您好,欢迎访问仪器信息网
注册
广州微光科技有限公司

关注

已关注

金牌1年 金牌

已认证

粉丝量 0

400-860-5168转6232

仪器信息网认证电话,请放心拨打

当前位置: BPCL微光科技 > 解决方案 > 基于氧空位缺陷对绿色长余辉发光材料的改善作用 研究方案

基于氧空位缺陷对绿色长余辉发光材料的改善作用 研究方案

2024/09/02 10:06

阅读:4

分享:
应用领域:
汽车及零部件
发布时间:
2024/09/02
检测样品:
汽车涂层和镀层
检测项目:
涂层和镀层性能
浏览次数:
4
下载次数:
参考标准:
/

方案摘要:

在通过引入氧空位缺陷来改善α-Zn3(PO4)2:Mn2+,Na+绿色长余辉发光材料的发光性能。通过研究Na+掺杂量对氧空位缺陷的影响及其对发光性能的作用机制,进一步了解长余辉材料的发光机理,并优化发光材料的制备条件。

产品配置单:

分析仪器

BPCL-GP21Q 超微弱发光测量仪(全光谱)

型号: BPCL-GP21Q

产地: 广东

品牌: BPCL

¥28.8万 - 40.5万

参考报价

联系电话

方案详情:


一、实验目的

旨在通过引入氧空位缺陷来改善α-Zn3(PO4)2Mn2+,Na+绿色长余辉发光材料的发光性能。通过研究Na+掺杂量对氧空位缺陷的影响及其对发光性能的作用机制,进一步了解长余辉材料的发光机理,并优化发光材料的制备条件。


二、实验使用的仪器设备和耗材试剂

1. 仪器设备

(1). 超微弱化学发光仪:BPCL-2-JZ型,用于测量样品的余辉性能。

(2). X射线衍射仪(XRD):用于分析样品的物相结构。

(3). 荧光分光光度计用于测定样品的激发和发射光谱。

(4). 热释光谱仪(TL):用于分析材料内部的晶体缺陷。

2. 耗材试剂

(1). ZnO、(NH4)2HPO4、MnCO3、Na2CO3:分析纯试剂,用于制备α-Zn3(PO4)2:Mn2+,Na+发光材料。

(2). 柠檬酸、聚乙二醇(PEG-4000)、浓硝酸、去离子水:用于溶胶–凝胶法制备样品。

(3). 活性炭:作为还原氛围材料。


三、实验过程

1. 样品制备

(1). 配制溶胶:按化学计量比称量ZnO、(NH4)2HPO4、MnCO3和Na2CO3,加入3% H3BO3作为助熔剂。将原料溶解于去离子水和浓硝酸的混合液中,调节pH至2-3。

(2). 形成凝胶:加入柠檬酸和PEG-4000,金属离子与柠檬酸的摩尔比为1:2。混合液在75℃下搅拌形成凝胶。

(3). 干燥与煅烧:凝胶在110℃干燥12小时,干燥后的凝胶研磨装入坩埚中,用活性炭作为还原气氛,在950℃下煅烧3小时,制备得α-Zn3(PO4)2:Mn2+,Na+发光材料。

2. 样品表征

(1). XRD分析使用X射线衍射仪分析样品的物相结构,与标准卡片(JCPDS No. 29–1390)对比,确认相结构。

(2). 荧光光谱分析:在254 nm紫外灯光激发下,使用荧光分光光度计测定样品的激发和发射光谱,激发源为150 W氙灯,测定范围为200-700 nm。

(3). 热释光谱分析:样品用普通紫外灯(254 nm)照射5分钟后,放置7分钟,用微型自动控温加热器(加热速率为30℃/min)结合微弱测光仪测定热释光谱。

(4). 余辉性能测量:在254 nm紫外灯激发下,使用微弱发光仪测量样品的余辉性能。


四、实验结果与讨论

1. 物相分析

XRD图谱(图1A, 1B):通过与标准卡片(JCPDS No. 29–1390)对比,确认样品的XRD谱与α-Zn3(PO4)2标准谱相吻合,说明少量Mn2+和Na+掺入并没有改变晶体的物相。进一步分析发现,Zn3(PO4)2: Mn2+ Na+的谱线整体向高角度偏移,表明掺杂后晶胞发生了微小的收缩。这是由于在四面体场中,Na+和Mn2+取代了Zn2+的位置,从而引起晶格的缺陷和轻微变形。

图1. (A) Zn3(PO4)2:0.5%Mn2+ 和Zn3(PO4)2:0.5%Mn2+,Na+XRD图. (B) XRD局部放大图。


2. 光谱分析

激发和发射光谱(图2):激发光谱显示,Zn3(PO4)2: Mn2++在548 nm处有一个发射峰,对应于四面体场中Mn2+4T1g6A1g跃迁。Na+的加入未改变发射峰的位置,但显著提高了发射峰的强度。这表明,Na+掺杂有助于增强材料的发光强度。激发光谱中,在200-250 nm之间的激发带对应于Mn2+–O2–的电荷转移,而在350-500 nm范围内的激发带则属于Mn2+的d-d电偶极禁阻跃迁。分别对应6A14T1 (4G) (492 nm)、6A14T2 (4G) (450 nm)、6A14E, 4A1(4G) (421 nm)、6A1→4T2(4D) (373 nm)和6A14E (4D) (353 nm)能级跃迁。Na+的加入并没有改变样品发射峰的位置,但却明显提高样品发射峰的强度。

图2. α-Zn3(PO4)2: Mn2+α-Zn3(PO4)2: Mn2+, Na+的发射和激发光谱.1-α-Zn3(PO4)2: Mn2+,Na+; 2-α-Zn3(PO4)2: Mn2+.


3. 余辉性能分析

(1). 余辉衰减曲线(图3):在254 nm紫外灯激发下,α-Zn3(PO4)2: Mn2+, Na+样品的初始发光强度和余辉时间均明显优于α-Zn3(PO4)2: Mn2+样品,目测其余辉时间可达2小时以上。这表明Na+的掺杂显著改善了材料的余辉性能。

图3. α-Zn3(PO4)2: Mn2+, Na+和α-Zn3(PO4)2: Mn2+的余辉衰减曲线.

(2). Na+掺杂量对余辉性能的影响(图4):随着Na+掺杂量的增加,样品的余辉性能逐渐增强,在Na+掺杂量为4%时达到最佳,进一步增加Na+掺杂量则会降低余辉性能。这表明适量的Na+掺杂可以有效提高样品的发光性能,而过量的Na+则会导致发光性能的下降。

图4. α-Zn3(PO4)2: Mn2+, xNa+ (x=2%, 4%, 6%, 7%)的余辉衰减曲线.

4. 热释光谱分析

热释光谱(TL)的测定可用于剖析材料微观结构的各种缺陷,同时热释峰的强度可以反映材料内部晶体结构的相关缺陷浓度的大小。TL曲线(图5)显示:在α-Zn3(PO4)2: Mn2+α-Zn3(PO4)2: Mn2+, Na+样品中分别观察到多个TL峰。Na+掺杂后,低温处(312 K)的TL峰强度显著增强,表明氧空位缺陷浓度增加。分析表明,Na+的掺杂没有产生新的TL峰,但显著提高了原有TL峰的强度。TL峰强度反映了光子从陷阱中释放的数量,峰越强,释放的光子越多,缺陷浓度也越高。

图5. α-Zn3(PO4)2: Mn2+, Na+和α-Zn3(PO4)2: Mn2+的热释光谱.

5. 发光机理

发光机理模型(图6):在紫外光激发下,电子由基态跃迁至激发态,部分电子立即返回基态并发光,而另一些电子通过“隧穿”效应进入陷阱并被储存。在热扰动下,这些电子缓慢释放并返回基态发光。Na+的掺杂引起了氧空位缺陷的显著增加,增强了“隧穿”效应,延长了余辉时间。

图6. α-Zn3(PO4)2: Mn2+, Na+的发光机理模型示意图.


五、结论

通过控制Mn2+和Na+的掺杂量,成功制备了具有优异发光性能的. α-Zn3(PO4)2: Mn2+, Na++绿色长余辉发光材料。研究表明,Na+掺杂可显著提高样品的发光性能,这主要归因于氧空位缺陷浓度的增加,延缓了激发态电子的跃迁时间,从而改善了材料的余辉性能。本研究为开发高性能长余辉发光材料提供了新的方法和理论依据。


*因学识有限,难免有所疏漏和谬误,恳请批评指正*


资料出处:


免责声明:

1.本文所有内容仅供行业学习交流,不构成任何建议,无商业用途。

2.我们尊重原创和版权,如有疏忽误引用您的版权内容,请及时联系,我们将在第一时间侵处理!


下载本篇解决方案:

资料文件名:
资料大小
下载
基于氧空位缺陷对绿色长余辉发光材料的改善作用研究方案.docx
380KB
相关仪器

更多

BPCL-GP21Q 超微弱发光测量仪(全光谱)

型号:BPCL-GP21Q

¥28.8万 - 40.5万

BPCL-8V 八通自动旋转阀

型号:BPCL-8V

¥1.4万 - 1.8万

BPCL-6HV 二位六通高压自动旋转阀

型号:BPCL-6HV

¥2.1万 - 2.4万

相关方案

石河子大学研究团队开发出用于格链孢酚检测的电化学和电化学发光双模式适配体传感器

本研究团队创新性地构建了一种基于二茂铁羧酸-DNA2(Fca-DNA2)作为猝灭电化学发光(ECL)和差分脉冲伏安法(DPV)信号响应探针,结合Ru-MOF/Cu@Au纳米粒子作为ECL基底平台的双模式适配体传感器。首先,研究人员通过电沉积方法将Ru-MOF快速合成并固定在电极表面,随后在其表面修饰Cu@Au纳米粒子,以协同催化三乙醇胺(TEOA)放大ECL信号,增强传感器的稳定性和导电性。最终,研究人员利用AOH和Fca-DNA2之间的竞争反应,通过ECL和DPV信号的变化对AOH进行敏感检测。实验结果表明,该双模式适配体传感器在0.1至100 ng/mL范围内表现出优异的检测性能,检测限分别为0.014和0.083 pg/mL,且在实际水果样品中具有良好的应用前景。

食品/农产品

2024/08/26

辐照糖类食品的快速鉴别检测方法

本研究旨在开发一种基于超微弱化学发光技术的快速鉴别辐照糖类食品的方法。通过研究葡萄糖和蔗糖等糖类在不同辐照剂量下的化学发光特性,并探讨水分和辐照剂量对化学发光效应的影响,建立一种无需对照样品即可有效鉴别辐照食品的检测方法

食品/农产品

2024/08/19

噻苯达唑化学发光检测新方法开发方案

旨在开发一种利用钴修饰黑磷纳米片(Co@BPNs)激活高铁酸盐(VI)高级氧化过程(AOP)的化学发光(CL)检测平台,以实现对噻苯达唑(TBZ)的高效、灵敏、选择性检测。通过生成高产率的活性氧(ROS),该系统能够有效分解TBZ,并产生强烈的CL信号,从而实现环境样品中TBZ的检测。

制药/生物制药

2024/08/12

γ-Al2O3形貌对气体传感灵敏度的影响研究

本实验的主要目的是研究不同形貌的γ-Al2O3对甲基丙烯醛(MACR)的催化发光(CTL)气体传感性能。通过合成三种不同形貌的γ-Al2O3(纳米棒、纳米片和混合形貌),探讨其比表面积和氧空位含量对气体传感灵敏度的影响,进而开发一种基于纳米棒状γ-Al2O3的高性能MACR气体传感器

环保

2024/07/23

推荐产品
供应产品

广州微光科技有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 广州微光科技有限公司

公司地址: 广州市天河区灵山东路东英科技园5号楼401-1室 联系人: 温经理 邮编: 510100 联系电话: 400-860-5168转6232

仪器信息网APP

展位手机站