视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

伊利诺伊大学在纳米电子设备稳定导电性取得新突破!

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2024/10/08 13:57:06
导读: 研究人员提出梯形分子设计策略,解决单分子结导电性控制难题,通过稳定骨架和受限旋转提高导电稳定性,展现极高水平导电性,为纳米间隙独立导电性提供新思路,有望应用于下一代电子材料。

研究背景

分子电子学是纳米尺度电子设备的前沿领域,因其在继续推动电子设备小型化方面展示了巨大的潜力,成为了研究热点。然而,单分子结中的导电性控制仍然面临重大挑战,特别是分子构象的动态变化和纳米间隙尺寸的不确定性,这些问题严重影响了设备性能的稳定性和可重复性。

为了解决这些问题,伊利诺伊大学香槟分校(University of Illinois Urbana-Champaign)Jeffrey S. Moore & Charles M. Schroeder教授和阿贡国家实验室(Argonne National Laboratory)的Rajeev S. Assary教授合作提出了梯形分子的设计策略。这些分子具有形状持久性结构,能够在分子结中实现稳定的导电行为,不受取代基团、对阴离子或结位移的影响。

通过一锅多组分合成方法,科学家们成功合成了多种带正电的梯形分子,并通过实验和计算验证了它们的优异导电性。这些带电梯形分子展现出几乎与间隙无关的导电性,表明其骨架的刚性和受限的锚定基团旋转显著提高了导电稳定性。此外,梯形结构促进了电子的离域,使导电性提高到极高水平。这些研究结果不仅为分子电子学中的纳米间隙独立导电性提供了新的设计思路,还展示了梯形分子在下一代电子材料中的应用潜力。

科学亮点


1. 实验首次采用了一锅多组分合成策略,成功合成了多种带正电的梯形分子,这些分子均由易得的起始材料制备而成。


2. 实验通过:对这些带电梯形分子进行的实验表明,它们在分子结中展现出优异的形状持久导电性,无论是在取代基团、对阴离子还是结位移方面都保持稳定。这种导电性行为主要归因于梯形骨架的刚性和带电系统中锚定基团的受限旋转。


3. 进一步发现:我们将这一设计原则扩展到类似蝶形的分子系统,验证了该策略在无间隙导电性方面的适用性。此外,梯形结构促进了电子的离域,与非梯形分子相比,导电性提升至极高的水平(约101.6)。


4. 额外发现:通过调整施加的偏压,我们能够控制不同结合位点的概率,从而实现对双重电荷输运通路的调控。这一发现展示了我们策略的灵活性和控制能力。

图文解读

图1:  单分子电子学的分子设计和合成。

图2:梯形和非梯形分子的单分子电导。


图3:梯形分子中,电压调节的双电荷传输途径。


图4: 结构和电子性质比较分析。

图5: 蝶形分子的单分子电导。

科学启迪

本文通过精确的分子设计和创新的合成策略,为解决纳米尺度电子设备制造中的关键挑战提供了新思路。我们展示了带电梯形分子在分子结中表现出卓越的形状持久导电性,不受取代基团、对阴离子或结位移的影响。这种稳定的导电行为源于梯形骨架的刚性和带电系统中锚定基团的受限旋转,这为实现纳米间隙独立的导电性提供了可能的解决方案。此外,梯形结构的电子离域特性显著提高了导电性,达到极高的水平。我们还发现,通过改变施加的偏压可以控制不同结合位点的概率,展示了对双重电荷输运通路的精确控制。这些发现不仅突显了带电梯形分子作为未来电子材料的潜力,还为纳米尺度器件的小型化和性能优化开辟了新的途径。

参考文献:Liu, X., Yang, H., Harb, H. et al. Shape-persistent ladder molecules exhibit nanogap-independent conductance in single-molecule junctions. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01619-5


[来源:仪器信息网] 未经授权不得转载

标签: 电子设备偏压
用户头像

作者:仪器 Go

总阅读量 2w+ 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~