开发光谱仪

仪器信息网开发光谱仪专题为您提供2024年最新开发光谱仪价格报价、厂家品牌的相关信息, 包括开发光谱仪参数、型号等,不管是国产,还是进口品牌的开发光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合开发光谱仪相关的耗材配件、试剂标物,还有开发光谱仪相关的最新资讯、资料,以及开发光谱仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

开发光谱仪相关的厂商

  • 广州标旗光电科技发展股份有限公司成立于 2005 年,是“广州开发区创业领军人才”创办企业,位于国家级高新技术产业开发区广州科学城。是一家专业从事光谱快速检测应用及开发的高科技企业,熟悉各种光谱快速检测方案的搭建,为珠宝、光电、化工、材料、农学、生物等不同领域的客户提供了上百种检测方案。公司拥有强大的研发、销售团队,拥有极强的创新能力,拥有自主知识产权与品牌。标旗光电已荣获“国家级高新技术企业”“瞪羚企业”“广东省知识产权优势企业”等荣誉资质。标旗光电专注于为客户定制和开发光谱快速检测应用方案,为众多行业提供了快速、高效、便捷的光谱检测设备, 解决行业检测难题并形成了自主品牌,拥有 10 多项中国、美国、英国授权发明专利。 标旗光电技术研发团队和产品运营团队完善, 不断创新和发展,以客户需求为导向,实现光谱快速检测方案的全方位定制化开发,形成集算法开发、软件开发、硬件开发、光路设计及电路设计为一体的研发体系,应用开发产业化转发能力强,已建成广东省光谱快速测量工程技术研究中心。
    留言咨询
  • 400-860-5168转5954
    成都维克光谱仪器技术发展有限公司成立于1999年,一直从事近红外光谱的仪器开发,方法软件开发,以及技术服务。 2005年公司研制开发了农产品及烟草在线近红外仪器、模型和方法,2005年协助红塔集团的《近红外快检技术在原烟验级入库中的研究应用》获集团科技进步一等奖,同年的《近红外技术在烟叶工业分级与复烤在线中的研究应用》获中烟总公司科技进步二等奖,2006年的《近红外技术对复烤片烟内在化学成分控制的研究应用》获集团科技进步一等奖,其在国内装备了80多套,客户遍及全国30多家烟草公司和卷烟集团。 2006年公司与四川大学华西药学院分析测试中心联合建立了应用示范实验室,解决了企业的应用难题,加快了应用开发的进程,快速实现了近红外仪器的的销售。同时通过产、学、研的合作,为公司的长远发展储备了人材。 2009年,研发和生产了小型化MEMS近红外光谱仪,产品目前应用于国内外农产品行业。同时,通过几年来为药品快检项目的服务,深入基层,对药品快检项目有了很深的理解,认识到为了更有效的做好全国打击伪劣药品的工作,需要研发新一代便携式傅里叶近红外光谱仪,并开始了理论和硬件设计思路的研究。 2010年,完成了项目仪器的可行性研究,开始进行仪器硬件研发。为此,公司整合资源,加大研发资金投入,为研发工作购置相应的设备和环境,招聘对此项目相关的应用开发、软件开发、计算方法、运营服务等人才,全力推进仪器研发工作。 2011年,聘请了国际仪器厂商的近红外研发团队、技术支持团队和市场团队,建立了遍布全国的营销网络,并充实了有关市场策划,产品中试,品质管理,物料采购,生产管理等相关专业的人才,为项目仪器的生产和销售提供人才储备和市场前期布局。同年,研发了拉曼光谱仪的三维采样附件,该附件目前被国内外厂家采购。 2012年,公司开发团队参与和协助了《环境大气中细粒子(PM2.5)检测设备开发及应用》项目中的子项《自动换模型采样器的研制》。 目前维克公司研发人员技术背景涉及光学仪器、物理、精密仪器、工业自动化、电子信息工程、软件工程、化学计量学、分析化学等专业。
  • 超谱公司是代理各种进口分析仪器的专业公司,独家代理德国专业厂家的直读光谱仪,颗粒计数器。应用范围涉及冶金、铸造、机械、电力、石油石化、国防、铁路、航空航天等各个领域。公司技术人员均为具有多年光谱仪设计制造经验的专业人员,向用户提供完善的售后服务及零部件供应。欢迎访问超谱公司的网站了解相关的仪器信息。在浏览器的地址栏中输入中文实名“超谱.cn”,即可进入超谱公司的网站。或者键入"www.chaopu-ccl.com.cn" 网址即可公司可向用户提供以下各公司的产品 德国OBLF公司: GS1000-‖型直读光谱仪 QSN750-‖型多基体直读光谱仪 QSG750-‖型精密直读光谱仪 QSX750-‖ R型全自动直读光谱仪VeOS型直读光谱仪ASM1800型自动光谱样品磨样机OS.5c型直读光谱仪 德国PAMAS公司产品:S40型便携式颗粒计数器 S40 AVTUR便携式航空煤油颗粒计数器S50型在线式颗粒计数器SBSS型实验室台式颗粒计数器SVSS型注射液和低粘度液体颗粒计数系统WaterView型在线水颗粒计数器
    留言咨询

开发光谱仪相关的仪器

  • 碳纳米管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。它主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约为0.34nm,直径一般为2~20nm。由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值,如:其独特的结构是理想的一维模型材料 巨大的长径比使其有望用作坚韧的碳纤维,其强度为钢的100倍,重量则只有钢的1/6 同时它还有望用作为分子导线,纳米半导体材料,催化剂载体,分子吸收剂和近场发射材料等。 Specim可提供碳纳米管近红外光谱及影像分析工具,采用近红外光谱相机,搭载与近红外显微平台,并配合压电陶瓷纳米位移台,实现碳纳米管的影像及光谱扫描,不仅可以用于电致发光的光谱分析,也可用与光致发光光谱测量,为研究者提供大量的光谱及影像数据以供研究分析使用。光谱测量范围:970nm- 2500nm(900nm-1700nm)。
    留言咨询
  • PMEye-3000光致发光光谱成像(PL-Mapping)测量系统是卓立汉光最新研制的,用于LED外延片、半导体晶片、太阳能电池材料等,在生产线上的质量控制和实验室中的产品研发检测。该系统对样品的PL谱进行Mapping二维扫描成像,扫描结果以3D方式进行显示,使检测结果更易于分析和比较。该系统的软件窗口界面友好,操作简单,只需简单培训就能使用。测试原理:PL(光致发光)是一种辐射复合效应。在一定波长光源的激发下,电子吸收激发光子的能量,向高能级跃迁而处于激发态。激发态是不稳定的状态,会以辐射复合的形式发射光子向低能级跃迁,这种被发射的光称为荧光。荧光光谱代表了半导体材料内部,一定的电子能级跃迁的机制,也反映了材料的性能及其缺陷。PL是一种用于提供半导体材料的电学、光学特性信息的光谱技术,可以研究带隙、发光波长、结晶度和晶体结构以及缺陷信息等等。应用领域举例:LED外延片,太阳能电池材料,半导体晶片,半导体薄膜材料等检测与研究。 主要特点:◆ PLMapping测量◆ 多种激光器可选◆ Mapping扫描速度:180点/秒◆ 空间分辨率:50um◆ 光谱分辨率:0.1nm@1200g/mm◆ Mapping结果以3D方式显示◆ 最大8吋的样品测量◆ 样品精确定位◆ 样品真空吸附◆ 可做低温测量◆ 膜厚测量一体化设计,操作符合人体工学PMEye3000 PL Mapping测量系统采用立式一体化设计,关键尺寸根据人体工学理论设计,不管是样品的操作高度和电脑使用高度,都特别适合于人员操作。主机与操作平台高度集成,方便于在实验室和检测车间里摆放。仪器侧面设计有可收放平台,可摆放液晶显示器和鼠标键盘。仪器底部装有滚轮,方便于仪器在不同场地之间的搬动。模块化设计PMEye-3000 PL Mapping测量系统全面采用模块化设计思想,可根据用户的样品特点来选择规格配置,让用户有更多的选择余地。激发光源、样品台、光谱仪、探测器、数据采集设备都实现了模块化设计。操作简便、全电脑控制PMEye-3000 PL Mapping测量系统,采用整机设计,用户只需要根据需要放置检测样品,无需进行复杂的光路调整,操作简便;所有控制操作均通过计算机来控制实现。全新的样品台设计,采用真空吸附方式对样品进行固定,避免了用传统方式固定样品而造成的损坏;可对常规尺寸的LED外延片样品进行精确定位,提高测量重复精度。两种测量方式,用途更广泛系统采用直流和交流两种测量模式,直流模式用于常规检测,交流模式用于微弱荧光检测。监控激发光源,校正测量结果一般的PL测量系统只是测量荧光的波长和强度,而没有对激发光源进行监控,而激发光源的不稳定性将会对PL测量结果造成影响。PMEye-3000 PL Mapping测量系统增加对激光强度的监控,并根据监控结果来对PL测量进行校正。这样就可以消除激发光源的不稳定带来的测量误差。激光器选配灵活PMEye-3000 PL Mapping测量系统有多种高稳定性的激光器可选,系统最多可内置2个激光器和一个外接激光器,标配为1个405nm波长高稳定激光器。用户可以根据测量对象选配不同的激光器,使PL检测更加精准。可选配的激光器波长有: 405nm,442nm,532nm、785nm、808nm等,外置选配激光器波长为:325nm。自动Mapping功能PMEye-3000 PL Mapping测量系统配置200× 200mm的二维电控位移台,最大可测量8英寸的样品。用户可以根据不同的样品规格来设置扫描区域、扫描步长、扫描速度等,扫描速度可高达每秒180个点,空间分辨率可达50um。扫描结果以3D方式显示,以不同的颜色来表示不同的荧光强度。 软件功能丰富,操作简便我们具有多年的测量系统操作软件开发经验,,熟悉试验测量需求和用户的操作习惯,从而使开发的这套PMEye-3000操作软件功能强大且操作简便。MEye-3000操作软件提供单点PL光谱测量及显示,单波长的X-Y Mapping测量,给定光谱范围的X-Y Mapping测量及根据测量数据进行峰值波长、峰值强度、半高宽、给定波长范围的荧光强度计算并以Mapping显示,Mapping结果以3D方式显示。同时具有多种数据处理方式来对所测量的数据进行处理。低温样品室附件该附件可实现样品在低温状态下的荧光检测。有些样品在不同的温度条件下,将呈现不同的荧光效果,这时就需要对样品进行低温制冷。如图所示,从图中我们可以发现在室温时,GaN薄膜的发光波长几乎涵盖整个可见光范围,且强度的最高峰出现在580nm附近,但整体而言其强度并不强;随着温度的降低,发光强度开始慢慢的增加,直到110K时,我们可以发现在350nm附近似乎有一个小峰开始出现,且当温度越降越低,这个小峰强度的增加也越显著,一直到最低温25K时,基本上就只有一个荧光峰。GaN薄膜的禁带宽度在室温时为3.40Ev,换算成波长为365nm,而我们利用PL系统所测的GaN薄膜在25K时在356.6nm附近有一个峰值,因此如果我们将GaN薄膜的禁带宽度随温度变化情况也考虑进去,则可以发现在理论上25K时GaN的禁带宽度为3.48eV,即特征波长为357.1nm,非常靠近实验所得的356.6nm,因此我们可以推断这个发光现象应该就是GaN薄膜的自发辐射。
    留言咨询
  • Nexis™ SCD-2030是为解决实验室需求而开发出的新一代硫化学发光检测系统。其卓越的高灵敏度与稳定性、易维护性以及行业首创的自动化功能,使实验室的效率攀上新的台阶。硫化学发光检测器(SCD)能够高灵敏度检测出硫化物。Nexis™ SCD-2030硫化学发光检测器搭配岛津旗舰级气相色谱系统“Nexis GC-2030”,采用具备自动老化功能等水平燃烧器,通过行业首创的超短流路,和传统的SCD检测器相比,从燃烧器到检测部的流路缩短三分之一,可快速将不稳定成分导入反应器,最小限度降低灵敏度损失。同时行业首创的水平式硫化学发光检测系统“Nexis SCD-2030” 实现高效稳定氧化还原反应,也减少了耗材更换时间,内部陶瓷管的更换操作5分钟即可完成。SCD-2030还将从开机、启动真空、调整气体流量、稳定基线、分析到关机等传统复杂繁复的手动操作全部自动化,极大降低了操作难度并提升了分析效率。 S 速 全面提升的高灵敏度和分析效率C 创 行业首创的自我诊断和自动老化D 颠 颠覆传统的高稳定性和高可靠性
    留言咨询

开发光谱仪相关的资讯

  • 波兰开发出利用发光材料测量压力的新方法
    波兰科学院低温与结构研究所的科研人员开发出一种新的发光纳米材料,可以随着局部压力的变化而改变颜色。科研人员用含有发光纳米材料的油漆或清漆覆盖结构元件,然后用合适的光线照射涂料,涂料的颜色会随着给定位置的压力而变化。如,正常工作的结构在照明时会发出红光,而材料损坏的地方可能会变成绿光。该涂料可以用于远程监测机器零件、建筑物或桥梁等结构中的应力分布,并诊断结构中的某些部分是否开始失效。   科研人员表示,新材料对温度变化不敏感,被测物体的温度不会影响测量,因此可以获得更高精度和更为准确的读数。该研究结果已发表在《化学工程杂志》上。
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • 中国化学发光产业图谱
    p  中国体外诊断市场生化诊断、免疫诊断、分子诊断、POCT的竞争格局已经形成,2010-2014年,生化诊断市场份额由27%降低至19%,免疫化学的市场份额由33%增加至38%,分子诊断由5%增加至15%。化学发光为最先进的免疫诊断技术,2015年国内市场规模达160亿元,近年来维持20%-25%的增速,为IVD企业必争之地。/pp  免疫诊断经历了同位素放射免疫(RIA)、胶体金、酶联免疫(ELISA)、时间分辨荧光(TRFIA)、化学发光(CLIA)等技术的演进。目前我国酶联免疫和化学发光并存,近年来化学发光市场份额越来越大,已经逐渐替代酶联免疫成为免疫诊断的主流。/pp style="text-align: center "img title="2.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/05d34011-007a-4823-9b1d-bef2db81ac1c.jpg"//pp  化学发光免疫分析(chemiluminescence immunoassay,CLIA)广泛应用于肿瘤标记物、传染病、内分泌功能、激素等方面的诊断。目前,在大多数三甲医院,化学发光已经取代酶联免疫(ELISA)成为主流。检测内容涵盖肿瘤标志物、心脏标志物、甲状腺能、胰岛素、糖尿病、感染性疾病、细胞因子、激素、过敏反应和治疗药物浓度监测等。/pp  酶促化学发光、直接化学发光、电化学发光是目前主流化学发光技术,国内目前化学发光市场渗透率依然较低,市机市场愿为得到满足。2015年国内化学发光市场份额预计为69亿人民币,远未达到测算的230亿市场容量。/pp  中国263家化学发光相关企业分布相对集中,形成以北京、广东、江苏、山东、上海、浙江为主的产业集聚区。/pp  从企业成立时间来看,中国化学发光企业主要企业已经基本进场完毕,化学发光产业新成立公司数量下降,产业新进入者活跃度降低。新产业、安图生物、迈克生物为国内化学发光产业佼佼者,到2017年7月为止化学发光领域超过20家上市/新三板企业进行相应布局。/pp  从一级市场资本层面,近年来化学发光领域投资几乎绝迹,在行业龙头已经出现的情况下,早期投资机会基本丧失。国际化学发光产业资本整合已经完成,格局已定,以罗氏、雅培、西门子、贝克曼为首的龙头企业地位难以撼动,通过资本整合,拓展企业化学发光上下游产品线,中国企业才刚刚起步。/pp  中国化学发光产业图谱分为仪器、试剂两部分,仪器包括半自动化学发光仪、全自动化学发光仪、便携化学发光仪,试剂包括微孔板化学发光是机、磁微粒化学发光是集以及其他试剂(蛋白芯片、杂交捕获、酶免疫点印迹等)。/pp  化学发光仪经历了半自动、全自动、到便携化的发展过程,截止2017年6月底,共有51家企业的80个未过期仪器批件在市场流通、销售。/pp style="text-align: center "img title="3.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/3c7d1ad2-7a59-49db-b6b8-ed0d8a4e9902.jpg"//pp  国内化学发光仪市场,罗氏诊断占据中国化学发光29.8%市场份额,专利到期给国内企业带来机会。罗氏以电化学发光为核心产品,由宝灵曼1996年研发而成,具有核心专利保护,被称为第四代化学发光。罗氏公司1997年收购宝灵曼公司后,产品不断升级换代,目前以170 T/H的E170和86T/H的E411为主要产品。2016年罗氏电化学发光专利正式过期,为国内企业带来发展机遇。新产业、迈克、安图等国内化学发光领军企业快速发展。/pp style="text-align: center "img title="4.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/6fc56e0f-3750-44f2-8863-55a092eda967.jpg"//pp  国内化学发光试剂市场则经历了由微孔板到磁微粒主导的技术更新,到2017年6月底共有91家企业2313个未过期试剂批件在市场销售。其中激素、抗体、蛋白类化学发光检测试剂占据批准产品83%。安图生物是国内化学发光试剂企业的翘楚,公司已掌握了酶联免疫、微孔板化学发光、磁微粒化学发光、胶体金等多个免疫诊断技术,其中磁微粒化学发光技术是公司重要收入来源。2016年上半年化学发光产品销售收入占公司56.5%,达到2.3亿元人民币。/pp style="text-align: center "img title="5.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/ccc69d5e-376f-411f-abe1-31a2a11fadd8.jpg"//pp  无论试剂还是仪器,进入2017年国内化学发光相应产品审批数量均明显减少。/pp style="text-align: center "img title="6.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/1bc95e47-566d-442f-b7ae-111172ae7bea.jpg"/  /pp  从化学发光检测项目来看,甲功、肿瘤检测是化学发光企业必争之地。/pp style="text-align: center "img title="7.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/28af80ca-8f62-418b-8f0d-13f80108e7c7.jpg"//pp  从行业发展趋势来看,技术突破、分级诊疗、价格优势等加速进口替代,2015年化学发光国产化10%左右,与生化诊断70%市场占有率有巨大差距,进口替代空间巨大。/pp style="text-align: center "img title="8.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/ef86d8bc-0489-44ca-9a9e-9d3eb761d4d7.jpg"//pp  另外一方面国家分级诊疗战略的大力推进,不断快速增加的基层医疗、诊断需求也在推动我国化学发光产业的进一步发展。/pp style="text-align: center "img title="9.jpg" src="http://img1.17img.cn/17img/images/201708/insimg/43312dd4-fe25-4c0e-9fc6-c302ecedb3bd.jpg"/  /p

开发光谱仪相关的方案

  • 去羟基增强玻璃的近中红外发光
    近中红外光广泛应用于光纤通信、医疗、遥感探测、说环境监控等应用领域,高效、稳定、紧凑的近中红外光光源是这些应用得以实施的基础。近中红外发光玻璃是制备近中红外光光源的核心材料,但是玻璃中含有的羟基是近中红外发光的淬灭中心与光吸收损耗的主要原因。怎样降低玻璃中的羟基含量成为提升近中红外发光玻璃的发光效率并降低光吸收损耗的重要方法。利用鼓泡法向玻璃液中通入去羟基试剂是目前降低玻璃中羟基含量的主要方法,但这种方法并不适合于所有基质玻璃材料,如掺铋发光玻璃、硫氧化物玻璃等,所以研究开发新的去羟基方法有利于开发新的近中红外发光材料,并开拓近中红外光的应用领域。
  • 紫外可见光谱法测量发光颜色
    在本申请说明中,介绍了通过JASCO分光光度计评估发光颜色和显色性的方法,用于LED、有机EL和PDP显示器的开发。此外,还介绍了一种使用相同系统评估液晶显示器(LCD)颜色的方法。关键词:V-650/660/670,紫外可见/近红外,VWLU-788光色测量/分析程序,ELM-742外光源光纤,光色,材料
  • 高光谱成像仪在OLED显示屏发光测试方向的应用
    高光谱成像仪(也称光谱相机或高光谱相机、高光谱仪),是将分光元件与面阵列相机完美结合,可同时、快速获取光谱和影像信息;可应用于诸多领域的科学研究及工业自动化检测。OLED显示屏发光测试配置:Omni-Imager-VN+金相显微镜

开发光谱仪相关的资料

开发光谱仪相关的试剂

开发光谱仪相关的论坛

  • ROHM面向微发光应用开发出亮度和色度表现出色的1608尺寸LED

    内置适合2mA低电流发光的示灯和数字显示器的视觉认知度世界知名半导体制造商ROHM(总部位于日本京都市)包括PLC*包括1等控制装置FA设备*2.调制调节器、路由器等通信控制设备的指示灯和数字显示应用,开发优化微发光应用的1608尺寸(1.6mm×0.8mm)LED“CSL1901系列”。近几年,随之而来LED随着产品技术的发展,发光效率飞跃,LED发光强度也在增加。随着发光强度的提高,在一些必须考虑相邻发光单元干扰的应用中,需要进行相应的调整,以使发光强度*3和发光波长*4更适合这些应用。另一方面,市场越来越需要满足低电流的特性LED产品。LED驱动ROHM利用自身部件的技术优势,通过定制LED优化了低电流驱动的微发光应用,开发了通用性高的1608尺寸LED产品。显示驱动新产品利用ROHM自身部件的技术优势,使2mA优良的产品特性在发光时实现,降低了微发光时的亮度和色度等视觉差异。普通的20mA规格LED亮度波动和色度变化在低电流发光时。与普通产品(2mA与发光时相比,新产品的亮度波动减少了约一半,色度变化减少了约3nm,这将有助于减少调光设计时间,提高指示灯和数字显示器的视觉识别。此外,该产品还包装了通用的1608尺寸,包括五种发光颜色,客户可以根据应用程序需求或型号变更要求轻松更换。驱动芯片[url=https://www.szcxwdz.com]创芯为电子[/url]为不同规模的企业提供电子元器件采购的平台。主要产品包括[url=https://www.szcxwdz.com]电源管理芯片[/url]、处理器及微控制器、接口芯片、放大器、存储器 、逻辑器件、数据转换芯片、电容、二极管、三极管 、电阻、电感、晶振等,并提供相关的技术咨询。在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,还可免费供样!

开发光谱仪相关的耗材

  • 化学发光成像系统配件
    化学发光成像系统配件同时具有化学发光成像和荧光成像功能,也是一套多功能免疫印迹成像系统。化学发光成像系统配件具有超高灵敏度制冷CCD相机和超快镜头,为用户提供超高灵敏度的多功能化学发光成像和荧光成像。 化学发光成像系统配件特点 三阶peltier制冷CCD相机,可制冷到室温-60℃工作,确保获得高质量图像 CCD相机分辨率高达2048x2048像素 配备超快镜头 多波长荧光灯光源 超级紧凑设计,方便操作 图像采集软件方便使用,图像分析软件功能强大 化学发光成像系统配件应用 化学发光成像:Western lightning, ECL, ECL plus, CDP star, Super signal, CSPD, lumiGlo 核酸检测,溴化乙锭,SYBR gold, SYBR Green, SYBR safe, GelStar, Fluorescein, Texas red 蛋白质检测:Coomassie blue, Silver Star, Sypro Red, Sypro Orange, Pro-Q Diomand, Deep Purple。 化学发光成像系统配件分析软件:获取凝胶图像, 控制光源镜头和相机工作 自动识别凝胶带数和背景,增加或删除凝胶带,调节或移动任意凝胶带 密度对比,扫描制定凝胶泳道,给出扫描曲线,泳道中的峰值和密度 计算凝胶带的迁移率,分子重量电泳,碎片尺寸和IEF(RF值) 化学发光成像系统配件参数 CCD尺寸:15.2*15.2mm 像素:2048x2048像素, A/D值:16 CCD温度:室温下-60℃ 镜头: 25mm, F0.95超快镜头 光源: EPI-White LED灯 软件:采集,分析软件 可选配件 荧光灯:365nm, 395nm, 460nm, 490nm, 530nm, 630nm 滤波片:530nm, 590nm, 630nm, 670nm. 孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括凝胶成像仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。 我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。 更多关于化学发光成像系统参数、化学发光成像系统应用等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
  • µStat ECL 电化学发光仪 STATECL
    μStat ECL 电化学发光仪订货号: STATECLμStat ECL 是一款便携式双恒电位仪/恒电流仪,与特种电化学发光(ECL)池组合使用,可采用 DropSens 丝网印刷电极(SPE)进行电化学发光研究。电化学和化学发光反应完全同步并可实时显示。该设备也可作为双恒电位仪/恒电流仪使用。技术参数:OD 光谱响应范围340-1100 nmOD 可编程增益放大器0.62 V/nW(310 ECL units/nW)OD 峰值灵敏度波长960 nm仪器重量(公斤)0.655光学检测器(OD)硅光电二极管,带前置放大器多通道仪器否尺寸 mm(宽/高/厚)恒电位仪:121x36x130;ECL 池:65x39x75工作电极共享辅助电极和参比电极最大数量2操作模式双恒电位仪;恒电位仪;恒电流仪最大电流(安培)±40 mA最大通道数1测得电位分辨率0.012 % 电位范围测得电流分辨率0.025 % 电流范围(最低电流范围处 1 pA)电位分辨率1 mV电位精度±0.2 %电位范围(伏特)±4 V电位范围数量(恒电流)2电位范围数量注释(恒电流)±100 mV,±1 V电流分辨率0.1 % 电流输出范围电流精度100 nA 至 10 mA 时 ≤0.5 % 电流范围电流范围数量8电流范围数量注释±1 nA 至 ±10 mA电源锂离子电池(1250 mAh);USB;兼容型直流充电器适配器(5 V)计算机接口Bluetooth 蓝牙、USB
  • 安捷伦 硫发光检测器硫化学发光测试样品G2933-85001
    硫化学发光检测器(SCD)备件安捷伦硫化学发光检测器(SCD)说明部件号预防性维护工具包,DP RV5油泵G6600-67007包括4个臭氧化学捕集阱、4个油凝聚过滤器元件和4个(1夸脱)盛装合成油的瓶子预防性维护工具包,干活塞泵G6600-67008包括4个臭氧破坏化学捕集阱和2个泵的维修工具包SCD DP燃烧头陶瓷管工具包G6600-60037包括密封垫圈、3个上层陶瓷管和1个下层陶瓷管Mobil 1合成油G6600-85001油雾过滤器,用于RV5泵G6600-80043油,Edwards Ultragrade,用于RV3和RV5泵G6600-85002O形环,内径1.301英寸G6600-80051臭氧破坏化学捕集阱G6600-85000用于油雾过滤器的备用油凝聚过滤器G6600-80044硫化学发光测试样品G2933-85001硫捕集阱G2933-85003对于H2和空气载气,每个钢瓶需要一个(共3个)备用色谱柱螺帽和密封垫工具包G6600-80018色谱柱螺帽,1/32英寸G6600-80072密封垫圈,色谱柱,1/32英寸x 0.5 mm熔融石英,Valco0100-2138密封垫圈,色谱柱,1/32英寸x 9 mm,聚酰亚胺/石墨0100-2430
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制