涂层发射量仪

仪器信息网涂层发射量仪专题为您提供2024年最新涂层发射量仪价格报价、厂家品牌的相关信息, 包括涂层发射量仪参数、型号等,不管是国产,还是进口品牌的涂层发射量仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合涂层发射量仪相关的耗材配件、试剂标物,还有涂层发射量仪相关的最新资讯、资料,以及涂层发射量仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

涂层发射量仪相关的厂商

  • 留言咨询
  • 上海惠涂化工科技有限公司成立于2015年,坐落于上海市宝山区复旦软件园,是一家集研发、生产、销售、服务于一体的极富创新能力的科技型企业。公司的主营业务是科学仪器设备和环保型高分子材料,本着“质量为根、服务为本、诚信当先、利益共赢”的经营宗旨,竭诚为客户提供优质产品与服务。 公司专业代理WATERS、Thermo Fisher、Agilent 、METTLER TOLEDO、Binder 、Merck Millipore、Brookfield、Leica等国际知名品牌的科学仪器设备,并是依利特上海区特约代理,产品涉及医药、化工、涂料、高校、研究单位等各行各业的各级实验室。公司与上海化工研究院、华南理工大学等多所院校合 作,致力于研究开发环保型高分子材料,主要产品有:环保型水性合成树脂(乳液)、环保型敷形涂层材料、无溶剂UV固化材料、高性能氟碳材料等环保型功能高分子材料,产品应用涉及环保涂料、PCB板敷形、电子灌封、环保胶黏剂等领域。 公司将利用自身不断积累的优质专业的技术服务能力和应用解决方案能力,与客户朋友一起努力,共创成功!
    留言咨询
  • 专业生产理化无损检测设备(钢结构检测设备):硬度试验机系列(洛氏硬度计、布氏硬度计、维氏硬度计)、里氏硬度计、涂层法则厚仪、超声波(钢板钢管)测厚仪、表面粗糙度仪,超声波(金属)探伤仪,射线探伤仪,磁粉探伤仪,电火花检测仪,巴氏硬度计,韦氏硬度计,邵氏硬度计,钢丝绳探伤仪,代理荷兰轶诺硬度计,德国里斯特涂层测厚仪,日立涂层测厚仪、日立光谱仪,美国混凝土防水涂料测厚仪。及相关配件的销售。
    留言咨询

涂层发射量仪相关的仪器

  • 产品详情Optosol R1 涂层吸收率发射率检测仪 详细介绍Emissiometer R用于测量管状或平面太阳能吸收涂层的定向热发射度,其基础是测量来自扩展热源的红外辐射的反射率操作温度:70 - 90°C-到样品的平均距离:50mm-测量区域直径:可达30mm再现性: 2%精度小于3% Emissiometer Rfor measurements of the directional thermal emittance of tubular or planar solar absorber coatings based on the measurement of the reflectance of the infrared radiation from an extended heat sourceOperating temperature: 70-90°CAverage distance to the sample: 50mmDiameter of the measured area: up to 30mmReproducibility: 2%- Accuracy 3%
    留言咨询
  • ET100 发射率测量仪采用积分球反射方法设计,内置积分球、红外光源、微型控制处理器等,采用电池供电、触摸屏显示,具有使用方便、准确性高等优点。进行测量时,只需将仪器对准物体表面,扣动扳机后,自动进行反射率测量,测量完成后,会在显示屏上显示测量结果,同时将测量的反射率数据自动存储在SD卡内,可供用户后续处理和分析数据,测量一次的时间只需要7秒钟。随机配备镜面金质标样,并可提供NIST可溯源标定。ET 100发射率测量仪可以测量20度和60度2个入射角,6个光谱波段的反射率和波段总发射率。ET 100发射率测量仪可以实现在实验室以及野外现场精确地测量和研究材料表面的光学特征——反射率、发射率等参数。应用领域 航空工业 涂层领域 太阳能领域优化太阳能利用性能 节能建筑 光学材料质量控制主要特点 测量2个入射角、1.5~21μm之间6个非连续波段的反射系数 NIST标准 快速、便携 电池操作非常方便 测量标准和60°入射角的定向热发射比 计算半球热发射比技术参数ET100 便携式红外发射率测量仪符合标准ASTM E408测量参数定向半球反射比(DHR)测量方法波段范围内积分总反射比输出参数总发射比波段6个波段:1.5~2、2~3.5、3~4、4~5、5~10.5、10.5~21μm入射角20°&60°法线入射样品表面任何表面,6”半径凸面,12”半径凹面测量时间10秒/次;90秒预热IR源铬铝钴合金测量探头模块化设计,测量头可更换操作界面触摸式液晶屏软件界面工作环境储存环境:-25~70℃;操作环境:0~40℃,非冷凝供电两块可充电镍氢电池重量2.1Kg,含电池
    留言咨询
  • ET100 发射率测量仪采用积分球反射方法设计,内置积分球、红外光源、微型控制处理器等,采用电池供电、触摸屏显示,具有使用方便、准确性高等优点。进行测量时,只需将仪器对准物体表面,扣动扳机后,自动进行反射率测量,测量完成后,会在显示屏上显示测量结果,同时将测量的反射率数据自动存储在SD卡内,可供用户后续处理和分析数据,测量一次的时间只需要7秒钟。随机配备镜面金质标样,并可提供NIST可溯源标定。 ET 100发射率测量仪可以测量20度和60度2个入射角,6个光谱波段的反射率和波段总发射率。ET 100发射率测量仪可以实现在实验室以及野外现场精确地测量和研究材料表面的光学特征——反射率、发射率等参数。应用领域n 航空工业n 涂层领域n 太阳能领域优化太阳能利用性能n 节能建筑n 光学材料质量控制主要特点n 测量2个入射角、1.5~21μm之间6个非连续波段的反射系数n NIST标准n 快速、便携n 电池操作非常方便n 测量标准和60°入射角的定向热发射比n 计算半球热发射比技术参数ET100 便携式红外发射率测量仪符合标准ASTM E408测量参数定向半球反射比(DHR)测量方法波段范围内积分总反射比输出参数总发射比波段6个波段:1.5~2、2~3.5、3~4、4~5、5~10.5、10.5~21μm入射角20°&60°法线入射样品表面任何表面,6”半径凸面,12”半径凹面测量时间10秒/次;90秒预热IR源铬铝钴合金测量探头模块化设计,测量头可更换操作界面触摸式液晶屏软件界面工作环境储存环境:-25~70℃;操作环境:0~40℃,非冷凝供电两块可充电镍氢电池重量2.1Kg,含电池产地:美国
    留言咨询

涂层发射量仪相关的资讯

  • 专家约稿|辉光放电发射光谱仪的应用—涂层与超薄膜层的深度剖析
    摘要:本文首先简单回顾了辉光放电光谱仪(Glow Discharge Optical Emission Spectrometry,GDOES)的发展历程及特性,然后通过实例介绍了GDOES在微米涂层以及纳米超薄膜层深度剖析中的应用,并简介了深度谱定量分析的混合-粗糙度-信息深度(MRI)模型,最后对GDOES深度剖析的发展方向作了展望。1 GDOES发展历程及特性辉光放电发射光谱仪应用于表面分析及深度剖析已经有近100年的历史。辉光放电装置以及相关的光谱仪最早出现在20世纪30年代,但直到六十年代才成为化学分析的研究重点。1967年Grimm引入了“空心阳极-平面阴极”的辉光放电源[1],使得GDOES的商业化成为可能。随后射频(RF)电源的引入,GDOES的应用范围从导电材料拓展到了非导电材料,而毫秒或微秒级的脉冲辉光放电(Pulsed Glow Discharges,PGDs)模式的推出,不仅能有效地减弱轰击样品时的热效应,同时由于PGDs可以使用更高激发功率,使得激发或电离过程增强,大大提高了GDOES测量的灵敏程度,极大推动了GDOES技术的进步以及应用领域的拓展。GDOES被广泛应用于膜层结构的深度剖析,以获取元素成分随深度变化的关系。相较于其它传统的深度剖析技术,如俄歇电子能谱(AES)、X射线光电子能谱(XPS)和二次离子质谱(SIMS)或二次中性质谱(SNMS),GDOES具有如下的独特性[2]:(1)分析样品材料的种类广,可对导体/非导体/无机/有机…膜层材料进行深度剖析,并可探测所有的元素(包括氢);(2)分析样品的厚度范围宽,既可对微米量级的涂层/镀层,也可对纳米量级薄膜进行深度剖析;(3)溅射速率高,可达到每分钟几微米;(4)基体效应小,由于溅射过程发生在样品表面,而激发过程在腔室的等离子体中,样品基体对被测物质的信号几乎不产生影响;(5)低能级激发,产生的谱线属原子或离子的线状光谱,因此谱线间的干扰较小;(6)低功率溅射,属层层剥离,深度分辨率高,可达亚纳米级;(7)因为采用限制式光源,样品激发时的等离子体小,所以自吸收效应小,校准曲线的线性范围较宽;(8)无高真空需求,保养与维护都非常方便。基于上述优势,GDOES被广泛应用于表征微米量级的材料表面涂层/镀层、有机膜层的涂布层、锂电池电极多层结构和用于其封装的铝塑膜层、以及纳米量级的功能多层膜中元素的成分分布[3-6],下面举几个具体的应用实例。2 GDOES深度剖析应用实例2.1 涂层的深度剖析用于材料表面保护的涂层或镀层、食品与药品包装的柔性有机基材的涂布膜层、锂电池的多层膜电极,以及用于锂电池包装的铝塑膜等等的膜层厚度一般都是微米量级,有的膜层厚度甚至达到百微米。传统的深度剖析技术,如AES,XPS和SIMS显然无法对这些厚膜层进行深度剖析,而GDOES深度剖析技术非常适合这类微米量级厚膜的深度剖析。图1给出了利用Horiba-Profiler 2(一款脉冲—射频辉光放电发射光谱仪—Pulsed-RF GDOES,以下深度谱的实例均是用此设备测量),在Ar气压700Pa和功率55w条件下,测量的表面镀镍的铁箔GODES深度谱,其中的插图给出了从表面到Ni/Fe界面各元素的深度谱,测量时间与深度的转换是通过设备自带的激光干涉仪(DIP)对溅射坑进行原位测量获得。从全谱来看,GDOES测量信号强度稳定,未出现溅射诱导粗糙度或坑道效应(信号强度随溅射深度减小的现象,见下),这主要是因为铁箔具有较大的晶粒尺寸。同时还可以看到GDOES可连续测量到~120μm,溅射速率达到4.2μm/min(70nm/s)。从插图来看, Ni的镀层约为1μm,在表面有~100nm的氧化层,Ni/Fe界面分辨清晰。图1 表面镀镍铁箔的GODES深度谱,其中的插图给出了从表面到Ni/Fe界面的各元素的深度谱图2给出了在氩-氧(4 vol%)混合气气压750Pa、功率20w、脉冲频率3000Hz、占空比0.1875条件下,测量的用于锂电池包装铝塑膜(总厚度约为120μm)的GODES深度谱,其中的插图给出了铝塑膜的层结构示意图[7]。可以看出有机聚酰胺层主要包含碳、氮和氢等元素。在其之下碳、氮和氢元素信号的强度先降后升,表明在聚酰胺膜层下存在与其不同的有机涂层—粘胶剂,所含主要元素仍为碳、氮和氢。同时还可以看出在粘胶剂层下面的无机物(如Al,Cr和P)膜层,其中Cr和P源于为提高Al箔防腐性所做的钝化处理。很明显,图2测量的GDOES深度谱明确展现了锂电池包装铝塑膜的层结构。实验中在氩气中引入4 vol%氧气有助于快速溅射有机物的膜层结构,同时降低碳、氮信号的相对强度,提高了无机物如铬信号的相对强度,非常适合于无机-有机多层复合材料的结构分析,而在脉冲模式下,选用合适的频率和占空比,能够有效地散发溅射产生的热量,从而避免了低熔点有机物的碳化。图2一款锂电池包装铝塑膜的GDOES溅射深度谱,其中的插图给出了铝塑膜的层结构示意图[7]2.2 纳米膜层及表层的深度剖析纳米膜层,特别是纳米多层膜已被广泛应用于光电功能薄膜与半导体元器件等高科技领域。虽然传统的深度剖析技术AES,XPS和SIMS也常常应用于纳米膜层的表征,但对于纳米多层膜,传统的深度剖析技术很难对多层膜整体给予全面的深度剖析表征,而GDOES不仅可以给予纳米多层膜整体全面的深度剖析表征,而且选择合适的射频参数还可以获得如AES和SIMS深度剖析的表层元素深度谱。图3给出了在氩气气压750Pa、功率20w、脉冲频率1000Hz、占空比0.0625条件下,测量的一款柔性透明隔热膜(基材为PET)的GODES深度谱,如图3a所示,其中最具特色的就是清晰地表征了该款隔热膜最核心的三层Ag与AZO(Al+ZnO)共溅射的膜层结构,如图3b Ag膜层的GDOES深度谱所示。根据获得的溅射速率及Ag的深度谱拟合(见后),前两层Ag的厚度分别约为5.5nm与4.8nm[8]。很明显,第二层Ag信号较第一层有较大的展宽,相应的强度值也随之下降,这是源于GDOES对金属膜溅射过程中产生的溅射诱导粗糙度所致。图3(a)一款柔性透明隔热膜GDOES深度谱;(b)其中Ag膜层GDOES深度谱[8]图4给出了在氩气气压650Pa、功率20w、脉冲频率10000Hz、占空比0.5的同一条件下,测量的SiO2(300nm)/Si(111)标准样品和自然生长在Si(111)基片上SiO2样品的GODES深度谱[9]。如果取测量深度谱的半高宽为膜层的厚度,由此得到标准样品SiO2层的溅射速率为6.6nm/s(=300nm/45.5s),也就可以得到自然氧化的SiO2膜层厚度约为1nm(=6.6nm/s*0.15s)。所以,GDOES完全可以实现对一个纳米超薄层的深度剖析测量,这大大拓展了GDOES的应用领域,即从传统的钢铁镀层或块体材料的成分分析拓展到了对纳米薄膜深度剖析的表征。图4 (a)SiO2(300nm)/Si(111)标准样品与(b)自然生长在Si(111)基片上SiO2样品的GDOES深度谱[9]3 深度谱的定量分析3.1 深度分辨率对测量深度谱的优与劣进行评判时,深度分辨率Δz是一个非常重要的指标。传统Δz(16%-84%)的定义为[10]:对一个理想(原子尺度)的A/B界面进行溅射深度剖析时,当所测定的归一化强度从16%上升到84%或从84%下降到16%所对应的深度,如图5所示。Δz代表了测量得到的元素成分分布和原始的成分分布间的偏差程度,Δz越小表示测量结果越接近真实的元素成分分布,测量深度谱的质量就越高。但是随着科技的发展,应用的薄膜越来越薄,探测元素100%(或0%)的平台无法实现,就无法通过Δz(16%-84%)的定义确定深度分辨率,而只能通过对测量深度谱的定量分析获得(见下)。图5深度分辨率Δz的定义[10]3.2 深度谱定量分析—MRI模型溅射深度剖析的目的是获取薄膜样品元素的成分分布,但溅射会改变样品中元素的原始成分分布,产生溅射深度剖析中的失真。溅射深度剖析的定量分析就是要考虑溅射过程中,可能导致样品元素原始成分分布失真的各种因素,提出相应的深度分辨率函数,并通过它对测量的深度谱数据进行定量分析,最终获取被测样品元素在薄膜材料中的真实分布。对于任一溅射深度剖析实验,可能导致样品原始成分分布失真的三个主要因素源于:①粒子轰击产生的原子混合(atomic Mixing);②样品表面和界面的粗糙度(Roughness);③探测器所探测信号的信息深度(Information depth)。据此Hofmann提出了深度剖析定量分析著名的MRI深度分辨率函数[11]: 其中引入的三个MRI参数:原子混合长度w、粗糙度和信息深度λ具有明确的物理意义,其值可以通过实验测量得到,也可以通过理论计算得到。确定了分辨率函数,测量深度谱信号的归一化强度I/Io可表示为如下的卷积[12]: 其中z'是积分参量,X(z’)为原始的元素成分分布,g(z-z’)为深度分辨率函数,包含了深度剖析过程中所有引起原始成分分布失真的因素。MRI模型提出后,已被广泛应用于AES,XPS,SIMS和GDOES深度谱数据的定量分析。如果假设各失真因素对深度分辨率影响是相互独立的,相应的深度分辨率就可表示为[13]:其中r为择优溅射参数,是元素A与B溅射速率之比()。3.3 MRI模型应用实例图6给出了在氩气气压550Pa、功率17w、脉冲频率5000Hz、占空比0.25条件下,测量的60 Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14],结果清晰地显示了Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) 膜层结构,特别是分辨了仅0.3nm的B4C膜层, B和C元素的信号其峰谷和峰顶位置完全一致,可以认为B和C元素的溅射速率相同。为了更好地展现拟合测量的实验数据,选择溅射时间在15~35s范围内测量的深度剖析数据进行定量分析[15]。图6 60×Mo (3 nm)/B4C (0.3 nm)/Si (3.7 nm) GDOES深度谱[14]利用SRIM 软件[16]估算出原子混合长度w为0.6 nm,AFM测量了Mo/B4C/Si多层膜溅射至第30周期时溅射坑底部的粗糙度为0.7nm[14],对于GDOES深度剖析,由于被测量信号源于样品最外层表面,信息深度λ取为0.01nm。利用(1)与(2)式,调节各元素的溅射速率,并在各层名义厚度值附近微调膜层的厚度,Mo、Si、B(C)元素同时被拟合的最佳结果分别如图7(a)、(b)和(c)中实线所示,对应Mo、Si、B(C)元素的溅射速率分别为8.53、8.95和4.3nm/s,拟合的误差分别为5.5%、6.7%和12.5%。很明显,Mo与Si元素的溅射速率相差不大,但是B4C溅射速率的两倍,这一明显的择优溅射效应是能分辨0.3nm-B4C膜层的原因。根据拟合得到的MRI参数值,由(3)式计算出深度分辨率为1.75 nm,拟合可以获得Mo/B4C/Si多层薄膜中各个层的准确厚度,与HR-TEM测定的单层厚度基本一致[15]。图7 测量的GDOES深度谱数据(空心圆)与MRI最佳拟合结果(实线):(a) Mo层,(b) Si层,(c) B层;相应的MRI拟合参数列在图中[15]。4 总结与展望从以上深度谱测量实例可以清楚地看到,GDOES深度剖析的应用非常广泛,可测量从小于1nm的超薄薄膜到上百微米的厚膜;从元素H到Lv周期表中的所有元素;从表层到体层;从无机到有机;从导体到非导体等各种材料涂层与薄膜中元素成分随深度的分布,深度分辨率可以达到~1nm。通过对测量深度谱的定量分析,不仅可以获得膜层结构中原始的元素成分分布,而且还可以获得元素的溅射速率、膜层间的界面粗糙度等信息。虽然GDOES深度剖析技术日趋完善,但也存在着一些问题,比如在GDOES深度剖析中常见的溅射坑底部凸凹不平的“溅射坑道效应”(溅射诱导的粗糙度),特别是对多晶金属薄膜的深度剖析尤为明显,这一效应会大大降低GDOES深度谱的深度分辨率。消除溅射坑道效应影响一个有效的方法就是引入溅射过程样品旋转技术,使得各个方向的溅射均等。此外,缩小溅射(分析)面积也是提高溅射深度分辨率的一种方法,但需要考虑提高探测信号的强度,以免降低信号的灵敏度。另外,GDOES深度剖析的应用软件有进一步提升的空间,比如测量深度谱定量分析算法的植入,将信号强度转换为浓度以及溅射时间转换为溅射深度算法的进一步完善。作者简介汕头大学物理系教授 王江涌王江涌,博士,汕头大学物理系教授。现任广东省分析测试协会表面分析专业委员会副主任委员、中国机械工程学会高级会员、中国机械工程学会表面工程分会常务委员;《功能材料》、《材料科学研究与应用》与《表面技术》编委、评委。研究兴趣主要是薄膜材料中的扩散、偏析、相变及深度剖析定量分析。发表英文专著2部,专利十余件,论文150余篇,其中SCI论文110余篇。代表性成果在《Physical Review Letters》,《Nature Communications》,《Advanced Materials》,《Applied Physics Letters》等国际重要期刊上发表。主持国家自然基金、科技部政府间国际合作、广东省科技计划及横向合作项目十余项。获2021年广东省科技进步一等奖、2021年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、2021年粤港澳高价值大湾区专利培育布局大赛优胜奖、2020年广东省高校科研成果转化路演赛“新材料”小组赛一等奖、总决赛一等奖。昆山书豪仪器科技有限公司总经理 徐荣网徐荣网,昆山书豪仪器科技有限公司总经理,昆山市第十六届政协委员;曾就职于美国艾默生电气任职Labview设计工程师、江苏天瑞仪器股份公司任职光谱产品经理。2012年3月,作为公司创始人于创立昆山书豪仪器科技有限公司,2019年购买工业用地,出资建造12300平方米集办公、研发、生产于一体的书豪产业化大楼,现已投入使用。曾获2020年朱良漪分析仪器创新奖青年创新入围奖;2019年昆山市实用产业化人才;2019年江苏省科技技术进步奖获提名;2017年《原子发射光谱仪》“中国苏州”大学生创新创业大赛二等奖;2014年度昆山市科学技术进步奖三等奖;2017年度昆山市科学技术进步奖三等奖;多次获得昆山市级人才津贴及各类奖励项目等。主持研发产品申请的已授权专利47项专利,其中发明专利 4 项,实用新型专利 25项,外观专利7项,计算机软件著作权 11项。论文2篇《空心阴极光谱光电法用于测定高温合金痕量杂质元素》,《Application of Adaptive Iteratively Reweighted Penalized Least Squares Baseline Correction in Oil Spectrometer 》第一编著人;主持编著的企业标准4篇;承担项目包括3项省级项目、1项苏州市级项目、4项昆山市级项目;其中:旋转盘电极油料光谱仪获江苏省工业与信息产业转型升级专项资金--重大攻关项目(现已成功验收,获政府补助660万元)、江苏省首台(套)重大装备认定、江苏省工业与信息产业转型升级专项资金项目、苏州市姑苏天使计划项目等;主持研发并总体设计的《HCD100空心阴极直读光谱仪》、《AES998火花直读光谱仪》、《FS500全谱直读光谱仪》《旋转盘电极油料光谱仪OIL8000、OIL8000H、PO100》均研发成功通过江苏省新产品新技术鉴定,实现了产业化。参考文献:[1] GRIMM, W. Eine neue glimmentladungslampe für die optische emissionsspektralanalyse[J]. Spectrochimica Acta, Atomic Spectroscopy, Part B, 1968, 23 (7): 443-454.[2] 杨浩,马泽钦,蒋洁,李镇舟,宋一兵,王江涌,徐从康,辉光放电发射光谱高分辨率深度谱的定量分析[J],材料研究与应用, 2021, 15: 474-485.[3] Hughes H. Application of optical emission source developments in metallurgical analysis[J]. Analyst, 1983, 108(1283): 286-292.[4] Lodhi Z F, Tichelaar F D, Kwakernaak C, et al., A combined composition and morphology study of electrodeposited Zn–Co and Zn–Co–Fe alloy coatings[J]. Surface and Coatings Technology, 2008, 202(12): 2755-2764.[5] Sánchez P, Fernández B, Menéndez A, et al., Pulsed radiofrequency glow discharge optical emission spectrometry for the direct characterisation of photovoltaic thin film silicon solar cells[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 370-377.[6] Zhang X, Huang X, Jiang L, et al. Surface microstructures and antimicrobial properties of copper plasma alloyed stainless steel[J]. Applied surface science, 2011, 258(4): 1399-1404.[7] 胡立泓,张锦桐,王丽云,周刚,王江涌,徐从康,高阻隔铝塑膜辉光放电发射光谱深度谱测量参数的优化[J],光谱学与光谱分析,2022,42:954-960.[8] 吕凯, 周刚, 余云鹏, 刘远鹏, 王江涌, 徐从康,利用ToF-SIMS 和 Rf-GDOES 深度剖析技术研究柔性衬底上的隔热多层膜[J], 材料科学,2019,9:45-53.[9] 周刚, 吕凯, 刘远鹏, 余云鹏, 徐从康, 王江涌,柔性功能薄膜辉光光谱深度分辨率分析[J], 真空, 2020,57:1-5.[10] ASTM E-42, Standard terminology relating to surface analysis [S]. Philadelphia: American Society for Testing and Materials, 1992.[11] Hofmann S. Atomic mixing, surface roughness and information depth in high‐resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and interface analysis, 1994, 21(9): 673-678.[12] Ho P S, Lewis J E. Deconvolution method for composition profiling by Auger sputtering technique[J]. Surface Science, 1976, 55(1): 335-348.[13] Wang J Y, Hofmann S, Zalar A, et al. Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1-2): 120-124.[14] Ber B, Bábor P, Brunkov P N, et al. Sputter depth profiling of Mo/B4C/Si and Mo/Si multilayer nanostructures: A round-robin characterization by different techniques[J]. Thin Solid Films, 2013, 540: 96-105.[15] Hao Yang, SongYou Lian, Patrick Chapon, Yibing Song, JiangYong Wang, Congkang Xu, Quantification of high resolution Pulsed RF GDOES depth profiles for Mo/B4C/Si nano-multilayers[J], Coatings, 2021, 11: 612.[16] Ziegler J F, Ziegler M D, Biersack J P. SRIM–The stopping and range of ions in matter[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11-12): 1818-1823.
  • 中级培训 | 如何实现最佳涂层效果:从KRÜSS的角度优化涂层和基材的性能
    研究背景各种类型的涂层,包括粘合剂和油墨,在包装优化过程中起着关键的作用。对于所有形式的涂层来说,了解并匹配基材的表面特性和涂层的特性是至关重要的,即润湿性、液滴铺展、染料吸收、短期/长期的附着力及印刷质量等。讲座中,KRÜ SS的国内外专家将揭示包装中涂层、印刷和粘接背后的科学,阐述通过不同的表界面测试方法有效地评估涂层和基材性能的原理,这些可量化、可重复的表界面测量方法能够帮助用户在生产和研发过程中实现最佳的涂层效果。我们的国内外专家们从科学和技术两方面带来了丰富的实践经验,并将在这次讲座中和广大行业用户共同探索交流。讲座内容将涵盖接触角测量、表面自由能和预处理等基本原理、测量仪器的技术性能及涂料和印刷行业的各种应用实例。此次讲座内容丰富,干货满满,且完全免费,欢迎新老用户踊跃报名参加!(本次研讨会属于内部技术培训,不提供PPT和纸质资料,请大家做好笔记呦!)讲座安排时间:5月25日(周四)下午13:00至17:30地点:上海市闵行区春东路508号E幢2楼多功能厅费用和注册:本次活动原收费每人1000元,但本次为特别回馈老客户支持,完全免费。此次讲座为线下活动,与会人员必须提前登记预订席位,每家用户的参会名额为2位。报名截止日期为2023年5月22日。讲座内容:液体涂料的评价:静态和动态表面张力的测量理论固体基材的分析:接触角、液滴铺展和附着力分析的基础知识涂层常见缺陷及其处理方法常见的的接触角测量误区实验操作和测量方法的标准化及分析……报名方法:关注公众微信号“克吕士科学仪器”- “最新资讯”。专家团队:王磊:克吕士中国公司总经理,从事KRÜ SS品牌在中国的推广超过15年,对表界面相关领域的应用及测量技术有深刻的理解和洞察。Dr.Thomas Willers:KRÜ SS GmbH应用与科学部门负责人,德国科隆大学实验物理学博士学位,负责德国总部的应用实验室、应用市场、业务发展和培训活动,在界面化学和物理方面拥有多年经验。张晶晶:克吕士科学仪器上海有限公司应用部经理,实验室负责人。研究方向为表/界面张力及泡沫的原理和应用,对KRÜ SS仪器和软件的操作及使用富有经验,长期为客户提供解决方案。杨雅雯:克吕士科学仪器上海有限公司应用工程师,在接触角、表面张力及泡沫分析领域具有多年应用经验,在高温高压领域的解决方案具有实践见解。
  • 兰州化物所高熵合金基高温太阳能光谱选择性吸收涂层研究获进展
    高熵合金通常被定义为含有5个以上主元素的固溶体,并且每个元素的摩尔比为5~35%,具有优异的力学、耐高温、耐磨、耐蚀、抗辐照等性能,在较多领域展现出发展潜力。中国科学院兰州化学物理研究所环境材料与生态化学研究发展中心副研究员高祥虎、研究员刘刚带领的科研团队,通过组分调控、构型熵优化和结构设计,制备出系列高熵合金基高温太阳能光谱选择性吸收涂层。  前期,研究人员设计出一种由红外反射层铝、高熵合金氮化物、高熵合金氮氧化物和二氧化硅组成的彩色太阳能光谱选择性吸收涂层,其吸收率可达93.5%,发射率低于10%。研究人员发现,单层高熵合金氮化物陶瓷具有良好的本征吸收特性,因此制备出结构简单的涂层。以高熵合金氮化物作为吸收层,SiO2或Si3N4作为减反射层得到的涂层吸收率可达92.8%,发射率低于7%,并可在650°C的真空条件下稳定300小时。  近期,为进一步提升涂层吸收能力,研究人员选用不锈钢作为基底,低氮含量高熵合金薄膜作为主吸收层,高氮含量高熵合金薄膜作为消光干涉层,SiO2、Si3N4、Al2O3作为减反射层,形成了从基底到表面光学常数逐渐递减的结构(图1)。研究通过光学设计软件(CODE)进行优化,利用反应磁控溅射的方法制备,提高了制备效率。涂层吸收率可达96%,热发射率被抑制到低于10%。研究人员通过时域有限差分法(FDTD)研究了涂层光吸收机制。长期热稳定性研究表明,高熵合金氮化物吸收涂层在600°C真空条件下,退火168小时后仍保持良好的光学性能;计算涂层在不同工作温度和聚光比的光热转化效率发现,当工作温度为550°C、聚光比为100时,涂层的光热转化效率可达90.1%。该图层显示出优异的光热转换效率和热稳定性(图2)。  研究人员将吸收涂层沉积在不同基底材料上制备的涂层依然保持优异的光学性能,并在铝箔上实现了涂层的大规模制备。对不同入射角的吸收谱图研究发现,吸收涂层在入射光角度为0-60°的范围内具有良好的吸收率。研究人员模拟太阳光对吸收器表面进行照射,在太阳光照射下,涂层表面的温度超过100℃,表明该材料在界面水蒸发研究领域具有重要应用价值。  相关研究成果发表在Journal of Materials Chemistry A、Solar RRL、Journal of Materiomics上。上述工作开发出兼具优异光学性能和耐高温性能的高温太阳能光谱选择性吸收涂层,拓展了高熵合金在新能源材料领域的功能应用。研究工作得到中科院青年创新促进会、中科院科技服务网络计划区域重点项目和甘肃省重大科技项目的支持。图1.光学模拟结合磁控溅射方法制备太阳能光谱选择性吸收涂层图2.光谱选择性吸收机制和热稳定性研究

涂层发射量仪相关的方案

  • 从环境温度到低温下黑色涂层的发射率:光谱平坦的黑色涂层如何提高空间系统的性能
    采用色度法测定了Acktar Fractal Black的总半球发射率(ε)。用不同厚度的深黑色表面涂层(分别为20、35和45μm)涂覆铝基板,以研究涂层厚度对发射性能的影响,特别是在低温下。还测量了另一种涂层类型——Acktar Diffusive White——的发射率,以表征其低温性能。对于Acktar Fractal Black,有效涂层厚度可以根据其预期温度范围来实现。为了帮助实现这一点,还开发了一个实验型号,说明了涂层在不同温度下的发射率性能。Acktar Diffusive White的测量发射率较低,但与Fractal Black相当。光谱平坦的Ackar Fractal Black5K-300K之间循环,没有任何明显的降解迹象,成功地证明了它的高热稳定性。
  • 生物医疗设备涂层应用-Filmetrics 膜厚测量仪
    Filmetrics 膜厚测量仪的卓越技术,Filmetrics膜厚测量仪提供了范围广泛的测量生物医疗涂层的方案。支架: 支架上很小的涂层区域通常需要显微镜类的仪器。 我们的 F40膜厚测量仪 在几十个实验室内得到使用,测量钝化和/或药物输送涂层。我们有独特的测量系统对整個支架表面的自動厚度测绘,只需在测量时旋轉支架。植入件: 在测量植入器件的涂层时,不规则的表面形状通常是唯一挑战。 Filmetrics 提供这一用途的全系列探头。导丝和导引针: 和支架一样,这些器械常常可以用象 F40 这样的显微镜仪器。 用 F42 可以进行显微区域内厚度的两维测绘。导液管和血管成型球囊的厚度:大于 100 微米的厚度和可见光谱不透明性决定了 F20-NIR 是这一用途方面全世界众多实验室内最受欢迎的仪器。
  • 表面接触角测量仪在自清洁表面涂层应用
    自清洁涂层在商业产品中有着广泛的应用潜能,并可降低清洁过程中的劳动成本,使得其相关研究变得愈来愈多。此类涂层应用广泛,如门窗玻璃、粘合剂、纺织品及涂绘产品。例如,带有自清洁涂层的织物可以节省清洗过程并延长织物使用寿命。自清洁涂层分为两类:疏水类涂层与亲水类涂层,当有水存在时以上两种涂层均可达到自清洁的目的,而其润湿性及亲疏水性质可用表面张力仪进行测定。

涂层发射量仪相关的资料

涂层发射量仪相关的论坛

  • 涂层测厚仪是什么仪器

    涂层测厚仪是什么仪器

    [size=16px][font=-apple-system, BlinkMacSystemFont, &][color=#05073b]涂层测厚仪是什么仪器[/color][/font]涂层测厚仪是一种用于测量涂层或涂料膜厚度的仪器,也被称为涂层测量仪或涂层厚度计。它主要用于检测金属、非金属、有机和无机涂层的厚度,以确定涂层的质量和均匀性。涂层测厚仪可以广泛地应用在制造业、金属加工液、化工业、商检等检测领域,是材料保护专业必备的仪器。涂层测厚仪的工作原理是,通过感应线圈向被测涂层表面发射电磁波,涂层表面反弹的电磁波信号再被感应线圈接收到,从而测量涂层厚度。因为涂层的厚度会改变电磁感应信号的强度,所以通过测量电磁感应信号的强度,就可以确定涂层厚度。涂层测厚仪可以分为三种:Fe质探针、NFe质探针和Fe、NFe质探针。Fe质探针可以检测所有非磁性涂层厚度,例如涂在钢、铁上的漆、粉末涂层、塑料、瓷、铬、铜、锌等;NFe质探针可以检测所有绝缘涂层厚度,例如漆、塑料、瓷等,这些涂层须涂在诸如铝、铜、黄铜或不锈钢等非磁性金属基体上;Fe、NFe质探针可以同时检测到Fe质探针和NFe质探针所能检测到的涂层厚度。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/11/202311150916246277_9898_6098850_3.jpg!w690x690.jpg[/img][/size]

涂层发射量仪相关的耗材

  • 石墨烯薄膜25X25mm正电子发射断层显像板
    增长方法:CVD合成、转移方法:清洁迁移取样法、质量控制:光学显微镜、拉曼光谱、扫描电镜和投射电镜批签,外观(颜色):透明,透明度:97%,外观(形状):薄,覆盖率:95%,石墨烯层数:1,厚度(原理上):0.345毫微米,场效应管电子AI203迁移率:2,000cm2/Vs,场效应管SIO2/SI的电子迁移率:4,000cm2/Vs,表面电阻:170欧姆平方米,晶粒尺寸:约10μm,正电子发射断层显像板厚度:175μm,应用:有机太阳能电池、有机发光二极管、正电子发射断层显像板、氧化铟锡更换、石墨烯研究柔性显示器。
  • 石墨烯薄膜4英寸正电子发射断层显像板
    透明度:97%,外观(形状):薄,覆盖率:95%,石墨烯层数:1,厚度(原理上):0.345毫微米,场效应管电子AI203迁移率:2,000cm2/Vs,场效应管SIO2/SI的电子迁移率:4,000cm2/Vs,表面电阻:170欧姆平方米,晶粒尺寸:约10μm,正电子发射断层显像板厚度:175μm。
  • 抗反射涂层
    抗反射涂层Andover生产了一种非放射性的介电多层涂层,旨在减少红外光谱中锗基板的反射。反射从每表面36%降到不足1%。这些滤光片由坚硬、耐用的di一表面介质涂层组成,在光学质量的锗基板上,这些滤光片能够承受与任何高质量光学元件相关的清洗和处理。为了您的方便和经济,我们提供两个标准尺寸的滤光片:直径25毫米和50毫米。但是,我们可以生产定制的尺寸和形状,以及定制的光学特性。联系我们的技术销售部门报价。通用规格:厚度:1.0 ±.2mm直径公差:+0/-.1mm最小通光孔径:90% of outside dimension基底材质:Germanium (other substrates available)平坦度:2 waves at 632.8nm平行度:表面质量:80/50 per MIL-C-48497A涂层质量:80/50 per MIL-C-48497A24小时湿度:per MIL-C-48497A中度磨损:per MIL-C-48497A粘连:per MIL-C-48497A工作温度:-62°C to +71°C机械:Unmounted订购信息:描述型号BBARnmCWL, 2000 - 14000nm Bandwidth, 25.0 DiameterGEBBAR-2-14-25BBARnmCWL, 2000 -14000nm Bandwidth, 50.0 DiameterGEBBAR-2-14-50BBARnmCWL, 3000-5000nm Bandwidth, 25.0 DiameterGEBBAR-3-5-25BBARnmCWL, 3000-5000nm Bandwidth, 50.0 DiameterGEBBAR-3-5-50BBARnmCWL, 8000-12000nm Bandwidth, 25.0 DiameterGEBBAR-8-12-25BBARnmCWL, 8000-12000nm Bandwidth, 50.0 DiameterGEBBAR-8-12-50BBARnmCWL, 8000-14000nm Bandwidth, 25.0 DiameterGEBBAR-8-14-25BBARnmCWL, 8000-14000nm Bandwidth, 50.0 DiameterGEBBAR-8-14-50BBARnmCWL, 2000 - 14000nm Bandwidth, 25.0 DiameterSIBBAR-2-14-25BBARnmCWL, 2000 -14000nm Bandwidth, 50.0 DiameterSIBBAR-2-14-50BBARnmCWL, 3000-5000nm Bandwidth, 25.0 DiameterSIBBAR-3-5-25BBARnmCWL, 3000-5000nm Bandwidth, 50.0 DiameterSIBBAR-3-5-50BBARnmCWL, 8000-12000nm Bandwidth, 25.0 DiameterSIBBAR-8-12-25BBARnmCWL, 8000-12000nm Bandwidth, 50.0 DiameterSIBBAR-8-12-50BBARnmCWL, 8000-14000nm Bandwidth, 25.0 DiameterSIBBAR-8-14-25BBARnmCWL, 8000-14000nm Bandwidth, 50.0 DiameterSIBBAR-8-14-50
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制