光焱科技QE-R量子效率系统
光焱科技QE-R量子效率系统

面议

暂无评分

光焱科技

暂无样本

QE-R

--

港澳台

  • 金牌
  • 第2年
  • 一般经销商
  • 营业执照已审核
核心参数

测量模式: 交流

Enlitech QE-R 量子效率分析仪的优势

可靠性和可信度

*光焱科技(Enlitech)量子效率校准和测试方面获得 ISO 17025 认证的量子效率系统制造商。

*已经安装了500 多套 QE-R 量子效率系统

*QE-R 量子效率系统的名字被 1000 多篇SCI 期刊论文提及。

*QE-R 量子效率系统的测量量子效率结果被高影响因子期刊( NatureScience Joule)广泛采用和引用。

专业协助

* 2008 年以来,在过氧化物和有机太阳能电池量子效率测量方面有超过十年的经验。

*提供数据验证和分析软件,帮助研究人员从量子效率光谱中快速获得物理参数。

*分析软件的物理模型被许多高影响因子的期刊所证明和采用。

*同学们不用担心实验部分的期刊审稿问题。

特色 

高效光学引擎:

QE-R量子效率系统采用了高效的椭圆反射器,比传统的球形透镜和反射器具有更高的集光效率。其光照强度是传统 350W 灯系统的 6 倍,发热问题和维护费用更少。

小巧且灵活

QE-R量子效率系统 60cm x 60cm x 60cm 的主体内集成了所有光学和机械部件,其中包括电信号采集锁定放大器。它节省了大量实验室空间,但保持了各种类型的太阳能电池测试夹具的灵活性,如矽、薄膜、串联、CPVCIGSOPVDSSC、钙钛矿太阳能电池。
完整的 Glovebox 整合

QE-R量子效率系统提供简单而完整的手套箱集成方案。我们已经在各地區为许多不同的手套箱制造商提供了超过 50 套集成的 QE-R 量子效率系统和太阳模拟器。我们不仅提供硬件,还分享手套箱内精确表征的经验,这有助于我们的客户突破世界效率记录。

 

*用于单结太阳能电池测试。Perovskite 太阳能电池、有机太阳能电池、Si HJT 电池、TOP-Con 电池、CIGSCzTsCdSGaAs、薄膜电池。

*用于串联太阳能电池测试:钙钛矿 / Si 串联电池、钙钛矿 / CIGS 串联电池、聚光太阳能电池、III-V 串联太阳能电池。

*波长范围:300~1100 nm 300~1800 纳米; 300~2500 nm 或自订

*提供 QE(量子效率)、PV-EQE(外部量子效率)、IPCE(入射光子-电子转换效率)、SR(光谱响应)、IQE(内部量子效率)、反射率的数据。

*结构紧凑且重复性高超过 99.5%

*两个独立的锁相放大器(每个都是双相的),可同时监测光功率和测量设备信号。

*拥有集成电脑控制信号开关可以降低维护和耗材成本。

*拥有手套箱集成能力。

*符合 ATSM E 1021-15, ASTM E948, IEC 60904-8, IEC 60904-7, IEC 60904-1

*NIST-traceable SI  可追溯链。

* ISO / IEC 17025 认可的期刊论文提交 EQE 不确定性评估报告和质量控制。

*各种定制的样品测试夹具。

系统设计

A4-QE-R-System-Design-1.png

应用范围

*钙钛矿太阳能电池 (PSC) 测试

*有机太阳能电池(OSCOPV)测试

*太阳能电池描述

*体异质结相分离研究

*体积-异质结相分离研究失配因子 (MMF) 计算

*AM 频谱下的短路电流密度 Jsc(QE)

*加工控制

相关方案

  • 近年来,钙钛矿/晶硅叠層太阳能电池 (tandem solar cells) 凭借其高效率和低成本等优势,成为光伏领域的研究热点。为了实现大规模的串联太阳能电池模块化生产,使用工业化 Czochralski 硅晶片制造的全纹理结构串联器件,将成为未来发展趋势。然而,传统用于调节钙钛矿界面性质的表面工程策略并不适用于微米级的纹理表面。 南昌大学的姚凯教授团队在 Angewandte Chemie International Edition 期刊上发表了一项最新研究成果,他们开发了一种全新的表面钝化策略,利用动态喷涂 (DSC) 技术将氟化噻吩乙胺配体均匀地涂覆在纹理硅表面,有效地抑制了钙钛矿的相变,并提高了器件的效率和稳定性。

    能源/新能源 2024-06-21

  • 钙钛矿太阳能电池(PSCs)自2009年报导以来,由于其高效能、低成本和简单制备工艺迅速引起了学术界和工业界的广泛关注。其核心材料钙钛矿具有优异的光电特性,如高吸光係数、长载流子扩散长度和高载流子迁移率,使其成为下一代光伏技术的潜力选手。在过去十年间引发了广泛的研究热潮,并被认为是最有潜力替代传统硅太阳能电池的下一代光伏技术之一。 近年来,钙钛矿太阳能电池(PSCs) 的效率不断提升,并在 NREL 的效率认证数据中屡创新高。 叠层结构的出现自2017开始,在過去三年中,钙钛矿/晶硅叠层太阳能电池的效率取得显着的突破。 钙钛矿/晶硅叠层太阳能电池,更是被认为是未来实现更高效率和更低成本的理想方案。然而,在空气环境下实现宽带隙钙钛矿 (~1.68 eV) 的可扩展制备一直是一个巨大的挑战,因为水分会加速钙钛矿薄膜的降解。 南京大学谭海仁教授团队近期取得重大突破,他们在研究中发现,溶剂的性质对水分干扰的影响程度至关重要。通过深入研究,他们发现正丁醇 (nBA) 由于其低极性和中等挥发速率,不仅可以有效缓解空气环境中水分对钙钛矿薄膜的负面影响,還可以提高钙钛矿薄膜的均勻性,进而实现可扩展制备。

    能源/新能源 2024-06-20

  • 有机光伏电池(OPVs)以其轻薄、柔性、可印刷等优势,在过去几年中吸引了广泛的关注。然而,OPVs 的效率和稳定性仍然落后于传统硅太阳能电池。提高受体材料的电致发光效率,可以有效降低非辐射能量损失,进一步提升有机光伏电池的性能。 中国科学院化学研究所侯建辉教授团队近期取得重大突破,通过在受体材料中引入吡咯环,成功合成出具有高电致发光性能的两种中等带隙受体材料:FICC-EH 和 FICC-BO。 该研究成果发表在国际顶尖期刊《Advanced Energy Materials》上。

    能源/新能源 2024-06-11

  • 二维钙钛矿材料因其优异的稳定性、结构多样性和可调谐带隙,在太阳能电池、发光二极管和光电探测器等领域展现出巨大的应用潜力。然而,与三维钙钛矿相比,二维钙钛矿的电荷传输效率较低,成为制约其性能提升的关键因素。 美国国家可再生能源实验室 (NREL) 的 Bryon W. Larson 和天津大学的 Fei Zhang 团队,在二维钙钛矿的电荷传输研究方面取得重大突破。他们发表在**《先进材料》(Advanced Materials)** 上的研究论文,对影响二维钙钛矿电荷传输的关键因素进行了深入分析,并提出了多种提高电荷传输效率的策略。

    能源/新能源 2024-06-06

  • 近年来, 钙钛矿太阳能电池(PSC)因其高效、 低成本、 易制备等特点, 成为下一代光伏技术。 为了推动钙钛矿太阳能电池的进一步发展, 来自中国香港的科研团队持续发力, 在国际顶尖期刊 Joule 上接连发表两篇重要研究成果。 这两篇研究展现了钙钛矿太阳能电池技术的未来潜力, 并为解决目前面临的挑战提供了新的思路。

    能源/新能源 2024-07-22

  • 全聚合物太阳能电池(all-PSCs)凭借其出色的稳定性和机械耐用性,被认为是未来太阳能电池应用的重要方向。全聚合物太阳能电池主要由供体和受体两种有机聚合物材料组成,其基本结构包括以下: l 透明导电电极: 通常由氧化铟锡(ITO)制成,用于光的透射和电子的导电。 l 电子传输层: 提高电子从活性层向电极的传输效率。 l 活性层: 由供体和受体材料组成,是光生电荷的主要产生区域。供体材料吸收光子产生激子(电子-空穴对),激子在受体材料处分离成自由电子和空穴。 l 空穴传输层: 提高空穴从活性层向电极的传输效率。 l 金属电极: 通常由银或铝制成,用于收集和导出电荷。 近年来,全聚合物太阳能电池的研究发展迅速: l 材料发展: 随着非富勒烯受体材料的快速发展,APSCs的光/热稳定性和柔韧拉伸性能显着提高。 l 转换效率: 研究显示,聚合物太阳能电池的转换效率已突破10%,这使其成为一种有竞争力的替代传统硅基太阳能电池的技术。 l 机械灵活性: APSCs表现出优异的透明性、溶液加工性和机械灵活性,使其在柔性电源系统中有广泛应用前景。 然而,由于其效率长期落后于小分子受体基太阳能电池,限制了其进一步发展。如何有效平衡并提升开路电压(Voc)和短路电流密度(Jsc)成为全聚合物太阳能电池领域的一大难题。 近期,香港科技大学颜河教授团队在国际顶级期刊 Energy & Environmental Science 上发表了突破性研究成果, 成功开发了一种名为PYO-V的新型聚合物受体, 它可以通过调节分子结构, 实现更宽的光谱吸收和更高的能量级, 从而有效提升了全聚合物太阳能电池的性能, 并实现了高效的多功能光伏应用。 颜河教授是香港科技大学化学系教授,长期致力于有机光伏材料与器件方面的研究, 在国际著名期刊发表了200余篇高质量学术论文。 他的团队致力于突破现有全聚合物太阳能电池的技术瓶颈, 为下一代高效稳定的光伏器件的开发提供新的思路和方向。

    能源/新能源 2024-07-12

  • 钙钛矿太阳能电池(PSC)作为下一代光伏技术的重要候选者,近年来取得了飞速的发展, 其光电转换效率已经接近甚至超越了传统晶硅太阳能电池。 然而,钙钛矿太阳能电池的稳定性问题依然是制约其商业化应用的关键难题。 反向偏压(reverse bias)对钙钛矿太阳能电池的稳定性有着重要影响, 它可能导致钙钛矿材料分解, 进而影响电池的长期稳定性。 因此,理解反向偏压对钙钛矿结构和性能的影响是提高电池稳定性的重要研究方向。 研究人员需要深入了解反向偏压条件下钙钛矿材料的降解机制, 以找到提高其稳定性的解决方案。 研究反向偏压下的降解机理能帮助科学家找出钙钛矿太阳能电池的弱点。 这些研究有助于设计更加耐用的材料和结构, 以防止电池在反向偏压条件下快速降解。 同时,反向偏压会导致效率损失,这主要是由于电荷载流子的再结合速率增加以及可能的渗透电流增大。 了解和克服这些问题对于保持高效率运行的钙钛矿太阳能电池至关重要。 研究反向偏压对电池的影响还有助于改进封装技术, 防止环境因素(如湿气和氧气)在反向偏压条件下对钙钛矿材料造成的影响。 近期,北卡罗来纳大学教堂山分校黄劲松教授团队在国际顶尖期刊《Nature Energy》上发表了一项重要研究成果, 揭示了钙钛矿太阳能电池在反向偏压下失效的机理, 并通过构建强化屏障, 显着提高了钙钛矿太阳能电池在反向偏压下的稳定性。

    能源/新能源 2024-07-11

  • 太阳能电池是实现清洁能源的重要途径,但传统硅基太阳能电池的效率受材料特性限制,无法充分利用所有光谱。 近年来,钙钛矿太阳能电池凭借其高效、低成本和制备工艺简单等优点,成为具潜力的下一代光伏技术之一。然而,钙钛矿材料的稳定性问题一直是制约其大规模应用的瓶颈。 近期,中国科学院化学研究所胡劲松研究员领导的研究团队在Energy & Environmental Science 期刊上发表了一篇重要研究成果。 他们巧妙地利用可调节的膦配体对钙钛矿/聚合物界面进行分子调控,成功地提高了钙钛矿太阳能电池的效率和稳定性,突破了此前纪录,将器件效率提升至25.08%! 胡劲松研究员,现任中国科学院化学研究所研究员,博士生导师。 他长期致力于有机光电材料和器件、钙钛矿太阳能电池等方面的研究,在国际重要学术期刊上发表SCI论文300余篇,被引用20000多次,获授权发明40余项。 他的研究团队在钙钛矿太阳能电池领域做出了突出贡献,曾获国家自然科学奖二等奖等重要奖项。

    能源/新能源 2024-07-09

售后服务承诺

保修期: 1年

是否可延长保修期:

现场技术咨询:

免费培训:

免费仪器保养: 请与售后客服主管联系

保内维修承诺: 请与售后客服主管联系

报修承诺: 请与售后客服主管联系

用户评论
暂无评论
问商家

光焱科技量子效率测试QE-R的工作原理介绍

量子效率测试QE-R的使用方法?

光焱科技QE-R多少钱一台?

量子效率测试QE-R可以检测什么?

量子效率测试QE-R使用的注意事项?

光焱科技QE-R的说明书有吗?

光焱科技量子效率测试QE-R的操作规程有吗?

光焱科技量子效率测试QE-R报价含票含运吗?

光焱科技QE-R有现货吗?

光焱科技QE-R量子效率系统信息由光焱科技股份有限公司为您提供,如您想了解更多关于光焱科技QE-R量子效率系统报价、型号、参数等信息,欢迎来电或留言咨询。
移动端

仪器信息网App

返回顶部
仪器对比

最多添加5台