您好,欢迎访问仪器信息网
注册
宁波力显智能科技有限公司

关注

已关注

已认证

粉丝量 0

当前位置: inview > 解决方案 > 【预约试拍】随机光学重建显微镜STORM显示的内皮细胞表面糖萼(ESG)成分和超微结构

【预约试拍】随机光学重建显微镜STORM显示的内皮细胞表面糖萼(ESG)成分和超微结构

2023/03/28 09:51

阅读:85

分享:
应用领域:
其他
发布时间:
2023/03/28
检测样品:
其他
检测项目:
随机光学重建显微镜
浏览次数:
85
下载次数:
参考标准:
/

方案摘要:

【预约试拍】随机光学重建显微镜STORM显示的内皮细胞表面糖萼(ESG)成分和超微结构

产品配置单:

分析仪器

超高分辨显微镜iSTORM

型号: iSTORM 3CM

产地: 浙江

品牌: 力显智能科技

¥350万 - 500万

参考报价

联系电话

赛乐微培养箱中实时监测细胞生长的智能监控助手

型号: 细胞智能监控助手赛乐微

产地: 浙江

品牌: 力显智能科技

¥4.97万 - 4.98万

参考报价

联系电话

方案详情:

图片


为了在血管功能中作为血流的机械传感器和作为经血管交换的屏障发挥不同的作用,内皮表面糖萼(ESG)应该具有有组织的结构。由于光学显微镜和电子显微镜的局限性,直到最近发展的超分辨光学显微镜STORM才揭示了ESG的超微结构。


实验结果表明:HA是一种长链分子,编织成网状覆盖在内皮细胞表面.相比之下,HS是垂直于细胞表面的较短分子。HA和HS在内皮管腔表面彼此部分重叠。研究者还定量了内皮表面顶部、中部和底部区域的HS的长度、直径、方向和密度。


一 导言


排列在我们血管系统中的内皮细胞(EC)的腔表面包被有由蛋白聚糖和糖胺聚糖(GAG)组成的膜结合大分子的糖萼。由于其独特的位置,在循环血液和血管壁的界面处,已经发现ESG在维持正常血管功能方面起重要作用。因此,自20世纪60年代以来,通过各种方法对其组成、结构和机械性能进行了广泛的研究。然而,由于空间分辨率的限制或样品制备过程中的人为因素,静电陀螺仪的空间化学组织仍然不清楚。

最近开发的随机光学重建显微镜(STORM)是三种类型的单分子定位显微镜之一,采用有机染料和荧光蛋白作为光可切换发射器,以将时间分辨率转换为超空间分辨率,这比传统的共聚焦显微镜高一个数量级。STORM和其他类型的超分辨率光学显微镜能够在纳米尺度上发现和研究细胞结构,从单个蛋白质到天然细胞环境中的整个细胞器。

ESG的作用基于其分子组成和组织。ESG的组成部分已在中进行了深入研究。ESG主要由带有短酸性寡糖和末端唾液酸(SA)的糖蛋白和蛋白聚糖(PG)如硫酸乙酰肝素PG(HSPG)(包括具有长糖胺聚糖(GAG)侧链的多配体聚糖和磷脂酰肌醇聚糖核心蛋白)组成。带负电荷的GAG结合蛋白质、生长因子、阳离子和其他血浆组分。血管EC中的主要GAG是硫酸乙酰肝素(HS)、硫酸软骨素(CS)和透明质酸(HA)。在这三者中,最丰富的是HS,占总GAG的50-90%,其余由CS、HA和SA组成。HS和CS与PG共价结合,而HA不与PG核心蛋白结合。HA是一种非硫酸化GAG,其与其表面受体CD 44和HA介导的运动性受体(RHAMM)结合。

除了其生化组成外,ESG的厚度和超微结构决定了其功能。通过电子显微镜(EM)对ESG的第一次可视化使用阳离子染料钌红,其结合酸性粘多糖并在四氧化锇存在下产生电子密度。随后的研究使用金胶体和免疫过氧化物酶标记。Adamson和Clough然后使用大的带电标记蛋白(无法穿透ESG),阳离子化铁蛋白(分子量≈ 450 kDa)证明,在不存在血浆蛋白的情况下,ESG会崩溃,可能是由于消除了与血浆蛋白的分子内相互作用,并且其未受干扰的厚度比钌红观察到的20 nm大几倍。所有这些方法都可能遭受与水性固定剂相关的脱水假象,水性固定剂可能溶解除蛋白聚糖的蛋白质核心之外的所有蛋白质,并破坏固有的水合结构。研究人员开发了一种使用碳氟化合物作为四氧化锇的非水载体来保存水溶性结构的方法,该方法被应用于微血管,以消除其中的一些限制。Rostgaard和Qvortrup对碳氟化合物-戊二醛固定方法的进一步阐述揭示了毛细血管壁上的丝状刷状表面涂层,但层厚度小于50 nm,表明更表面的基质结构裂解。所有前述EM研究揭示具有小于IOOnm的厚度的ESG。最近研究者发现大鼠左心室心肌毛细血管上的ESG厚度为0.2-0.5 μm。


活体光学显微镜的差的空间分辨率限制了ESG厚度的准确测量。因此,通过采用激光扫描共聚焦显微镜和多光子显微镜,以及针对HS或HA结合蛋白或麦胚凝集素的荧光标记抗体来标记ESG的主要组分,已经开发了新的成像方法。这些新方法的应用揭示了大血管中厚得多的ESG:在小鼠颈总动脉中为4.3-4.5 μ π ι ,在小鼠颈内动脉中为2.2 μ π ι ,在颈外动脉中为2.5 μ π ι 。Ebong等人首次展示了体外静电陀螺仪的冷冻电镜图像,该图像避免了常规电镜的脱水伪影,并观察到厚度大于5 μm(最大可达11 μm)的结构。最近,使用高灵敏度和分辨率共聚焦显微镜和原位/体内单微血管和离体主动脉免疫染色,Yen等人揭示了大鼠肠系膜和小鼠提睾肌毛细血管和毛细血管后小静脉上ESG的厚度为1-1.5 μm。大鼠和小鼠主动脉的ESG厚度为2-2.5 μ m。Betteridge等人通过比较在体内单个微血管中质膜标记和麦胚凝集素(WGA)标记ESG(SA残基)之间的距离,发现与Yen等人相同类型的微血管中ESG厚度为0.17-3.02 μm,这取决于标记和分析方法。


ESG的超微结构组织及其与细胞骨架组分的关系(使用电子断层扫描进行3D重建得到证实。通过他们的EM方法观察到的ESG的厚度为〜 100nm,类似于先前在青蛙肠系膜微血管上发现的厚度。

克服脱水工件在新兴市场和传统荧光显微镜的空间分辨率的限制,在目前的研究中,通过使用STORM,研究者发现第一次超限分辨图像ofHS和HA组件的环境、社会和治理在支架表面培养bEnd3老鼠大脑微血管内皮细胞单层,并量化ultra-structural参数ofHS和直径HA在EC支架表面的不同区域。

二 实验方法

2.1

样品制备

细胞培养:小鼠脑微血管内皮细胞(bEnd 3),来自ATCC(Manassas,VA)在Dulbecco改良Eagle培养基/营养混合物F-12 Ham培养基中培养。(DMEM/F-12)、2 mM L-谷氨酰胺和100 U/mL青霉素和1 mg/mL链霉素(均来自Sigma-Aldrich,St. Louis,MO),补充有10%胎牛血清,并在37 °C下在具有5%C02的潮湿气氛中孵育。

免疫荧光染色:将bEnd 3细胞胰蛋白酶化并以600个细胞/mm 2的密度接种在50 yg/mL纤连蛋白包被的1.5号玻璃底培养皿上并培养3-4天直至汇合。然后用1%BSA/PBS轻轻洗涤细胞,用2%多聚甲醛和0.1%戊二醛固定20分钟,用0.1%NaBH4还原7分钟,用1%BSA/PBS洗涤3次,并用2%正常山羊血清(NGS)封闭30分钟。对于HS染色,将固定的细胞与小鼠抗硫酸乙酰肝素10 e4在4 ℃孵育过夜,然后与ATTO 488缀合的山羊抗小鼠IgG孵育;对于HA染色,将固定的细胞与生物素化的透明质酸结合蛋白在4 °C孵育过夜,然后与Alexa Fluor 647缀合的抗生素孵育。最后,将样品用2%多聚甲醛和0.1%戊二醛后固定10分钟,然后保持在1%BSA/PBS中。


2.2

STORM图像采集

使用STORM对样品进行成像。使用由405 nm波长激光以交替照明激活的ATTO 488和Alexa Fluor 647的多个报告物来获取HS和HA的3D图像。基于每个报告子以19 ms/帧的捕获速度捕获的40,000个ofEM-CCD图像,获得细胞顶端(腔)表面上的三个256 × 256(40 × 40 μm2)的HS和HA视野,位于顶部、中部和底部。顶部区域聚焦于细胞核上方的细胞表面,底部区域聚焦于两个相邻细胞的谷,中间区域聚焦于顶部和底部区域中间的平面。闪烁点的原始图像电影由伴随STORM系统的分析软件处理,并在图1中展示。


2.3

数据分析


应用单发射器质心算法来估计数据电影中激活的荧光团的3D位置,并产生3D STORM图像,其空间分辨率分别为侧向平面中的20nm和轴向方向上的50nm。通过使用混合高斯模型从STORM图像估计细胞表面上的组分中的地面实况荧光团位置。然后,在估计的荧光团位置的基础上估计组件的超微结构参数。对于HS元件,我们假设它是一个圆柱体,其等效直径具有与真实的形状相同的横截面积(椭圆状)。其他超微结构参数、长度、HS的取向和相邻HS元件之间的距离(中心到中心)在图2的插图中定义。由于难以识别在细胞腔表面处编织成网络的单个HA元件,我们从图3中所示的HA区段的2D图像估计HA直径。

三.研究结果

3.1

HS和HA的组织

图1A-C展示了STORM揭示的HS和HA的组织。图1A是在顶部区域观察到的,图1B是在中间区域观察到的,图1C是在细胞腔(顶端)表面的底部区域观察到的。对于所有图,第二列是HS图像(绿色),第三列是HA图像(红色),第一列是第二列和第三列的叠加。第一行是2D顶视图,第二行是34 μm × 34 μm视场的3D视图。第三和第四行是第一行中具有绿色虚线的区域的放大的2D和3D视图。第五和第六行是来自第三行中具有蓝色虚线的区域的进一步放大的2D和3D视图。第二列和第三列中三维视图左侧的颜色条表示长度比例。从这些图中可以看出,HA(红色)是编织成2D网络片的长分子,其覆盖细胞腔表面并且与细胞腔表面在同一平面中。相比之下,HS是垂直于细胞腔表面的较短分子。HS和HA在细胞腔表面部分重叠。


3.2

HS超微结构参数和HA直径


图片


图片图1 STORM揭示的ESG成分和超微结构

HS和HA在单元(A),在细胞细胞底部中间(B)和(C)从细胞腔的表面。所有的插图,第二列是HS图像(绿色),第三列是HA图像(红色)和第一列是第二和第三列的叠加。第一行是2 d顶视图,第二行是3 d视图的字段∼34μm×34μm。第三和第四行放大2 d和3 d视图从该地区绿色虚线的第一行。第五和第六行进一步扩大2 d和3 d视图从该地区的蓝色虚线第三行。左边的颜色条的3 d视图HS(第二列)和HA(第三列)代表深度(长度)。


图片表1 bEnd3细胞腔表面HS超微结构的定量

图片表2 在bEnd3细胞腔表面的HA直径

表2总结了HA直径估计从2 d图像图3所示。直径是185.3±44.7 nm, 155.5±57.2 nm,和156.9±56.1 nm,分别在顶部、中部和底部区域的细胞腔的表面。这在HA直径没有显著差异这三个地区(p > 0.1)。比较HA直径与HS直径没有区别哈哈直径和HS直径顶部和底部区域(p > 0.2),但在中部地区有显著差异(p < 0.01)。

四.讨论


使用STORM,研究者揭示了在纳米尺度的bEnd 3单层的ESG中HS和HA的空间化学组织。接和间接证据表明,ESG在维持血管功能方面至少发挥三种重要作用。

1)它可以作为EC的机械传感器和换能器来感知血流;

2)它通过形成分子筛维持正常的微血管通透性,允许水和小分子通过但限制血浆蛋白等大分子;

3)它在循环红细胞(RBC)和形成血管壁的EC之间产生润滑缓冲液以避免RBC损伤,并产生屏障以防止循环白细胞、血小板和肿瘤细胞粘附到血管壁。它还屏蔽EC表面受体,防止其超活化。

STORM揭示的ESG中HS和HA的组织和分布为ESG扮演这三个角色提供了直接的结构可行性。HS元件垂直于细胞腔表面,能够感测血流并用作EC的机械传感器和换能器。在细胞腔表面的底部处的更密集的HS分布(其可以覆盖细胞间连接)沿着由HA形成的编织网络有利于ESG成为用于经血管交换的分子筛、循环细胞和形成血管壁的内皮细胞粘附的屏障以及EC表面受体的屏障。

总之,ESG在bEnd3细胞表面的空间化学组织被揭示,从STORM采集的图像中还获得了HS的超微结构参数和HA的直径。




在本研究中,研究者主要借助STORM超分辨率显微镜来研究巨噬细胞足体簇的纳米结构和调控,目前在国内,随机光学重建显微镜STORM已成功实现商用,有需要STORM成像技术进行实验研究的专家老师们,文末填写问卷即可预约获得 iSTORM 超高分辨率显微成像系统试拍服务~


图片


力显智能现已发布的超高分辨率显微成像系统 iSTORM,成功实现了光学显微镜对衍射极限的突破,使得在20纳米的分辨率尺度上从事生物大分子的单分子定位与计数亚细胞及大分子复合物结构解析生物大分子生物动力学等的研究成为现实,从而给生命科学、医学等领域带来重大突破。



关于我们



     宁波力显智能科技有限公司(INVIEW)是专业从事超高分辨率显微技术和产品研发的科技企业,依托复旦大学的自动控制、新一代信息技术及香港科技大学的生物、光学、图像处理等的技术,拥有光学、生物、自控、机械、信息技术等多领域交叉学科技术团队,将2014年诺贝尔化学奖技术产业化,推出了超高分辨率显微成像系统iSTORM、细胞智能监控助手赛乐微等一系列产品,帮助人们以前所未有的视角观察微观世界,突破极限,见所未见。





下载本篇解决方案:

资料文件名:
资料大小
下载
随机光学重建显微镜(STORM)揭示的内皮表面糖萼(ESG)成分和超微结构.pdf
915KB
相关仪器

更多

赛乐微培养箱中实时监测细胞生长的智能监控助手

型号:细胞智能监控助手赛乐微

¥4.97万 - 4.98万

超高分辨显微镜iSTORM

型号:iSTORM 3CM

¥350万 - 500万

相关方案

YSI防玷污的10个技巧

YSI 防玷污的10点技巧 随着电子技术的进步、电源管理的改进和电池寿命的延长,生物玷污成为目前决定监测仪器投放周期长度的决定因素,特别是应用于长期、连续监测。应用一些防玷污技术可以延长仪器的维护间隔,能够减少野外的仪器维护的次数,并提高水质监测数据精度。 防玷污技巧的详细内容请参考文章《YSI 防玷污的10点技巧》

环保

2014/03/04

连华科技 医疗污水检测方案

医疗污水包含了多种细菌、重金属、有机溶剂及酸碱溶液等生化有毒有害物质。如上述物质直接排放,将会对自然生态及人类生活环境造成危害。我国对医疗污水有清晰的排放标准。连华科技对于《医疗机构水污染物排放标准GB18466-2005》中所涉及的参数,多款便携及实验室仪器及耗材可满足检测需求

环保

2020/02/14

qTOWER3G上进行新型冠状病毒SARS-COV-2的qPCR检测

市面上有众多的新冠病毒qPCR检测试剂盒,本应用方案采用韩国Seegene公司的AllplexTM 2019-nCoV检测试剂盒在耶拿荧光定量PCR仪 qTOWER³G上进行样品检测,获得符合预期的结果。

生物产业

2020/10/20

Thermo Scientific Orion 8030cX 二氧化硅分析仪

二氧化硅是用于检测、控制和尽量减少涡轮机、换热器和锅炉结垢的一种关键度量。在线实时测量活性二氧化硅可尽量降低因结垢而产生的维修/更换成本,实现安全高效的长期运行,这款在线二氧化硅分析仪可用于对二氧化硅超标的生产用水的去除或回收进行即时或自动的决策。连续实时二氧化硅监测可快速通知离子交换树脂的RO穿透或饱和情况,从而使系统效率最大化,尽量减少维修停机时间。Orion 8030cX 在线二氧化硅分析仪可配置为在二氧化硅峰值出现时发送警告/警报或测量数据来警告用户,触发纠正措施,防止下游出现问题。

环保

2021/09/29

宁波力显智能科技有限公司

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 宁波力显智能科技有限公司

公司地址: 浙江省余姚市中意宁波生态园兴舜路36号1幢2号2层?? 联系人: 张先生 邮编: 315400

友情链接:

仪器信息网APP

展位手机站