高缸侵蚀监测仪

仪器信息网高缸侵蚀监测仪专题为您提供2024年最新高缸侵蚀监测仪价格报价、厂家品牌的相关信息, 包括高缸侵蚀监测仪参数、型号等,不管是国产,还是进口品牌的高缸侵蚀监测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高缸侵蚀监测仪相关的耗材配件、试剂标物,还有高缸侵蚀监测仪相关的最新资讯、资料,以及高缸侵蚀监测仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

高缸侵蚀监测仪相关的厂商

  • 400-860-5168转4350
    公司简介:“柳沁科技”——全称:东莞市柳沁检测仪器有限公司,是一家专业生产各种检测仪器的真正厂家。主要致力于研究、开发、生产、销售各种模拟环境气候的检测仪器设备,含高低温试验箱、恒温恒湿试验箱、冷热冲击试验箱、紫外线老化试验箱、氙灯老化试验箱、快速升降温试验箱、淋雨试验箱、砂尘试验箱、步入式恒温恒湿试验室、高温老化房、真空及无尘干燥试验箱、盐水喷雾试验箱、跌落试验机、电磁振动台等各类环境仪器和力学试验设备。柳沁科技以先进的生产设备、加工设备及强大的技术研发实力、高要求的制造工艺、严格的管理体系、雄厚的技术实力和良好的售后服务保证了企业的可持续发展和产品在技术及工艺上的先进性,满足广大客户的不同需求。柳沁科技拥有经过严格培训、技术专业、经验丰富的工程技术人员,负责仪器的生产及售后服务工作。并可根据顾客的要求非标设计制作各种实验仪器!每一个环节都会以顾客的观点与需求作为思考的出发点,力求做到为每一个顾客提供专业化服务及整体实验室的解决方案。
    留言咨询
  • 苏州富思港是一家专业致力于全球高科技可靠性试验技术研究和气候环境模拟设备制造,销售及系统整合服务于一体的国家高新技术企业。 产品主要包括:高低温试验箱、恒温恒湿试验箱、冷热冲击试验箱、快速温变试验箱、步入式恒温恒湿试验箱、高低温低气压试验箱、高低温交变湿热试验箱、精密烤箱、高温老化房,三综合试验箱,盐雾试验机,防尘试验箱,淋雨试验箱模拟环境试验仪器。产品主要应用于电子电器、通讯通信、仪器仪表、汽车、塑胶制品、金属、食品、化工、建材、医疗、船舶、航空航天以及光伏新能源等行业。产品应用可以帮助企业进行产品的质量控制和改进,从而提高产品的用户体验并降低售后服务的成本 合作客户有:天合光能、美能光伏、国信蓝盾、山石网科、拓普集团等各行知名企业 目前公司发展方向以“满足客户需要”不断进取,全面提升研发,设计,制造工艺技术,为广大客户提供“质量更好、服务更优、性能更佳的工业检测仪器!欢迎详询!
    留言咨询
  • 沈阳科盛达检测仪器有限公司成立于2005年,是一家专业集生产设计与销售为一体的试验仪器贸易公司。2007年3月公司通过ISO9001认证审核,质量体系日益完善,产品质量居国内领先水平。公司成立至今,先后为中铁股份有限公司、中国水利水电建设集团、全国各大名校、质检科研部门等单位提供了一大批优良的仪器产品。产品遍布国内32个省、直辖市,还出口到新加坡、巴基斯坦、朝鲜和香港等国家和地区,成为东三省乃至全国重要的试验仪器设备制造商之一。 本公司主要生产经营的产品有:各种万能压力试验机、混凝土水泥仪器、公路土工仪器、石油沥青仪器、无损检测仪器、CA砂浆仪器、陶瓷砖瓦仪器,各种涂料化玻仪器、橡胶塑料仪器、环保仪器、建筑节能检测仪器等。 科盛达公司本着“诚信至上、质量第一、服务客户”的原则,和“人无我有,人有我全;人全我好,人好我廉”的口号;科盛达员工时刻以勤奋的工作态度,诚恳地服务精神,团结和睦的合作状态为公司赢得了今天的成绩和荣誉。珍惜取得的成绩,不忘用户的支持与厚爱,我们将不懈努力,一如既往地以优异的品质为您服务! 我公司备有详细资料,欢迎各位新老客户来电咨询! 沈阳科盛达检测仪器有限公司成立于2005年,是一家专业集生产设计与销售为一体的试验仪器贸易公司。2007年3月公司通过ISO9001认证审核,质量体系日益完善,产品质量居国内领先水平。公司成立至今,先后为中铁股份有限公司、中国水利水电建设集团、全国各大名校、质检科研部门等单位提供了一大批优良的仪器产品。产品遍布国内32个省、直辖市,还出口到新加坡、巴基斯坦、朝鲜和香港等国家和地区,成为东三省乃至全国重要的试验仪器设备制造商之一。 本公司主要生产经营的产品有:各种万能压力试验机、混凝土水泥仪器、公路土工仪器、石油沥青仪器、无损检测仪器、CA砂浆仪器、陶瓷砖瓦仪器,各种涂料化玻仪器、橡胶塑料仪器、环保仪器、建筑节能检测仪器等。 科盛达公司本着“诚信至上、质量第一、服务客户”的原则,和“人无我有,人有我全;人全我好,人好我廉”的口号;科盛达员工时刻以勤奋的工作态度,诚恳地服务精神,团结和睦的合作状态为公司赢得了今天的成绩和荣誉。珍惜取得的成绩,不忘用户的支持与厚爱,我们将不懈努力,一如既往地以优异的品质为您服务! 我公司备有详细资料,欢迎各位新老客户来电咨询!
    留言咨询

高缸侵蚀监测仪相关的仪器

  • 1引言密集农业活动和管理不善的土壤耕作造成的土壤侵蚀和面源污染营养盐负荷导致水生生境和沿岸植被退化(鱼类产卵区域、底部动物),水库库容迅速丧失及其使用寿命的缩短,养分微粒和有毒物质的输移导致水体富营养化、中毒和浑浊。流域管理急需流域尺度的近似估算法和模型模拟,并且,能采用实时调查的土壤侵蚀及库区淤积污染数据与模型计算结果比照,从而确定模型能够用于无测站流域面源污染的测评,并动态模拟关键污染源采用调控措施后,污染变化情况。 2 系统的应用水土面源污染调查及动态测评系统通过确定总负荷中点源/非点源比率,采用模型计算与实地面源污染调查比照,识别流域内面源污染贡献最大的关键点来协助制定流域管理战略。可用于大尺度有测站或无测站流域的管理,评估气候变化,流域最优管理的设计,面源污染调控、污染排放控制、湿地养分监测等领域。 3 系统组成 水土面源污染调查及动态测评系统 由PhosFate 模型、污染调查系统组成。PhosFate模型(Kovacs et al. 2008)是一种用来模拟流域和河网内水文、土壤流失、点源、面源污染P排放及其输移的GIS工具。通过流域尺度的模拟计算,减少侵蚀和面源污染营养盐排放。模型融合了单个经验模型和边界清晰的物理集水区模型的优势,它由已有的独立的方法构建而来,这些独立的方法通过适当的修正、延展,最后被整合到一个通用的模型框架中。 关于空间变异性,PhosFate完全忽略河水流动、水质成份,模型所有的输入与结果都是“长期平均值”。 PhosFate模型主要分为两部分:侵蚀/排放和输移子模型。模型的输入数据如下(针对水文和侵蚀模拟):数字地图( 海拔、土地利用类型、物理表土质量、腐殖质含量)气象资料(时间尺度内的平均降水、与不同降雨强度相关的降雨分布、平均潜在蒸散量、温度和风速)点源信息(水库的位置和运作容积) 流域水文采用WetSpass长期水文学模型(Batelaan and Woldeamlak, 2004)运算。地表径流计算基于土壤类型、土地利用类型、取决于坡面的潜在径流系数以及与土壤入渗能力有关的分配系数。参考蒸散量用成熟的Penman-Monteith方程计算,实际蒸散量采用恒定不变的水分相关系数修订参考蒸散量得到。入渗和地下水补充是该水分平衡方程的剩余条件,分别描述土壤表面和表土层情况。土壤流失采用通用土壤流失方程(USLE,Novotny, 2003)计算。输移子模型加入了单独的单元来提供相邻单元的交互作用,并计算流域内本地泥沙输移通量。模型单独计算水、沉积物、地表面源溶解态磷(DP)和颗粒态磷(PP)排放,地下排放和点源排放。计算的结果是流域内任意点的排放总量、泥沙、DP和PP负荷值,这些值的组分(地表、地下、点源)以及流域内泥沙与P的滞留模式。 污染调查系统即可便携式测量各点的营养盐参数 如 硝酸盐、亚硝酸盐、氨氮、磷酸盐,也可固定在观测点长期、动态观测营养盐或水体物理和化学参数。 4、系统技术指标计算面积: 10000平方公里-50000平方公里基本单元面积:100m x 100m单元计算参数:植被截流、地表径流、地表渗透、实际蒸散、地下水补给输出结果: BMPs,河床和库底的滞留量,营养盐负荷运算法则: 1、对每个单元可达增益进行估算 2、以最大可达增益为指导,对单元实施干预(转变土地利用方式) 3、在受影响的区域实施模型运算(被干预单元的上/下游相邻单元) 4、如果预算用完,进行第5步,否则从第1步开始重复。 5、结束测量范围:氨氮 :0~0.4/1/2/5/mg/l ,其它范围可定制硝酸盐+亚硝酸盐: 0~0.5/1/5/10 mg/l ,其它范围可定制亚硝酸盐: 0~0.1/0.2/0.5 mg/l ,其它范围可定制磷酸盐: 0~0.3/1/2/5/ mg/l ,其它范围可定制 5、应用案例5.1流域管理评估PhosFate模型工具允许编制流域最佳管理措施(BMPs),并可模拟对泥沙和营养盐负荷可能的影响。多种BMP可选方案及方案间的组合能有效降低土壤流失(Campbell et al., 2004)。模型尤其关注农村土地利用管理,包括土地利用方式转变,耕作方法改变,缓冲区和湿地建立等,如通过减少径流和土壤流失为手段的源控制干预措施,减少 耕作方式的改变(例如耕地的方向,保护性耕地,等高条植,耕后覆盖,梯田耕作等)对土壤流失值也有影响。根据计划好的干预措施,更改土地利用图并运行排放和运移模型后,改良后的水文和负荷降低功效能被模拟出来。模型还可跟踪河网内的点源排放情况。模型可计算河床和库底的滞留量,因此可以模拟距下游目标(河段或静水)有较远距离的点源的影响。5.2 评估气候变化情形因为一些输入数据是气候变量,PhosFate可以被用来开展气候变化影响评价。因为输出的是长时期平均值,模型可以方便地根据预期气候变化修改输入数据,不需对每日或更密时间频率作缩小尺度规模的预报。气候情形可以与预期土地利用发展相关联,创造一个综合的框架,为流域管理预报未来的变化或挑战。5.3最优管理技术的设计为了达到最优管理(低成本高效地降低土壤流失),不是所有的侵蚀源区域都必须被干预措施涉及,因为不是所有的源区域对泥沙和营养盐负荷都有有效的贡献率。最优策略受两个目标功能支配(现有固定成本下的负荷降低功率和固定污染限度下的成本效益)。最优化过程的目标功能是以最有效的干涉方法(涵盖尽量少的单元)减少输移进入河网的SS总量。或者,反过来讲,怎样在指定数量的单元内以干预措施实现负荷下降的最大效益?那些成功将最大总量的侵蚀物送入河网的单元可以被当作理想的源控制目标(本地侵蚀的减少)。然而,其它仅具有有限侵蚀率的单元,也能输移从其直接邻近区域过来的具有相当总量的SS。这些是最佳的输移控制地点,即用来建立滞留区域(多数沿着水流方向)。按照这两个特性排列单元为最优干预计算构建基础。这两种干预类型(源控制和输移控制)在计算过程中必须相互协调。如果一个高度侵蚀的单元被干预,其下游相邻单元的相对重要性也就减少。同样,通过安置缓冲区,上游相邻单元的有效贡献也会降低。因此,在每个特定单元实施干预活动后,单元的重要性排序必须被更新。 5.4匈牙利大尺度、有测站流域PhosFate 系统在匈牙利全境的小流域内,为不同管理计划的水质评估模拟水平衡、土壤侵蚀、磷排放及负荷。4个试点流域被选择出来用于校准和详细分析,这是为在其它无测站流域的后续应用提供参数范围。试点流域出口观测站测量出的排放量、颗粒态磷(PP)和可溶性活性磷(SRP)负荷被用作校准。各参数在终点校正都取得了成功,最佳参数值(与实测值)显示出显著的相似性。Zala流域是用于校准模型的试点流域之一。不仅在该流域的出口处,在其它3个沿河监测站的排放量,校准的模型输出值与测量值也有很好的一致性。计算得出的主河道内的平均行程时间与基于小型洪峰传播速度的估算值非常接近。模型的良好性能允许将其扩展应用到校准区以外的流域。除了计算基准值,5个全国管理策略对营养盐负荷和水质也进行了测试。测试显示,土地利用管理策略(曾是BMP的可选措施)自发和统一的应用对于减少侵蚀和富营养化,是一种没有经济和社会效益的方法。在已识别出的“热点”实施最优干预措施,成本效益可增加2倍,而且,在总侵蚀量显著下降的情况下,影响面积缩小50%。因此,在具有代表性的有测站区域应用 PhosFate有助于对无测站流域进行高精度的流域管理评估和设计。 5.5阿尔巴尼亚大尺度、无测站流域 阿尔巴尼亚(28 750 km2)是坐落于亚得里亚、爱奥利亚海岸与巴尔干山脉之间的欧洲小国。东部沿海部分是平原,而其余部分是山区。关于该国对整个地中海水文,泥沙及营养负荷贡献率的评估很稀少,其精度也不准确。PhosFate的任务是用该国高空间分辨率的数据对当时的侵蚀状况作基准评估,并检验设计的干预措施的功效。除此之外,还分析了由数据缺失造成的不确定性。为了完成侵蚀和泥沙输移评估,建立起了一个符合PhosFate要求的GIS数据库。从不同来源收集到了必要的数字地图和气候数据。除此之外,也从文献中收集了SS负荷数据以及其它侵蚀研究的结果,用来校准模型和执行对比。对比文献中评估结果,校正了河流长期平均排放。单参数组被用于整个国家。计算好的排放值与监测数据有很好的一致性,与文献中(不是很准确的)评估值的最高偏差为30%,土壤流失和滞留的参数被校正过,因此计算出的对地中海SS负荷的贡献率与文献中相关数据相吻合。 土壤流失在阿尔巴尼亚整个区域普遍显著,但在位于该国北方、中部和南部的三个小区域特别显著。与Grazhdani(2006)研究结果相似,在这三个小区域中,土壤流失率高达超过10 t﹒ha-1﹒a-1 (吨每公顷每年),甚至损失率超过100 t﹒ha-1﹒a-1的情况也频繁出现。全国范围内平均土壤流失率为31.5 t﹒ha-1﹒a-1,这一数字大大超过了10 t﹒ha-1﹒a-1的承受极限,但符合Bockheim (1997)报导的平均损失率。该国总面积中近80%的区域遭受的是可以承受的土壤侵蚀。然而,其余20%的面积是大部分(93%)土壤侵蚀结果的主要原因。具有最高土壤流失级别的区域面积最小(其国土面积的8%),然而它制造了总土壤流失量的79%。尽管该国产生了巨大的土壤流失量(90.5×106 t﹒ha-1﹒a-1),但只有大约60×106吨/年的悬浮泥沙通过河流被输移到了海洋中。因此,大约1/3的流失土壤因为输移路径的滞留能力而不能到达海洋。相当多的泥沙截留是通过沉淀造成的,这种沉淀可能发生在地面,当地表径流经过时速度降低(坡度减缓,土地覆盖方式改变);也可能发生在河流系统,当水流速度因为渠道水文改变而下降(水库、植被生长的渠道、缓水区、以及流经洪泛平原)。在那些明确土壤流失率计算值高于10 t﹒ha-1﹒a-1的区域,按照其几个干预方式,实施了管理方案分析。除此之外,沿永久性水道的缓冲区也被评估。除了综合管理策略的评估,最优干预程序也被应用。其目标是通过干预措施,使最大负荷减少量最高达到全部区域总量的4.5%。干预措施的成效随流域的不同而变化,减少量从50%(Erzeni)到68%(Vjosa)。同样的,该国干预场所的空间分布也并非均匀。大部分的干预措施集中于在3个主要区域中。从全国水平来说,这3个区域是侵蚀及泥沙负荷的热点。 参考文献: Bockheim JG. Proposal to study economic and environmental benefits of reducing soil erosion in Albania. Land Tenure Center, University of Wisconsin, Madison USA 1997.Borah DK, Bera M. Watershed-scale hydrologic and nonpoint-source pollution models. Review of mathematical bases. Trans ASAE 2003 46(6):1553–66.Campbell N, D’Arcy B, Frost A, Novotny V, Sansom A. Diffuse Pollution: An Introduction to the Problems and Solutions. London: IWA Publishing 2004.Fread DL. Flow routing. In: Maidment DR, editor. Handbook of Hydrology. New York: McGraw-Hill 1993. p. 10.1–10.36.Grazhdani S. Albania, in: Soil Erosion in Europe (eds Boardman J and Poesen J), John Wiley & Sons Ltd, Chichester, UK. 2006.Kovacs AS, Honti M, Clement A. Design of best management practice applications for diffuse phosphorus pollution using interactive GIS. Wat Sci Tech 2008 57:1727-33.Liu YB, de Smedt F. WetSpa Extension: A GIS-based Hydrologic Model for Flood Prediction and Watershed Management, User Manual. Brussels: Vrije Universiteit Brussel 2008.Liu ZJ, Weller DE. A Stream Network Model for Integrated Watershed Modeling. Environ Model Assess 2008 13(2):291-303.Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW. Soil and Water Assessment Tool. TWRI Report TR-191. Temple USA: Agricultural Research Service 2002.Novotny V. Diffuse Pollution and Watershed Management. Hoboken USA: Wiley 2003.Ritter WF, Shirmohammadi A, editors Agricultural Nonpoint Source Pollution. Boca Raton USA: CRC Press 2001.Strahler AN. Quantitative analysis of watershed geomorphology. EOS T Am Geophys Un 1957 8(6): 913–20.Vollenweider RA. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem Ist Ital Idrobiol 1976 33:53-83.Vollenweider RA, Kerekes J. Eutrophication of waters. Monitoring, assessment and control. OECD Cooperative programme on monitoring of inland waters (Eutrophication control), Paris: Environment Directorate, OECD 1982. p. 154.White DW, Smith RA, Price CV, Alexander RB, Robinson KW. A spatial model to aggregate point-source and non-point source water-quality data form large areas. Comput Geosci 1992 18(8):1055-73.
    留言咨询
  • 特点? 自容式工作? 无需要任何电缆、外接电源;? 功耗低,3节5号碱性电池? 长期工作的理想设备;? 高速蓝牙通讯;? 软件界面友好;? 体积小,约150mm,重量轻,约450g;? 不同耐压,100~300m;? 市场中独一地无二。应用:? 沉积物运移监测;? 海底高度的测量;? 波浪、潮位的监测;? 桥桩基侵蚀监测。技术参数:声学频率:450kHz波束宽:锥形5°(-3db)发射脉冲宽:10us-100us(10us步长)量程:0.15-50m温度分辨率:0.1℃温度传感器精度:0.5℃(-10℃-+50℃)采样率:100kHz
    留言咨询
  • WEPS风蚀预报系统(风力侵蚀预测系统 Wind Erosion Prediction System )是美国农业部组织多学科科学家开发的、目前最完整、手段最先进的土壤风蚀预报模型,成为风蚀定量评价、指导风蚀防治实践以及环境规划与评价的重要技术工具。 工作原理: 本系统核心为自动集沙系统,自动记录时间和采集的风沙量;自研发的粒子通量传感器用来测量砂的动量通量,两个输出量是动能和撞击的风蚀自动观测采集系统功能: 监测研究自然界的风沙运动趋势和风蚀作用,自动记录沉淀物侵蚀的起始时间和强度、风剖面沉淀物随时间变化的累计量,分析风蚀物的成分等。系统可确定地域输沙率,能存储,查看、删除测量值。测量数据为研究风沙地貌的形成、变化规律提供相对可靠的科学依据。传感器部分:BW-FS风速传感器 风速传感器的感应元件为三杯式风杯组件,信号变换电路为光电转换电路。在水平风力驱动下风杯组旋转,通过主轴带动磁棒盘旋转,其上的数十只光电管通过旋转码盘感应除脉冲信号,其频率随风速的增大而线性增加。 计算公式为:V=0.05F V:风速,单位:m/s F:脉冲频率,单位:赫兹。 起动风速≤0.3m/s 测量范围0~65m/s 精确度±(0.3+0.03V)m/s 分辨率0.1m/s 输出信号形式脉冲(频率) 工作电压DC5V 重量0.75kg 工作环境温度-40~+60℃ 工作环境湿度0~100%RH 风向传感器 Met One公司生产的024A风向传感器是一款耐用、经济的产品,是进行风学监测、科研、学习的理想选择。传感器使用了高强度的抗腐蚀材料,设计用于长期无人职守的风沙,扬尘,盐化等野外气象环境下。主要技术参数:  量程:0~360°  启动风速:0.45m/s  精度:±5°  材质:铝  重量:0.45 kg 风蚀传感器用来测量砂的动量通量,两个输出量是动能和撞击的颗粒数。原理是电荷量和粒子的动能成正比。电荷、电压和电容的关系是 q = CV.,V=q/C 。电容器中电压的波动像不规则的楼梯一样,单个粒子的动能对每一节楼梯上的电荷会产生影响。当加在电容器上的电压超过内部的参考电压时,电容器就会重复这个过程。一次快速的放电脉冲会转换成粒子的能量值显示出来,而这个能量值是单个的粒子能量的积累值。进行野外的标定时,传感器的输出脉冲数要参考一次风蚀时收集的被风蚀的沙石总数。 由于粒子的速度、拽力系数和质量的不同,它的最小粒子的直径很难确定。传感器可以测量低速撞击传感器时直径大约在50到70 微米的粒子,但不能测得10到50微米的粒子。H11-LIN的主要性能如下: 量程:50~70μm 输出:沙尘颗粒撞击数和撞击动能 标准工作温度:-25至+60℃传感器由两个数据输出量,一个是动能,另一个是撞击的颗粒数。动能输出经常用来测量直接跳跃的粒子所带的能量,撞击的颗粒数输出反应的是个别的粒子数。在某一取样周期内,所需的数据都被数采完全的换算成输出的脉冲数。通常数据的取样间隔是15秒到1小时。沙粒收集器BL-MWAC体积小、使用方便等优点,己被广泛地应用于室内外输沙量垂线分布的测量。集沙仪在集沙时会对其周围的气流形成一定程度的干扰,进而影响气流中沙粒的运动,会使一部分输沙量漏测。不同研究者使用的集沙仪在造型、结构及大小等方面都不尽相同,造成不同集沙仪漏测的沙量也不同。BL-MWAC集沙仪,能够保 证进风管时时正对侵蚀风向,单点采集不同高度的沙样。瓶口内径:33mm瓶子高度:94mmL型玻璃管:50*80*7.5mm瓶子颜色:透明瓶子重量:40克CR1000数据采集器 CR1000数据采集器是Campbell数据采集器里面性价比最高的一款。它提供传感器的测量、时间设置、数据压缩、数据和程序的储存以及控制功能,由一个测量控制模块和一个配线盘组成,具有强大的网络通讯能力。CR1000数据采集器的扫描速率能够达到100Hz,拥有模拟输入、脉冲计数、电压激发转换、数字等多个端口,外围接口有CS I/O、RS-232以及SDM等,采用12VDC外接可充电电池供电。目前,CR1000数据采集器已在气象观测、农业研究、土壤水分研究、风力观测、道路气象站、工业产品测试、通量观测、涡动协方差系统等众多领域得到了广泛应用标准的CR1000数据采集器包含4M的数据和程序存储空间,可通过外接存储模块和CF存储卡来实现大容量数据存储。数据和程序保存在非失意性闪存和内存里。【主要特点】 数据存储为表格形式 PakBus? 操作系统 软件支持:LoggerNet3.4/4.0,PC4001.2,或者ShortCut2.2 支持 CR1000KD手持式显示器(选配),读数方便 CSI/O和RS-232串行接口 内部温度补偿,实时时钟,超时和温度变化实时校准 当CR1000从主电源上分离后,使用内部锂电池支持SRAM存储和时钟以确保数据、程序和精确的时间 具有强大的网络通讯功能,CR1000.png【主要性能】 最大扫描速率:100Hz 模拟输入:16个单端(或8个差分)通道 脉冲通道:2个 工作温度:标准为-25℃至+50℃,可扩展-55℃至+85℃ 内存:标准为4M内存,可扩展至2G,额外数据存储使用CFM100存储模块和一个CF存储卡。 13-bit模拟数字转换 16-bit H8S Hitachi微型控制器,32-bit内部CPU
    留言咨询

高缸侵蚀监测仪相关的资讯

  • ASD | ASD Fieldspec 3 FR光谱仪在东北典型黑土地区农田土壤侵蚀热点探测方面的
    黑土地是指具有黑色或者暗黑色腐殖质表土层,性状好、肥力高的耕地,这类耕地可用于粮食生产。黑土地黑土地是地球上最珍贵的土壤资源,地球上一共有四块黑土地,分别是乌克兰的乌克兰平原、美国的密西西比平原、中国的东北平原以及南美洲阿根廷连至乌拉圭的潘帕大草原。我国东北平原典型黑土区耕地面积约2.78亿亩,是重要的粮食生产优势区和全国最大的商品粮生产基地。然而,近年来相关研究和调查发现,由于掠夺经营、水土流失等原因,黑土层厚度已逐渐减少,土壤有机质含量也明显降低,土壤侵蚀成了黑土地不容忽视的问题之一。保护黑土地对于保障国家粮食安全、生态安全,促进农业绿色可持续发展具有重大的意义。接下来我们了解一篇在黑土地区探测土壤侵蚀状况的论文。ASD Fieldspec 3 FR光谱仪在东北典型黑土地区农田土壤侵蚀热点探测方面的应用土地退化影响着世界上大约三分之一的农田 ,其中土壤侵蚀是最严重和最广泛的退化形式。在侵蚀严重的地区,土壤剖面可能出现明显的截断现象,导致富含碳和营养丰富的表土物质空间重组,造成土壤有机碳(SOC)加速损失,土壤肥力下降,从而影响退化农田的粮食生产。据估计,每10厘米土壤损失作物产量平均减少约4%,而由于农业管理不当和施肥水平低,发展中国家减产的程度可能会加剧。联合国可持续发展目标框架下的土地退化中立方案明确采用了SOC作为评估和监测土地退化状况的关键指标。因此,更好地了解发生土壤侵蚀的地点和加速侵蚀程度,以及SOC损失的发生,将在很大程度上有助于全球在粮食安全和气候方面可持续利用土壤资源的努力。普遍通用的土壤损失方程(USLE)拥有高度的数据可访问性,然而,它仍然是一种经验方法,只考虑了水蚀,而忽略了其他形式,如耕作和风蚀,并没有模拟土壤沉积。另外,主要在流域规模上,存在许多基于过程的物理模型来模拟单个降雨事件中相互作用的侵蚀和沉积过程,但其模型结构的复杂性和模型参数化的不平衡往往会影响模型的空间预测能力,且当前评估侵蚀发生地点和程度的方法仍然不足以在高空间分辨率下精确探测侵蚀热点。无论使用何种建模方法,阻碍土壤侵蚀精确建模和制图的常见问题还包括:(1)输入过时的、静态的和粗糙的分辨率数据,通常无法捕捉到侵蚀过程尺度上土壤侵蚀的时空变化;(2)缺乏空间分布的观测数据来进行严格的模型校准和验证。此外,土壤侵蚀追踪技术作为得出净侵蚀空间估计的可行选择,其价格昂贵,在大空间尺度上的适用性有限。遥感的发展将解决上述问题,不仅因为高分辨率卫星图像的日益普及,土壤成像光谱学的快速发展也提供了直接捕获由侵蚀引起的土壤特性变化的潜力,特别是SOC,如哨兵-2可以很好地明确评估土壤侵蚀程度。然而,很少有研究直接与哨兵-2衍生的土壤光谱信息检测土壤侵蚀热点相关,且一些检测方法的普遍适用性以及支持基于不同侵蚀程度土壤光谱特征分类的基本机制仍有待进一步探讨。鉴于上述研究差距,迫切需要一种有效的土壤侵蚀测绘方法,从而能够精确地检测出多重侵蚀过程导致的侵蚀热点。中国东北黑土区是一个粮仓,年产量超过国家粮食产量的20%,然而其是中国受土壤侵蚀影响最严重的地区之一,因此,一种有效检测局部侵蚀热点的方法对于实施针对性的保护措施具有重要意义。为此,本研究的目标是建立一个方法框架,实现仅基于光谱特征对土壤侵蚀进行准确分类和高分辨率制图。基于此,在本研究中,由吉林大学地球科学学院、鲁汶大学地球与生命研究所、中国农业科学院农业环境与可持续发展研究所组成的一组研究团队以中国东北吉林省中部德惠市木石河流域(44°34′-44°38′N,125°51′-125°59′E,面积约46.20 km2)为例,进行土壤取样与分析(共选取72个采样点,其中山顶19个,斜坡中段28个,山脚25个);在实验室内使用ASD Fieldspec 3 FR光谱仪测量土壤样品VNIR光谱数据;建立地面真实数据集;结合主成分分析和综合光谱判别分析(PCA-LDA)方法对实验室高光谱数据进行测试与分析、研究不同侵蚀影响下土壤的光谱可分性;建立侵蚀分类方案、创建混淆矩阵,通过Kappa系数评估分类性能;最后通过多时间裸土像素合成方法,优化裸土反射率稳定性,基于哨兵-2衍生的宽带光谱对研究区土壤侵蚀情况进行测绘与验证。(a, b)中国东北流域数字高程模型上采样点空间分布;(c,d)哨兵-2彩色图像(2021年5月13日);(e,f)沿典型斜坡剖面的代表性采样位置。【结果】基于实验室VNIR谱PC评分的线性判别分析(LDA)对三个斜坡位置进行分类。基于土壤的三个土壤侵蚀强度等级表土实验室平均光谱。(a)原始光谱和(b)连续体去除反射率。用于侵蚀强度等级光谱分离的表土实验室光谱指数的箱形图。基于哨兵2裸土壤光谱的PC得分的线性判别分析(LDA)确定三个侵蚀强度等级。三种土壤侵蚀强度等级的平均光谱。(a)原始光谱和(b)连续去除反射率。用于侵蚀强度类别光谱分离的哨兵-2光谱指数的箱形图。10米分辨率下的土壤侵蚀强度图。2021年6月,农田范围内三个侵蚀强度等级的NDVI密度图;(b,c)是详细土壤侵蚀模式的放大区域,(d,e)相应的田间尺度NDVI图。【结论】本研究在中国东北黑土区流域尺度上测试了多时间遥感探测侵蚀热点的潜力。建立了一个地面真实数据集,包括在山顶、中坡和脚坡位置收集的土壤,由于其地形特征、净侵蚀率和SOC含量的差异,对应于中、重度和低侵蚀程度类别。对实验室和基于哨兵-2的土壤光谱数据的调查表明,由于侵蚀引起的土壤反照率和生化组成的变化,三个侵蚀类别中的土壤显示出明显的光谱特征,特别是在严重侵蚀的地区,其表土层明显有大量土壤损失。PCA-LDA在不同侵蚀影响下表现出明显的类间光谱可分性,其对两种数据源都产生了良好的分类精度(Kappa系数 0.9),对哨兵-2光谱更是如此,从而能够开发一种光谱分类方案,该方案由确定的光谱指数阈值组成,用于基于哨兵-2裸土混合物质的像素级土壤侵蚀测绘,其中15.9%的农田面积为侵蚀热点,中等类占65.4%。将侵蚀图与NDVI图进行比较,从空间角度来看,显示了土壤侵蚀对作物生长的负面影响。制作的高分辨率土壤侵蚀图可以对土壤侵蚀和作物生产力之间的关系进行进一步分析,突出了本研究提出的方法在黑土地区帮助粮食安全和气候的有针对性可持续农田管理方面的潜力。未来的研究应进一步检验这种方法在其他领域和更大的空间尺度上的可转移性。
  • 长江科学院预算190万元购买1套流域侵蚀元素迁移分析系统
    4月1日,长江科学院公开招标,购买流域侵蚀元素迁移分析系统1套,预算190万元。  项目编号:YZJ-2021-005  项目名称:长江科学院流域侵蚀元素迁移分析系统设备购置  采购需求:  购置流域侵蚀元素迁移分析系统设备一套,包括反应室和仪器箱、激光器、光谱仪和检测器、控制系统和分析软件、计算机工作站、压片机等部分。  本次招标设备及服务内容包括:序号设备名称单位数量备注1流域侵蚀元素迁移分析系统套1接受进口设备投标  合同履行期限:合同生效且支付预付款后180天内交货,交货后30天内完成调试(不可抗力因素除外)。  本项目( 不接受 )联合体投标。  开标时间:2021年04月27日 09点00分(北京时间)长江科学院流域侵蚀元素迁移分析系统设备购置招标公告.docx
  • 国家重点实验室启动“全球土壤侵蚀评价”项目
    p  8月11日,在黄土高原土壤侵蚀与旱地农业国家重点实验室暑期学术会议期间,实验室组织专家对“全球土壤侵蚀评价”项目进行了论证,一致同意列为黄土高原土壤侵蚀与旱地农业国家重点实验室专项立即启动,要求项目联合国内外相关机构与专家,争取更多的资源,完成全球土壤侵蚀的系统研究。br//pp  “全球土壤侵蚀评价”项目是在世界水土保持学会主席李锐研究员的倡议下,由黄土高原土壤侵蚀与旱地农业国家重点实验室主任刘宝元教授组织讨论,焦菊英研究员与杨勤科教授共同参与完成项目申请。本项目将基于地理大数据思想,采集影响全球土壤侵蚀各种环境要素的最新数据,建立全球土壤侵蚀数据库 基于现势性数据,整合抽样调查、模型与遥感/GIS集成等方法,对全球土壤侵蚀做出评价,编制全球土壤侵蚀系列图 分析全球土壤侵蚀空间分布和变化特征,揭示其空间格局、主控因素及其与全球变化的关系,支持土壤侵蚀治理决策。/pp  该项目的实施,可发展大区域土壤侵蚀评价理论与方法,支持全球尺度土壤侵蚀防治战略制定,提升我国土壤侵蚀研究的国际学术地位及领引作用。/ppbr//p

高缸侵蚀监测仪相关的方案

高缸侵蚀监测仪相关的资料

高缸侵蚀监测仪相关的试剂

高缸侵蚀监测仪相关的论坛

  • 双相钢组织用什么侵蚀?

    我做的双相钢,最终组织为铁素体+马氏体+残余奥氏体,少量贝氏体,请教用什么试剂侵蚀可区分这些组织?谢谢

  • 金相的侵蚀剂

    请问一下大家有没有钇的金相检测标准或者使用的侵蚀剂是什么,有知道麻烦说一下,谢谢!

高缸侵蚀监测仪相关的耗材

  • 奥斯恩 便携式环境监测仪 其他环境监测仪配件
    就我国目前的产业地区分布来说,由于地域辽阔,地形复杂,导致工业园区分布很广,这给相关环境监测人员的监测工作带来很多的不便,环境监测人员不可能将大型的实验室检测设备运送至各处。尤其相当数量的乡镇企业已经蓬勃兴起,但许多乡镇还没有具备检测的能力,在预防和治理的过程中有着很大的不便和隐患。便携式检测仪器的使用不仅可以减少环境试样在传输过程中的污染问题,减少样品固定和保存的繁杂手续,而且可以大大减少检测人员的工作量,实时掌握环境等动态变化趋势,从而尽可能地将潜在的风险降至最低。在现实的环境事故应急处理中,便携式检测仪器是采用综合检测的方式对突发性环境污染问题进行监测,为应对突发性重大环境事件提供了有力的保障。 奥斯恩便携式环境检测仪产品被广泛运用于各个领域,主打产品有便携式粉尘检测仪、便携式空气质量检测仪、便携式VOCs检测仪、便携式恶臭检测仪、便携式噪声检测仪等,产品功能接受个性化定制。 便携式环境监测仪具有操作方便、体积小巧等特点,可方便携带至不同的地方检测。自带大容量锂电池供电,开机就可以使用,能快速、准确地进行检测,并通过触摸屏显示实时监测的数据,方便现场操作人员及时查看,适用于各种应急监测、巡逻监测等场景。
  • TD-500D手持式水污染应急监测仪(配件)
    美国特纳TD-500D便携式水中油分析仪 美国特纳TD-500D便携式水中油分析仪,是一款用正己烷代替红外法的四氯化碳萃取剂的紫外测油仪、快速测油仪,可快速、轻松和可靠地测量水中油含量(原油、燃油、润滑油、柴油,部分的凝析油及精炼的碳氢化合物),测量范围可从0.005ppm到1000ppm。 一、仪器简介:品名:便携式水中油分析仪、紫外测油仪、快速测油仪型号:TD-500D品牌:美国特纳Turner Designs制造商:美国特纳碳氢化合物仪器公司Turner Designs Hydrocarbon Instruments, Inc.检测对象:水中油含量、石油类、碳氢化合物 美国特纳TD-500D便携式水中油分析仪是市面上 实惠、 容易使用的、 及可复验的水中油及土壤中油类的分析仪,用相对安全的正己烷代替红外法的四氯化碳。TD-500D采用世界 的技术, 简便的操作, 型化设计,能准确地测量水中、土壤中原油、燃料油、润化油等石油污染物。 TD-500D具有体积小、重量轻、精度高、操作简单、检测速度快、萃取剂相对安全等优点,广泛应用于江河湖泊等地表水的环境监测,石油石化、水文水利、火力发电厂、钢铁制造等工业污水废水、冷凝水、循环水检测,海洋溢油、管道漏油和土壤中油份含量的测定。 测量范围:原油、凝析油、柴油、润滑油、液压油、燃油等,量程为0.005ppm~1000ppm。应用领域:生产用水、工业废水、轮船压舱水、水力发电站水质、泄油应变、探漏、土壤中的油类等。检测原理:紫外荧光法。该方法的显著优势在于:能够消除在传统的水中油份分析过程中,由于运输、使用和排放大量萃取溶剂而给我们自身的健康和环境安全带来的危害。并且在此可靠分析方法下,能够有效避免由于人员操作和需要 量取液体水样而带来的测量误差。该检测方法是完全依托TD-500D便携式水中油分析仪而设计的,利用特别的水中油表面活性剂来替代传统的萃取溶剂,从而使检测结果的 度和重现性达到一个全新的高度。相关法规标准:应用要求:国家环保总局将水中石油类的监测列入六项必测水质指标之一。《水污染物排物总量监测技术规范HJ/T 92—2002》规定,石油类作为必测项目的排污单位包括冶炼行业、火力发电、焦化、石油开采、石油炼制在内的近30个行业、领域。解决方案:美国特纳TD-500D便携式水中油分析仪具体应用:石油污染应急、污染控制现场检测法规标准: 石油类污染物的检测分析方法有:红外法、重量法、气相色谱法、荧光法。 红外法因所用溶剂氟利昂、四氯化碳的对人体的高毒性及对环境的严重污染,在逐步被淘汰。按照美国环境保护署颁布的 EPA Method 1664 方法定义,石油类为正己烷萃取物。  目前紫外荧光法已在美国、加拿大、瑞士、俄罗斯等发达地区和国家广泛应用并被列为国家标准。我国国家标准《海洋监测规范》GB17378.3-1998也采用荧光法测量海水中的石油类。我国水利部分也考虑采用荧光法测量地表水中的油类污染。 根据《水污染物排放总量监测技术规范HJ/T 92—2002》规定,石油类是必测项目的排污企业,包括:金属矿山、冶炼行业、火力发电、焦化、石油开采、石油炼制、化纤、橡胶制品和天然橡胶加工、制药、染料、油漆、合成洗涤剂、合成脂肪酸、其他有机化工、机械制造、食品、制糖业、屠宰及肉类加工、饮料生产、兵器工业、船舶工业、酒精及发酵酿造业、管道运输业、生活污水、医院污水、城市综合污水。 (1)、水质执行标准:《污水综合排放标准GB 8978-1996》第二类污染物石油类 高允许排放浓度(mg/L) 一级标准 二级标准 三级标准1997年12 月31日之前建设的一切排污单位 10 10 301998 年1 月1 日后建设的一切排污单位 5 10 20(2)、《石油炼制工业水污染物排放标准GB3551-83》    《石油化工水污染物排放标准GB428119-1984 (GB4281-84)》项目 级 第二级 Ⅰ类 Ⅱ类 Ⅲ类 Ⅰ类 Ⅱ类 Ⅲ类石油类(mg/L) 5 5 10 10 10 20(3)、《钢铁工业水污染物排放标准GB123456-1992》石油类 高允许排放浓度:(单位mg/L) 一级标准 二级标准 三级标准1989.1.1前立项及建成投产的钢铁联合企业 15 20 301989.1.1~1992.6.30立项及建成投产的钢铁联合企业 10 10 301992.7.1前立项及建成投产的焦化、钢铁联合企业 8 10 30自2009 年1 月1 日起现有联合企业、炼钢、轧钢(钢铁工业水污染物排放标准(200□征求意见稿) 5 (总排口)便携式测油仪(手持式油份浓度测定仪)美国型号:TD500DD-500D Oil In Water and Oil In Soil Analyzer是界面友好、易于操作,高 度和高重复性的手持便携式水中油份含量和土壤中油份含量的分析测定仪器。 二、检测步骤: 取100mL待测水样 ,加入10mL正己烷萃取液,振荡萃取2分钟 ,静置2分钟,待水-正己烷萃取液分层,取上层萃取液用比色管在TD-500D检测,5秒后在仪器直接显示石油类浓度。(步骤简单速度快、用相对安全的正己烷代替红外法的四氯化碳。) 三、技术参数:◆检测对象:水中的碳氢化合物(原油、凝析物、柴油、润滑油、燃油、机油、柴油类有机物);◆检测原理:紫外荧光法;◆测量方法:快速正己烷萃取法;◆适用溶剂:适用正己烷、环己烷、庚烷、辛烷,与所有的常用萃取溶剂或新的“无溶剂方法”均兼容;◆检测结果基本不受悬浮固体及浊度的干扰,不受甲醇干扰;◆测量范围:A、B双通道双量程。通道“A”用于凝析油及精炼烃类,量程0.005~50ppm。新的通道“B”用于原油,测量范围大幅度增大,量程0~1000ppm,无需进行样本稀释。◆准确性:优于±2%,重现性:优于±2%;◆ 低检出限:大部分油类1ppm,其中通道A:0.01ppm,(部分油类 低可达5ppb);通道B:0.1ppm(根据水质和油类而定);◆线性范围: 高可达1000ppm,取决于碳氢化合物的种类;◆校准:单点及空白样本,配CheckPoint固体快速校准样,可供野外作业所需的快速校准和重复校准而不需要标准溶液反复标定;◆适用试管:API比重45,微型试管;API比重>45,8mm试管,适用于所有溶剂,400次分析/套;◆电源:四节AAA电池(可连续检测1000个以上样本);◆响应时间:5秒;预热时间:5秒;样本测量时间:4分钟/样本,或用户偏好;◆尺寸:4.45cm×8.9cm×18.4cm;重量:0.4kg;外壳材料:非金属;◆工作环境温度:5oC~40oC (41F~104F);相对湿度:90%以下均能使用;◆IP防护级别:CE, IP67,防尘,防水,根据ISO 9001/2000标准制造;◆自动断电:被闲置3分钟后;◆信号显示:有,液晶显示;◆警报:电池电量不足、线路故障、高空白样本;◆投标产品为原装进口产品,投标人需提供国外制造厂商授权书(或总代理项目授权书);◆质量及保修期:保修1年,长期提供出厂零件及售后服务。四、关于美国特纳 美国特纳(Turner Designs Hydrocarbon Instruments, Inc.)仪器公司是 的碳氢化合物分析仪、水中油监测仪的研发生产公司,在水中油分析仪领域拥有顶尖的技术和丰富应用经验。公司开发了包括便携式快速测油仪、实验室台式水中油分析仪、在线式水中油监测仪,提供了一整套完整的石油类水质监测的解决方案。 美国特纳水中油分析仪广泛用于石油石化、海洋钻井平台、工业企业和环境监测等部门,以优异的产品性能帮助客户提升石油类水质检测技术。美国特纳TDHI有全面的产品线,覆盖各种用户的多种检测应用要求: TD-500D:便携式水中油分析仪,现场/野外应急用;TD-120:在线水中油分析仪(接触式流通池, 新产品!); TD-4100XDC GP:在线水中油分析仪(接触式流通池,非防爆版) TD-4100XDC:在线式水中油分析仪(接触式流通池,防爆版) TD-4100XD GP:在线式水中油分析仪(非接触式流通池,非防爆版)TD-4100XD:在线式水中油分析仪(非接触式流通池,防爆版) TD-4100XD & XDC (EO9版):软件控制,双通道切换 NexTD:在线式水中油分析仪 (E09用户界面,Exd隔爆版、非接触式流通池版)。
  • YSI 6600V2型 多参数水质监测仪 YSI 6600V2型 多参数水质监测仪 YSI 6600V2型 多参数水质监测仪
    本公司总代理YSI 6600V2型 多参数水质监测仪 ,质量保证,欢迎咨询洽谈,13120400643,唐海红 便携测量/长期监测/自容测量/集成应用 为满足不断发展的水质监测需求,YSI精心推出不仅可以测量常规参数,亦可同时安装四个光学传感器的仪器&mdash YSI 6600V2型多参数水质监测仪,这些光学传感器包括光学溶解氧、蓝绿藻、浊度、叶绿素和罗丹明。 ROX光学溶解氧传感器 ROX溶解氧传感器采用荧光寿命检测技术,是当今最可靠的溶解氧传感器,维护量极低;在高硫化氢(H2S)与低氧环境也能长时间工作,并获得可靠数据,亦不受流速限制。 蓝绿藻(BGA)传感器 YSI 蓝绿藻传感器可帮助用户监测其目标水域的蓝绿藻数量。不管是对藻华的爆发进行预警,还是跟踪饮用水中产生异臭味的生物,亦或是进行生态系统的研究,YSI 蓝绿藻传感器均能提供高灵敏性、高可靠性的现场数据。 可直接投放入水体里进行原位测量,随时掌握水体的真实状况 所有传感器均可由用户自行更换(深度传感器除外) 光学传感器均自带清洁刷TM,消除气泡和沾污,有效延长维护周期,数据长期稳定可靠 内置电池室,电池寿命长达54天(20℃,每15分钟采样间隔,全部参数) 内置非散失性存储器,数据不会因断电而丢失,可存储读数多达150,000个 应用方式 便携式测量:配合YSI 650MDS型 多参数显示和记录系统,直接投放在水体中进行原位测量 长期野外连续监测:连接数据采集平台或遥测系统,实时监测目标水域的水质变化 自容式监测:仪器标配电池室和内存,无需通讯电缆亦可实现长期野外监测 集成应用:集成到水质监测站中,作为其有机组成部分 应用领域 饮用水水源地管理 赤潮监测和预警 江河湖库水质监测 海洋和海岸线水质调查 富营养化状况监测和调查 藻类和浮游生物量估算及其分布调查 初级生产力评估和营养盐循环研究 湿地生态研究 水土流失研究 升级6600至6600V2 YSI公司致力于向用户提供可靠而经济有效的水质监测解决方案。为此,我们提供现有6600升级到6600V2的服务。升级将包括更换新型探头底座、ROX光学溶解氧传感器和固件/软件升级。 YSI 6600V2传感器规格 YSI 6600V2 测量范围 分辨率 准确度 光学溶解氧1 (%空气饱和度) 0-500% 0.1% 0-200%:读数之± 1%或1%空气饱和度,以较大者为准; 200-500%:读数之± 15% 光学溶解氧1 (毫克/升) 0-50毫克/升 0.01毫克/升 0-20毫克/升:读数之± 1%或0.1毫克/升,以较大者为准;20-50毫克/升:读数之± 15% 电导率2 0-100 毫西门子/厘米 0.001-0.1毫西门子/厘米(视量程而定) 读数之± 0.5%+0.001毫西门子/厘米 温度 -5至50℃ 0.01℃ ± 0.15℃ 酸碱度 0-14 0.01 ± 0.2 氧化还原电位 -999至999毫伏 0.1毫伏 ± 20毫伏 盐度 0至70ppt 0.01ppt 读数之± 1.0%或0.1ppt,以较大者为准 深度(浅水) 0-9米 0.001米 ± 0.018米 深度(中水) 0-61米 0.001米 ± 0.12米 深度(深水) 0-200米 0.001米 ± 0.3米 透气式水位 0-9米 0.001米 ± 0.003米 浊度1 0-1,000NTU 0.1NTU 读数之± 2%或0.3NTU,以较大者为准3 罗丹明WT1 0-200微克/升 0.1微克/升 读数之± 5% 或1微克/升,以较大者为准 参数 测量范围 检出限 分辨率 线性 叶绿素1 0-400微克/升 叶绿素a 0.1微克/升 叶绿素a4 0.1微克/升 叶绿素a;0.1RFU R2>0.99997 蓝绿藻-藻蓝蛋白1 0-280,000细胞/毫升;0-100RFU 220细胞/毫升5 1细胞/毫升;0.1RFU R2>0.99998 蓝绿藻-藻红蛋白1 0-200,000细胞/毫升;0-100RFU 450细胞/毫升6 1细胞/毫升;0.1RFU R2>0.99999 1.所有光学探头的最大测量深度为61米 2.可同时提供比电导度(修正至25℃的电导率)、电阻率和总溶解固体的数据输出,这些参数是根据水和污水测试行业标准(Standard Methods for the Examination of Water and Wastewater)的方程式由电导率计算出来 3.使用AMCO-AEPA聚合物标准 4.通过萃取确定的海洋藻和叶绿素a的值 5.铜绿微囊藻培养的估计值 6.含有蓝绿藻的藻红蛋白培养的估计值 7.与罗丹明WT的连续稀释相关(0-500微克/升) 8.与罗丹明WT的连续稀释相关(0-400微克/升) 9.与罗丹明WT的连续稀释相关(0-8微克/升)。 YSI 6600V2 仪器规格 适用水体 淡水、海水或污水 工作温度 -5至50℃ 贮藏温度 仪器主机、除pH和pH/ORP外的所有传感器:-40至60℃;pH和pH/ORP传感器:-10℃至60℃ 材料 PVC 通讯端口 RS-232和SDI-12 内存 可存储150,000个读数 软件 EcoWatch软件(适用于Windows 95/98/2000/NT/ME/XP) 外接电源 12伏 直流 内置电源 8节2号碱性电池 尺寸 直径8.9厘米,无深度长49.8厘米,带深度54.9厘米 重量 3.18公斤(含电池、带深度)YSI 6820V2 / 6920V2型 多参数水质监测仪 YSI 6600V2型 多参数水质监测仪 YSI 600OMS V2 光学监测仪 ,YSI 600OMS V2 光学监测仪 外形小巧、轻便耐固、耗电低,一个光学端口,可随时安装、更换YSI出品的光学溶解氧、浊度、叶绿素、罗丹明WT和蓝绿藻中的任一传感器,以满足各种应用需求。这是一款使用灵活、操作方便的光学监测仪,既是理想的便携测量仪,又可用于长期野外监测。 YSI 600XLV2/600XLMV2 多参数水质监测仪 YSI 6820/6920型 多参数水质监测仪 YSI 6820EDS/6920EDS型 常规五参数水质 YSI 600XLV2/600XLMV2 多参数水质监测仪,600XLM V2 是6600V2-4的精简型,同样可精确测量电导率、温度、酸碱度/氧化还原电位、水位,但在同一时间只能监测光学溶解氧、浊度、叶绿素、罗丹明WT与蓝绿藻中的一个参数。配有电池室与非散失性内存。为长期现场监测与剖面分析提供了一个低成本方案。 YSI 6920DW/600DW型 饮用水多参数安全监测仪 YSI 600CHL型 叶绿素监测仪 YSI 600CHL型 叶绿素监测仪 YSI 58型 实验室溶解氧测量仪 YSI ProODO 光学溶解氧测量仪 YSI ProPlus型 手持式野外/实验室两用测量仪,多种参数选择:溶解氧、BOD、pH、ORP、电导率、氨氮、硝氮、氯化物和温度 YSI 9600型 硝酸盐监测仪 YSI 6500 是水质监控的一种经济有效的选择,有效替代多台单参数设备,可减少安装和操作所需的人力物力 连续监测溶解氧、电导率、温度和酸碱度 YSI 6500与YSI 6系列多参数仪主机连接,可以提供不间断的数据。 YSI 650MDS型 多参数显示和记录系统 用来记录实时数据、校准6系列仪器、设置仪器以及上传数据到计算机等,专为野外使用而设计。YSI 650MDS配有防撞击外壳,符合IP67防水标准,即使掉入水中也能自动浮起。 YSI 600QS可同时测量溶解氧(%空气饱和度和毫克/升浓度)、温度、电导率、酸碱度、氧化还原电位(可选)、深度(可选) YSI 600LS型 高精度水位仪 可精确测量水位、流量、温度和电导率,可与YSI 650MDS、便携式电脑或数据采集平台配合使用。 YSI 600xlm/600xl多参数水质监测仪,各参数为:溶解氧(%空气饱和度与毫克/升浓度)、温度、电导率、比电导度*、盐度*、酸碱度、氧化还原电位、深度或水位、总溶解固体*和电阻率* YSI 600TBD型 浊度监测仪 是在YSI 600OMS光学监测系统平台上,以YSI 6136型 浊度传感器 为核心的浊度监测系统,用于河流、湖泊、池塘、河口及饮用水源水中悬浮固体状况的研究、调查和监测。该监测仪亦可同时测量温度、电导和深度或透气式水位。 YSI 600CHL型 叶绿素监测仪 是在YSI 600OMS光学监测系统平台上,以YSI 6025型 叶绿素传 感器为核心的叶绿素监测系统,用于河流、湖泊、池塘、海洋调查、养殖业、饮用水源、藻类和浮游植物状况的研究、调查和监 测。该监测仪还可同时测量温度、电导和深度或透气式深度。 YSI 6820EDS/6920EDS型 常规五参数水质监测仪 是一个特别设计直接投放在水体中用于长期在线监测的五参数仪。该常规五参数仪既可单独使用,亦可作为水质在线自动监测标准站的五参数仪部分集成到系统中。 YSI 6920DW/600DW型 饮用水多参数安全监测仪 应用于城市自来水供应管网系统中,连续采集水质数据以确认饮用水安全送达社区。 YSI 6820/6920型 多参数水质监测仪 是一个适用于多点采样、长期现场监测与剖面分析的经济型数据记录系统。用户可以自定数据采集的时间间隔期,存储读数可达150,000个。 YSI 6600主导型 多参数水质监测仪,巡测和剖面分析应用的最佳选择 YSI 6600是一款适用于多点采样测量、长期现场监测与剖面分析的多参数仪器,可同时监测多达17个参数。具有90天电池寿命与9组探头结构,其中包括两个供浊度、叶绿素或罗丹明探头同时安装的光学口。操作水深达200米 YSI Level Scout 水位跟踪者 ,透气 或 非透气式 不锈钢 或 钛合金材料 2MB或4MB内存 YSI Level Scout 水位跟踪者 拥有高精度的水位传感器技术,并融合了高精度的压力传感器技术与电源稳定微机电路系统 YSI 556MPS型 多参数水质检测仪,多探头系统成功地结合了便携式仪器与多参数系统的特点,其性能如下: 可同时测量温度、电导、盐度、溶解氧、酸碱度和氧化还原电位以及总溶解固体;所有数据同时显示在屏幕上 YSI 85型 溶解氧、电导、盐度、温度测量仪,3米电缆 brYSI 85型 溶解氧、电导、盐度、温度测量仪,7.5米电缆 brYSI 85型 溶解氧、电导、盐度、温度测量仪,15米电缆 brYSI 85型 溶解氧、电导、盐度、温度测量仪,15米电缆 brYSI 85D型 溶解氧、电导、盐度、温度测量仪(不带探头) YSI 55型 溶解氧、温度测量仪 ,手提式操作,亦可肩挂或腰悬 ,不锈钢探头,能抵御更严峻的野外条件;另外,金属的重量让探头更易于沉入水中 ,备有3.7米、7.5米和15米三种电缆长度可供选择 另有低电量显示 YSI 手提式酸度测量仪(60型、63型)是特别为野外测量而设计的专业酸度测量仪器,它克服了一般酸度计电极在野外应用的缺点。 使用特殊电缆屏蔽设计,突破传统酸度计电缆长度的限制,测量水深范围达30米 电极接头全封闭防水,整个探头可插入水中测量 探头加固保护,可抵抗轻度的碰撞 可更换式电极,经济、便于现场维护 ;检测酸度,盐度,电导,温度 YSI 550A 便携式溶氧仪,采用全水密(IP67防水等级)、防撞击仪器外壳,并启用创新性可于野外更换的溶解氧电极模块。使用YSI久经考验的极谱法技术和YSI全球高精密温度典范的热敏电阻法技术,可同时测量溶解氧和温度。新一代PE盖膜提供更快的反应时间和更低的搅拌依赖性。 YSI DO200便携式溶氧,温度测量仪, YSI公司最新推出一系列轻巧、便携式水质测量仪器,以高性价比提供准确的数据。仪器的人机界面友好,操作简单方便(可单手操作)。YSI DO200 可同时测量溶解氧(空气饱和度与毫克/升浓度)与温度。 YSI 58实验室溶解氧测量仪, 系统规格 溶解氧 (%空气饱和度) 测量范围分 辨 率 准 确 度 0至200%空气饱和度 0.1%空气饱和度 ± 0.3%空气饱和度 YSI ProODO 光学溶解氧测量仪 YSI ProPlus型 手持式野外/实验室两用测量仪,多种参数选择:溶解氧、BOD、pH、ORP、电导率、氨氮、硝氮、氯化物和温度 YSI 9600型 硝酸盐监测仪 YSI 6500 连续监测溶解氧、电导率、温度和酸碱度 YSI 6500与YSI 6系列多参数仪主机连接,可以提供不间断的数据。YSI 6500 是水质监控的一种经济有效的选择,有效替代多台单参数设备,可减少安装和操作所需的人力物力。 YSI 650MDS型 多参数显示和记录系统 用来记录实时数据、校准6系列仪器、设置仪器以及上传数据到计算机等,专为野外使用而设计。YSI 650MDS配有防撞击外壳,符合IP67防水标准,即使掉入水中也能自动浮起。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制