当前位置: 仪器信息网 > 行业主题 > >

开发光谱仪

仪器信息网开发光谱仪专题为您提供2024年最新开发光谱仪价格报价、厂家品牌的相关信息, 包括开发光谱仪参数、型号等,不管是国产,还是进口品牌的开发光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合开发光谱仪相关的耗材配件、试剂标物,还有开发光谱仪相关的最新资讯、资料,以及开发光谱仪相关的解决方案。

开发光谱仪相关的论坛

  • ROHM面向微发光应用开发出亮度和色度表现出色的1608尺寸LED

    内置适合2mA低电流发光的示灯和数字显示器的视觉认知度世界知名半导体制造商ROHM(总部位于日本京都市)包括PLC*包括1等控制装置FA设备*2.调制调节器、路由器等通信控制设备的指示灯和数字显示应用,开发优化微发光应用的1608尺寸(1.6mm×0.8mm)LED“CSL1901系列”。近几年,随之而来LED随着产品技术的发展,发光效率飞跃,LED发光强度也在增加。随着发光强度的提高,在一些必须考虑相邻发光单元干扰的应用中,需要进行相应的调整,以使发光强度*3和发光波长*4更适合这些应用。另一方面,市场越来越需要满足低电流的特性LED产品。LED驱动ROHM利用自身部件的技术优势,通过定制LED优化了低电流驱动的微发光应用,开发了通用性高的1608尺寸LED产品。显示驱动新产品利用ROHM自身部件的技术优势,使2mA优良的产品特性在发光时实现,降低了微发光时的亮度和色度等视觉差异。普通的20mA规格LED亮度波动和色度变化在低电流发光时。与普通产品(2mA与发光时相比,新产品的亮度波动减少了约一半,色度变化减少了约3nm,这将有助于减少调光设计时间,提高指示灯和数字显示器的视觉识别。此外,该产品还包装了通用的1608尺寸,包括五种发光颜色,客户可以根据应用程序需求或型号变更要求轻松更换。驱动芯片[url=https://www.szcxwdz.com]创芯为电子[/url]为不同规模的企业提供电子元器件采购的平台。主要产品包括[url=https://www.szcxwdz.com]电源管理芯片[/url]、处理器及微控制器、接口芯片、放大器、存储器 、逻辑器件、数据转换芯片、电容、二极管、三极管 、电阻、电感、晶振等,并提供相关的技术咨询。在售商品超60万种,原?或代理货源直供,绝对保证原装正品,并满?客??站式采购要求,当天订单,当天发货,还可免费供样!

  • 求助,激发光谱与发射光谱!

    各位老师,由荧光的激发光谱可以看出在某个激发波长下,物质的荧光强度最大。物质的发射光谱表示在固定激发波长下,物质发射的荧光强度与波长的关系。问题是,如果我要测试一个物质是否有荧光,我到底该选用哪一种谱,是激发光谱还是发射光谱?这两个谱到底是为了说明什么?

  • 拉曼光谱和光致发光谱的区别?

    拉曼光谱和光致发光谱的区别?

    想问一下,拉曼光谱和光致发光谱除了谱线横坐标不同外,还有什么别的区别?类似激光器、接收器、滤波片什么的有差异吗?前两天做了一个块体试样的拉曼和PL谱,把拉曼光谱的横坐标拉曼位移计算转换为波长(拉曼位移=激发光波数-拉曼散射光波数)后,发现两个谱图近似,想问一下,拉曼光谱是不是和光致发光谱除了横坐标不一样外,还有什么别的差异?下图红线是拉曼图,黑线是光致发光图。另外我也咨询过测试老师,老师说两个没有区别,http://simg.instrument.com.cn/bbs/images/default/emyc1010.gif说的太绝对了,我也没敢信。http://ng1.17img.cn/bbsfiles/images/2013/09/201309052037_462632_1698940_3.jpg

  • 【原创】化学发光及生物发光的原理及其应用

    化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为一般化学反应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称 ECL) 等。根据测定方法该法又可分为: 1 )直接测定 CL 分析法; 2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份; 3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ; 4 )固相、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、掖相 CL 。分析法; 5 )酵联免疫 CL 分析法等。 在整个的检测系统中其关键的部分为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。记录仪记录峰形,以峰高定量,也可以峰面积定量。因化学发光多为闪烁式发光 (1—2s 左右 ) ,故进样与记录时差短,分析速度快。第二部分、化学发光常用的化学试剂及其原理 化学发光是某种物质分子吸收化学能而产生的光辐射。任何一个化学发光反应都包括两个关键步骤,即化学激发和发光。因此,一个化学反应要成为发光反应,必须满足两个条件:第一:反应必须提供足够的能量( 170 ~ 300KJ / mol ) ,第二,这些化学能必须能被某种物质分子吸收而产生电子激发态,并且有足够的荧光量子产率。到目前为止,所研究的化学发光反应大多为氧化还原反应,且多为液相化学发光反应。 化学发光反应的发光效率是指发光剂在反应中的发光分于数与参加反应的分子数之比。对于一般化学发光反应,值约为 10 - 6 ,较典型的发光剂,如鲁米诺,发光效率可达 0 . 01 ,发光效率大于 0 。 01 的发光反应极少见。现将几种发光效率较高的常用的发光剂及其发光机理归纳如下。 1. 鲁米诺及其衍生物 鲁米诺的衍生物主要有异鲁米诺、 4— 氨基已基 —N 一乙基异鲁诺及 AHEI 和 ABEI 等。鲁米诺在碱性条件下可被一些氧化剂氧化,发生化学发光反应,辐射出最大发射波长为 425nm 的化学发光。 在通常情况下鲁米诺与过氧化氢的化学发光反应相当缓慢,但当有某些催化剂存在时反应非常迅速。最常用催化剂是金属离子,在很大浓度范围内,金属离子浓度与发光强度成正比,从而可进行某些金属离子的化学发光分析,利用这一反应可以分析那些含有金属离子的有机化合物,达到很高的灵敏度。其次是利用有机化合物对鲁米诺化学发光反应的抑制作用,测定对化学发光反应具有猝灭作用的有机化合物。其三是通过偶合反应间接测定无机或有机化合物。其四是将鲁米诺的衍生物如异鲁米诺 (ABEI) 标记到羧酸和氨类化合物上,经过高效液相色谱 (HPLC) 或液相色谱 (LC) 分离后,再在碱性条件下与过氧化氢-铁氰化钾反应进行化学发光检测。也可以采用其它分离方法,如将新合成的化学发光试剂异硫氰酸异鲁米诺标记到酵母 RNA 后,通过离心和透析分离,然后进行化学发光检测。此外应用的还有 N 2(B2 羧基丙酰基 ) 异鲁米诺,并对其性能进行了研究。 2 .光泽精 光泽精以硝酸盐的形式存在,在碱性介质中,过氧化氢将其氧化成四元环过氧化物中间体,而后裂解生成激发态的吡啶酮而发光。利用光泽精与还原剂作用,可用于测定临床医学上一些重要的还原性物质,如抗坏血酸、肌酸酐、谷胱甘肽、葡萄糖醛酸、乳糖、葡萄糖。 3 .洛粉碱 洛粉是文献上记载最早的化学发光试剂,但却迟迟未得到应用,直到 1979 年 Marino 等人将它应用于 Co 的测定后才得到重视。此试剂已被用于多种元素的分析测定。 4 .过氧化草酸酯类 草酸盐类化学发光反应大都生成过氧草酰 (Peroxalate) 中间体,因此这类反应亦称过氧草酰类化学发光反应。过氧草酸盐类化学发光分析应用的推广还有赖于新的荧光衍生试剂的开发。 5 . 吖啶酯类 McCap r 等合成了一系列吖啶酯类化合物,对该类试剂的化学发光机理研究表明,发光效率与试剂中的可解离酸性基团的 pKa 有密切关系, pKa 一般应小于 11 。吖啶酯类化合物是一类很有前途的非放射性核酸探针标记物,用作 DNA 的发光探针,发光量子产率高,稳定性好,标记物对杂交反应的动力学和杂交体的稳定性无影响,可以直接在碱性介质中进行化学发光反应。 以上五种化学发光剂化学发光量子产率高,水溶液稳定,能被多种氧化剂直接氧化而发光,也可被众多的金属高于催化发光反应而发光,许多无机、有机和生化组分也能增强或抑制其发光,因此应用十分广泛。目前报道的有邻菲咯啉,碱基水杨酸、罗明丹 —B 、没食子酸、香豆素、皮素,茜素紫、苏木色精,培花青,三苯甲烷类染料,丙酮、乙醇、羟胺等。这些试剂商品化程度高,价廉,使用方便,但化学发光量子产率较低,因此,研究增敏试剂来提高它们的化学发光量子产率是非常关键的。

  • 化学发光分析法应用进展

    摘要:对近年来化学发光分析法的研究应用最新进展作了评述,包括化学发光试剂的类型,化学发光在无机、有机及药物分析中的应用,全文引用文献105篇。 关键词:化学发光分析;应用进展;综述 RECENT DEVELOPMENT OF CHEMILUMINESCENCE ANALYSIS ZHANG Li—li,ZANG Li—guo,CHEN Zhen-zhen,TANG Bo Abstract: The recent development of chemiluminescence analysis was reviewed.The analysis of inorganic,organic and medicine samples as well as the chemiluminescence reagent were related with 105 references. Keywords:Chemilum inescence analysis;Recent progress;Review 化学发光分析法是近3O年来发展起来的一种高灵敏的微量及痕量分析法,具有仪器设备简单、操作方便,灵敏度高,线性响应范围宽和易于实现自动化等显著优点。近年来,在改进和完善原有发光试剂和体系的同时,新发光试剂的合成,新体系的开发,与其它技术的联用,尤其是流动注射技术,传感器技术,HPLC技术及各种固定化试剂技术的联用,更显示出化学发光分析快速,灵敏,简便等优点,也进一步拓宽了化学发光的应用范围,现在已广泛应用于矿物岩石分析、材料分析、环境保护监测、药物分析和临床分析等方面。 1 化学发光试剂的类型 1.1 鲁米诺类 鲁米诺作为一种有效的化学发光试剂目前仍受到广泛应用。利用金属离子或过渡金属离子的不饱和配合物对鲁米诺发光体系有很强的催化作用,可以测定金属离子或有机配体。张虹蔚等以苯甲酸与Cu(II)形成的不饱和配合物对鲁米诺-H2O2体系的催化作用为基础,建立了测定苯甲酸的流动注射分析方法。李绍卿等_2 利用钛铁试剂与Co(II)形成的配合物对鲁米诺一H2O2体系增强作用,建立了钴的化学发光分析新方法。 利用有机化合物或稀土离子对鲁米诺化学发光反应的抑制作用,测定对化学发光反应具有猝灭作用的有机化合物或稀土。陈华等 利用碱性条件下扑热息痛对鲁米诺-铁氰化钾体系发光反应的强烈抑制作用,建立了流动注射化学发光测定痕量扑热息痛的新方法。通过偶合反应可以间接测定无机或有机化合物。李峰等将生成H2O2的葡萄糖_葡萄糖氧化酶(GOD)的酶促反应与鲁米诺-KIO4-H2O2的化学发光反应相偶合,建立了一种流动注射化学发光测定葡萄糖的新方法,用于人血清中葡萄糖含量的测定。利用有机化合物对鲁米诺发光体系的增敏作用,可以测定此类有机化合物。杨季冬基于吩噻嗪类药物盐酸异丙嗪和盐酸氯丙嗪对K3Fe(CN)5-鲁米诺体系的发光有强烈的增强作用,测定了两个吩噻嗪类药物片剂。 1.2 光泽精类 光泽精(N,N-二甲基-9,9-联吖啶二硝酸盐)以硝酸盐形式存在,在碱性介质中,可与还原性物质作用发光。基于此,朱智甲等采用Jones柱在线还原产生Fe(Ⅱ)、Mo(Ⅲ)、V(Ⅱ)、W(Ⅲ),研究了这些离子与光泽精的化学发光反应,并建立了相应的流动注射化学发光分析法,分析效率高。此外,光泽精还可用于测定胍基化合物[1 。庄惠生等研究出另外三种光泽精衍生物,发现其中DMDSBA的化学发光强度是光泽精的22倍,为设计合成新的发光试剂提供了一定理论和实验依据。 1.3 钌(Ⅱ)-联吡啶配合物钌(Ⅱ)-联吡啶配合物具有独特的化学稳定性、氧化还原性和发光性,在硫酸介质中,它能与氧化剂产生化学发光,加入某些有机物可以增强其发光强度,且发光强度与有机化合物浓度呈线性关系。基于此,可以测定这些有机化合物。近来,可用钌(Ⅱ)-联吡啶配合物为发光试剂测定的物质比较多,如测定硫脲、6-巯基嘌呤、四环素、戊二醛、DNA、可待因、肉桂酸、葡庚糖酸、丙酮酸、核酸等。 1.4 新合成的化学发光试剂 李善茂等利用α-酮酸和4,5-二胺基邻苯二酰肼合成了三种发光试剂:EDIQ、HDIQ、CEDIQ,并详细地研究过氧化氢浓度、铁氰化钾浓度和氢氧化钠浓度对化学发光强度的影响,并对其化学发光性能进行了研究,发现新发光试剂EDIQ、HDIQ、CEDIQ发光强度分别为鲁米诺的0.83、3.51、1.92倍。LI等合成了新发光试剂DTMC,可用于测定H202,灵敏度高,检出限为4.0×0.00000001mol/L。Sakata等利用氨基吡嗪类似物作为化学发光试剂测定丙酮酸,经过试验,发现在四种氨基吡嗪类似物中,2-氨基-5-3,4,5-三甲基苯基)吡嗪是最灵敏的一种,化学发光强度大约是与氨基吡嗪在一起所获得的化学发光的四倍。 1.5 其它类型的化学发光试剂 在酸性条件下,KMnO4有很强的氧化性,可与许多物质发生化学发光反应,依此来测定吡哌酸、DL-酪氨酸、甲氧氯普胺等。 Ce(Ⅳ)可与水杨酸或头孢氨苄形成化学发光体系,从而实现了它们的测定。利用氟喹诺酮类对亚硫酸盐和Ce(Ⅳ)反应的增敏作用,可以测定此类物质。 此外,还有另外几种,如吐温80。钌(Ⅱ)邻菲咯啉、焦性没食子酸、槲皮素(QCT)等,这些发光试剂应用不多,有待于开发研究。

  • 【讨论】电化学微量发光的光谱测试

    在一个烧杯里放上溶液,放入直径大约是2mm的电极,然后通电在电极的顶端底部有很微弱的发光(肉眼是看不到的)。想测试一下发光的光谱曲线,如何实现?曾经用光纤的光谱仪做过实验,不行。

  • 【分享】显微镜的新光源---阴极发光

    阴极发光仪可用于石英、方解石、白云石以及钻石等固体样品结构和组成的确定,同时,不会对样品造成任何破坏。阴极发光仪具有换样快速方便,设计简单紧凑,以及易于和岩相学专用显微镜联机的优点。此外,样品室对样品大小的要求范围宽,而且对于适合低温产生阴极光的样品控温能力强。从80年代开始,阴极发光技术不仅应用在传统的地球科学和行星学领域,而且开创了玻璃、陶瓷、半导体和合成材料等行业的研究和应用;此外,阴极发光技术在法医学、考古学、材料科学领域等新的方向具有发展前途,阴极发光仪与EDS检测器的联机可获得相关样品的X射线光谱特征描述和元素分析。阴极发光仪在岩石学领域的应用价值已经得到普遍认可,如组份的分区,二次结晶、脱液、共生、断裂填合、辐射环、化石和有机残留物中的骨骼结构、胶结过程的描述、自生长石和自生石英的鉴定、砂岩和页岩的胶结、矿物在分离过程中的辨认等。目前,CAMBRIDGE IMAGE TECHNOLOGY LTD(CITL)的100多台产品已经广泛的分布在30多个国家的大学实验室里,在Elf、Gulf、Shell等15个著名石油天然气公司以及英国、美国、法国、西班牙、荷兰、阿根廷等国家的研究机构和国家历史博物馆也得到应用。阴极发光仪也应用于宝石特性的识别(天然石或人造石),人造宝石完美程度鉴定。南非、泰国、荷兰及英国的珠宝鉴定机构及珠宝商使用了该类产品。CL8200 MK5型阴极发光仪是MK4型的升级产品,主要在电子微控制和仪表数字显示方面进行了改进。显示面板新增了控制信息,并且可以根据房间的照明条件进行自动亮度补偿。产品开发还考虑到更换样品时切断束流电压并保证真空泵同时运行,节省了换样时间。另外,还设计了与计算机连接的扩展卡,便于将来仪器的软件升级。在绝大多数应用领域,阴极发光仪只需要少量样品,无需对样品进行涂层等前处理,而且测定过程不会对样品造成任何破坏。阴极发光仪可以根据工作目的安装在各种显微镜上,如偏光显微镜、实体显微镜、金相显微镜等。[em17]

  • 特殊的化学发光现象之三:纳米化学发光和电致化学发光

    如前所述,对于化学发光的研究一般仅局限于分子和离子水平以及简单的分子聚集体如胶束和微乳液等。纳米材料作为一种微尺度的物质构成单元,其特殊的Kubo 效应、小尺寸效应、表面效应及量子隧道效应使其呈现许多奇异的物理、化学性质。近年来,有关纳米材料参与的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相化学发光反应体系受到了越来越广泛的关注。对于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光反应,张兴荣课题组从2002 年开始利用纳米材料优良的催化性能发展了一系列基于纳米材料的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光传感器,主要用于易挥发性有机物的测定。例如,乙醇和丙酮蒸气在7 种金属氧化物纳米材料的催化氧化作用下具有化学发光现象,其中纳米TiO2 催化作用下的化学发光信号最强,其可能的发光中间体被认为是氧化生成的激发态乙醛分子,并具有很高的选择性。其它易挥发的有机物如丁酮和乙醛也能够在纳米材料的催化氧化作用下产生[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光。而挥发性氯代有机物在纳米TiO2 的作用下转化为Cl2;生成的Cl2 被富集在填充纳米TiO2 的管中,可以用柱后化学发光法检测。Bard 等于2002 年在Science 上发表第一篇有关纳米粒子的液相电致化学发光的报道以来,纳米粒子参与的液相电致化学发光和化学发光行为也已经引起了人们的关注。Bard 等报道半导体纳米粒子如Si,CdS,CdSe,CdSe/ZnSe,Ge 以及CdTe 等都可以产生电致化学发光。Poznyak 等报道了半导体CdSe/CdS 纳米粒子与H2O2 反应可以产生液相化学发光,其中CdSe/CdS半导体纳米粒子被鉴定为发光体。Corrales 等人报道了纳米TiO2 型着色剂,其化学发光特性可用于聚合物热稳定性的表征。在半导体纳米粒子参与的化学发光或电致化学发光反应中,半导体纳米粒子的表面缺陷以及量子尺寸效应是产生化学发光的基础。总之,纳米材料作为一种新型化学发光响应单元对于提高化学发光反应的效率以及开发新的化学发光反应体系具有重要意义

  • 激发光谱问题求解

    我先用3d扫描模式(激发波长从250nm改变到280nm)大致判断出荧光峰的位置,发射波长在420nm和480nm处的应该为荧光峰。于是我分别选取发射波长为420nm和480nm,作激发扫描,发现两者的激发光谱差别很大,但激发波长在330nm和350nm处的激发峰大致存在,但当em为480nm时的激发光谱中其它的峰都消失了。(图片在附件中)问题:1,消失的峰是些什么峰(散射,拉曼还是其它?) 2 ,到底哪一个激发光谱是比较可靠的?还是都有问题? 3,激发光谱中激发峰的位置是否与发射波长的设置有关?发射波长的设置改变,激发峰的位置是否也要发生改变?(包括强度和位置) 4,激发光谱可以作3d扫描吗?极度迷惑中,急盼各位达人给予指点。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=31895]激发与发射光谱[/url][img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=31896]激发与发射光谱[/url]

  • 化学发光谱图分析

    各位大神你们好,本人初次接触化学发光,想要请教一下,应该要如何分析化学发光光谱呢?我测了谱图,出峰间隔时间也不一样,有时候三个峰一起出来,有时候又只有一个峰单独出来,请问这是怎么回事呢?

  • 【转帖】化学发光的一些基础知识

    [size=2][font=新宋体]化学发光反应所以能用于分析测定,是因为化学发光强度(ICL)与化学反应速度(dc/dt)相关联,而一切影响反应速度的因素都可以作为建立测定方法的依据。化学发光反应一般可表示为:A+B → C*, C* → C+hv化学发光的反应既包括一个发光过程也包括了一个化学发光反应的过程,因此该发光反应的化学发光强度取决于化学反应的速率dc/dt和反应的化学发光量子效率( ΦCL ) ICL= ΦCLdc/dt.b6u4X!d(P5@-_式中ΦCL可表示为:ΦCL=ΦrΦf;Φr:生成激发态产物的量子产率,也就是每一个参加反应的分子产生的激发态; Φf :激发态产物分子的发光量子产率,也就是每一个激发态产生的光子数,对于一定的化学发光反应, 为一定值。由于化学发光测定易受化学反应条件,如pH值、离子强度、溶液组成、温度等的影响,影响反应速率或任意一个量子效率的因素都会改变发光强度。因此,在一定的化学反应条件下,通过测定化学发光强度就可以测定反应体系中某种物质的浓度。化学发光分析测定的物质对象可分为三类:第一类物质是化学发光反应中的的反应物;第二类物质是化学发光反应中的催化剂,增敏剂或抑制剂 第三类是偶合反应中反应物,催化剂,增敏剂等。这里所说的偶合反应其实就相当于前面提到的间接化学发光反应,它将一个化学发光反应与另一个或一系列反应进行偶合,只要这一个或一系列反应中的任何一种反应物或产物或催化剂(包括酶)能参与化学发光反应,就可以根据所产生的化学发光信号强度获得该反应中某一组分的量。通过标记方式利用这三类物质还可以来测定人们感兴区的其他物质。进一步扩大了化学发光分析的应用范围化学发光分析最初是以分立式进样化学发光仪作为研究手段,由于化学发光现象一般比较短暂且随时间变化较大,使用间歇式手工操作是较难取得良好的重现性,因此人们将流动注射技术引入到化学发光分析中。流动注射技术是hansen于1975年建立的,把一定体积的试样注入到流动试剂(载流)中,可以保证混合过程与反应时间的高度重现性,特别是在非平衡状态下高效率的完成试样的在线处理与测定。在化学发光分析中,化学反应器可以正面放置在接近光检测器的部位,因此检测器的仪接受较大分量的发射光子,从而提高了灵敏度,其灵敏度可达10-21mol,甚至可检测至单分子水平。化学发光分析的检测线并不受仪器的检测极限的限制,多数是受试剂的杂质污染以及由于浓度极低而带来的其他一些问题的限制。另外,由于化学激发作用具有电子激发态的均一性特点,通常其现行范围所展示的浓度区间较宽,可高达3~6个数量级。对于化学发光分析来说,由于激发能来源于化学反应,无须专门的激发光源以及相应的单色器和聚焦透镜等,所以仪器设备简单、廉价、易微型化。分析化学,论由于化学发光现象一般比较短暂,因此化学发光分析所要求的时间也较短,但其最大的缺点是选择性差。因为化学发光分析的测定大多是在相同条件下,沿用同一个化学发光反应进行的,因而选择性较差。如典型的鲁米诺-过氧化氢化学发光体系,就能被10多种无机离子和30多种有机物催化或者增敏,且均在pH8~11的碱性条件下完成。近年来,化学发光检测与色谱以及毛细管电泳等分离技术的联用,在很大程度上解决了化学发光分析选择性差的问题,扩大了化学发光分析的应用范围。为了提高化学发光分析法的选择性,将高灵敏度的化学发光检测技术与高效能、高分辨力的高效液相色谱或毛细管电泳以适当的方式相结合,集合2种技术的优势,为人们展示了一个分离效能高、检测先低、分析速度快的方法。%I/_8e*液相色谱化学发光检测仪主要包括分离柱、泵系统、混合器和化学发光检测器。柱后的反应和化学发光检测是这一联用方法成功的关键。需要注意的是,化学发光的最佳条件往往并不是分离的最佳条件,比如色谱分离金属离子对常用酸性的流动相,而金属离子与鲁米诺的化学发光反应多在pH10时才有最强的发光强度,因此实际分析中要综合考虑各个方面的因素,选择合适的条件,使其既有利于分离又能保证灵敏、稳定的检测。|分析化学|化学分析|仪器分析|分析测试|色 发光在生物学领域也有着很多应用,主要简介如下:1 血浆和血清的化学发光 亚铁离子催化的化学发光自由基启动的脂质过氧化 (L PO) 是一个链式反应过程。反应过程中产生脂自由基 (R - ) 、烷氧自由基 (RO - ) 、共轭二烯和脂过氧化自由基 (ROO - ) 等中间产物。 ROO - 自反应会产生激发的烷氧自由基 (RO 3 ) 和单线态氧 (O 2 ) ,其回到基态时产生发光。因此,把 Fe 2 + 盐加入含有脂肪的系统中,如细胞膜、线粒体、微粒体、血浆、组织匀浆、尿液等,可产生化学发光。许多实验研究对加入 Fe 2 + 盐的不同疾病患者血浆和血清的化学发光进行的测量表明,与正常健康人相比,腹腔器官局部缺血、肢端闭合性局部缺血、血氧含量下降以及出血、手术性休克病人血浆和血清的发光强度降低。 与此相反,风湿性关节炎、阑尾炎、胆囊炎、胰腺炎等炎性疾病患者血浆和血清的发光强度升高。 降低和升高的幅度与疾病的严重程度有关。 可以看出,利用此方法有可能对非典型的心肌梗塞和腹腔器官炎性疾病做出区别诊断。 2血浆脂蛋白的化学发光 有研究提出,以分离的血浆脂蛋白悬液作为系统模型可以研究不同物质对系统过氧化的调节机制。在分离的血浆脂蛋白悬液中加入胆固醇,温育一定时间后在加入 Fe 2 + 盐,测量化学发光,发现胆固醇能使系统的发光强度降低。分析认为,这可能是由于类固醇的存在抑制了系统的过氧化。对实验性胆固醇过多血症家兔和动脉粥样硬化早期病人进行的测量发现,载脂蛋白 APO – B 。在 Fe 2 + 存在条件下的发光强度出现了增长。同样的现象在肝硬化和慢性肝炎患者身上也被发现。 3尿液的化学发光 利用尿液的化学发光可以研究肾脏功能的变化。将 Fe 2 + 盐加入尿液中,测量其化学发光,发现肾功能不足者尿液的发光强度降低。与正常健康人相比,阑尾炎患者尿液的发光强度则有不同程度的提高。利用这一方法可以评估肾脏的排泄及收缩功能。 4物质抗氧化活性的测定 利用发光测量技术可以评价某些生物组织和体液的抗氧化活性。以某一稳定的发光系统为模型,如脂肪体、线粒体、卵黄脂蛋白等,将待测的抗氧化物质加入该系统,然后加入 Fe 2 + 盐,测量其化学发光。 根据系统化学发光被抑制的程度可以评价物质的抗氧化活性。 利用这一方法进行的研究证明,不同疾病患者血浆和血清的抗氧化活性是不同的。 [/font][/size]化学发光研究的热点方向直接化学发光反应是当前化学发光分析研究的一个重要方向,人们通常通过大量试验筛选氧化反应及反应介质来证明某种有机药物、农药是否具有化学发光特性。以化学发光试剂标记核酸,运用化学发光分析进行核酸分子杂交分析是化学发光分析的前沿,其发展将为基因工程、基因诊断和治疗提供有效的检测手段。分析通常进行化学发光分析都是在现有化学发光试剂的基础上开展研究,而新型化学发光试剂的开发性研究较少,此领域还有研究空间。金属配合物,特别是钌等过渡金属配合物在化学发光分析中的作用正逐渐受到人们的重视。比如钌(Ⅱ)-联吡啶常用作电致化学发光试剂

  • RF5301荧光光度计如何测发射光谱和激发光谱的??

    我是小白,最近在学习使用RF5301荧光光度计,由于说明书是英文的,看起来费劲的很,我想问问:1。如果我要测试样品的发射光谱和激发光谱,那使用仪器之前就要选择两片不同中心波长的滤光片插到仪器里面,是不是呢?还是不管测发射光谱还是激发光谱,都可以使用同一片滤光片来测?哎,不懂啊。2.如果是这样,那Xe灯光源怎么能根据我是测发射光谱还是激发光谱来测试呢?(测发射光谱和激发光谱所安放滤光片的插槽是互相垂直的,比色皿是四面透光的)。安放Xe灯的位置好像是固定的吧!我猜的。

  • 化学发光及生物发光的原理及其应用

    化学发光及生物发光的原理及其应用

    第一部分 概述 化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。化学发光体系用化学式表示为: [img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608291133_24995_1636364_3.jpg[/img]依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为一般化学反应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称 ECL) 等。根据测定方法该法又可分为: 1 )直接测定 CL 分析法; 2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份; 3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ; 4 )固相、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]、掖相 CL 。分析法; 5 )酵联免疫 CL 分析法等。 化学发光的系统一般可以表示为: [img]http://ng1.17img.cn/bbsfiles/images/2006/08/200608291133_24996_1636364_3.jpg[/img]在整个的检测系统中其关键的部分为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。记录仪记录峰形,以峰高定量,也可以峰面积定量。因化学发光多为闪烁式发光 (1—2s 左右 ) ,故进样与记录时差短,分析速度快。

  • 化学发光免疫诊断ivd中常用的化学发光底物试剂参数

    在我们国内免疫学的发展主要经过了三个阶段:放射免疫法(RIA)已经处于衰退期,仍普遍用于县级以上医院,试剂系列化;酶联免疫发(ELISA)普遍用于临床机构,产品成熟,试剂尚未系列化(运用色原ADPS,TOOS,MAOS等同过氧化氢偶联的方法就是属于此类);化学发光免疫法(CLIA)这个是比较先进的方法,个别较大医院应用,在国外已经比较成熟,但国内尚属于导入期或成长期,主要依赖进口。这里重点介绍下化学发光免疫中的发光底物试剂

  • 【分享】化学发光两类试剂介绍

    1.鲁米诺(luminol),异鲁米(isoluminol)和他们的衍生物 鲁米诺(3—氨基—邻苯甲酰肼,1),异鲁米诺(2)及其衍生物(如氨基丁基乙基邻苯甲酰肼,ABENH,3) 在发光分析中被使用。 在二甲基亚砜中,鲁米诺的量子产率不超过5%,在水溶液中是1%~1.5%。鲁米诺在碱性条件下能被许多氧化剂(例如H2O2,O2,ClO-等)氧化而发出蓝色的光,发光反应的量子产率介于0.01~0.05之间,是一个研究最早,最多,应用最广泛的发光试剂.2.过氧草酸类过氧草酸盐(peroxalate)(酯)包括一大类物质,他们自身并不发光,其化学发光均为敏化化学发光,化学发光反应是芳香草酸值得过氧化氢氧化作用,芳香草酸盐和H2O2芳香草酸盐和H2O2反应形成高能量的中间物。 与鲁米诺相比,过氧草酸盐化学反应的发光效率更高,可达到27%,且在较宽的酸度范围内(PH4~10)都能发光。 过草酸发光体系可用于测定的物质有:(1)待测物质本身是荧光剂,可作为能量接受体和发光体 (2)待测物质遭遇某一反应可产生H2O2等氧化剂而间接被测定;(3)待测物质可被衍生成荧光物质。可见,过氧草酸盐类化学发光法的分析应用还有赖于新荧光衍生剂的开发。

  • 化学发光基本常识普及系列之化学发光现象及化学发光法

    化学发光现象是一种常见的自然现象,利用化学发光测定化学发光反应反应物、催化剂、增敏剂、抑制剂,偶合反应中的反应物、催化剂、增敏剂的方法叫做化学发光法。   化学发光是物质在化学反应过程中,其物质分子吸收化学能产生光的辐射现象。

  • 化学发光联用技术-流动注射化学发光

    FIA-CL检测系统 流动注射分析是Ruzicka和Hansen于1975年首先提出的一种创新技术,这种新技术的发展摆脱了溶液化学分析平衡理论的束缚,可在物理和化学不平衡状态下进行测定。它适应性广泛,分析效率高,试样和试剂消耗量少,检测精密度高,设备简单。该技术发展非常迅速,已被广泛应用于很多分析领域。流动注射分析技术能使样品和试剂以高度重现的方式混合,从混合到检测的时间间隔可以严格控制。同时,由于计算机控制和大规模集成电路的出现,FIA可以实现自动化分析。而一般的化学发光是快速反应,在溶液混合的瞬间就产生发光信号,并且在几秒内发光强度达到峰值。要达到精度较好的测量结果,就必须严格保持测量过程中的物理性质和化学性质能很好地重现。在这方面,流动注射为化学发光分析提供了一个很好的手段。在流动过程中,所有的试验参数如试剂体积、保留时间、温度、试剂的混合时间和方式等都能严格控制并重复操作。因此,这种方法克服了化学发光分析法重现性差、操作费时、不便于实现自动化等缺点。流动注射和化学发光分析的结合,使之成为一种快速、有效的痕量分析技术,被广泛应用于水质检测、土壤样品分析、农业和环境监测、科研与教学、发酵过程监测、药物研究、禁药检测、血液分析、食品和饮料、分光光度分析、火焰光度分析、质谱分析、原子光谱分析、荧光分析、生物化学分析等等。 流动注射化学发光系统一般包括两个部分。一部分是流动体系部分,它控制发光试剂的流速及其混合方式;另外一部分是化学发光检测部分,它将检测到的发光反应发出的光转变成电信号,并由记录仪记录下其发光响应值。常见的流动注射化学发光检测器的装置示意图如图1-1a所示: 图1-1 FIA-CL 联用装置示意图Fig. 1-1 Schematic diagram of FIA-CL detectionP:蠕动泵;V:进样阀;C:流动池;D:检测器;R:记录仪; W:废液 一般优化的流路有三通路、四通路和多通路等形式,各发光试剂以某一恒定流速经蠕动泵驱动,通过进样阀将待测组分与发光试剂混合, 在流动池里面发生化学发光反应, 流通池亦即反应池内的光信号由光电倍增管转换并放大,最后由记录仪记录。由于该检测法不需要光源,消除了光源不稳定的杂散光的干扰, 另外直接检测发光强度,因此灵敏度很高。流动池中的反应可以是不完全反应,只要其中的试剂分散和反应程度可以高度重现就符合试验要求。试样和试剂的分散是所有FIA方法的核心问题,通常用分散系数D来描述试样的分散状态。D定义为:决定分析读数的流体微元组分在扩散过程发生前(C0)与发生后(Cmax)的浓度比值,即D=C0/Cmax 。FIA体系中的分散过程是许多不同因素 (包括流速、管道长度、管径、试样体积与检测方式等)的复杂函数。主要影响有:①试样的进样体积越大,D越小;②反应器管长度越大,D越大;③管路集合形状越复杂,试样在其中流动方向改变越多,D越大;如:直管反应器的D最小,盘管与编织管反应器的D较大。④流速对D的影响与反应器的管径大小有关,关系较复杂。在此装置中,流动池的设计是个关键。由于直管反应器的分散系数较小,试剂分散度不够,所得的发光强度值较弱。因此,在实际中,一般采用如图1-1b所示的盘管式反应器。一般来说,反应器的体积应尽可能大,其发光截面尽可能大,且同光电倍增管尽可能靠近。根据实际分析情况,还可以将萃取渗析、交换柱及填充柱引入FIA系统,使FIA-CL应用更加广泛。

  • 【求助】为什么会这样:关于ZnO的光致发光谱

    诸位大侠,俺头一次做固体ZnO的光致发光谱,用的仪器是Varian Elipse,激发波长是325 nm,在室温下(16oC)做的,结果是在650nm处得到一个很锐的峰,其他地方基本没有峰。这一结果和文献上报道的ZnO的光致发光谱大相径庭,不知道到底是什么原因导致的?请高手给予指点。拜谢!!!

  • 化学发光仪

    本人研一新生,想做化学发光,但组内没有化学发光仪,有一台荧光分光光度计,不清楚如何使用荧光分光光度计来测化学发光强度!也可以测流动化学发光么?希望懂的老师,师兄师姐可以帮忙一下,或留下联系方式,十分希望有人指点!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制