视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

首届“先进多相流测试技术论坛”成功召开 600人参会超预期

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2020/06/11 11:12:36
导读: 超800人报名参会,出席人数达600,出席率高达71.2%,8位从事多相流测试技术研究的国内顶尖学者带来了精彩报告。

2020年6月10日,由中国计量测试学会多相流测试专业委员会、江苏大学和仪器信息网联合主办的首届“先进多相流测试技术论坛”成功召开,共有来自大专院校科研院所的师生、企事业单位从事多相流研究的实验员、工程师超800人报名参会,出席人数达600,出席率高达71.2%。

微信图片_20200611110244_看图王.jpg

本次论坛共有8位从事多相流测试技术研究的国内顶尖学者带来了精彩报告,论坛主要针对多相流动过程中涉及的速度场、温度场、组分浓度场以及压力场测量等方面,重点关注先进的光学和光谱学测试手段,邀请相关专家就激光吸收光谱层析成像、热流体光学测试、分子标记流场测试,以及光场、全息和离焦等三维成像等多相流前沿测试方法与技术,及其在燃烧过程、流动过程、颗粒和喷雾场中的应用进行介绍和探讨。中国计量测试学会多相流测试专业委员会主任、上海理工大学教授蔡小舒为大会致辞。

1.jpg

北京航空航天大学仪器科学与光电工程学院院长、长江学者特聘教授徐立军
《电学传感和TDLAS技术在燃烧过程在线监测中的应用》

徐立军教授作率先特邀报告,他从离子电流传感器的应用引入,重点介绍了北航自研的电学成像系统和TDLAS测量系统及其应用。报告表示将可调谐二极管激光吸收光谱(TDLAS)技术与层析成像技术相结合,可以实现燃烧气体温度场和浓度场的非接触测量,无需预处理、响应速度快、数据准确、可对多参数进行同时测量,几乎不受温度上限的限制,适用于高温气体浓度和温度分布的在线测量,是航空发动机燃烧过程非接触测试领域的前沿技术。

2.jpg

上海交通大学特聘教授、叶轮机械研究所所长刘应征

《热流体光学测试技术与实验数据驱动的数值计算》

刘应征教授的报告主要介绍了三种前沿的热流体光学测试技术:

1)快响应压力敏感涂料(fast-response pressure sensitive paint)压力场测量技术:PSP基本工作原理与发展趋势,并结合几种极端条件(极低速流动、高超声速、高转速)应用中的挑战,介绍近几年来所发展的新方法和新技术。

2)高温磷光热图(Phosphor Thermography)温度场测量技术:磷光热图基本工作原理、应用挑战及其解决措施,并介绍高温叶片热障涂层上表面和涂层内部的温度场测量。

3)PIV测量技术:基于模态分解和FPGA实时“硬”计算的复杂湍流场PIV测量技术,PIV流场测量与湍流数值计算的数据同化。

3.jpg

东南大学能源与环境学院教授许传龙

《基于光场成像的复杂流动测量与燃烧诊断方法》

高温燃烧现象广泛存在于航空航天、能源、电力等领域,如火箭发动机、燃气轮机、电站锅炉等高温燃烧装置中,研究这些燃烧装置内部的高温燃烧现象、探索燃烧本质,对揭示燃烧化学反应动力学机制,研究化学反应对着火控制、火焰传播、熄火、可燃极限、燃烧稳定性、污染物排放等燃烧规律有重要意义。报告中许传龙教授介绍了一种基于光场成像理论的三维火焰温度场与流场在线检测技术的研究。该技术通过耦合火焰辐射与光场成像理论,建立了火焰辐射光场成像模型,构建了高分辨率CCD 结合微透镜阵列的火焰辐射光场成像系统,单曝光获取火焰辐射四维辐射场信息,实现了单相机火焰辐射信息采集,在硬件上高度集成,避免了多相机系统同步控制、系统复杂等问题,发明了基于光场成像的火焰辐射温度及辐射特性参数三维分布同时重建新方法。基于这种技术许传龙老师团队优化了火焰辐射光场相机,开发了光场成像火焰三维温度场测量系统,开展了实验室测试评价及发动机火焰温度现场测量应用实验研究。

4.jpg

上海交通大学机械与动力工程学院教授张玉银

《双紫外吸收/纹影技术及其在混合气多场同时测量中的应用》

为实现对发动机燃料与空气混合过程中的浓度分布、温度分布和速度分布进行同时测量,通过融合双色紫外吸收(2c-UA)和纹影成像测速(SIV)技术,张玉银教授团队开发了2c-UA+SIV测试系统。使用两个紫外吸收波段(266nm和289nm)实现浓度和温度的同时测量,使用SIV实现速度的测量,从而实现了气相浓度、温度和速度三个物理量同时测量的光学诊断技术。该测试技术首次应用于高压直喷汽油碰壁喷雾的混合特性的测量,成功地揭示了高压喷射碰壁喷雾在高温壁面与环境气体混合机理。

5.jpg

浙江大学能源与环境工程实验室主任吴学成

《数字全息技术及其在颗粒测量中的应用》

数字全息技术是一种基于干涉的三维成像方法,在颗粒场三维测量方面具有很好的应用前景。报告中吴学成教授结合浙江大学的研发成果介绍了数字全息技术及其在颗粒测量中的应用。主要内容包括:1)颗粒场数字全息测量的原理、重建的算法、颗粒的识别、信息提取、匹配等算法;2)数字全息颗粒场测量的能力以及误差因素分析;3)在固体颗粒流动和燃烧测量中的应用;4)在液滴雾化测量中的应用;5)测量装置/仪器研发。

6.jpg

西安交通大学副教授张海滨

《分子标记流场测试技术及其应用》

通过张海滨副教授的报告,听众们了解了利用分子在激光激发下的特殊发光效应对分子进行标识,可以用于对速度、温度等流场参数的测量。分子示踪测速技术(Molecular Tagging Velocimetry, MTV)是利用受激发光的荧光(或磷光)分子对流场进行标记,进而实现对流体速度场的测量。相比传统颗粒示踪测速方法,该技术具有示踪分子流体跟随性好、易添加、对流场几乎无干扰无污染等优点,且能有效避免近壁区光污染现象。分子标记测温技术(Molecular Tagging thermometry, MTT)则是利用特定分子的荧光(或磷光)特性对温度的敏感性进而实现流体温度测量的非接触式测温技术。近年来,分子标记流场测试技术得到迅速发展,在多个研究领域得到应用,如超声速内流场速度测量、高速流动边界层湍流研究、喷雾两相流场温度与速度测量等。

7.jpg

江苏大学能源与动力工程学院副教授刘海龙

《激光诱导荧光及高速数码技术在多场耦合流场的可视化应用》

激光诱导荧光(LIF)技术是用激光激发作为标记物的分子或原子的共振跃迁,通过捕捉辐射跃迁的去活化过程中产生的荧光信号(光子发射),获取目标物的特定信息。近年来LIF技术衍生了各类流场测量手段,实现了对流场结构、温度、速度等的非接触式精准测量。高速摄影技术也为流体动力学的基础研究提供了有力工具。通过以上两种测量与可视化手段,刘海龙教授的报告介绍了江苏大学在荷电多相流领域开展的研究工作。内容包括:电场强化混合反应及机理、荷电液滴吸附细颗粒物特性、荷电多相反应系统的相分散行为及强化传质机理。研究为开发绿色、高效、经济的环保及能源装备提供了技术基础。 

8.jpg

上海理工大学能源与动力工程学院副教授周骛

《基于离焦成像的喷雾粒径和速度测量技术》


周骛副教授的报告主要介绍了一种基于离焦成像的前沿测量技术。离焦模糊的图像实际上暗含了所拍摄对象的深度信息,离焦测距方法也是物体深度测量的主要方法之一,但由于离焦二义性和图像处理等问题前期在高分辨率测量方面发展较为缓慢。随着图像传感器分辨率和计算机处理能力的提高,直接成像方法由于系统可靠、操作简便而在科研和实际工程中得以广泛使用。周骛团队提出了单镜头双相机系统以解决离焦成像中的二义性问题,同时避免了双目视觉中的匹配问题;基于离焦成像原理提出了颗粒粒径和深度测量的不同图像处理算法,分析了不同算法的测量误差与影响因素,并对该方法在喷雾测量中的应用展开研究。

1.png3.png

本次会议无论规模还是专家与观众互动的热烈程度都远超预期,共产生答疑问题上百条,由于观众问答过于踊跃,很多老师的答疑环节即使远远超时都不能穷尽。整个论坛得到了与会观众的高度认可,大家满载而归。

中国计量测试学会多相流测试专委会委员,江苏大学能源与动力工程学院院长王军锋教授做总结陈词,他对本次论坛各主要负责人的工作予以高度肯定。他表示,受疫情影响,多相流测试论坛首次采取网络的形式召开,而中国计量测试学会多相流测试专业委员会、江苏大学和仪器信息网的首度联手取得了超出预期的圆满成功,希望后续能够继续开展更多基于网络的不同多相流主题的学术研讨交流活动,同时随着疫情渐渐过去,中国计量测试学会多相流测试专委会的线下学术活动也即将复苏,欢迎大家积极参加。

[来源:仪器信息网] 未经授权不得转载

用户头像

作者:liym

总阅读量 88w+ 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题 更多推荐

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~