视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

创新过渡金属提升近红外发光器件亮度达370倍!

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2024/10/08 13:51:17
导读: 过渡金属Cr3+作为敏化剂,大幅提升Na3CrF6:La3+纳米颗粒近红外发光亮度至传统材料370倍,适用于低成本过渡金属掺杂的镧系纳米颗粒,为低功率激发的高亮度近红外发光系统提供新思路。

【研究背景】

近红外(NIR)发光材料是光通信、激光源和生物成像等领域的重要研究对象,因其在这些应用中的广泛前景,成为了研究热点。然而,传统镧系掺杂纳米颗粒的敏化剂通常具有较低的摩尔消光系数,这限制了其在低功率激发场景下的亮度表现,成为应用推广的主要挑战。

有鉴于此,复旦大学化学系张凡教授课题组提出了利用过渡金属铬(Cr3+)作为新的敏化剂的策略,开发出具有高亮度近红外发光的新型纳米颗粒Na3CrF6。研究发现,Cr3+的摩尔消光系数远高于传统镧系敏化剂,使其能显著提高光收集效率。通过将Na3CrF6作为敏化剂和主机,科学家们成功提升了镧系掺杂纳米颗粒的亮度,最高可达传统材料的370倍。此外,该策略也适用于其他低成本过渡金属(如Mn2+和Ni2+)掺杂的镧系纳米颗粒,扩展了这些材料的应用范围。该研究为开发高信噪比、低功率激发的近红外发光系统提供了新的思路,具有广泛的应用潜力。

研究亮点

1. 实验首次:引入了Na3CrF6作为既是敏化剂又是主机的晶体纳米颗粒,用于提高镧系元素(如Er3+、Tm3+、Yb3+、Nd3+)的近红外发射亮度。这种新型的Na3CrF6:X纳米颗粒(X为镧系激活剂)展示了其作为高亮度近红外发射材料的潜力。


2. 实验通过:

使用Na3CrF6:该材料的摩尔消光系数显著高于传统系敏化剂(如Yb3+),使得Na3CrF6:X纳米颗粒的亮度比最强的传统系敏化纳米颗粒高出多达280倍。通过在Na3CrF6:X核上外延生长Na3CrF6壳,亮度进一步提高了370倍。

验证了:这种新型的敏化系统也适用于其他掺低成本过渡金属(如Mn2+Ni2+)的系纳米颗粒。与传统的系敏化纳米颗粒相比,Na3CrF6:X纳米颗粒可以在低功率激发源(如白光发光二极管或持续发光材料)下实现有效的NIR发光。相比之下,传统的纳米颗粒需要激光激发才能达到相同的发光强度,这表明Na3CrF6:X纳米颗粒在低照度应用中表现出更高的亮度和信噪比。

图文解读

图1: Na3CrF6:X性质表征。

图2. Na3CrF6: X 增敏机理的光谱证据。

图3. 过渡金属敏化稀土杂化纳米结构及其组成的控制。

图 4 CLNP 用于多路加密和生物成像。

图 5 以商业化余辉荧光粉为内激发源的无创双通道高对比度生物显像。


结论展望

本文揭示了过渡金属敏化剂在提高近红外(NIR)发光纳米颗粒亮度方面的巨大潜力。传统镧系元素敏化剂由于其低摩尔消光系数,往往需要高功率激光才能实现显著的NIR发光,这限制了其在低功率激发场景中的应用。本文通过引入具有高摩尔消光系数的Cr3+作为敏化剂,成功解决了这一问题,并显著提升了Na3CrF6基纳米颗粒的亮度,达到了传统镧系敏化纳米颗粒的370倍。这一创新不仅扩展了镧系纳米颗粒的应用范围,还使其在低功率激发下,如白光发光二极管(WLED)或持续发光材料下,能够实现高效发光。此外,这项研究还为开发高信噪比的生物成像和标记技术提供了新的方向,尤其是在低照度条件下的应用。这一发现提示我们,通过选择适当的敏化剂和优化纳米颗粒的结构,可以显著提升光学性能,从而推动近红外发光材料在实际应用中的广泛使用。

原文详情:Ming, J., Chen, Y., Miao, H. et al. High-brightness transition metal-sensitized lanthanide near-infrared luminescent nanoparticles. Nat. Photon. (2024). https://doi.org/10.1038/s41566-024-01517-9

[来源:仪器信息网] 未经授权不得转载

用户头像

作者:仪器 Go

总阅读量 2w+ 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题 更多推荐

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~