的补偿。但是,由于物镜中附加镜头的水冷引起的不稳定性,无法证明分辨率的提高。我获得了大众基金会一个为期一年的项目资金,并且在没有EMBL额外资金的情况下获得了可用空间进行此扩展的许可。1996年秋,我们设法摆脱了一些不稳定因素,但在1997春,在物镜区域仍然很明显地存在一种不稳定因素。/pp style="text-align: justify text-indent: 2em "接下来的几个月是非常戏剧性的。我知道我们必须关闭TEM并将显微镜在7月底转移到Jü lich。5月,我决定在物镜下设计一个新的强透镜,以减少光束直径周围的不稳定区域。我们在6月份的时候就可以使用这种新镜片,但是在开启新镜片后的第一次测试中仍然显示出已知的不稳定性。然而,几个小时后,在午夜时分,我们突然获得了分辨率从最初的0.24 nm下降到0.12 nm的图像!/pp style="text-align: justify text-indent: 2em "1997年6月底,项目圆满完成。我们拍摄了一些照片用于会议演示,1997年7月,第一个经过校正的像差TEM被送到了位于Julich的Knut Urban实验室。/pp style="text-align: justify text-indent: 2em "没有以下两个先决条件我们是不可能实现这一重大飞跃的。首先,在1996年夏季,当EMBL很显然无法实现进一步的发展时,我们在海德堡成立了校正电子光学系统(CEOS)公司。在很短的时间内,通过专门设计的中间镜头来消除不稳定性的策略,只有在CEOS一名员工的帮助下才可行,他把新镜头的设计和建造作为自己的首要任务。其次,在该项目的最后一年中,我从Rose小组聘请了Stephan Uhlemann,他在博士期间已经研究了六极校正器的理论,以开发一种对准策略。,实践证明,该方法对于使校正器和整个仪器都处于良好对准状态非常有用。/pp style="text-align: justify text-indent: 2em "为什么CEOS公司成立于1996年? 就在第一个SEM校正器完成时,我们收到了日本JEOL公司的要求,用于开发用于晶圆检查工具的SEM校正器。为了执行此任务,我说服Joachim Zach(30%)共同创立了我们公司的CEOS。另外还有Harald Rose(5%)和我所在集团的前电子工程师Peter Raynor(5%)。公司成立后,我们开始与JEOL合作,并为他们的检测工具开发了第一个商用像差校正器。Harald Rose和Peter Raynor仅充当股东,而我和Joachim Zach共同管理,并在只增加三名员工的情况下创建了这家公司。/pp style="text-align: justify text-indent: 2em "用于高分辨率TEM的新型六极校正器的展示引起了很多关注:实验室开始筹集资金,几家公司与我们进行了谈判,以确保获得这项新技术并出售包括新型校正器在内的仪器,德国研究基金会发起了一项为各种机构的新仪器提供资金的计划。越来越多的活动使得CEOS有必要在海德堡寻找新的办公地点,因此我们用私人资金投资建造了一座可以容纳四个单独实验室的新楼,为我们的客户——EM制造商Zeiss、Hitachi、JEOL和Philips/FEI。在2003年,我们已与四家公司达成了合作协议。/pp style="text-align: justify text-indent: 2em "2000年,当新的像差校正系统很显然取得了成功,受到材料科学界的广泛认可和赞赏时,美国能源部开始讨论进一步开发300 kV的超高分辨率TEM,在TEM和STEM中均达到50 pm的分辨率,不仅要求TEM补偿球面色差,还要补偿色差。span style="text-indent: 2em "随后,TEAM项目(透射电子像差校正显微镜)于2005年启动,且要在2008年夏季完成。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "2008年4月,在Argonne的DOE实验室安装了TEM原型机,并在Oak Ridge安装了经过Cs校正的STEM之后,我们终于设法将整个双校正300 kV仪器运送到NCEM/Berkeley。对于STEM,我们开发了先进的六极校正器,甚至可以补偿五阶极限像差,并显示50 pm的分辨率。但是,对于Cc / Cs校正器,我们发现在200 kV时分辨率为55 pm,在300 kV时分辨率仅为65 pm,尽管在300 kV时较短的波长有望显示出更好的结果。即使接受了像差校正的TEM,我们也没有放弃调查在300kV和200kV时失去相干性的原因。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "直到2013年,我们才能够通过计算和实验工作(主要是Stephan Uhlemann)来解释降低分辨率的原因。由于校正器内电子束的直径较大,因此任何金属中的自由电子均会通过相关作用产生小的电子电流,其较小的磁场会产生磁噪声。由于四极场的强度有限,需要较大的束径才能产生足够的聚焦功率。为了解决磁噪声的问题,我们为Julich升级了TEAM的现有副本,从而将200kv和300kv的分辨率提高到50pm。/span/pp style="text-align: justify text-indent: 2em "当我们刚刚完成TEAM项目时,乌尔姆大学的Ute Kaiser要求进行一个联合项目,以开发专用的低压(20kV至80kV最高)像差校正器。/pp style="text-align: justify text-indent: 2em "亚秒级低压电子显微镜(SALVE)项目是与蔡司(Zeiss)的联合项目,该项目由德国联邦政府和DFG和巴登-符腾堡州共同资助。然而,2013年,蔡司停止了TEM业务,并与FEI找到了一个新的基础仪器项目合作伙伴。/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 311px " src="https://img1.17img.cn/17img/images/202006/uepic/6719a238-98b8-47c9-b5de-1bc2ec386768.jpg" title="6.png" alt="6.png" width="450" height="311" border="0" vspace="0"//pp style="text-align: center "strong我和Christa Charlotte在夏威夷/strong/ppstrong/strong/pp style="text-align: justify text-indent: 2em "我们利用蔡司回酬谈判和与FEI达成新协议之间的时间来修改现有的SALVE校正器并针对磁噪声进行优化。/pp style="text-align: justify text-indent: 2em "SALVE项目于2016年完成,具有低能耗实现分辨率的新里程碑。例如,即使在40keV能量下,也能达到亚埃分辨率,尽管在这种能量下电子的波长要比200kV时大得多。作为实现分辨率的品质因数,采用了用于成像电子的波长:在具有挑战性的TEAM项目中,目标是达到20倍波长的分辨率。我们为SALVE项目设定了相同的目标,设法获得了20到80kV之间波长约15倍的分辨率,超过了TEAM项目的结果。与具有100倍波长分辨率的未校正TEM相比,提高了近7倍。/pp style="text-align: justify text-indent: 2em "除了这些具有挑战性的研发项目外,我们还必须为多家公司组织Cs校正器的生产。因此,在2005年TEAM项目启动时,我们改变了与FEI在TEM和STEM方面的合作,并准许他们根据我们的技术生产六极Cs校正器。/pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/cf9f8aa9-53b9-45c8-81e3-fd7c7cb481e6.jpg" title="1.png" alt="1.png"//pp style="text-align: center "strong2005年,和Joachim Frank在瑞士达沃斯举行的EM会议上/strong/pp style="text-align: justify text-indent: 2em "多年来,CEOS公司不断发展壮大,从1996年5个人组成的团队发展成为如今拥有近50名员工的企业。由于与达姆施塔特的Roses团队的密切互动,我们认识了他的博士生,并且可以聘用一些。最后,我们聚集了Rose的前7名博士生,他们都对电子光学非常了解。/pp style="text-align: justify text-indent: 2em "我们必须将Heidelberg公司的办公场所扩展三倍,到2019年底,全球共安装了约900台基于CEOS技术的六极校正器,约占像差校正电子显微镜全球市场的90%。br//pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 295px " src="https://img1.17img.cn/17img/images/202006/uepic/a7666669-5faf-4411-854c-27463941b80f.jpg" title="7.png" alt="7.png" width="450" height="295" border="0" vspace="0"//pp style="text-align: center "strong一群曾经在CEOS公司工作的H.Rose的学生在大楼前庆祝10周年/strong/pp style="text-align: justify text-indent: 2em "当我从眼镜师转为物理学家时,妻子Brigitte在1988年被诊断出患有癌症,我的生活发生了巨大变化。/pp style="text-align: justify text-indent: 2em "1989年,我们从达姆施塔特搬到海德堡附近的一个村庄,住在离我当时工作的EMBL更近的地方。妻子于1990年去世,同年,Harald Rose、Knut Urban和我建立了经Cs校正的联合TEM项目,并且正为该项目筹集资金。/pp style="text-align: justify text-indent: 2em "随着Brigitte病情的发展,她碰巧遇到正在休产假的新教牧师Christa Charlotte,她的孩子与我的两个孩子的年龄相近。在接下来的几个月中,Christa Charlotte承担起了对我妻子精神上的照顾,Brigitte去世后,作为单亲妈妈的她很支持我。我们坠入了爱河,于1995年建立了一个共同的家庭,并在2000年幸福地结婚。我感到非常荣幸,感谢我的第二任妻子和所有的孩子,我的生活经历了这种积极的变化。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 299px " src="https://img1.17img.cn/17img/images/202006/uepic/88d5d50c-2606-4318-8bc5-dd5f5d8697bc.jpg" title="8.png" alt="8.png" width="450" height="299" border="0" vspace="0"//pp style="text-align: center "strong2008年,我与K.Urban和H.Rose在本田奖庆祝活动后的合影/strong/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 423px " src="https://img1.17img.cn/17img/images/202006/uepic/684f5c59-1526-4dfc-82dd-a8b926dcb504.jpg" title="9.png" alt="9.png" width="450" height="423" border="0" vspace="0"//pp style="text-indent: 0em text-align: center "strong与H.Rose一起参加海德堡大学生日研讨会/strong/pp /pp style="text-align: justify text-indent: 2em "strong延伸阅读:/strong/pp style="text-align: left text-indent: 0em "span style="color: rgb(0, 112, 192) text-decoration: underline "a href="https://www.instrument.com.cn/news/20201104/563818.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "【自传】像差校正电镜技术先驱之Harald Rose/a/span/pp style="text-align: left text-indent: 0em "a href="https://www.instrument.com.cn/news/20201112/564599.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "【自传】像差校正电镜技术先驱之Ondrej L. Krivanek/span/a/pp style="text-indent: 0em text-align: left "a href="https://www.instrument.com.cn/news/20201204/566735.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "【自传】像差校正电镜技术先驱之Knut Urban/span/a/ppbr//p
  • 【自传】像差校正电镜技术先驱之Harald Rose
    p style="text-align: center "span style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "【简介】/span/strong/spanbr//pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/efc046ba-50b1-4340-87d3-9ae63656c042.jpg" title="Harald Rose.jpg" alt="Harald Rose.jpg"//span/strong/span/pp style="text-align: center "strongHarald Rose/strong/pp style="text-align: justify text-indent: 2em "Harald Rose是德国物理学家。他在达姆施塔特大学学习,并获得了博士学位,在Otto Scherzer的指导下从事理论电子光学工作,在1930年代做了一些电子显微镜的开创性工作。/pp style="text-align: justify text-indent: 2em "Harald Rose的研究生涯与达姆施塔特大学和他在美国的任命有着密切的联系。在达姆施塔特大学,从1980年到2000年退休,一直担任教授。在1970年代初期,他在STEM的发明者Albert Crewe的实验室里工作过一段时间。自1970年代后期以来,他在美国各机构担任过多个职位,包括芝加哥的阿贡国家实验室。/pp style="text-align: justify text-indent: 2em "他的研究主要集中在电子透镜的像差校正。在1990年,他设计了一种可行的透镜系统来提高TEM分辨率。然后,他与Maximilian Haider和Knut Urban合作,于1998年,以实验方式实现了他的建议。/pp style="text-align: justify text-indent: 2em "自2009年以来,Harald Rose一直担任乌尔姆大学的蔡司高级教授。他获得了多个著名的奖项,包括与Haider和Urban一起获得沃尔夫物理学奖和BBVA基础科学知识前沿奖,以及与Maximilian Haider、Knut Urban、Ondrej L. Krivanek一起获得2020年度科维理奖(Kavli Prize)。他还是英国皇家显微镜学会的荣誉院士。/pp style="text-align: center "span style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "【自传】/span/strong/span/ppspan style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "/span/strong/span/pp style="text-align: justify text-indent: 2em "1935年2月14日,我在不来梅出生,是父母Anna-Luise和Hermann Rose的第二个孩子。我的父母在数学上都很有天赋。父亲出生在一个奏乐世家,他本人擅长弹奏钢琴。由于20世纪20年代初的恶性通货膨胀,祖父破产,父亲被迫经商。父亲在商业上非常成功,在1937年成为黑森州著名公司Kaffee-Hag的销售代表。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 322px " src="https://img1.17img.cn/17img/images/202011/uepic/416726c6-966b-4f3b-b7dd-1d5755b7ee9a.jpg" title="图片1.png" alt="图片1.png" width="450" height="322" border="0" vspace="0"//pp style="text-align: center "strong5岁的我(右)、母亲Anna-Luise和7岁的哥哥。/strong/pp style="text-align: justify text-indent: 2em "1937年,我们搬到了达姆施塔特,在那里,父亲在一个名为Mathildenhohe的高档社区里建造了一栋非常漂亮的房子,这是德国新艺术(Art Nouveau)的聚焦点。1939年,我们搬进了这栋房子。span style="text-indent: 2em "一年后,希特勒发动了第二次世界大战,我父亲应征加入了德国军队。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "到1944年止,我只见父亲几次,最后一次有父亲的消息是1944年2月,也就是我9岁生日那天,父亲被报道在东线的行动中失踪,我们再也没有见过他。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "1944年9月11日,由于皇家空军袭击,我们的房屋被摧毁,12,000名平民也因此丧生。幸运的是,母亲和哥哥幸存下来了,并搬到了乡下的一个小村庄。1945年3月,美国士兵抵达这里时,对我们来说,战争结束了。/span/ppspan style="color: rgb(0, 112, 192) "strongspan style="font-size: 18px "/span/strong/span/pp style="text-align: justify text-indent: 2em "同年年底,我通过了达姆施塔特实科中学的入学考试,母亲在税务局找到了一份工作。由于没有住房,我们不得不搬到房子废墟里潮湿的地下室。每当下雨天,水从楼板上滴下来,母亲就将床移到干的地方。此外,食物很难买到,在二战结束和1948年5月德国货币改革期间,我们经常饿肚子。/pp style="text-align: justify text-indent: 2em "母亲不得不同时工作和照顾两个孩子,因此没有时间帮助我们完成学校作业。幸运的是,和德国其他大多数州一样,母亲不必支付黑森州文理高中(Gymnasium)的费用。在文理高中期间,我对数学越来越感兴趣。因为没钱买昂贵的数学书,所以我经常去达姆施塔特黑森州立图书馆(Hessische Landesbibliothek),该图书馆在指定时间内免费向学生提供科学书籍,学习书籍可以帮助我轻松地理解学校的数学知识。结果,我在学校几乎没有做过任何数学题,但在考试成绩中始终是最好的。1955年初,我以优异的成绩通过了自然科学的期末考试(Abitur)。/pp style="text-align: justify text-indent: 2em "因为成绩优秀,我被录取到达姆斯达特工业大学(现为Technical University Darmstadt)学习。 当时,由于大多数房屋物尚未修复,因此严格限制出入(numerus clausus)。 span style="text-indent: 2em "那时候,由于母亲不得不从银行借钱来重建我们的房屋,家里的财务状况仍然很危急。因为在黑森州读州立大学是免费的,所以我能够上得起大学。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "我想报读电气工程课程,但由于电学的基础知识很少被提及,该课程没有达到我的期望。因为对电动力学的基础更感兴趣,所以我决定遵从自己的喜好,在学期结束的时候转到了物理和数学课。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "当时,祖父和母亲对我的决定很不满意。课程的变化对我来说并不容易,因为我错过了第一学期的物理和数学课程,这两门课程一般在4月份开始。为了赶上进度,我学习了大学理论物理学教授Otto Scherzer的力学讲义课程。/span/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "Otto Scherzer是20世纪上半叶最著名的理论物理学家之一Sommerfeld的学生和助手。和他的老师Sommerfeld一样,Scherzer在微积分领域也很出色,并且对物理现象的本质有着深入的了解。在量子力学课程中,他通过将数学的形式主义与对原子世界神秘本质的物理解释相结合,展示出了卓越的教学技巧。由于我正确解答了所有的习题,Scherzer给我提供了一个带薪职位,即作为理论物理习题助手。我非常高兴,因为这给我带来了足够的经济支持来养活自己,而不必在假期从事建筑工作。此外,我可以免费住在母亲的房子里,那里距离学校步行只有几步路。/span/pp style="text-align: center text-indent: 0em "span style="text-indent: 2em "img style="max-width: 100% max-height: 100% width: 450px height: 340px " src="https://img1.17img.cn/17img/images/202011/uepic/6379f81a-a42e-40a5-b9c5-52e65e4615a4.jpg" title="图片2.png" alt="图片2.png" width="450" height="340" border="0" vspace="0"//span/pp style="text-align: center text-indent: 0em "strong我于1997年在达姆施塔特工业大学应用物理研究所的研讨室中介绍六极校正器的功能。/strong/pp style="text-align: justify text-indent: 2em "我很钦佩Scherzer作为老师具有的杰出能力。因此,由于已经加入Scherzer的研究所,我决定在他的指导下完成Diplom论文,课题是找出通过利用电子显微镜不同的角度散射行为来检测不同原子的可能性。结果表明,由于当时的仪器技术水平不足,无法实现这一概念。尽管这令人沮丧,但量子力学散射的深入研究为我以后的电子显微镜成像工作奠定了基础。/pp style="text-align: justify text-indent: 2em "1961年初,我获得了学士学位。那时,大多数学生和科学家都渴望在科学的中心,即美国的一个科学研究机构待上一段时间。因此,我很高兴收到了正在Scherzer研究所休假的Fischer博士的录用通知,在马萨诸塞州贝德福德的空军剑桥研究所担任为期一年的研究顾问。我的研究重点是极短光脉冲半导体光电探测器。虽然这个课题很有实际意义,但并不符合我的兴趣。/pp style="text-align: justify text-indent: 2em "1962年回到达姆施塔特,我很高兴Scherzer同意我再次加入他的研究所攻读博士学位。按照Scherzer的建议,我在自己的论文中详细研究了非旋转对称电光系统的成像特性。目的是研制能够以另一种方式实现补偿球面像差的可行系统,就像在Scherzer-Seeliger校正器中实现的那样,并研制针对圆形透镜不可避免的球面和色差进行校正的系统。这个性质被称为Scherzer定理,它阻碍了电子显微镜在低于原子位移阈值的电压下工作时的原子分辨。/pp style="text-align: justify text-indent: 2em "Scherzer用非相对论近似推导了这个结果,我花了一些时间证明它在相对论下仍然有效。此外,我还证明了在任何光轴为直线的磁性系统中,色差校正是无法补偿的,但附加的电四极子是必不可少的。/pp style="text-align: justify text-indent: 2em "尽管Gottfried Mollenstedt在一个独创性的实验中表明,Scherzer-Seeleger校正器可以补偿球差,但这种校正并没有提高电子显微镜的分辨率,因为它受到了机械和电磁不稳定性的限制,而不是透镜光学缺陷的限制。/pp style="text-align: justify text-indent: 2em "为了能真正的改进,我计算了稳定性标准,必须满足此标准才能使像差校正提高分辨率。如今,不稳定性的影响在对比传递理论中被称为信息极限。计算表明,校正元件的数量必须尽可能少,并且必须机械固定,以最大程度地减少由不稳定性引起的非相干像差。我设计了一个电磁多极校正器,该校正器由四个电磁八极元件组成,每个元件都可以激发四极和八极场以及偶极和六极场的磁场以补偿寄生对准像差,从而避免了机械运动。/pp style="text-align: justify text-indent: 2em "获得博士学位后,Scherzer为我提供了一份薪酬丰厚的助理职位,为德语国家教授资格考试工作,这需要获得“venia legendi”,即在大学任教和成为教授的资格。/pp style="text-align: justify text-indent: 2em "在我题为“球面校正消色差透镜的性能”的“取得在大学授课资格的论文(habilitsschrift)”中,我论述了当时所有已知的校正器都有巨大的离轴昏迷,从而过度地减小了视野范围。因此,这些校正器不适用于常规透射电子显微镜(TEM)。/pp style="text-align: justify text-indent: 2em "为了补偿球差和色差和轴外彗差,并尽可能减少元素数量,我设计了一种利用对称特性的新型五元素校正器。后来证明,在设计高性能的滤光器、单色仪、镜面电子显微镜中的光束分离器以及六极校正器时,引入对称特性是关键。/pp style="text-align: justify text-indent: 2em "校正器是在1972年至1982年由德国研究基金会(DFG)资助的达姆施塔特项目框架内在Scherzer研究所成功制造和测试的。实验表明,该校正器引入了过大的五阶像差。为了充分减少这种像差,于1980年加入我团队的Max Haider用十二极杆元件替代了校正器的中央八极杆元件,该元件是在他的“毕业论文(Diplomarbeit)”中研制的。但是,由于没有计算机控制,他无法在短于光学系统稳定持续的时间内校准系统。结果就是显微镜的分辨率没有得到提高,尽管该项目在1982年Scherzer去世后结束并取得了成功。/pp style="text-align: center text-indent: 0em "img style="max-width: 100% max-height: 100% width: 450px height: 313px " src="https://img1.17img.cn/17img/images/202011/uepic/425afc87-d62b-403e-82d4-661f1809265b.jpg" title="图片3.png" alt="图片3.png" width="450" height="313" border="0" vspace="0"//pp style="text-align: center "strong1998年,我在测试SMART项目的镜像校正器。/strongbr//pp style="text-align: justify text-indent: 2em "在通过教授资格考试一年后,我于1970年被任命为达姆施塔特工业大学(TU)理论物理学的二级教授。1972年,Albert Crewe邀请我到芝加哥大学(University of Chicago)他的小组里待了一年。在此期间,我设计了一个新的探测器,可以在扫描透射电子显微镜(STEM)中实现高效相衬。而且,我计算了由非弹性散射电子形成图像中的非局部性。结果由Mike Isaacson和John Langmore在Crewe实验室使用STEM进行了证实。之后的20年里,我一直致力于解决与非弹性散射有关的相位问题,并与Helmut Kohl合作,他在其博士学位论文中对图像形成进行了深入的量子力学描述。/pp style="text-align: justify text-indent: 2em "1976年初,我离开达姆施塔特移居美国,被任命为纽约州奥尔巴尼市卫生局首席研究科学家以及纽约州特洛伊市RPI物理系的兼职教授。在奥尔巴尼期间,我遇到了辐射损伤问题,这限制了生物样品的电子显微镜图像的分辨率。为了尽可能的降低这种不良影响,电子显微镜小组的主要任务之一就是找到在可耐受电子剂量下提供有关样品最大信息的方法。一种可能性是,许多相同粒子(如核糖体)的低剂量图像的相关性。/pp style="text-align: justify text-indent: 2em "比我早几个月加入该小组的Joachim Fran研究了该方法很多年。他的成功的开创性工作于2017年获得了诺贝尔化学奖。我研究的是寻找方法提高仪器的光学性能,可以让所有散射电子都被利用。在该项目中,我设计了几种新的电子光学元件,如磁单色仪、象限STEM探测器和像差校正的Ω成像滤镜,它们由柏林的Dieter Krahl制造并成功测试,后来被纳入蔡司的TEM中。此外,我提出了STEM中的集成差分相衬成像技术,该技术已在几年前由FEI在商用仪器中实现。我们和同事Jü rgen Fertig首次研究了聚合电子波在STEM中通过厚晶物体的传播,结果表明,如果入射波的锥角超过布拉格角,相邻原子柱之间会发生强串扰。/pp style="text-align: justify text-indent: 2em "1980年,我回到达姆施塔特大学,成为应用物理研究所的全职教授,长期从事像差校正的研究。直到1986年,我每年都要回到奥尔巴尼几个月,以保持与奥尔巴尼的联系。/pp style="text-align: justify text-indent: 2em "回到达姆施塔特后不久,我在1980年夏季发现了一种出乎意料的简单校正器,可用于消除采用对称条件的电子透镜的球差,这是我在达姆施塔特四极八极杆校正器中使用的。众所周知,六极除了有三倍像差外,还有一个小的球差,其符号与圆形电子透镜的相反。因此,如果有可能以某种方式消除大的寄生三倍像差,则该系统可以用作校正器。计算表明,如果系统对近轴射线表现出双重对称性而不受六极场的影响,这确实是可能的。这种最简单的设置可以用作STEM的校正器,它由被两个六极杆包围的两个相同的圆形透镜组成。但是,没有足够的资金来实现这种校正器,因为那时所有高分辨率电子显微镜的分辨率都受到不稳定性的限制,而不是受到透镜缺陷的限制。到1980年代末,仪器的稳定性已不再是阻碍原子分辨的主要限制因素。/pp style="text-align: justify text-indent: 2em "1989年,通过在物镜和六极校正器之间增加另一个圆透镜二倍体,我发现了一个类似光学平面系统,该系统没有球差和离轴彗差。根据这一特性,校正器可以在稳定的TEM中实现大视野的原子成像。由于电子-光学平面的高对称性和简单性,我请教了Max Haider对利用这种新型校正器成功实现像差校正的看法。/pp style="text-align: justify text-indent: 2em "当时,Max正在海德堡的欧洲分子生物学实验室开发和试验用于低压扫描电子显微镜的四极八极校正器的性能,因此,他可以对我观点的可行性做出最好的判断。令我惊讶的是,Max从一开始就坚信校正器可以提供真实的原子分辨率。但是,需要足够的资金才能实现该校正器。/pp style="text-align: justify text-indent: 2em "幸运的是,在1989年9月于萨尔茨堡举行的Dreilä ndertagung会议上,我们与Knut Urban就材料科学成功进行像差校正的前景进行了成果颇丰的讨论。Knut Urban意识到校正像差的重要性,建议向大众基金会提交一个共同的(Rose, Haider, Urban)提案,因为美国暂停了对实现像差校正的资助,其它资助机构都拒绝了该提案。与其它机构做出的令人沮丧的决定相反,大众基金会冒险于1991年开始筹资。这种支持成就了Max Haider在1997年6月成功降低基础(未校正)的点分辨率后,大众基金会有史以来最成功的一个项目。/pp style="text-align: justify text-indent: 2em "1997年,柏林电子同步加速器BESSY II投放市场,并为开发新型光子源功能的新项目提供了资金。SMART项目的组织者Alex Bradshaw和Eberhard Umbach希望我成为致力于开发像差校正电子显微镜的科学家中的一员,该电子显微镜可以作为一个使用反射电子的低能量电子显微镜(LEEM)来工作,还可以作为一个由光子从表层发射的电子来形成图像的光发射电子显微镜(PEEM)来工作。/pp style="text-align: justify text-indent: 2em "span style="text-indent: 2em "我团队的任务是设计、构造和测试磁物镜浸没透镜、分离入射和反射电子束的无像差分束器以及补偿透镜球差和色差的镜校正器。四年后,这些任务完成,主要是由我的非常优秀且有远大志向的学生Dirk Preikszas、Peter Hartel和HeikoMü ller实现的。除SMART项目外,我团队还参与了由ManfredRü hle发起的Sub-eV Sub-Angstroem显微镜(SESAM)项目,以开发具有高空间和高能量分辨率的电子过滤电子显微镜(EFTEM)。Stefan Uhleman的博士论文中设计了高性能的MANDOLINE滤光片,该滤光片由Zeiss制造,并结合到SESAM显微镜中。直到今天,显微镜在斯图加特的Max Planck研究所一直以出色的性能在运行。/span/pp style="text-align: justify text-indent: 2em "尽管我所在的团队取得了巨大的成就,在国际上享有很高的声誉,也获得了许多科学家和行业的称赞,但在2000年4月,达姆施塔特技术大学却在我退休后放弃了我的研究领域。由于和美国的许多同事保持良好的联系,应美国同事的邀请,我在橡树岭国家实验室(Oak Ridge National Laboratory)担任了一年的研究员。在这里,我遇到了来自阿尔贡(Argonne)的Murray Gibson,他的目标是研制一种可以进行任何形式原位实验的高分辨率电子显微镜。因为只有大的物镜室才能满足此条件,所以必须校正物镜的球差和色差,以在中压下获得约0.2 nm的高分辨率,这对于减少辐射损伤是必需的。/pp style="text-align: justify text-indent: 2em "我接受了Murray提出进行经校正物镜设计的邀请,于2001年9月移居阿尔贡。但是,2002年4月,因为检查出患有早期前列腺癌,我不得不停止在阿尔贡的工作。幸运的是,癌症尚未扩散,存活的机率很高。在美因兹大学(the University of Mainz)接受手术后,我花了一年多的时间进行康复。与此同时,随着Murray换任高级光子源主任,Lawrence Berkeley国家实验室(LBNL)的Uli Dahmen成为TEAM项目主任。美国能源部改变了该项目的目标,要求使用彩色球面校正的中压电子显微镜提供0.05 nm的分辨率。/pp style="text-align: justify text-indent: 2em "2003年9月,我搬到伯克利,成为LBNL高级光源(ALS)的一名研究员。由于ASL距国家电子显微镜中心(NCEM)仅几步之遥,所以我接受了Uli的邀请成为TEAM项目顾问,该项目始于2004年,并于2009年成功以0.047 nm的分辨率结束,这大约是氢原子的半径。我与CEOS公司合作设计了TEAM校正器,通过用电磁四极八极杆五联体替换六极校正器的每个六极杆,所得校正器通过保持双重对称性来补偿色差、球差和彗差。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/ae3742be-568d-4dcb-8b7c-780a1720ceaf.jpg" title="图片4.png" alt="图片4.png"//pp style="text-align: center "strong2009年,我在M&M会议上与Hannes Lichte教授讨论问题。/strong/pp style="text-align: justify text-indent: 2em "2007年,乌尔姆大学(University of Ulm University)的Ute Kaiser教授邀请我就像差校正进行演讲,特别是关于六极校正器的设计和功能。该校正器是其新TITAN电子显微镜的一部分,该电子显微镜是FEI公司在2005年提供的第一台商业像差校正TEM。/pp style="text-align: justify text-indent: 2em "Ute Kaiser对二维物体(如石墨烯)的原子结构可视化很感兴趣。然而,在300 kV电压下操作显微镜时,样品立即被破坏。幸运的是,由于进行了像差校正,显微镜能够提供在80 kV(仪器的最低可调电压)下的原子分辨率。由于该电压低于石墨烯中原子位移的阈值电压,因此能够对其原子结构进行成像。该结果证明辐射损伤也限制了材料科学中许多物体的分辨率。由于很多对辐射敏感的二维物体的撞击阈值在20 kV至80 kV之间,因此对像差校正低压电子显微镜的需求很明显。因为在这种低电压下,色差超过了物镜的球差,并且需要大的可用孔径角才能获得原子分辨率,所以有必要开发新型的校正器。高性能SALVE校正器是通过将达姆施塔特四极杆-八极杆校正器的中央多极杆分成两个在空间上分离的元素而获得的。以该系统为起点,CEOS公司成员在由Ute Kaiser发起和领导的Sub-Angstroem低压电子显微镜(SALVE)项目的框架内开发了校正器。SALVE项目于2009年开始,在蔡司终止TEM生产后于2011年中断。2013年,FEI与CEOS公司一起继续了该项目,并于2017年结束,取得了意想不到的成功,显微镜的分辨率比合同所要求的提高了近30%。在SALVE项目开始时,我成为Ute Kaiser团队成员,并于2015年被任命为Ulm大学的高级教授。/pp style="text-align: justify text-indent: 2em "除了和在量子力学基础上设计电子光学组件和发展电子显微镜成像理论外,我对了解电子的基本性质也一直很感兴趣。特别是,我花了20多年的时间尝试了解自旋的起源、电荷和电子的质量。为此,我采用了一种相对论的量子力学方法,其与相对论电动力学和狄拉克理论密切相关。可能是因为我不属于基本粒子领域,所以我解释基本粒子结构的新理论被忽略了,投稿的文章未经审查就被拒绝。不过,2019年12月10日,我可以在乌尔姆大学的一次特殊物理座谈会上发表我的新理论,并希望我的演讲能引发对该主题富有成果的讨论。/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/544effa6-64ee-4899-92ad-11a4ff02c2d1.jpg" title="图片5.png" alt="图片5.png"//pp style="text-align: center "strong80岁生日之际,与蔡司的代表一起在乌尔姆大学2015学术研讨会展示半块欧米茄过滤器。/strong/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202011/uepic/646ca763-0f23-4140-b909-ca5cd73c8a0e.jpg" title="图片6.png" alt="图片6.png"//pp style="text-align: center "strong2012年,与网球伙伴聚会。/strong/pp style="text-align: center "img style="max-width: 100% max-height: 100% width: 450px height: 374px " src="https://img1.17img.cn/17img/images/202011/uepic/23d35705-a80e-44f2-b9f4-38127f463ad5.jpg" title="图片7.png" alt="图片7.png" width="450" height="374" border="0" vspace="0"//pp style="text-align: center "strong2012年2月14日,我和Dorothee在一家餐厅庆祝生日。/strong/pp style="text-align: justify text-indent: 2em "在我上学后的所有时间里,我都热衷于打曲棍球、冬天滑雪和秋天在阿尔卑斯山远足。曲棍球是一项非常苛刻的运动,但会有严重受伤的风险,且这种风险随着年龄的增长而增加。因此,我不得不在50岁时放弃这个爱好,并寻找其他活动。/pp style="text-align: justify text-indent: 2em "我选择学习网球是很自然的事,因为我的妻子Dorothee是一位非常有才华的网球运动员,曾在当地一家体育俱乐部的球队中打过球。她愿意给我上网球课,因为没有其他人愿意和初学者一起玩。在她的帮助下,我能够找到合作伙伴并成为团队成员。尽管由于年龄大而不能进行单打,我每周与几个伙伴打双人网球。此外,我和Dorothee每年都会与前曲棍球队友及其妻子一起远足数天。/pp style="text-align: justify text-indent: 2em "在我的科学生涯中,我与世界各地的许多同事都有联系,这些年来,许多联系也变为了友谊。我非常感谢这些友谊,它们是宝贵的礼物。最后,我要感谢我的妻子,多年来在我周末的工作期间所给予的支持和耐心。/ppbr//pp style="text-align: justify text-indent: 2em "strong延伸阅读:/strong/pp style="text-align: left text-indent: 0em "span style="color: rgb(0, 112, 192) text-decoration: underline "a href="https://www.instrument.com.cn/news/20200608/540683.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "【自传】像差校正电镜技术先驱之Maximilian Haider/a/span/pp style="text-align: left text-indent: 0em "a href="https://www.instrument.com.cn/news/20201112/564599.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "【自传】像差校正电镜技术先驱之Ondrej L. Krivanek/span/a/pp style="text-indent: 0em text-align: left "a href="https://www.instrument.com.cn/news/20201204/566735.shtml" target="_self" style="color: rgb(0, 112, 192) text-decoration: underline "span style="color: rgb(0, 112, 192) "【自传】像差校正电镜技术先驱之Knut Urban/span/a/ppbr//p
  • 了解球差校正透射电镜,从这里开始
    p  作者:Mix + CCL br//pp strong前言:/strong/pp  球差校正透射电镜(Spherical Aberration Corrected Transmission Electron Microscope: ACTEM)随着纳米材料的兴起而进入普通研究者的视野。超高分辨率配合诸多分析组件使ACTEM成为深入研究纳米世界不可或缺的利器。本期我们将给大家介绍何为球差,ACTEM的种类,球差的优势,何时才需要ACTEM、以及如何为ACTEM准备你的样品。最后我们会介绍一下透射电镜的最前沿,球差色差校正透射电镜。/pp  strong什么是球差:/strong/pp  100 kV的电子束的波长为0.037埃,而普通TEM的点分辨率仅为0.8纳米。这主要是由TEM中磁透镜的像差造成的。球差即为球面像差,是透镜像差中的一种。其他的三种主要像差为:像散、彗形像差和色差。透镜系统,无论是光学透镜还是电磁透镜,都无法做到绝对完美。对于凸透镜,透镜边缘的会聚能力比透镜中心更强,从而导致所有的光线(电子)无法会聚到一个焦点从而影响成像能力。在光学镜组中,凸透镜和凹透镜的组合能有效减少球差,然而电磁透镜却只有凸透镜而没有凹透镜,因此球差成为影响TEM分辨率最主要和最难校正的因素。此外,色差是由于能量不均一的电子束经过磁透镜后无法聚焦在同一个焦点而造成的,它是仅次于球差的影响TEM分辨率的因素。/pp style="text-align: center"img style="width: 450px height: 246px " src="http://img1.17img.cn/17img/images/201803/insimg/565984ed-0352-4b62-8539-a16db18b6f6b.jpg" title="1.jpg" height="246" hspace="0" border="0" vspace="0" width="450"//pp style="text-align: center "strong图1:球差和色差示意图/strong/pp自TEM发明后,科学家一直致力于提高其分辨率。1992年德国的三名科学家Harald Rose (UUlm)、Knut Urban(FZJ)以及Maximilian Haider(EMBL)研发使用多极子校正装置(图3)调节和控制电磁透镜的聚焦中心从而实现对球差的校正(图4),最终实现了亚埃级的分辨率。被称为ACTEM三巨头的他们也获得了2011年的沃尔夫奖。多极子校正装置通过多组可调节磁场的磁镜组对电子束的洛伦茨力作用逐步调节TEM的球差,从而实现亚埃级的分辨率。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/2080a2cf-4ab3-41ab-b731-7719f0c32d28.jpg" title="2.jpg"//pp style="text-align: center " strong 图2 三种多极子校正装置示意图/strong/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/090bb4c0-aeea-4ab4-8601-79bcf74b7c8e.jpg" title="3.jpg"//pp style="text-align: center "strong图3 球差校正光路示意图/strong/pp  strongACTEM的种类:/strong/pp  我们在前期TEM相关内容已经介绍了透镜相关内容,TEM中包含多个磁透镜:聚光镜、物镜、中间镜和投影镜等。球差是由于磁镜的构造不完美造成的,那么这些磁镜组都会产生球差。当我们矫正不同的磁透镜就有了不同种类的ACTEM。回想一下STEM的原理,当我们使用STEM模式时,聚光镜会聚电子束扫描样品成像,此时聚光镜球差是影响分辨率的主要原因。因此,以做STEM为主的TEM,球差校正装置会安装在聚光镜位置,即为AC-STEM。而当我们使用image模式时,影响成像分辨率的主要是物镜的球差,此种校正器安装在物镜位置的即为AC-TEM。当然也有在一台TEM上安装两个校正器的,就是所谓的双球差校正TEM。此外,由于校正器有电压限制,因此不同的型号的ACTEM有其对应的加速电压,如FEI TITAN 80-300就是在80-300 kV电压下运行,也有专门为低电压配置的低压ACTEM。/pp  strong球差校正电镜的优势:/strong/pp  ACTEM或者ACSTEM的最大优势在于球差校正削减了像差,从而提高了分辨率。传统的TEM或者STEM的分辨率在纳米级、亚纳米级,而ACTEM的分辨率能达到埃级,甚至亚埃级别。分辨率的提高意味着能够更“深入”的了解材料。例如:最近单原子催化很火,我们公众号也介绍了大量相关工作。为什么单原子能火,一个很大的原因是电镜分辨率的提高,使得对单原子的观察成为可能。浏览这些单原子催化相关文献,几乎无一例外都用到了ACTEM或者ACSTEM。这些文献所谓的“单原子催化剂”,可能早就有人发现,但是因为受限于当时电镜分辨率不够,所以没能发现关键的催化活性中心。正是因为球差校正的引入,提高了分辨率,才真正揭示了这一系列催化剂的活性中心。/pp  strong何时才需要用球差校正电镜呢?/strong/pp  虽然现在ACTEM和ACSTEM正在“大众化”,但是并非一定要用这么高大上的装备。如果你想观察你的样品的原子级结构并希望知道原子的元素种类(例如纳米晶体催化剂等),ACSTEM将会是比较好的选择。如果你想观察样品的形貌和电子衍射图案或者样品在TEM中的原位反应,那么物镜校正的ACTEM将会是更好的选择。就纳米晶的合成而言,球差校正电镜常用来揭示纳米材料的细微结构信息。比如合成一种纳米核壳材料,其中壳层仅有几个原子层厚度,这个时候普通电镜下很难观察到,而球差电镜则可以拍到这一细微的结构信息(请参见夏幼男教授的SCIENCE,349,412)。/pp  strong如何为ACTEM准备你的样品:/strong/pp  首先如果没有合作的实验室的帮助,ACTEM的测试费用将会是非常昂贵的。因此非常有必要在这里介绍如何准备样品。在测试之前最好尽量了解样品的性质,并将这些信息准确地告知测试者。其中我认为先用普通的高分辨TEM观察样品是必须的,通过高分辨TEM的预观察,你需要知道并记录以下几点:一、样品的浓度是否合适,目标位点数量是否足量 二、确定样品在测试电压下是否稳定并确定测试电压,许多样品在电子束照射下会出现积累电荷(导电性差)、结构变化(电子束的knock-on作用)等等 三、观察测试目标性状,比如你希望测试复合结构中的纳米颗粒的原子结构,那么必须观察这些纳米颗粒是否有其他物质包覆等,洁净的样品是实现高分辨率的基础 四、确定样品预处理的方式,明确样品测试前是否需要加热等预处理。五、拍摄足量的高分辨照片,并标注需要进一步观察的特征位点。在ACTEM测试中,与测试人员的交流非常重要,多说多问。/pp  strong球差色差校正透射电镜:/strong/pp  球差校正器经过多年的发展,在最新的五重球差校正器的帮助下,人类成功地将球差对分辨率的影响校正到小于色差。只有校正色差才能进一步提高分辨率,于是球差色差校正透射电镜就诞生了。我们欣赏一下放置在德国Ernst Ruska-Centre的Titan G3 50-300 PICO双球差物镜色差校正TEM (300 kV分辨小于0.5埃)以及德国乌尔姆大学的TitanG3 20-80 SALVE 低电压物镜球差色差校正TEM (20 kV 分辨率小于1.4埃)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201803/insimg/04b96c4d-c6fe-40d2-85c0-b86ce091e6e8.jpg" title="4.jpg"//pp style="text-align: center "strong图4 Titan G3 50-300 PICO、TitanG3 20-80 SALVE及其矫正器/strong/p

余弦校正器相关的方案

余弦校正器相关的资料

余弦校正器相关的试剂

余弦校正器相关的论坛

  • 球差校正器的构造?

    现在球差电镜的用户已经有很多了,谁能给介绍一下球差校正器的结构和工作原理呀?物镜球差校正器和聚光镜球差校正器的安装位置和结构是不是一样的?

余弦校正器相关的耗材

  • 余弦校正器 余弦矫正器 光谱辐照度
    余弦校正器1 产品介绍.余弦校正器(余弦矫正器)是一种用于光谱辐射取样的光学元件,用于收集180°立体角内的辐射(光线),从而消除了其它取样装置中由于光线收集取样几何结构限制所导致的光学耦合问题。可用于光谱辐照度的测量,例如:LED光源。2 产品参数型号CC余弦校正器接口SMA 905 波长范围200-2500 nm视场角180°
  • 海洋光学用于辐射光采集的余弦校正器
    海洋光学的余弦校正器可与光纤和光谱仪连接,用于相对光谱强度和绝对光谱强度测量、发射光谱测量,以及对LED光源和激光光源进行分析。可选的探头将CC-3和CC-3-UV装在光纤未端,余弦校正器和光纤就组成了一个辐射探头。该探头与海洋光学的光谱仪相连接用于测量探头表面光线的辐射强度。可直接连接CC-3-DA可直接与USB2000、HR4000或S2000光谱仪的SMA 905接头连接,从而组成一个完整的无连接线的光谱仪系统,不需要使用光纤。散射材料:UV-VIS或VIS-NIR余弦校正器的散射材料可以是一个乳白色的、薄的玻璃圆盘((350-1100 nm)或 Spectralon (200-1100 nm) ,位于不锈钢套管的末端。CC-3CC-3-UVCC-3-DA散射材料:乳白玻璃SpectralonSpectralon波长范围:350-1000 nm200-1100 nm200-1100 nm外形尺寸:6.35 mm OD6.35 mm OD12.7 mm OD视场180° 180° 180°
  • STD-CC 标准余弦矫正器
    STD-CC | 余弦矫正器 辐射光谱测量 复享科技余弦校正器可与光纤和光谱仪连接,用于相对光谱强度和绝对光谱强度测量、发射光谱测量,以及对LED光源和激光光源进行分析,复享余弦校正器末端可以直接耦合SMA905 接口。更多优惠信息:http://www.ideaoptics.com/Products/PContent.aspx?pd=STD-CC系列型号型号描述STD-CC-6余弦矫正器 6mm 直径,波长范围200nm-1100nm,视角180 度更多信息:http://www.ideaoptics.com.clear{ clear:both }.right{ width:717px }.shang{ margin-bottom:20px font-size:12px }.shang tr td{ padding:10px 0px line-height:24px }a:link {text-decoration: none }a:visited {text-decoration: none }a:hover {text-decoration: none }a:active {text-decoration: none }#nav li{ font-size:12px }/*New Nav Style*/#nav_wrap { width:710px margin:20px auto }#nav{ background:url(images/nav_bg.gif) repeat-x height:39px position:relative width:710px margin:0px auto }#nav .l{ background:url(images/navnbg.gif) no-repeat 0px 0px width:2px float:left}#nav .r{ background:url(images/navnbg.gif) no-repeat -4px 0px width:2px float:right}#nav .bt_qnav { float:right }#nav .bt_qnav a{ width:31px line-height:39px display:block padding:9px 2px 0 0 }#nav .c{ float:left margin:0 padding:0}#nav li { float:left list-style:none }#nav li .v a{ width:100px line-height:33px text-align:center display:block color:#FFF background:url(images/navnbg.gif) no-repeat -87px 6px font-family:"Microsoft Yahei" }#nav li .v a:hover,#nav li .v .sele{background:url(images/navnbg.gif) no-repeat 0px -52px color:#116406 line-height:42px font-size:14px}#nav .kind_menu { line-height:24px top:39px position:absolute color:#656565 border:1px solid #cccccc width:708px left:0px font-size:12px }#nav .kind_menu tr td { padding:0px 10px font-size:12px }#nav .kind_menu table{color:#656565 margin:20px auto display:block font-family:"宋体" left:0px }#nav .kind_menu span { font-size:10px color:#cecece line-height:30px *line-height:26px float:left }#tmenu{ margin:20px }.bt{ color:#0099FF font-size:14px font-weight:bold }.yi,.er,.san,.si,.wu,.liu{ background-color:#e9f4fe padding:0px 10px height:80px margin-bottom:15px line-height:20px }.clear{ clear:both }.xbt{ background-color:#ecf6ff padding:5px 10px margin-bottom:15px }.xbt a{font-size:14px font-weight:bold color:#333333 width:80px border-right:1px solid #cccccc text-align:center float:left }.xbt a:hover{color:#0066FF }.cpgs,.xlxh,.yyaj,.cptd,.gjjs,.cpxn{ display:block border-bottom:1px dashed #cccccc font-size:12px font-weight:bold color:#FF6600 padding:10px margin-bottom:10px }
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制