您好,欢迎访问仪器信息网
注册
深圳摩方新材科技有限公司

关注

已关注

银牌5年 银牌

已认证

粉丝量 0

400-860-5168转4666

仪器信息网认证电话,请放心拨打

当前位置: 摩方精密 > 公司动态
公司动态

基于小球藻细胞的磁性复合多聚体微机器人用于高效靶向给药

微纳机器人在低雷诺数流体中可将能量转化为有效运动,因此在生物医学领域具有巨大的应用前景。近年来,磁性微纳机器人作为一种有发展前景的靶向给药平台而受到了特别的关注。科研工作者设计了不同的磁性微纳机器人用于高效递送抗癌药物至靶向肿瘤部位并取得了较好的效果。研究发现,作为体内给药的平台或载体,一方面,微纳机器人的生物相容性是至关重要;另一方面,微纳机器人的重构对于其在复杂变化环境中高度灵活地完成给药具有重要意义。然而,目前来说,微纳机器人的研究在同时满足这两方面的要求上仍具有一定的挑战性。 天然生物模板具有良好的生物相容性和精致结构的固有优势,有望为磁性微纳机器人的制备提供新的机遇。小球藻是一种具有良好的生物相容性和生物降解性的单细胞微藻。它们具有均匀的球状结构,直径约为3-5μm。这些特性使它们具有作为理想天然生物材料用于生物医学领域的优越性。然而,由于扇贝定理的限制,在低雷诺数流体中采用动态磁场有效地驱动具有简单对称球体形状的单一微球是不可行的,这限制了微藻细胞在微机器人领域的应用潜力。近日,北京航空航天大学蔡军课题组制备了一种基于小球藻细胞的磁性复合多聚体微机器人,实现了高效的靶向给药。研究者将小球藻(Chlorella,Ch.)细胞作为一种生物模板,依次进行Fe3O4沉积、抗癌药物阿霉素(DOX)装载,实现磁性复合微机器人单元的制备。利用磁偶极作用,微机器人单元通过诱导自组装作用重构成链状的复合多聚体微机器人(BMMs),如微小的二聚体、三聚体等。基于面投影微立体光刻(PμSL)技术设计了哑铃形的微流控通道,用于进行BMMs的体外靶向给药试验(图1)。图1,BMMs的制备和靶向给药示意图。图2,自组装BMMs的驱动性能。图3,BMMs的生物相容性和化疗性能。图4,BMMs的体外靶向给药试验。BMMs具有两种不同的运动模式,包括动态磁场下的旋转和垂直旋转磁场下的翻滚;运动速度的测量以及精确定位的实现表明BMMs具有优异的驱动能力(图2)。BMMs还表现出良好的生物相容性、高效的DOX装载能力、pH触发释药能力以及显著的化疗效果(图3)。另外,采用PμSL(nanoArch S140, 摩方精密)技术结合PDMS倒模技术制备了哑铃形微流控通道,在该通道内,利用磁场驱动实现了BMMs对HeLa癌细胞的靶向给药。结果表明BMMs可以实现精准靶向给药,并对抗肿瘤治疗具有良好的疗效。此研究在靶向抗癌治疗方面具有巨大的应用潜力。该研究成果,以“Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery”为题发表在ACS Applied Materials & Interfaces上。

企业动态

2022.04.13

仿松针多级非对称结构超疏水表面多尺度液滴定向输运

液滴的自发定向输运在芯片实验室、能源电力系统、油气输运、水收集和除湿等领域具有广泛的应用前景,其主要取决于表面形貌结构和化学组成的非对称性,具体表现为浸润性梯度、各向异性结构和曲率梯度等。液滴输运的速度和距离是判定输运效率的有效指标。合理的设计并制备表面结构是实现快速、长程的液滴自发定向输运的有效方法。然而,传统的加工技术加工精度较低、加工结构单一,很难满足结构性能要求。近日,大连理工大学冯诗乐副教授,受松针表面多级非对称结构启发,使用深圳摩方材料科技有限公司PμSL 3D打印技术(nanoArch® S140),制备了仿松针多级非对称结构表面,实现了快速、长程的液滴自发定向输运。该研究以“Tip-inducedflipping of droplets on Janus pillars: from local reconfiguration to globaltransport”为题发表在国际顶级期刊《ScienceAdvances》上,为液滴的定向输运领域的发展提供了新的思路。论文第一作者为大连理工大学冯诗乐副教授,通讯作者为香港城市大学王钻开教授和巴黎高等物理化工学院David Quéré教授。图1 松针和仿松针多级非对称结构表面的形貌结构特征图2 仿松针多级非对称结构表面的形貌结构参数调控要点:研究者借鉴松针表面结构特征,设计并制备包括第一级的倾斜阵列结构、第二级的高度梯度结构和第三级的平面/曲面组合的半锥形结构的仿松针多级非对称结构表面。上述表面(图1)由nanoArch S140微尺度3D打印设备加工,使用材料为HTL耐高温树脂,打印层厚为10微米。阵列间距为300微米,尖锥倾斜角度β为70°,高度梯度α为20°,尖锥顶端大小为10-20微米。在打印过程中,通过精密刮刀刮除细小的气泡,来保障加工质量。同时,研究者还设计了仅包含倾斜阵列结构和半锥形结构的对照样品,与仅包含倾斜阵列结构和高度梯度结构的对照样品。通过nanoArch S140微尺度3D打印技术,实现了包括倾斜、高度梯度及平/曲面组合的复杂三维结构表面参数的精确调控及大规模制备(图2)。图3 仿松针多级非对称结构表面微液滴自发定向输运图4 仿松针多级非对称结构尖端效应要点:在凝结过程中,液滴先随机在表面凝结,然后向尖端汇聚,然后尖端液滴会在合并过程中重新配置,并从半锥形结构的平面旋转到曲面位置,随后合并的液滴会沿着高度增加的方向运动,进而实现从微观到宏观的多尺度液滴的定向输运,其液滴定向输运的速度可以达到10 cm/s。研究者发现液滴在合并过程中重新配置是非对称结构诱导的尖端效应导致的,并通过建立能量变化模型证明,当液滴尺寸大于结构尺寸时,液滴坐落于平面的系统能量大于坐落于曲面上的系统能量,从而揭示了液滴从平面向曲面运动的机理。研究者发现毫米级的液滴在合并过程中依然会从平面运动到弧面上,证明非对称结构诱导的尖端效应普遍适用于各种尺度的液滴。论文链接: https://advances.sciencemag.org/content/6/28/eabb4540/ 官网:http://www.bmftec.cn/smart

企业动态

2022.04.12

湖南大学王兆龙课题组《Int. J. Extrem. Manuf.》:基于PμSL 3D打印的水凝胶用于柔性热响应智能窗

通风、空调、照明、供暖等能耗占建筑总能耗的40%以上,同时温室气体排放和全球人口持续增加,极大加剧了全球气候变暖。因此,基于外界环境条件调节太阳辐射的智能窗受到了极大的关注。该智能窗可通过感知外部刺激(如光、热、电等)而产生相应的光学性质变化,从而选择性地吸收或反射太阳辐射,达到改善室内光强、温度的目的。根据制备材料常分为热致变色智能窗、光致变色智能窗、机械致变色智能窗以及电致变色智能窗。其中,热致变色智能窗因其对天气和温度的适应性响应而得到广泛的研究。 近年来,热响应水凝胶在超过低临界溶解温度(LCST)时,可快速完成从透明状态到不透明状态的可逆转变,可作为一种新型热致变色智能窗的材料。热响应水凝胶智能窗可以在无需额外能量输入的情况下,最大限度地利用太阳光的热量,对能耗的降低具有重要作用。聚(N-异丙基丙烯酰胺)(PNIPAM) 是最常用的热响应材料,其LCST大约是32℃。PNIPAM水凝胶在可逆相变过程中表现出高太阳光调制能力,而且在室温下具有高透光率,可以保证良好的室内能见度。然而,纯PNIPAM水凝胶柔韧性较差,难以通过传统的制备技术制造复杂的结构。因此,需要开发一种具有良好的机械性能、高太阳光调制能力以及高透光率的新型水凝胶用于智能窗的制备。3D打印技术作为一种新型的材料加工技术,因其设计灵活、成本低、加工效率高等优点,已经应用于复杂结构水凝胶的加工制备。然而,受限于刺激响应型单体,通过3D打印技术制备高分辨率结构的水凝胶智能窗仍极具挑战性。近日,湖南大学王兆龙课题组开发了一种新型的热响应3D打印水凝胶用于智能窗的设计,基于面投影微立体光刻(PμSL) 3D打印技术,水凝胶结构的分辨率高达40μm。研究者基于N-异丙基丙烯酰胺(NIPAM)与亲水性的4-丙烯酰吗啉(ACMO)乙烯基单体的共聚反应制备了热响应水凝胶。该水凝胶响应机理是通过可逆亲水/疏水相变反应调节NIPAM-ACMO共聚物对光的散射行为:当温度低于LCST时,NIPAM-ACMO共聚物同水之间形成分子间氢键,入射光可以透过;一旦温度超过LCST,疏水缔合物主导太阳光的传输,导致入射光发生散射,水凝胶由透明状态转变为不透明状态,阻挡太阳光的照射(图1)。采用PμSL (nanoArch S140, 摩方精密)在玻璃衬底上打印水凝胶图案,最高分辨率可达40μm。水凝胶图案在20℃是透明的;然而,当温度升高至40℃时,图案化的水凝胶选择性地由透明状态转变为不透明状态(图2)。而且,3D打印水凝胶从透明状态到不透明状态的转变是可逆的。 图1.a:热响应水凝胶设计的光学透明-不透明可切换窗口刺激响应变化的示意图 图2.基于PμSL3D打印技术制备的水凝胶图案。a:光固化树脂的组成成分;b:打印水凝胶的拉曼光谱;c:PμSL 3D打印技术原理示意图;d:3D打印高分辨率水凝胶图案,标尺是100μm;e:图案化水凝胶选择性透明-不透明转变的图片,标尺是5mm图3. 柔性热响应水凝胶器件的性能。a:透明水凝胶承受变形的照片(20℃),比例尺是10mm;b:不透明水凝胶承受变形的照片(40℃),比例尺是10mm;c:不同ACMO质量含量的水凝胶应力-应变曲线;d:不同PEDGA质量含量的水凝胶应力-应变曲线;e:不同温度下的水凝胶应力-应变曲线;f:PDMS衬底上水凝胶的透射光谱;g:PC衬底上水凝胶的透射光谱;h:水凝胶智能窗与已有文献报道的性能比较 同纯PNIPAM水凝胶智能窗相比,热响应ACMO单体赋予新型水凝胶极好的柔韧性和超高的拉伸性。其可以承受很大的变形,例如弯曲、拉伸、扭转;单轴拉伸试验表明水凝胶拉伸性能最大值为1500%。采用3D打印水凝胶制作的柔性热响应智能窗表现出优异的太阳光调制能力。智能窗在20℃是完全透明的,透光率(Tlum )高达85.847%;当环境温度超过LCST时,智能窗能通过超快的透明状态-不透明状态的转变调节太阳光的传输,太阳光调制率(∆Tsol)高达79.332%。相比于其他文献报道的热致变色智能窗,该工作中制备的柔性水凝胶智能窗表现出超高的透光率和太阳光调制率。此研究在新一代理想智能窗的节能方面具有巨大的应用潜力。该研究成果,以“3D printed hydrogel for soft thermo-responsive smart window”为题发表在International Journal of  Extreme Manufacturing上。

应用实例

2022.04.11

西南科大仿生微纳精密制造团队:精密3D打印构建仿生麦芒分级系统用于高效雾水收集

雾水收集对解决水资源短缺具有重要的意义,如何提升雾水收集效率一直是研究热点。高效的雾水收集需要同时满足高效捕捉和快速传输两个严苛的条件。受大自然启发,制备合适的仿生系统被认为是实现这两个严苛条件的有效方法。然而,目前制备的仿生系统结构单一,精度较低,无法实现高效的雾水收集。近日,西南科技大学李国强教授领导的仿生微纳精密制造团队,受小麦麦芒启发,利用PμSL3D打印技术(深圳摩方材料科技有限公司,nanoArch® S130)构造了仿生麦芒分级系统,实现了高效的雾水收集。经过优化设计的仿生麦芒雾水收集系统,表面分布有众多微型刺状取向收集器,扩大了收集的有效面积,增强了雾滴捕捉效率,并突破传统结构下滴状传输的限制,实现了高速的膜状传输,极大地提高传输速度和收集效率。该系统的水雾收集效率可达5.9g/cm2·h,有望应用于液滴传输、药物运输、细胞牵引、海水淡化等科学技术领域。图1 自然麦芒结构特征、雾水收集过程及仿生麦芒系统的制备过程。a.小麦麦芒捕捉潮湿空气中的小水滴。b.麦芒逆重力超快雾滴输运过程。c-e. 自然麦芒的分级结构SEM表征。f. PμSL 3D打印系统制备仿生麦芒分级系统的示意图。图2 自然麦芒与仿生麦芒的结构特征及演变规律。a-c.自然麦芒表面微刺、凹槽的结构特征统计曲线图。d-e.5种不同结构形式仿生系统示意图。f-g. 不同结构形式仿生系统的表征。h.仿生麦芒随微刺数目增加的结构演变示意图。要点:小麦麦芒可从潮湿空气中捕捉微小雾滴作为水分供给。这种高效的雾水收集能力主要是源于表面的锥形脊柱、梯度凹槽、方向性刺集成的分级微纳系统。通过对结构特征的分析,借助PμSL打印技术的高精度性、自由性对结构进行拆解、重新整合,并根据结构的演变过程优化构建模型,编程调控制备了不同结构形式的仿生系统,包括仿生脊柱系统(A-spine)、仿生凹槽系统(A-grooves)、仿生麦芒系统体系(A-awn-2、A-awn-3、A-awn-4)。图3 不同结构形式仿生麦芒的雾水收集过程。a-e. 仿生脊柱(Ⅰ)、仿生凹槽(Ⅱ)、仿生麦芒体系(Ⅲ、Ⅳ、Ⅴ)在水雾环境下逆重力的雾滴捕捉输运过程。图4 仿生麦芒的水雾收集作用机理。a-c. 仿生脊柱(Ⅰ)、仿生凹槽(Ⅱ)、仿生麦芒体系(Ⅲ、Ⅳ、Ⅴ)逆重力下的雾滴运输距离、速度、体积的统计曲线图。d-f. 仿生脊柱、仿生凹槽、仿生麦芒体系的雾水收集机理分析。要点:通过在水雾环境下观察,在仿生脊柱与仿生凹槽结构表面,雾滴以大液滴的形式进行定向地输运——滴状传输。但在仿生麦芒系统体系表面,无明显大液滴出现,相反雾滴是以一层薄水膜进行定向输运——膜状传输。液体传输模式的转变主要是受表面微结构所影响。脊柱与凹槽单级仿生结构系统,难以实现对雾滴快速高效的捕捉,无法在表面形成连续稳定的液体薄膜,所捕捉液滴易受周围液滴的吸引合并成大液滴进行传输。当其体积增大到某数值时,结构所产生的拉布拉斯力无法继续驱动液滴运动,最终钉扎在表面。而仿生麦芒分级系统体系,由于表面附加了众多的微型刺状取向收集器,增强了雾滴捕捉能力,实现快速的润湿过程,在表面形成连续稳定的液体薄膜。且与表面其他微滴合并凝结相比,微滴在水膜表面滑动的所需时间更短,因此更倾向于沿水膜表面运动,使得传输速度和收集效率得到显著的提升。实验结果表明,膜状传输的速度要比滴状传输高40倍,可实现3.5 mm/s的传输速度和 5.9 g /cm2·h的收集效率。该工作以 “Programmable 3D printed wheatawn-like system for high-performance fogdropcollection” 为题发表在国际著名期刊《Chemical Engineering Journal》上。该项工作得到了国家自然科学基金委、四川省科技厅等基金项目的支持。论文链接:https://www.sciencedirect.com/science/article/pii/S1385894720311311.官网:https://www.bmftec.cn/links/10

企业动态

2022.04.08

复旦大学于敏教授课题组《AJPS》:高精度3D打印用于抗凝药物重组水蛭素 (r-hirudin) 新型微创无痛递药系统的设计制备

复旦大学于敏教授课题组《AJPS》:高精度3D打印用于抗凝药物重组水蛭素 (r-hirudin) 新型微创无痛递药系统的设计制备抗凝治疗通常被用作心脑血管疾病治疗的首选策略,且此类患者大多需要长期甚至终身服用抗凝药物。直接口服抗凝剂有导致胃肠道出血的风险,尤其是对于有胃肠道疾病如胃肠道溃疡的患者,这种出血是致命的。皮下或静脉注射给药或可规避胃肠道出血的风险,但是注射给药需专业人员辅助,这对长期用药的患者而言极其不便,注射引起的疼痛亦会导致患者用药依从性较差。此外,皮下注射抗凝剂还会导致皮下出血淤青,增加感染风险,给抗凝药物临床应用带来了极大的不便。透皮给药作为一种前瞻性给药策略,可以补充注射和口服给药的局限性 (图1)。图1. 临床抗凝药物给药方式及不良反应微针 (Microneedle,MN) 作为微米级的微创设备,可通过破坏皮肤最外层角质层产生短暂的疏水性毛孔,将治疗药物输送至表皮中,被认为是最有前途的透皮给药系统之一。目前,微针的制备主要通过微模型浇铸法,但是用于微模型制备的方法大多局限于光刻或者化学蚀刻,工艺复杂、周期长且成本高,限制了微针的多样性和个性化发展。高精度 3D 打印是近年来新兴的一种微模型制备方法,由于该法简单高效且成本相对较低,已广泛应用于生物医药的各领域,为微针阵列模型的设计制备提供了新的选择。图2.微针阵列模型的设计与打印 A. 1#微针阵列模型的计算机模拟(左)、打印预览(中)及3D 打印微针的长度(右);B.2#微针阵列模型的计算机模拟(左)、打印预览(中)及3D 打印微针的长度(右);C.设计模型和打印模型对比 近期,复旦大学代谢分子医学教育部重点实验室于敏教授团队联合复旦大学药学院沈腾老师提出了一种基于 3D 打印技术的微模型制备方法。该团队利用新型超高精度 3D 打印技术 (nano Arch P140,摩方精密) 实现了个性化设计的微针阵列模型的制备,并通过开发一条新的模型复刻工艺成功制备了基于 3D 打印模型的微针模具,最终制备了 r-hirudin 新型微创无痛递药系统。该方法成功解决了以光敏树脂为打印材料的微针阵列表面 PDMS 无法固化导致的模型翻制问题,同时进一步拓展了 3D 打印在微针阵列设计制备领域的应用。利用高精度 3D 打印制备的微针阵列拥有较高的分辨率,打印的微针形貌特征保留完整、尺寸均一,为载药微针的定性与定量分析奠定了基础。相关成果以“Design and fabrication of r-hirudin loaded dissolving microneedle patch for minimally invasive and long-term treatment of thromboembolic disease” 为题发表在《Asian Journal of Pharmaceutical Sciences》期刊上。 在该研究中,首先利用计算机辅助的模型设计对目标微针阵列进行设计优化,分别按需设计了两款不同参数的微针阵列模型,如图 2A所示,考虑到 3D 打印分辨率的限制,绘制微针长度为 1000 μm,允许微针有 100-200 μm 的长度损失,设置微针形状为五棱锥形,底边长度分别为 150 μm 和 100 μm,将微针有序排列成 10 × 10 的微针阵列 (图 2B)。将设计图纸输出导入 3D 打印软件进行打印,最终获得基于光敏树脂的微针阵列模型。与设计模型相比,微针的高度发生了100-200μm 的损失 ,但在允许范围之内,微针针体形貌保存完整,不同微针个体尺寸均一 (图 2C),提示高精度 3D 打印在微针阵列模型制备方面具有巨大的应用潜力。图3.微针模具及 3DMN 制备流程图 由于以光敏树脂为打印材料的微针阵列模型在用 PDMS 进行模型翻制时在接触表面 PDMS 无法固化,所以选择明胶作为中间过渡材料替代直接使用 PDMS 进行微针模具制备,开发一条新的模型制备工艺(图 3),并通过该路线成功制备了微针制备模具。将该模具应用于r-hirudin 递药系统的制备,通过连续的微模型浇铸并辅以恒温真空制备r-hirudin 荷载的 3DMN。对 3DMN 进行表征分析并在实验动物体内进行微针给药的药效学与药物代谢动力学分析,结果显示 3DMN 给药可以实现快速的透皮药物递送,血药浓度在给药后 0.5 h 达到峰值 (图 4D-F),血液的凝固时间在 3DMN 给药后显著延长 (图 4A-C)。对 3DMN 给药的生物利用度(BA) 进行分析,发现 3DMN 给药相对于皮下注射给药的BA可达50% (图 4G-F)。该结果初步验证了基于高精度 3D 打印的微针阵列模型制备的 3DMN 在介导透皮 r-hirudin 递送中的可行性。 图4. 3DMN 介导的r-hirudin 透皮递送的体内药效学与药物代谢动力学研究 A-C. 血液凝固时间随给药时间的变化;D-F. 血清 r-hirudin 浓度随时间变化曲线;F. 不同给药方式血清药物浓度随时间变化曲线 G. 不同给药方式血清药物浓度参数 进一步研究 3DMN 在血栓性疾病防治中的应用,分别构建肾上腺素/Ⅰ型胶原混合物尾静脉注射诱导的急性肺栓塞动物模型和三氯化铁损伤诱导的肠系膜微动脉血栓动物模型,将载药 3DMN 用于动静脉血栓的预防性治疗,研究发现3DMN 介导的r-hirudin 用药可以显著抑制急性肺栓塞模型小鼠肺部血管栓塞的形成 (图 5C-D),提高小鼠的存活率 (图 5A-B)。此外还观察到,3DMN 介导的 r-hirudin 用药同样可以显著三氯化铁损伤诱导的肠系膜动脉血栓的形成,降低血栓发生率 (图 6)。以上结果进一步说明 3DMN 可用于动静脉血栓的预防性用药,而高精度 3D 打印技术的出现不仅丰富了微针多样性,也为未来临床用药个体微针量身定制提供了基础,具有极大的经济效益与社会效益。图5. 3DMN 在预防急性肺栓塞中的应用A-B. 3DMN 给药对急性肺栓塞小鼠生存率的影响;C. 小鼠肺部组织石蜡切片 HE 染色;D. 小鼠肺部 CT 扫描图图 6. 3DMN 在预防肠系膜微动脉血栓中的应用 A. 血小板在血管损伤部位聚集的体内成像;B. 血栓形成率的统计分析图;C. 血栓形成长度统计分析图官网:https://www.bmftec.cn/links/10

企业动态

2022.04.07

一种可用于3D生物打印的抗菌ε-聚赖氨酸衍生生物墨水

                           凭借其个性化定制的优势,3D生物打印受到了组织工程研究人员的广泛关注。生物墨水在打印过程中起着保护细胞,并在打印后提供促进细胞生长和组织再生的支架的作用。此外,不同的3D生物打印方法需要具有不同特性的生物墨水。然而目前用于3D生物打印的生物墨水是不足的,这限制了3D生物打印在组织工程中的应用。另一方面,细菌感染严重威胁着3D生物打印及后续组织工程技术的实现,并可能导致移植物植入失败和术后严重并发症。因此,引入一种具有固有抗菌特性的新型生物墨水用于组织工程,将促进3D生物打印在组织工程中的发展。近日,湖南大学刘海蓉教授课题组提出了一种新型可用于3D生物打印的抗菌ε-聚赖氨酸衍生生物墨水。体外抗菌实验表明,基于ε-聚赖氨酸的水凝胶对大肠杆菌和金黄色葡萄球菌均具有较强抗菌性能。通过使用面投影微立体光刻技术(nanoArch S140, 摩方精密),该研究成功打印了不同形状的高保真载软骨细胞水凝胶。在体内异位成软骨实验中,载细胞水凝胶经过4周培养形成了软骨样组织。总的来说,此项研究提出了一种很有前景的3D生物打印抗菌生物墨水,为3D生物打印在组织工程中的应用提供了一个新的选择。相关论文在线发表在《Journal of  Materials Chemistry B》,湖南大学何亚辉为本文第一作者,刘海蓉、周征为通讯作者,韩晓筱课题组为本文3D生物打印提供了支持。图1 (a)EPLGMA-H水凝胶制备工艺示意图。(b)EPLGMA-1、EPLGMA-2和EPLGMA-3在D2O中的1H NMR谱。(c)蓝光照射后的EPLGMAs凝胶化照片。(d)EPLGMA-H凝胶过程的动态实时流变学分析。图2 大肠杆菌和金黄色葡萄球菌分别与PBS、EPLGMA-1H、EPLGMA-2H、EPLGMA-3H共混后的(a)生长情况,(b)细菌存活率,(c)活/死细菌染色照片。图3 (a-c)3D生物打印制备的细胞负载EPLGMA-3H的3种不同形状的俯视图。(d-i)3D生物打印载细胞EPLGMA-3H培养3天后的活细胞照片,(g-i)分别为(d-f)的放大照片。 原文链接:https://doi.org/10.1039/D1TB02800F

企业动态

2022.04.06

微纳3D打印结合二次翻模形成的微柱在磁场作用下实现定向可控变形

北京理工大学宇航学院的陈少华教授课题组柴泽博士,近日在知名期刊《Soft Matter》发表了一篇高质量文章“Controllabledirectional deformation of micro-pillars actuated by a magnetic field”。研究人员在实验过程中使用了深圳摩方材料科技有限公司微尺度3D打印设备S140,该设备具有10um精度的分辨率,94*52*45mm大小的三维加工尺寸。基于该设备加工了阵列的微柱结构,通过PDMS二次倒模形成含有磁性颗粒的PDMS微柱阵列,通过磁场控制来研究微柱变形,进而研究可逆粘附、可控润湿性和方向性表面输运等特殊功能性表面的设计和研究。微柱阵列(BMF nanoArch®S140  GR resin)填充磁性颗粒的柔性微柱阵列的制备工艺如图(a)所示,先通过深圳摩方(BMF)10μm精度的微立体光固化3D打印机S140打印出微米级别的微柱阵列,再倒模出纯PDMS孔洞模具,最后二次倒模获得含有磁性颗粒的PDMS微柱阵列;(b)PDMS模具的SEM图像,该模具的孔的大小与3D打印的微柱的大小相同;(c-d)从顶视图(c)和侧视图(d)观察的磁性颗粒填充的微柱阵列的SEM图像;(e)单根微柱;(f)夹角为90°时,永磁铁和微柱阵列表面之间具有不同距离的微柱变形形态;(g)距离一定时,磁体围绕固定微柱样品以半圆形旋转,微柱的变形形态。众所周知,可以通过改变微结构表面的形貌来设计特殊的表面功能。本文提出了一种通过旋转磁场控制微柱阵列方向变形的简单有效的方法。每个微柱的大变形可以通过磁场强度和方向来调整。当磁场强度固定时,微柱的变形方向由磁场方向控制。当确定磁场方向时,微柱的挠度随磁场强度的增加而增加。根据最小势能原理,进一步建立了揭示微柱大变形机理的理论模型。从理论上预测变形柱的形态与实验结果非常吻合。目前的实验技术和理论结果有利于典型功能性表面的设计和制备。例如,通过外场精准控制表面微结构的变形,实现目标表面界面粘附性和液体浸润性的可连续性调控,以及呈现梯度变化。为实现仿生壁虎脚设计,微纳器件转印,生物医学微液滴混合及方向性输运等提供技术支持。BMF nanoArch®S140System

企业动态

2022.04.02

具有负泊松比与负膨胀系数的新型双负超材料

负泊松比材料在受到压缩载荷时横向收缩,负热膨胀系数材料在受热时发生收缩现象。而负泊松比和负热膨胀系数相结合的新型超材料为材料的特殊需求提供了进一步的可能性。香港城市大学深圳研究院介绍了一种具有负泊松比与负热膨胀系数的双负超材料(Extreme Mechanics Letters, 2019)。这种新型超材料基于传统的星型内凹结构。为了提高该结构的负泊松比,研究者分别在结构和排列方式上进行了创新。这种结构和排列上的创新使得超材料在受到外界力/位移载荷时呈现出内凹变形机制,从而表现出负泊松比。图1(a), (b)新构型超材料的结构以及(c), (d)两种不同的排列方式。为了得到负热膨胀系数,在一个结构中引入了两种热膨胀系数不同的材料(图1a)。蓝色的杆的热膨胀系数较小,而红色的杆热膨胀系数较大。研究者用大量的数值模拟对新构型超材料的负热膨胀系数进行了验证。在加热时红色的杆因为需要伸长的更多而使得垂直方向蓝色的杆发生弯曲,从而减小了整个结构所占有的空间,表现出负的热膨胀系数(图2)。图2新构型超材料受热变形图。为了验证该超材料的负泊松比行为,研究者们采用摩方P130 打印机对材料进行了制备。并用试验和数值仿真相结合的方法对其负泊松比行为进行了验证,两者吻合的较好。由于材料打印的尺寸在微米级别,这也为材料在声学、光学等方面的应用提供了可能性。图3新构型超材料电镜观测图以及受力变形图。该研究工作发表于Extreme Mechanics Letters,香港城市大学深圳研究院陆洋老师为通讯作者。摩方nanoArch® P130打印的轻质高强结构材料,最小杆径8 μm。深圳摩方材料科技有限公司持续助力香港城市大学深圳研究院在超材料领域的研究及应用,其自主研发的nanoArch® P130 3D打印机精度高达2微米。除上述研究工作中的超材料应用外,另一重要的应用是轻质高强力学超材料,具有超轻质量和超高强度。其优异的力学性能得益于其中的微晶格结构,如上图所示,这些微晶格结构非常复杂,使用传统的二维制造技术无法加工制作,而摩方的微尺度3D打印技术则可以快速高效加工出这种复杂三维微结构,且具有极高的打印分辨率(图中微点阵结构,最小杆径8 μm)。BMF nanoArch® P130打印系统

企业动态

2022.04.01

高精密3D打印技术在医用内窥镜行业创新应用

     随着医用内窥镜在医疗诊断和治疗的广泛应用,内窥镜精密微型化、集成化和定制化、一次性使用等特点将成为未来行业发展趋势。医疗器件精密微型化趋势,同时也给研发、加工制造带来了巨大的挑战和机遇。行业背景随着世界老龄化趋势加深和环境问题日趋严峻,消化道、呼吸道等疾病的发病率不断提高,内窥镜检查的需求也越来越多。医用内窥镜技术凭借诊疗精准性高,创伤小,不易感染,术后恢复快和近乎无疤痕等特点受到医学界的广泛关注,也是全球医疗器械产业中增长最快的产品之一。目前,我国约90%的医疗机构已开展内窥镜下的微创诊疗项目,在消化内科、呼吸科、耳鼻喉科、腹部外科、泌尿外科、肛肠科、骨外科、胸腔心血管外科、神经外科、妇科等科室得到大规模推广应用。我国医用内窥镜企业主要集中于珠三角、长三角地带,产业增长潜力巨大。但国内内窥镜行业由于起步较晚,国产内镜厂商在核心技术与关键器件研发方面与国外厂商相比仍有较大差距,产品集中于中低端,且以单一产品生产为主,缺乏产业链协同优势,研发实力、销售能力、售后服务能力和海外内窥巨头企业还有一定差距,因而无论是软性内窥镜市场还是硬性内窥镜市场,现阶段所占据的市场份额均较小。近年来,在医疗器械整体高速发展的良好外部环境和国家政策的大力支持下,我国医用内窥镜企业越来越重视自主创新,研发投入逐年增加,技术水平不断提升,国产内镜品牌的国际竞争力日益增强。相对于工业内窥,医用内窥镜技术壁垒的较高,我国医用内窥镜行业发展起步相对较晚,创新体系尚不完善,在技术、标准、品牌、创新研发和生产能力等方面都面临国外企业的巨大挑战。目前,国内公司都在致力于自主创新微型精密化内窥镜,在医用内窥镜精密光学系统和精密机械系统等关键器件与核心技术领域取得突破性进展。为了减少病患者的疼痛感和提高患者使用体验,以及在诊治方面更好的推广医用内窥镜技术,微型化和定制化也将成为未来医用内窥镜重点发展的方向之一。市场概况2017年全球医用内窥镜市场已达350亿美元,预计到2019年,规模将达400亿美元,年均复合增长率为7.72%。美国、欧洲、日本等是内窥镜的主要消费市场,在这些发达国家,内窥镜应用非常成熟和广泛。随着内窥镜技术的推广和普及以及医疗水平的提高,中国、印度、巴西等发展中国家市场需求也在快速增长。内窥镜技术已成为继IVD、心血管诊断、影像、骨科和眼科之后市场份额最大的医疗技术。据统计,2017我国医用内窥镜市场规模已达约200亿元,年复合增长率高达25.7%,中国内窥镜市场规模预测在2019年将达到246亿元。内窥镜是集光学、电子、结构、材料等综合学科技术为一体的器械,技术壁垒极高,尤其是软性内窥镜,软性内窥镜市场基本被日本的奥林巴斯、富士胶片、宾得等企业垄断,市场份额超90%以上,其中奥林巴斯市场份额超过70%。之前国内内窥镜市场基本上被日本和欧美企业垄断,随着国内对医疗内窥镜行业的重视,已涌现出深圳开立和上海澳华等行业具有竞争力的企业逐渐占据了国内外部分高中低端市场。为了缩小和进口技术及设备的差距,国内企业正在布局加大产品创新创造力度,并将产品创新列为战略性方向。高精密3D打印在医用内窥镜行业的应用随着微型化和定制化趋势的到来,产品结构越来越小和薄,内窥镜企业都在致力于寻找相匹配的精密加工方法。对于壁厚小于0.15mm的精密内窥镜端部座,CNC和开模注塑等传统加工方式成型都比较困难,尤其对于一些深宽比大的薄壁件。下图中的内窥镜端部座中的圆管壁厚是70微米,管径1mm,高度为4mm,精度要求±10~25微米,CNC和开模注塑,很难加工出这样逼近极限的结构,深圳摩方公司的nanoArch P140设备约两个小时就可以加工出高质量合格的产品,最快一天内可以交付。相类似的壁厚大一点的产品,CNC加工的交期需要1周以上,模具加工的交期需要2周以上。图中端部座带有三根壁厚70微米和高度为4mm的圆管道,传统加工方式需要分别加工三根管道和主体部分然后装配在一起,非常耗时耗成本,而摩方精密3D打印可以实现低成本一次性成型,无需组装。随之内窥镜微型化的发展趋势,目前我们打印过的内窥镜头端部最小产品直径大小大概在2mm左右,壁厚在0.01~0.02mm,这种微型化的结构件开模和CNC加工都及其困难,这也是摩方高精密3D打印的技术价值所在。对于这种需求种类多数量少的微型高附加值内窥镜,定制化成为了他们的首选。目前,深圳摩方已服务过国内、欧美日等地区顶尖的内窥镜企业,客户使用摩方精密3D打印技术,可缩短研发周期和降低研发成本以及实现产品定制化。

企业动态

2022.03.31

具有不同表面润湿性的微尺度3D打印微流控器件

作为微纳3D打印的先行者和领导者,在三维复杂结构微加工领域,重庆摩方精密科技有限公司拥有超过二十年的科研及工程实践经验。摩方精密在微流控应用领域,基于微流控的装置,例如流体连接器和基因测序仪阀门,已使用 PµSL 技术成功实现微流控3D打印。 ---阿联酋Khalifa University的T.J. Zhang教授和Hongxia Li博士,近日在知名期刊《Soft Matter》发表了一篇高质量文章“Imaging and Characterizing Fluid Invasion in Micro-3D Printed PorousDevices with Variable Surface Wettability” 。研究人员在实验过程中使用微纳 3D打印设备,该设备具有2μm分辨率,50mm*50mm的加工幅面,加工微流控器件。这台设备来自重庆摩方精密科技有限公司,型号为nanoArch S130。基于微纳3D打印的微流控器件,结合多相流成像技术,研究微尺度多孔介质中的多相流动。  多孔微流控器件制造的工作流程如图(a)所示,第一步是对薄片图像或微CT扫描图像进行处理(红色部分),然后从处理后的图像中,选择一个区域并将其嵌入微模型设计中(蓝色部分),构建三维立体模型。第二步是使用切片软件将三维模型切成一系列图片,最后是通过2μm精度的微立体光固化3D打印机打印出微流控器件;(b)同一岩石模型在2μm和10μm两种不同打印精度下打印出的表面形貌;(c)打印的岩石模型(打印精度2μm)与微CT扫描图像(扫描精度8μm)的对比;多孔介质中的流体渗透广泛存在于许多应用中,例如油气开采、二氧化碳封存,水处理等。流体渗透的动态过程会受到液体表面张力,多孔介质的表面润湿性,空隙拓扑结构以及其他参数的影响。在这项工作中,研究人员使用2μm精度的微立体光固化3D打印机打印出具有相似复杂孔喉特征的微模型。该模型的内部空隙结构来自于天然多孔介质(例如岩石)的薄片图像或微CT扫描图像。将不同的流体注入表面改性后的微模型中,我们可以借助于模型的高透明性直接在光学显微镜下观察和研究了在各种表面润湿性条件下的动态流体渗透行为。此外,我们还结合光学成像和数值模拟,系统地分析了残留液体分布,并揭示了四种不同类型的残留机制。这项工作提供了一种新颖的方法,通过结合微尺度3D打印和多相流成像技术来研究多孔介质中的微尺度下的多相流动。 致谢:阿联酋Khalifa University的T.J. Zhang教授和Hongxia Li博士参考文献:https://pubs.rsc.org/en/content/articlelanding/2019/sm/c9sm01182j/unauth#!divAbstract官网:https://www.bmftec.cn/links/7

企业动态

2022.03.30

新发展 新局面丨摩方精密再添3D打印服务中心

2022年3月,重庆摩方精密科技有限公司正式入驻位于深圳市龙华区观光路银星科技园的新办公地,标志着摩方精密继红山科技创新中心、锦绣科学园之后,又一生产基地的盛大启用。始创于2016年的重庆摩方精密科技有限公司,是全球微纳3D打印领域的先行者和领导者,作为微纳3D打印技术和精密加工解决方案的资深提供商,公司始终致力于三维复杂结构微加工技术领域的深度探索。拥有二十余年科研及工程实践经验的摩方创新团队,不仅在短短几年的时间内,就积累了包括发明专利、实用新型、外观设计、国际专利和软件著作权在内的77项自主知识产权,也为来自全球30多个国家超过一千个客户提供了满意的微纳3D打印技术方案。摩方精密发展的步伐,一步一个脚印。现深圳分公司已拥有三条核心生产线和三大实验室,红山科技创新中心总面积1400平方米,其中设备生产区域400平米,能够同时满足40台设备的生产调试需要;银星科技园基地总面积1300平米,其中设备生产面积200平方米,能够同时进行15台设备的生产调试,打印服务区生产面积400平方米,可容纳45台打印设备;锦绣科学园,总面积1250平方米,为材料研发生产基地。这些都为公司进一步提升研发和生产能力,提供了强有力的保障。银星科技园打印服务场地的启用,也让公司的发展迈上新的台阶,摩方精密将不断开辟新疆土、开创新局面,实现公司全面可持续发展!摩方精密,将为每位客户提供优质的服务,打印中心已全面升级,以全新的姿态,静候您的光临!官网:https://www.bmftec.cn/links/7

企业动态

2022.03.29

湖南大学王兆龙课题组《Solar RRL》:3D打印仿生太阳能蒸发器

自然界的树木依靠其独特的根茎系统,可以从很深的土壤里吸取水分,利用毛细力向上运输到叶片中进行光合作用(图1a)。受此启发,湖南大学王兆龙副教授、段辉高教授与东南大学陈永平教授、北京理工大学孔慧副研究员及上海交通大学郑平院士合作,在《Solar RRL》期刊上发表了题为“3D printed bionic solar evaporator”的文章。该文章利用面投影微立体光刻技术(nanoArch P140,摩方精密)制备了仿生微通道及水凝胶蒸发器样品。在经过处理后,形成了富含碳纳米颗粒的多孔水凝胶网络结构及仿生微通道的复合蒸发器结构。在毛细力的作用下,液体会从微通道底部输运到水凝胶网络中,在太阳光的照射下水凝胶在碳纳米颗粒的光热作用下迅速升温而将水快速蒸发,最终实现太阳能蒸发器吸水和蒸发的动态平衡。图1 一种仿生太阳能蒸发器。(a)树木吸水及蒸腾作用。(b)多孔水凝胶网络结构及仿生微通道的复合太阳能蒸发器结构。 具体的加工过程如图2a-b所示,水凝胶蒸发器结构由NIPAAm(聚-N-异丙基丙烯酰胺)与AAm(丙烯酰胺)单体聚合而成,在碳纳米颗粒的修饰下即可实现对太阳能的吸收。水凝胶蒸发器的形貌如图2c所示,内部凝胶网络的孔径为30微米左右,网络上附有一层致密的碳纳米颗粒,颗粒尺寸为20-30纳米左右。图2 加工过程及形貌表征。(a)水凝胶蒸发器加工过程。(b)微通道加工过程。(c)水凝胶表面形貌及碳纳米颗粒形貌。(d)微通道形状结构。基于仿生太阳能蒸发器优秀的蒸发性能与液体输运能力,研究人员将其应用在污水降解及海水淡化等应用中去。如图3a所示,污水中的一些大分子颗粒等污染物质会被水凝胶网络吸附,从而达成污水净化的目的。研究人员主要对有机染剂、酸碱以及重金属离子等污染物进行降解研究,对降解前后污染物的浓度进行对比。研究结果如图3b-d所示,仿生太阳能蒸发器对有机染剂的净化效率高达94%,能将酸碱全部过滤掉,对重金属颗粒的净化效果更是高达99.99%。除此之外,研究人员还对该太阳能蒸发器的稳定性进行了探究,如图3e所示,经过连续十四天的连续使用,仍能保持4.12kg/m2 h的蒸发速率以及92.5%的太阳能利用效率,证明了该蒸发器的稳定性。图3 太阳能蒸发器应用。(a)水凝胶网络的净化与过滤能力。(b)对有机染剂的净化效果。(c)对酸碱的净化效果。(d)对重金属离子的净化效果。(e)太阳能蒸发器的稳定性。该项研究成果获得国家自然科学基金委,湖南省优秀青年基金,广东省重大专项及国防科工局民用航天项目等研究项目支持。 原文链接:https://doi.org/10.1002/solr.202101063官网:https://www.bmftec.cn/links/7

企业动态

2022.03.28

中科院苏州纳米所钱波团队《AMT》:一种3D打印层状石墨烯气凝胶的新策略

中科院苏州纳米所钱波团队的郭浩等人提出一种3D打印层状石墨烯气凝胶的新策略。应用3D打印定制的针对不同氧化石墨烯墨水的狭缝挤出头,并在墨水中加入叔丁醇,抑制冰晶生长,最后应用定制挤出头3D打印制备得到层状石墨烯气凝胶,实现相比同类材料更高的电导率和电磁屏蔽性能,以及高灵敏压阻传感性能。图1 3D打印层状石墨烯气凝胶及其电磁屏蔽和压力传感特性 二维材料气凝胶因其在电磁屏蔽、传感器、柔性器件、超级电容器及油污吸附等方面的应用吸引了人们广泛的研究兴趣。由于二维材料本身的各向异性特性,相比各向同性结构,层状二维材料气凝胶在特定方向展示出优异的机械、电子、热性能。然而,目前制备层状结构二维材料气凝胶的方法较少,比较常用的是定向冷冻方法,但该制备方法在尺寸和形状上尚缺乏自由度,在性能上也仍有提升的空间。同时由于,二维材料分散液具有剪切变稀的特性,在剪切力的作用下,可以实现液晶形态的取向分布,如果能充分利用这一特性,将有望通过挤出装置实现取向结构二维材料气凝胶的制备,从而提升样品制备的自由度,并进一步提升材料性能。中科院苏州纳米所钱波团队的郭浩等人针对这一问题,提出一种3D打印层状石墨烯气凝胶的新策略。为充分利用氧化石墨烯墨水的剪切变稀特性,研究团队根据不用配方墨水的剪切变稀特性定制设计并应用摩方精密nanoArch S140高精度光固化3D打印机制备了可使对应氧化石墨烯墨水实现长程有序液晶形态的狭缝挤出头,狭缝尺寸50 μm,应用该挤出头在冷冻衬底上逐层3D打印相对应墨水。由于氧化石墨烯水基墨水中的水在冷冻衬底上结晶生成大尺寸冰晶,这将破坏狭缝挤出氧化石墨烯的液晶形态,为解决这一问题,团队通过调节叔丁醇在墨水中的含量,减小了冷冻衬底上冰晶生长的尺寸,从而降低了冷冻过程对于取向结构的破坏,最终通过冷冻干燥和化学还原实现了层状结构石墨烯气凝胶的制备。图2 根据墨水的流变性能设计并打印挤出头 研究显示,通过3D打印新策略制备的石墨烯气凝胶的层状结构清晰。得益于该层状结构,本研究3D打印的石墨烯气凝胶展示出比同类石墨烯气凝胶更高的电导率(705.6 S m−1)、更高的电磁屏蔽性能(3 mm样品在X波段可实现最高电磁屏蔽能效68.75 dB),并可实现高灵敏的压阻传感性能(清晰的语音和脉搏信号传感分辨能力)。图3 通过墨水配方调控获得良好层状结构的石墨烯气凝胶图4 3D打印层状石墨烯气凝胶的电导率和电磁屏蔽性能图5 3D打印层状石墨烯气凝胶的力学和传感性能研究者相信,此项研究将为具有剪切变稀性能的材料制备层状取向结构材料提供一条新的路径,为纳米材料通过3D打印有序可控组装并实现更高的性能提供一个新的思路。相关论文在线发表在《Advanced Materials Technologies》上。苏州纳米所郭浩为本文第一作者,钱波为本文通讯作者,苏州大学石学军为本文的软件模拟提供了支持。论文信息:A New Strategy of 3D Printing Lightweight Lamellar Graphene Aerogels for Electromagnetic Interference Shielding and Piezoresistive Sensor ApplicationsHao Guo, Tianxiang Hua, Jing Qin, Qixin Wu, Rui Wang, Bo Qian, Lingying Li, Xuejun ShiAdvanced Materials TechnologiesDOI: 10.1002/admt.202101699原文链接:https://doi.org/10.1002/admt.202101699官网:https://www.bmftec.cn/links/7

企业动态

2022.03.25

哈工大深圳马星课题组《ACS Nano》:可操作的免疫分析探针磁性纳米机器人用于自动化和高效的酶联免疫吸附检测

哈工大深圳马星课题组《ACS Nano》:可操作的免疫分析探针磁性纳米机器人用于自动化和高效的酶联免疫吸附检测基于抗体抗原“特异性结合”的免疫分析已被广泛用于实验室研究和临床诊断中。其中,酶联免疫吸附试验(ELISA)是一种经典且功能强大的生化传感技术,可通过生物酶反应和化学比色法对超低浓度分析物进行定量。ELISA已广泛应用于医疗诊断、环境分析和食品安全等领域。然而,在传统ELISA检测中,抗原或抗体被包覆到多孔板(例如,96孔板)的孔壁上,这导致了三个主要缺点:(ⅰ) 由于所有步骤都在同一槽内进行,因此在每步反应前后需要多次清洗,以去除未结合的残留试剂和非特异性相互作用的分子,这给检测人员造成了繁重的体力劳动;(ⅱ) 此外,由于操作中存在的差异性也可能为检测结果带来误差。(ⅲ)检测物与抗原抗体是通过被动的扩散来实现结合,因此传统的ELISA检测需要较长的孵育时间。以上原因都造成了传统ELISA检测效率低的问题。近日,哈尔滨工业大学马星课题组提出了棒状磁驱动纳米机器人(MNR)作为可操作的免疫分析探针,实现自动高效的ELISA分析方法,称为纳米机器人激活ELISA(nR-ELISA)。为了制备MNR,研究人员利用外部磁场辅助实现Fe3O4磁性颗粒的自组装以及在其表层原位生长一层刚性氧化硅(SiO2)。紧接着将捕获抗体(Ab1)通过法学法修饰到其表面,最终成功制备了磁性可操作免疫分析探针(MNR-Ab1)。通过数值模拟研究了微尺度下MNR周围的流体速度分布,并通过实验结果验证了主动旋转MNR能够提高混合效率。为了使传统的ELISA检测过程实现自动化,研究人员通过三维打印设计并使用面投影微立体光刻技术(nanoArch P150, 摩方精密)制造了一个由三个功能槽组成的检测单元。MNR-Ab1在外部磁场的作用下,通过微通道实现在不同的功能槽间运动,参与不同的阶段的生化反应。主动旋转的MNR-Ab1s可以在微尺度下,通过加速物质交换实现抗原/抗体与待检测物的快速结合,从而达到缩短培养时间的目的。该工作实现了ELISA检测的自动化。在未来,为了实现ELISA的高通量检测,研究人员拟采用亥姆霍兹线圈来替代目前磁场发生器。并且通过数值模拟的方法证明了:亥姆霍兹线圈不仅可以提供足够大的操作空间,同时空间内的磁场偏差较小(图1 磁性纳米机器人实现了自动化和高效的ELISA(nR ELISA)分析示意图。图2 MNR的制备和运动特性表征。图3 MNRs实现了自动化ELISA检测。采用摩方精密P150面投影微立体光刻技术打印了检测单元。如图b所示,微通道的狭缝宽度为200 μm,狭缝间距为300 μm。文章链接:https://doi.org/10.1021/acsnano.1c05267官网:https://www.bmftec.cn/links/7

企业动态

2022.03.24

北航冯林课题组:基于多模态声驱微气泡的多功能微对象操控研究

现代生物技术常常利用可调节的三维操控手段来实现在生物学领域和医学领域中对微纳米尺度的生物样品的控制与应用,例如细胞分析、细胞微手术和药物递送等。其中,为了提高潜在生物医学应用效率或满足一些涉及到复杂技术的应用需求,迫切需要在微流控装置中对微对象实现可控的多功能操控,如运输、捕获、旋转等模式。然而,固定的设计和驱动模式使其难以在一个单一的设备有效地实现多功能切换。近日,北京航空航天大学机械工程学院仿生与微纳研究所冯林副教授等研发了一种基于声驱微气泡的模态可切换的多功能微操控系统,该系统能够在微流控芯片内实现可控且高效的微对象运输、三维旋转和公转等操控模式(图一)。图一基于声驱振荡微气泡阵列的多模态操控系统示意图通过采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密),研究团队设计制造了一种带有底面微孔阵列(直径100μm、深度100μm)的微流控芯片。由于液体存在表面张力,当液体通入微流道并流过底面微孔时,可以形成具有近似尺寸的微型气泡。当超声发生装置所形成的超声信号传递到微流道中,可以激励微型气泡膜振荡形成声微流。图二声驱微气泡的理论模态与有限元仿真结果基于所设计结构内气泡界面的相对灵活性,该装置可以在仅调节驱动频率而不改变压电换能器数量与气泡阵列设计的情况下切换微型气泡的振荡模式,进而实现对单独或群体生物样本的多功能操控(图三)。由于声场的驱动特性,该装置可以有效操控几微米到几百微米的不同生物样本,包括微颗粒、细胞、绿眼虫、螺旋藻等。此外,利用平面外旋转模式的运动特点,研究团队实现了对细胞样本的三维重建,从而实现多视角的形态学复现与基本参数的测量估计。该系统所提出的声学操控方式具有多功能性、可控性、高效性以及良好的生物兼容性,在进一步促进细胞研究和治疗等应用层面具有很大潜力。图三不同控制模态下微对象的运动及定量分析该项研究成果获得国家重点研发计划(No. 2019YFB1309700)及北京新星科技计划项目(No. Z191100001119003)支持,以“Versatile acoustic manipulation of micro-objects using mode-switchable oscillating bubbles: transportation, trapping, rotation, and revolution”为题发表于国际期刊《Lab on a chip》。原文链接:https://doi.org/10.1039/D1LC00628B官网:https://www.bmftec.cn/links/4

企业动态

2022.03.23

摩方精密助力美国加州德安扎学院增材制造研究项目

近日,美国加州德安扎大学设计与制造技术学院的Corey Dunsky教授课题组,使用摩方精密microArch S240 3D打印设备成功打印出摩托车仿真链条。日前,该教授课题组有一个微型摩托车模型制造项目,此摩托车原型诞生于1969年,曾经获得诸多比赛冠军殊荣,被誉为巴哈1000赛车,在当时也备受关注,被称为巴哈入侵者。CoreyDunsky教授表示,这台仿真摩托车链条作为该项目的关键部件,精度要求非常严苛,而摩方精密可以满足该技术要求。链条中运动部件之间的间隙公差控制可以在±5 μm之间,并且仿真效果极高,链条功能齐全。CoreyDunsky教授也认为摩方精密在精密增材制造领域可以为许多微尺度研究项目提供简易高效解决方案。他对摩方精密给予了高度认可和赞扬。官网:https://www.bmftec.cn/links/7

企业动态

2022.03.21

基于3D打印的浓度梯度微流控芯片用于微生物的快速药敏检测

内容简介本研究论文聚焦微生物的快速药敏检测研究。抗生素耐药是目前全球公共卫生安全面临的一项严峻挑战。病原菌的耐药性加速进化增加了临床治疗多重耐药感染的用药难度与病人死亡率。及时得到微生物的抗生素药物敏感性结果对于临床多重耐药感染的精准诊断与用药治疗具有重要意义。这项研究中设计了基于流阻的微液滴芯片,结合应用刃天青生物指示剂可在5 h内指示微生物在不同浓度抗生素下的生长。该芯片有若干独立的截留腔室,可自动产生抗生素浓度梯度并形成独立的微液滴用于检测细菌药敏性。该芯片简化了控制操作和设备集成,相较于传统方法缩短了药敏检测时间,具有良好的应用前景。引用本文Zhang H, Yao Y, Hui Y, et al., 2022. A 3D-printed microfluidic gradient concentration chip for rapid antibiotic-susceptibility testing. Bio-des Manuf 5(1):210–219. 文章导读图1 用于细菌抗生素药物敏感性检测的浓度梯度微流控芯片的设计与应用示意图:(a)芯片的制造流程;(b)芯片内产生梯度浓度的过程。其中芯片模具是用摩方精密nanoArch S140制备。图2 不同浓度刃天青的显色荧光显色效果:(a)除去阴性对照后的相对荧光强度;(b)阳性对照和阴性对照的荧光显色图图3 三种不同浓度抗生素对大肠杆菌生长的影响查看更多:PuSL高精密3D打印 官网:https://www.bmftec.cn/links/7

企业动态

2022.03.18

利用微尺度3D打印和矿物涂层技术助力功能性微流控研究

多孔材料(如岩石)及其与流体的相互作用广泛存在于油气资源开采、地热能提取、二氧化碳封存、甚至行星探测中的地外资源利用(水提取)等应用中,然而,大多数岩石内部孔喉形态不规则,表面物理化学特性如表面润湿性也比较复杂。因此,探索岩石内部液体的流动过程,尤其是微尺度下的流固交互作用,仍然具有挑战性。近年来,高精度3D打印技术的迅速发展使得复现这种复杂的多孔结构变得可能。借助流动可视化手段,3D打印的微流控模型可以用于直接观察流体流动的动态过程。但是,目前打印材料仅限于光固化聚合物及其衍生物,其理化特性包括其矿物化学、晶体结构、表面润湿性等与天然岩石(如碳酸岩)存在显着差异。所有这些特性都对多孔介质中的流体相变和多相流动过程有着重要影响。近日,哈利法大学的张铁军教授团队基于面投影微立体光刻3D打印技术(PμSL,深圳摩方材料科技有限公司nanoArch S130), 通过表面矿物涂层的方法制备出一种岩石微流控模型。这种新颖的制备方法包括三个主要步骤,如图1所示:(i)使用纯光敏树脂(HDDA)打印具有三维岩石孔隙结构的微模型;(ii)在微模型的内表面植入碳酸钙纳米颗粒;(iii)以植入的纳米颗粒为核,在微模型内部原位生长碳酸盐晶体。该模型可以成功复现天然岩石的三维孔隙结构和表面矿物学特性。该成果以“Empowering Microfluidics by Micro-3D Printing and Solution-based Mineral Coating”为题发表在Soft Matter上,第一作者是哈利法大学李红霞博士。图1. 岩石微模型的制备过程在该工作中,张教授的团队利用高精度3D打印技术制备了不同用途的微模型,包括微流控器件和岩石微模型。微流控器件由三个平行通道组成(请参见图2a):每个通道的宽度分别为116±2、174±2和305±2 µm。在图2b中,岩石微模型是根据天然碳酸岩的CT扫描照片打印而成。在扫描电镜下,我们可以看到岩石微模型可以很好的复现真实岩石中狭窄的孔喉结构,并且也可清晰地观测到在微模型表面原位生长的碳酸盐晶体。此外,XRD光谱也证实该微模型表面的矿物成分是碳酸钙晶体,与天然碳酸岩相同。这种碳酸盐涂层厚度大约在2~10微米,仍然使微流控器件保持了一定的透光性,有利于流体的可视化研究。图2. 3D打印的微模型在表面涂层后的形貌 (a,b)扫描电镜下微模型的孔喉结构及表面碳酸盐晶体:(a)在微流控模型内表面以及(b)三维岩石微模型内表面。(c)表面涂层的XRD光谱。图3. 利用微流控模型的流动可视化研究:案例(a)水-油/水-气在岩石微模型内部的驱替过程;案例(b,c)水在孔喉内部的蒸发过程。基于所制备的微模型,该团队通过对水/气和水/油的驱替过程进行直接成像(如图3a), 表征了固体表面润湿性对流体交界面和流动路径的影响等。此外,他们还观测到液体在多孔介质里面的蒸发相变过程(图3b),包括不同大小空隙内蒸发的难易程度、喉部液膜的渐薄和破裂过程等。总之,该工作为制备功能性多孔材料开辟了一条新途径。据我们所知,这是第一次结合高分辨率3D打印和基于溶液的内部涂层方法,制备“真实的”岩石微模型。这种方法也具有很强的通用性:通过更改涂层材料和三维空隙结构,此类功能性微模型也可以很好地推广到生物医学、软体机器人、航空航天和其他新兴应用。论文链接:https://pubs.rsc.org/en/content/articlelanding/2020/sm/d0sm00958j/unauth#!divAbstract(以上相关介绍内容由阿联酋哈利法大学李红霞博士提供) 上述研究工作涉及的微尺度3D打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果对李红霞博士进行了更进一步的访谈,以下为部分内容:1、BMF:能概括分享一下近期在《Soft Matter》发布的岩心微流控案例吗?(开发过程、应用情况、行业影响等)BMF高精密3D打印在其中发挥了什么样的作用?李博士:在近期发表的这项工作中,我们提出了一种制造功能性微流控器件的新颖方法--通过集成微型3D打印和内表面涂层技术。在这项工作中,我们利用该方法已成功制备出广泛出现在油气研究中的人造岩心。利用高精密的3D打印系统,我们可以很好的复现岩石的孔隙结构,但是打印材料多数是光敏树脂,其物理化学性(包括表面润湿性、矿物学特性等等)能跟真正自然界的岩石差很多。于是,在我们的人造岩心制备过程中,我们首先通过3D打印技术复制由微CT扫描得到的碳酸盐岩的多孔几何结构,然后通过在打印的模型内部空隙表面生长碳酸盐晶体来模拟岩心真实的表面特性。这种功能性碳酸盐涂层只有几个微米,所以很好的保持了模型的光学透明度。所以,我们能够通过流动可视化方法,利用这些透明的模型帮助我们表征油水气等流体与岩石表面的交互作用,包括润湿性、毛细作用等流动和变化过程的影响等。这种利用表面功能性涂层结合微3D打印的制备方法,有利于打破打印材料的局限性,通过调节3D微结构和涂层配方等可以轻松地推广到其他新兴应用如生物医学等。2、BMF:您如何评价我们摩方的3D打印系统?对于您所在的科研领域所取得的科研/工作成果,发挥了多大的助力?李博士:摩方的打印系统可以提供高精度打印的同时实现大幅面打印。微流控器件的整体尺寸能到两厘米,可以很好的嵌入到流动可视化的实验系统当中,实用性很强。高精密3D打印系统可以轻松实现复杂三维结构,给我们提供了很大的设计和研究的自由度。在我们的研究当中,可以加工不同的表面微结构,进而控制流体与固体界面的交互作用。官网:https://www.bmftec.cn/links/7

企业动态

2022.03.18

利用微纳微尺度3D打印技术制备微流控液滴生成芯片

许多食品(烘焙食品、乳剂、冷冻产品等)是含有多种成分的分散体系,其中乳液是最常见的。传统的乳液制备通常需要高速均质、高压均质等方法。这些常用方法制备的乳液其大小、形状和分布是不可控的,存在多分散液滴。然而,微流控技术可精确控制多相流,以形成具有所需直径的单分散液滴。它在许多行业都有潜在的应用,包括食品、制药、化妆品和生物材料等行业。但其液滴生成效率低,不能满足工业化的要求。此外,传统方法不能很好的实现多重乳液的制备,而微流控技术可以较好的实现多重乳液的生成,但实验时需用有机试剂对微流控芯片(玻璃毛细管,PDMS)进行局部表面处理。近日,华南农业大学食品学院蒋卓副教授课题组基于微立体光刻3D打印技术(深圳摩方材料科技有限公司nanoArch® P140),利用光敏树脂材料实现微流控芯片的制备。此工作利用一种新技术制造了单乳液和双乳液的微流控生成芯片。这些芯片采用微纳微尺度3D打印技术制作,实现宏观结构和微观结构的有机结合,可以同时满足不同乳液类型的制备和生成,清洗后可多次重复使用。同时实现了五个平行通道的单乳液生成,为高通量微流控技术的改进奠定了基础。基于此,该微流控芯片成功实现了W/O/W(水/油/水)和O/W/O(油/水/油)双重乳液的制备。此外,由于制备芯片所使用的树脂材料对油和水都具有良好的润湿性,因此不需要使用有机试剂对芯片进行局部改性。该工作以“Microfluidicdroplet formation in co-flow devices fabricated by micro 3D printing”为题发表在Journal of FoodEngineering上,第一作者是华南农业大学硕士生张佳。微流控芯片的设计及3D打印制得的装置基于Co-flow原理,通过3D打印技术,制备了单乳液生成芯片(图1),五个平行流道的单乳液生成芯片以及双重乳液生成芯片(图2)。图1 单乳液生成装置图2 五个平行流道的单乳液生成装置和双重乳液生成装置微流控芯片的评价为了验证和评估该装置的可用性,我们选取不同的乳液配方进行试验。选取不同的油包水和水包油乳液,对乳液生成过程进行记录,并对收集后的乳液进行分析(图3)。收集到的油包水乳液单分散性较好,其CV为2.7%。同一装置上实现了水包油乳液的生成,所得液滴的CV仅为2.2%。图3 单乳液生成装置用于油包水(a、b)和水包油(c、d)乳液的生成及其分散性利用五个平行流道的单乳液生成装置进行试验,可以在同一装置上实现油包水和水包油两种不同类型乳液的生成(图4),所得油包水液滴的CV为2.6%,水包油液滴的CV为3.1%。本研究使用的微流控芯片制作简单,集成度高,可重复使用。但其生产效率和液滴直径仍需进一步提高,这也是我们后续研究的重点。图4 五个平行流道的单乳液生成装置用于油包水(b、c)和水包油(d、e)乳液的生成及其液滴的分散性基于上述实验结果,我们进行了双重乳液的生成。在实验中,通过改变内相、中间相和外相的速度可以调节液滴的尺寸和核壳比例。图5展示了不同流量下W/O/W双乳状液的形成过程和收集的液滴,可以看到明显的核-壳层。对于O/W/O双乳状液的形成(图6),实验过程中可以清楚地看到乳状液的形成过程,但收集后的乳液稳定性极差,不能观察到均匀分散的双乳状液滴,尝试了多种O/W/O乳液配方,暂未得到可靠的实验结果。图5 采用双乳液生成装置在不同流速下生成和收集W/O/W双重乳液图6 采用双乳液生成装置生成O/W/O双重乳液目前,对于3D打印微流控芯片的性能评价还处于实验室阶段,所使用的乳液配方是在现有参考文献的基础上进行修改的。为了进一步促进微流体在食品工业中商业化,需要进一步开发相关的乳液配方。此外,微流体的一些问题需要解决,如高通量,稳定性,生物相容性等。参与该工作的合作者有华南农业大学食品学院的硕士生徐文华,工程学院的徐凤英教授,无限极(中国)有限公司的鲁旺旺、张晨,深圳摩方材料科技有限公司的周建林等。原文链接:https://doi.org/10.1016/j.jfoodeng.2020.110212(以上相关介绍内容由华南农业大学蒋卓副教授提供)  上述研究工作涉及的微尺度3D打印技术由深圳摩方材料科技有限公司提供,因此摩方公司就这一创新型成果对蒋卓副教授进行了更进一步的访谈,以下为部分内容:BMF:请问目前您与BMF的合作进展情况如何?蒋教授:2018年6月前后开始与BMF的合作,最开始了解摩方所做的微尺度3D打印技术之后,有通过3D技术打印微流控芯片的想法,画出设计图之后,与工程师沟通交流后,进行了装置打印,并进行了实验验证,发现其可以实现液滴的生成,且可以看到液滴的生成过程。通过设计图的不断修改以及实验验证,最终完成了单乳液生成装置,五个平行流道的单乳液生成装置,以及双乳液生成装置的设计制造。BMF:能否概括总结液滴反应器这个案例,以及BMF高精密3D打印在其中发挥的作用?蒋教授:目前进行微流控芯片的研发,大多是在PDMS上进行,基于T-连接和流动聚焦原理。本论文基于流动聚焦原理进行了微流控芯片的开发设计,具有流动阻力小的优点,前期了解到微尺度3D打印技术的发展,可以实现微米级或亚微米级通道的制造,因而进行了相关芯片设计。实验发现3D打印过程中所使用的光敏树脂具有良好的特性,能较清晰的记录液滴生成过程,且材料具有两亲性,能够在同一装置上实现两种不同类型乳液的生成。在此基础上,无需对装置进行表面改性就能实现双重乳液的生成。此外,采用3D打印,可以制备具有复杂立体结构的芯片。这些为微流控在食品、化妆品及保健品乳液的产业化应用提供了另外一种可行的选择。BMF高精密3D打印是我们这项实验的基础,正是由于BMF帮助我们把芯片设计图变成实物,才能开展后续的实验,并发现这么多有趣的实验现象,也为我们后续的研究奠定了一定的研究基础。官网:https://www.bmftec.cn/links/7

企业动态

2022.03.17

微型尖锐结构在声场激励下实现声流体芯片上非接触、无损伤细胞搬运及三维旋转操作

北京航空航天大学机械工程及自动化学院冯林教授课题组学生宋斌,近日在国际期刊《Biomicrofluidics》发表了一篇文章“On-chiprotational manipulation of microbeads and oocytes using acoustic microstreaming   generated   by  oscillating   asymmetrical microstructures”。研究人员在实验过程中使用了深圳摩方材料科技有限公司微尺度3D打印设备S140,该设备具有10um精度的分辨率,94*52*45mm大小的三维加工尺寸。基于该设备加工了尖锐侧边和尖锐底面微结构,通过PDMS二次倒模并与玻璃基底键合形成声流体芯片。该声流体芯片通过正弦信号激励压电换能器振动,从而带动芯片内微结构振动,并在其周围产生局部微声流,最终实现卵细胞的三维旋转。该研究在细胞三维观测、细胞分析及细胞微手术方面有重大研究意义。(声流体芯片制备工艺示意图)   (a)图中声流道长度15mm, 深度250μm,最小宽度200μm。槽道内分布着对称的尖锐结构和斜坡陡坎结构:尖锐结构顶角20°,高度250μm;斜坡陡坎斜角28°,高度80μm。声流体芯片制备工艺如上图所示,先通过深圳摩方(BMF)10μm精度的微立体光固化3D打印机S140打印出微米级别的尖锐侧边和尖锐底面微结构(最小尖端20°),再倒模出纯PDMS模具,然后经表面处理之后二次倒模获得的PDMS尖锐侧边和尖锐底面微结构。最后把PDMS二次倒模的结构与玻璃基底键合形成声流体芯片。本研究声流体芯片的实验操作系统如上图a所示,主要观测系统和驱动系统两部分组成。上图b展示了声流体芯片的概念图,由受正弦信号激励的压电换能器振动,带动尖锐侧边和尖锐底面微结构振动,从而在相应的微结构周围产生微漩涡(如上图c所示)。在由微漩涡产生的扭矩作用下,最终实现了细胞的三维旋转。对应的微流道及微结构尺寸如上图d-f所示。细胞三维旋转作为一项基本的细胞微手术技术,在单细胞分析等领域有着重大科学意义和工程意义。本文提出了一种基于声波驱动微结构振动诱导产生微声流以实现细胞搬运及三维旋转的简单有效的方法。细胞旋转的方向和转速均可以通过施加不同频率和电压来实现。本研究以单细胞为操作对象,以微流控芯片为手段,以高通量全自动化多功能微操作为目标,为促进我国在微操作技术领域的发展以及生物医学工程交叉学科的革新,进一步为加强我国微纳制造水平提供系统性方法。(BMFnanoArch®S140 System)了解更多>>>https://www.bmftec.cn/links/7

企业动态

2022.03.16

具有不同表面润湿性的微尺度3D打印微流控器件

阿联酋Khalifa University的T.J. Zhang教授和Hongxia Li博士,近日在知名期刊《Soft Matter》发表了一篇高质量文章“Imaging and Characterizing Fluid Invasion in Micro-3D Printed PorousDevices with Variable Surface Wettability” 。研究人员在实验过程中使用微纳 3D打印设备,该设备具有2μm分辨率,50mm*50mm的加工幅面,加工微流控器件。这台设备来自深圳摩方材料公司,型号为nanoArch S130。基于微纳3D打印的微流控器件,结合多相流成像技术,研究微尺度多孔介质中的多相流动。多孔微流控器件制造的工作流程如图(a)所示,第一步是对薄片图像或微CT扫描图像进行处理(红色部分),然后从处理后的图像中,选择一个区域并将其嵌入微模型设计中(蓝色部分),构建三维立体模型。第二步是使用切片软件将三维模型切成一系列图片,最后是通过2μm精度的微立体光固化3D打印机打印出微流控器件;(b)同一岩石模型在2μm和10μm两种不同打印精度下打印出的表面形貌;(c)打印的岩石模型(打印精度2μm)与微CT扫描图像(扫描精度8μm)的对比;多孔介质中的流体渗透广泛存在于许多应用中,例如油气开采、二氧化碳封存,水处理等。流体渗透的动态过程会受到液体表面张力,多孔介质的表面润湿性,空隙拓扑结构以及其他参数的影响。在这项工作中,研究人员使用2μm精度的微立体光固化3D打印机打印出具有相似复杂孔喉特征的微模型。该模型的内部空隙结构来自于天然多孔介质(例如岩石)的薄片图像或微CT扫描图像。将不同的流体注入表面改性后的微模型中,我们可以借助于模型的高透明性直接在光学显微镜下观察和研究了在各种表面润湿性条件下的动态流体渗透行为。此外,我们还结合光学成像和数值模拟,系统地分析了残留液体分布,并揭示了四种不同类型的残留机制。这项工作提供了一种新颖的方法,通过结合微尺度3D打印和多相流成像技术来研究多孔介质中的微尺度下的多相流动。致谢:阿联酋Khalifa University的T.J. Zhang教授和Hongxia Li博士参考文献:https://pubs.rsc.org/en/content/articlelanding/2019/sm/c9sm01182j/unauth#!divAbstract

企业动态

2022.03.15

香港城市大学在液态金属力学超材料领域取得进展

图1 液态金属基微点阵力学超材料( https://doi.org/10.1002/smll.202070252)1991年上映的科幻电影《终结者2》描绘了一个能够随意变形,可自我修复的液态金属机器人T-1000,展现了液态金属应用的无限可能。电影中液态金属机器人是邪恶的化身,在实际应用中,液态金属却大有裨益,特别是在小尺度一些精密的应用上,如神经纤维修复和微型机器人。然而直接暴露的液态金属不易操作,且容易腐蚀其他金属,应用不当会带来不良后果,有鉴于此,香港城市大学“纳米制造实验室”的科研团队正在尝试在微观尺度上“驾驭”液态金属,使得其为未来精密应用,特别是金属力学超材料带来更多新的可能。目前的金属微点阵力学超材料具有超轻、高比强度等特性,在无人机机翼、小微型电子器械等器件上具有很好的应用前景。但是,目前这类力学超材料的韧性较差,且在服役过程中容易脆断失效。为了提高韧性,香港城市大学机械工程学系陆洋教授领导的研究团队开发了液态金属-聚合物微点阵力学超材料。该材料不仅有良好的韧性,而且充分利用低温度范围下液态金属的特性,实现了类似科幻电影中复杂形态液态金属的自我修复功能。该项研究成果发表在国际知名期刊《Small》(https://doi.org/10.1002/smll.202004190)。该团队基于摩方精密(BMF)超高精度光固化3D打印机nanoArch S140打印出中空的聚合物外框,壁厚100-300 μm。采用真空液体填充技术在聚合物薄壳中注入液态金属镓(Ga),首次制备了液态金属-聚合物核壳结构的微点阵力学超材料。该材料具有以下特点:良好的断裂韧性图2 液态金属-高分子点阵力学超材料良好的断裂韧性良好的断裂韧性。相比于实心或空心高分子点阵结构,液态金属-高分子点阵力学超材料避免了受压过程中的脆断失效现象。这是由于Ga的存在,阻碍了裂纹在高分子外壳中的扩展,使得该结构在裂纹出现后依然可以承受载荷。形状记忆效应图3 液态金属-高分子点阵力学超材料良好的形状记忆效应 形状记忆效应。得益于Ga较低的固液转变温度(29.7℃),当Ga为固态时,能够完美的保持变形后形状;Ga融化后,该结构又能完美的恢复至原始形貌,表现出形状记忆效应。当采用合理的拓扑结构,该材料被大幅压缩20%后,依然能够完美的恢复。优异的断裂恢复性 图4 液态金属-高分子力学超材料优异的断裂恢复能力优异的断裂恢复性。即使部分断裂后的液态金属基微点阵结构超材料依然能够基本恢复原始形状,并且能够保持一定的承载性能(≥50%初始强度)。部分断裂的高分子外壳在Ga融化后恢复至原始状态,驱动整体结构恢复至原始形状。综上所述,被3D打印包裹“驾驭”的液态金属核心表现出良好的韧性、形状记忆效应及优异的断裂恢复能力。这种新型的液态金属基微点阵力学超材料有望在生物医疗器械、微电子器件及微型机器人等应用获得巨大的潜力,甚至实现一些以往在《终结者》或者《变形金刚》等科幻电影里才能看到的前沿应用场景。

企业动态

2022.03.14

香港中文大学张立教授课题组《Advanced Materials》:软体机器人平台用于复杂生物运动的解耦和重编程

由于自然界中生命的演变,生物往往表现出对复杂环境的高度适应性,例如超快运动、伪装和群体合作。生物运动的研究对仿生机器人以及医疗设备构建等工程领域具有重要启示作用。基于此,人们致力于开发新的仿真工具、物理模型和实验平台来模拟和研究这些自然运动模式。然而,许多不同尺度的生物表现出非常复杂的运动步态,例如多种基本运动的耦合。这些步态难以用现有的软体机器人平台模拟,而且这些平台通常缺乏解耦复杂生物行为的策略,使得理解生物运动的机制具有挑战性。 近日,香港中文大学张立教授课题组联合北京计算科学研究中心丁阳教授课题组以及美国卡耐基梅隆大学Carmel Majidi教授课题组提出一种磁性软体机器人平台用于重建和解耦复杂生物运动。该磁性软体机器人可以通过模板法或者3D打印工艺制造。该工作中使用了面投影微立体光刻技术(nanoArch S130, 摩方精密)打印一种节肢型的水凝胶磁性机器人,机器人身体由磁性段(由掺杂磁性颗粒的聚丙烯酰胺水凝胶制成)和非磁性段(由聚丙烯酰胺水凝胶制成)组成。机器人的尺寸为长度5 mm、长宽比11:1。采用时变磁场来诱导软体机器人的敏捷运动。通过该软体机器人平台以及可编程的磁场输入,该研究团队可以重建出摇蚊的幼虫所启发的运动步态并对这类型的生物运动步态进行系统的解耦研究。相关研究成果以“Decoupling and reprogramming the wiggling motion of midge larvae using a soft robotic platform” 为题发表于国际著名期刊《Advanced Materials》。 通过构建的磁性软体机器人系统,该研究团队揭示了机器人身体卷曲和旋转的相互耦合在其推进中起着关键作用,以这种仿生推进方式游动可以诱导与自然生物一致的流场结构,并在中等雷诺数状态下实现优异的运动性能。此外,磁性软体机器人能够在流动的环境中逆流而行,通过切换其运动模式来适应三维环境,以及实现其他功能,包括越障能力和在狭窄空间中的运动能力。与通过磁场梯度直接将机器人驱动到指定位置的磁力控制策略相比,软体机器人可以灵巧地控制其变形和运动模式。 总结而言,这项工作提供了一个磁性软体机器人平台,使其能够对无脊椎动物的复杂运动进行解耦和重新编程,并掌握它们的基本机制。这也为设计具有复杂耦合步态的游动软机器人提供了新的思路。图1. 软体机器人的磁场控制和运动分析。(A)机器人的模板辅助磁化方式;(B)沿着机器人中心线的磁通密度分布;(C)软体机器人在不同静态磁场下的变形和转向;(D)用于控制软体机器人的动态磁场;(E)软体机器人在一个周期内的运动序列。 图2. 软体机器人的流场动力学模拟和流场可视化分析。(A)在一个周期内软体机器人的瞬时速度;(B)软体机器人质心轨迹的实验和模拟结果;(C)在一个运动周期内施加到机器人身体上的净流体力;(D)流场结构的可视化。图3. 软体机器人平台用于解耦复杂生物运动。(A)机器人身体卷曲和旋转之间的相位差对运动性能的影响;(B)机器人身体的转动角度对运动性能的影响;(C)磁场强度对机器人运动性能的影响;(D)磁场频率f2/f1 对机器人运动性能和前进速度的影响;(E)磁场频率feq对机器人运动性能的影响。(F)机器人运动方向和磁场方向角的关系。图4. 软体机器人的多模态运动。(A)机器人沿着五角星轨迹的可控运动;(B)机器人在动态环境中的运动;(C)机器人的三维游动和避障行为;(D)机器人在狭窄空间内运动;(E)机器人通过多种模式运动探索三维空间。原文链接:https://doi.org/10.1002/adma.202109126

企业动态

2022.03.11

3D打印微针生物传感器用于糖尿病的持续监测

糖尿病是一种流行慢性代谢性疾病,具有多种临床表现和并发症,是死亡的主要原因之一。连续血糖监测可加强糖尿病管理,通过及时了解血糖水平波动情况来调整治疗方案,可减少住院次数并节约医疗费用,减少无效药物的使用从而挽救生命。微针系统在糖尿病的持续和实时监测方面有着巨大的前景,其可在不触及痛点的情况下到达真皮,并且可以降低感染的可能性,有着更高的安全性。已有不少研究者开发出了用于糖尿病监测的微针生物传感器。然而,这些传感器的血糖检测范围仍然有限,这使得对血糖水平高的患者的监测不准确,且对实时的葡萄糖浓度的反映不够灵敏。此外,目前尚未有相关传感器将工作电极、参比电极和计数电极集成在同一芯片中。近日,北京大学崔悦课题组首次展示了集成微针生物传感装置对糖尿病的连续监测。该装置采用3D打印工艺、电镀工艺和酶固定化步骤制造。将该装置插入小鼠皮肤真皮层,对正常或糖尿病小鼠皮下葡萄糖水平的监测具有准确的传感性能。检测结果与商业血糖仪的检测结果水平相当。这项研究有望为糖尿病的监测和治疗提供有效的途径,同时也为皮下电子设备的基础研究开辟道路。相关研究结果以“Continuous monitoring of diabetes with an integrated microneedle biosensing device through 3D printing”为题发表于《Microsystems & Nanoengineering》。文章链接:https://doi.org/10.1038/s41378-021-00302-w图1 微针生物传感器件整体方案及材料表征。其中使用了不同设备打印了不同尺寸的锥形微针阵列,如图e, f所示。图e中的微针高度约为0.8 mm,底部直径为0.4 mm,间距为0.2 mm。(SprintRay Technology Ltd., China)图f中的微针高度约为0.5 mm,底部直径为0.1 mm,间距为0.4 mm。(nanoArch S140, 摩方精密)该工作设计并使用面投影微立体光刻技术(nanoArch S140, 摩方精密;MoonRay, SprintRay Technology Ltd.)打印了9×9的微针阵列,单个微针的结构为锥形。微针阵列确保工作电极和皮肤之间有足够的接触面积,通过减小器件尺寸,形成稳定的传感器-皮肤界面。微针生物传感器采用双电极结构,包括普鲁士蓝涂层的Au工作电极和Ag/AgCl计数器/参比电极。每个电极占据一定的微针阵列,使用磁控溅射在微针表面镀上Au或Ag,Ag/AgCl层由Ag层的氯化作用得到,Au电极上的普鲁士蓝涂层采用电镀工艺制得。最后,将葡萄糖氧化酶固定在传感器的Au工作电极上。整个传感器构建完成后,将微针插入小鼠皮肤真皮层。在皮下葡萄糖的存在下,工作电极上的酶促反应产生H2O2,从而产生电流信号响应。该生物传感装置在缓冲溶液、等离子体和模拟ISF中显示出可靠和稳定的葡萄糖检测,微加工和电化学镀步骤使传感器能够线性和灵敏地检测葡萄糖,且检测范围得到拓宽。进一步地,将传感器插入小鼠皮肤真皮层,传感器在小鼠进食或被注射胰岛素的情况下,能够准确地连续实时监测皮下葡萄糖水平。图2 微针阵列传感器的制备工艺及其检测H2O2的性能。图3 生物传感装置在不同环境下的选择性和稳定性。图4 用生物传感装置对不同溶液中的葡萄糖进行体外传感。图5 用生物传感装置对小鼠皮下葡萄糖进行体内监测。

企业动态

2022.03.10

可用于PμSL 3D打印的高强度苯并恶嗪

聚苯并恶嗪(polybenzoxazines,PBZs),是一类高性能热固性酚醛塑料。因其优异的热稳定性、力学性能、高的残碳率、优异的阻燃性、低吸水率、几乎为零的体积收缩率,使得PBZs在众多领域都有广泛的应用,例如防腐涂层、电子、航空复合材料、混纺纤维以及合金等。然而,PBZs本身比较脆,并且因其高的固化温度(通常为180-250 ℃)而导致加工性差。此外,常规的制备工艺例如挤出和熔融都十分难制备复杂的PBZs结构,这也极大地限制了其进一步的应用。3D打印技术是一种创新性的材料加工技术,可突破材料限制实现传统加工方式难以制备的三维复杂结构。在众多3D打印技术中,基于光聚合的面投影微立体光刻(PμSL)3D打印技术因其制备的结构具有高精度和微小的细节尺寸的特点而广受关注。进一步地,通过将上述光固化3D打印技术与热固化处理相结合,可有效实现具有复杂三维结构的高性能功能化器件。基于上述背景,南洋理工大学胡晓课题组设计并合成了低粘度的可光固化苯并恶嗪(Benzoxazine,BZs),并使用PμSL 3D打印技术实现了三维复杂结构的成型。初步研究结果表明,制备所得的双固化PBZs具有很高的玻璃化转变温度Tg (264 ℃)和弯曲模量(4.91 GPa),且通过使用高精度PμSL打印设备(nanoArchS140,摩方精密)和热处理可对该体系的PBZs进行复杂三维结构的制备。这些发现都极为有利地推动了可光固化3D打印BZ材料的设计,并为高效制造高性能热固性材料以满足各种高要求的工程应用提供了一种新途径。该研究成果,以“The molecular design of photo-curable and high-strengthbenzoxazine for 3D printing”为题发表在Chemical Communication上。原文链接:https://doi.org/10.1039/D0CC07801H图1.(a) 合成路线;(b) BZ-C2, BZ-C5和BZ-BA粘度与剪切速率的对比曲线; (c) BZ-C2 和BZ-C5 在稀释的三氯甲烷溶剂中的UV吸收光谱;(d)PBZ-C2在不同温度下固化的DSC曲线;(e) 光固化BZ-C2/C5和PBZ-C2/C5 在N2气氛下TGA (热重分析)。图二 (a) 存储模量 (插图:测试样条);(b) BZ-C2/C5和PBZ-C2/C5 tan ẟ(Tg的指标参数)随温度变化曲线;(c) PBZ-C2和PBZ-C5在不同温度下热固化的弯曲应力-应变曲线;(d)光固化BZ和PBZ的开环实验机理以及相应的网络结构示意图。表一使用摩方精密nanoArch S140设备打印的不同3D结构热处理前后的尺寸变化。

新品

2022.03.09

基于高精度3D打印的垂直U型环太赫兹超材料

由于能够对太赫兹电磁波产生有效的调制,近年来,太赫兹电磁超材料受到了科研界极大的关注。太赫兹超材料的单个单元的特征尺寸一般为几十微米,传统的加工主要基于MEMS微纳加工工艺流程。然而,这些工艺流程通常都需要昂贵的实验设备并且是多工序且高耗费的。为了克服这些缺点与不足,西交大张留洋老师课题组提出了一种基于微纳3D打印结合磁控溅射沉积镀膜的太赫兹超材料制造工艺:以基于垂直U型环谐振器的三维太赫兹超材料为原型,采用高精度微纳3D打印设备nanoArch S130(BMF摩方精密)对模型进行加工,随后通过磁控溅射沉积镀金属膜赋予该结构功能性。该成果以“3D-printed terahertz metamaterial absorber based on vertical split-ring resonator”为题发表于Journal of Applied Physics期刊。原文链接:https://aip.scitation.org/doi/10.1063/5.0056276     图1 基于垂直U型环的太赫兹超材料制备工艺示意图。采用面投影微立体3D打印工艺(nanoArch S130,摩方精密)在硅片表面制造树脂超材料模型,然后通过磁控溅射在树脂模型表面沉积覆盖金属铜膜。插图为基于垂直U型环的太赫兹超材料的模型剖视图。图1所示为所提出的基于垂直U型环的太赫兹超材料制造工艺流程示意图。首先,通过三维建模软件建立了超材料的数字模型,将该数字模型转化为STL格式就可以输入3D打印设备进行打印制造。打印所采用的树脂材料为一种耐高温的光敏树脂(High-temperature resistance photosensitive resin, HTL)。为了加强所打印的垂直U型环结构和硅片界面处的粘附性,在U型环和硅片表面之间额外打印了一层树脂基底。在树脂模型制造完成之后,采用磁控溅射镀膜工艺在树脂模型的表面沉积铜膜。所使用的3D打印设备(nanoArch S130,摩方精密)的光学精度为2 μm,最小打印层厚为5 μm。所采用的加工工艺主要依赖于3D打印技术,这使得整个制造过程相当的简单和高效。图2 所制造的垂直U型环太赫兹超材料扫描电镜照片与太赫兹时域光谱系统测量所得吸收谱。(a)垂直U型环局部阵列。(b)单个垂直U型环照片。(c)与(d)分别为测量和仿真所得的分别在x极化和y极化入射下超材料的吸收谱。    制造的超材料阵列的总体尺寸为9.6 ×9.6mm,一共包含了30×30个单元结构。从电镜图中可以看出,所选用的3D打印技术(nanoArch S130,摩方精密)可以很好地完成设计的微结构的成型。THz-TDS测量结果表明,在x极化下,超材料在0.8 THz处达到了96%的近一吸收,而在y极化下没有出现吸收峰,这与仿真所得的结果基本一致。图3 高Q值三维太赫兹超材料传感研究。(a)传感分析物的示意。(b)谐振峰频率随传感分析物的厚度而变化。(c)加载不同折射率分析物时的超材料吸收谱 (d)超材料传感折射率灵敏度。(e)加载乳糖与半乳糖粉末时的测量结果。(f)吸收峰频率的偏移。    通过仿真和实验研究了样品的传感特性。分析得出,随着传感物厚度的增大,频移逐渐加大,当厚度大于100μm时得到了最佳的效果。计算得到传感器的灵敏度为S = 0.5 THz/RIU,品质因数为FOM = 95.9。所制造的垂直U型环超材料的高度为75μm,适用于检测具有一定厚度的分析物。因此,该研究选择了典型的乳糖和半乳糖粉末作为分析物来验证垂直U型环传感器的传感能力。如图3 (e)所示,在样品表面加载乳糖和半乳糖粉末后,吸收峰的中心频率分别变为0.5335 THz和0.7603 THz,频移分别为0.2665 THz与0.0397 THz,获得了有效且明显地频移,验证了样品在折射率传感等领域的应用潜力。

新品

2022.03.08

香港城大申亚京教授团队《Advanced Intelligent Systems》:混合驱动软连续体机器人实现大转角和高精度操作

对于生物医学领域的多个应用场景(心血管手术、支气管手术等),小型软连续体机器人都展现了其巨大的应用潜力(图1a)。然而,现有的连续体机器人却在驱动选择方面经历相应的瓶颈期,其难以同时拥有小尺寸、柔顺驱动、大转角以及高精度操作等特性,因而在一定程度上限制了其在体内某些狭长受限环境下的广泛应用。而传统的加工制造方法不能很好的实现驱动方式综合性能的改善。近日,香港城市大学生物医学工程系申亚京教授带领的研究团队开发了一款毫米级的软连续体机器人(图1),其在线控和磁场的混合驱动模式下同时拥有大转角和高精度操作能力。为了实现毫米级外形尺寸的混合驱动,该团队基于摩方精密(BMF)超高精度光固化3D打印机nanoArch P140打印出超薄的镂空型机器人骨架(长度30mm,外径3.0mm,壁厚300μm),并在薄壁上形成150μm的贯穿孔用于腱索的布置。此外,该团队通过在机器人骨架外表面涂覆铁磁弹性体薄层(100~150μm)来获得磁响应性能。所提出的混合驱动软连续体机器人能实现约100°的大角度导向以及高精度(静定位精度低至2μm,动态跟踪精度低至10μm)的微操作。该成果以“Millimeter-scale Soft ContinuumRobot for Large Angle and High Precision Manipulation by Hybrid Actuation”为题发表在Advanced Intelligent Systems上。https://doi.org/10.1002/aisy.202000189在该工作中,所研发的毫米级软连续体机器人整体示意如图1所示。图一b左上角展现了机器人在目标区域—狭长受限环境内的导向能力。其中,线控功能由两对拮抗型腱索的拉紧/放松策略来实现,而磁驱性能则来自于弹性表皮中定向排列的铁磁颗粒在外加磁场中受力/力矩导致的偏转。在微尺度3D打印技术的加持下,该连续体机器人拥有较大的中空腔体,这一特性为后续多种微创手术器械的携带创造了条件。图1. 毫米尺度软连续体机器人整体示意图。先使用摩方精密(BMF)nanoArch P140打印出超薄的镂空型机器人骨架(长度30mm,外径3.0mm,壁厚300μm),并在薄壁上形成150μm的贯穿孔用于腱索的布置;再通过在机器人骨架外表面涂覆铁磁弹性体薄层(100~150μm)来获得磁响应性能。该混合驱动机器人的大转角导向能力及高精度操作性能验证如图2所示。线驱模式下,软连续体机器人成功在具有多个三维分叉的狭长受限管道内实现了导向行进(如图2a,b)。而在外加磁场的驱动下,该机器人展现了极好的动态跟踪效果(如图2c,d)。图2. 大转角导向能力及高精度操作性能验证受益于线驱模式的大转角导向以及较好的抵抗外力的能力,该软连续体机器人能够在狭窄血管模型中实现病理区域的搜寻(如图3a)。将所携带的微创手术工具递送至前端之后(图3b),该机器人可在外磁场的驱动下实现高精度的微操作(图3c),并进一步完成例如微注射和微切除(图3d)等工作。此外,磁驱模式下,所研发的毫米级软连续体机器人通过携带鼻咽拭子展现了鼻咽采样的现实功能(如图3e,f),其为当前新冠疫情的采样检测提供了新的思路。图3. 生物医学应用场景总而言之,该工作中所提出的结合了微尺度3D打印技术而得到的毫米级软连续体机器人同时具备小尺寸、柔顺驱动、大转角、高精度等特性,其在狭长受限环境下展现了优异的运动操作性能。与此同时,此项工作也为连续体机器人的小型化设计提供了一种新的方法,并将在生物医学工程领域展现更大的应用潜力。

企业动态

2022.03.07

湖南大学王兆龙课题组《ACS AMI》:3D打印仿生功能器件实现微网格结构水下自清洁

金鱼藻具有独特的茎和叶的气孔,其茎叶呈带状,宽度小于0.5 mm,有利于在日照和空气有限的情况下有效进行光合作用(图1a-c)。此外,金鱼藻茎叶上的气孔不仅能与周围环境交换气体进行呼吸,还能阻止外界水流的流入,这对金鱼藻在水下的生存至关重要。图1. 一种仿生功能开放细胞。(a)金鱼藻。(b)金鱼藻表面覆盖着独特的气孔。(c)金鱼藻表面单气孔示意图。(d)利用PμSL 3D打印技术制备仿生开孔细胞。 受此启发,湖南大学王兆龙副教授、段辉高教授与中科院理化所董智超研究员,东南大学陈永平教授及上海交通大学郑平院士合作,在《ACS Applied Materials & Interfaces》期刊上发表了题为“Underwater unidirectional cellular fluidics”的文章。该文章利用面投影微立体光刻技术(nanoArch S140,摩方精密)制备了原样品。在经过处理后,形成了外表面超亲水和内表面疏水的多孔仿生微结构(特征尺寸400微米),其不同接湿润性产生的拉普拉斯力(图2)保证了多孔仿生微结构的液体单向性能,这使液体被多孔仿生微结构阻挡在外,而在多孔仿生微结构内的液体和气体能被排出。此外,多孔仿生微结构的几何参数对其独特的单向流态性能有很大的影响。该团队也从理论上揭示了液体在3D打印多孔仿生微结构中的单向渗透机理。最终,还展示了多孔仿生微结构在水下厌氧化学反应的潜在应用。这种多孔仿生微结构为水下化学和微流体工程的潜在应用打开了一扇大门,如易燃材料的储存、快速固液分离和厌氧化学反应。图3.仿生网格在水下的单向流态特性研究。(a)水穿透孔的示意图。(b)不同情况下微孔的水接触线。(c)微孔外水滴的拉普拉斯压力。(d)仿生网格的单向渗透示意图。(e)水下细胞流体性能测试模型。(f)两个孔之间的距离对单向流体性能的影响。(g)孔宽对单向流态性能的影响。实验结果表明,由于毛细力的作用(图3a-ⅰ),水在孔的末端以较高的速度上升(图3a-ⅱ)。而由于惯性作用,水将会在达到出口之后继续上升(图3a-ⅲ),同时,拉普拉斯压力随着孔口液滴弯月面曲率减小而逐渐增大。当拉普拉斯压力达到最大时,如果水的动能使动态接触角大于表面前进接触角,水将会从孔中溢出(图3a-c)。因此,鉴于内表面具备疏水性,水不能渗透到多孔仿生微结构内 (图3d-ⅰ)。相反,由于另外一侧是超亲水表面,最大拉普拉斯力接近0,水将从多孔仿微结构疏水侧渗透到亲水侧(图3d-ⅱ),从而使得该仿生结构具有优异的单向液体穿透能力。多孔仿生微结构在水下的单向渗透性能由仿生网格结构失去单向性前的最大水深来表征(图3e-ⅰ)。矩形孔在水下的单向流控性能最好,而三角形孔仿生膜的性能最差。此外,微结构厚度对仿生膜单向流控性能也有较大的影响,在100 μm至1000 μm范围内,仿生膜的可持续水深随膜厚的增加而增加。但随着膜厚的增加,可承受水深将保持在75 mm左右。两孔间距、孔宽对仿生膜水下单向流控性能的影响分别如图3f、g所示。对于150 μm孔,多孔仿生微结构的可承受水深仅为10 mm左右。当孔径为300 μm左右时,可承受水深随着孔间距的增加迅速增加,达到 45 mm左右。之后,随着两孔间距的增加,可承受水深缓慢增加(图3f)。图4. 水下仿生细胞内部的化学反应。(a)水下仿生细胞。(b)液滴滴在仿生细胞内表面时,仿生细胞的排水特性。(c)液滴滴在仿生细胞外表面时的拒水性能。(d)0.5mol▪L-1NaHCO3与0.5mol▪L-1H2SO4在仿生细胞内的化学反应。(e)0.5mol▪L-1FeSO4与0.5mol▪L-1NaOH在充满CO2的仿生细胞内的化学反应。(f)我们的仿生细胞在水下的自清洁性能。基于仿生网格的优异液体单向通过特性,研究人员设计了微网格结构组成的封闭仿生细胞腔体。该仿生腔体具有疏水的内壁面及超亲水的外壁面,从而使得外侧的水在一定条件下无法穿过多孔仿生网格进入仿生细胞腔体内,从而形成水下密闭空间。该仿生细胞腔体被应用于微反应器(图4a-c)。研究结果表明,由于网格微米孔的存在,产生的气体可以自由出入仿生细胞(图3a-ⅲ),并且可在水下形成无氧环境,进而可实现保护气作用下的特殊化学反应。最重要的是,由于仿生网格独特的液体单向特性,该仿生细胞在反应结束后会快速排出腔体内的所有液体,具有极为优异的水下自清洁特性。该项研究成果获得国家自然科学基金委,湖南省优秀青年基金,广东省重大专项及国防科工局民用航天项目等研究项目支持,以“Underwater unidirectional cellular fluidics”为题发表于国际知名期刊《ACS Applied Materials & Interfaces》,14,7 (2022) 9891–9898,其中,湖南大学谢明铸硕士生为第一作者。原文链接:https://doi.org/10.1021/acsami.1c24332作者:王兆龙

企业动态

2022.03.03

南方科技大学《ACS Nano》:通过分级互锁结构设计获得高灵敏和宽线性传感的柔性压力传感器

灵敏度高、线性传感范围宽的柔性压力传感器在机器人触觉、健康监测、可穿戴设备领域具有重要应用。构筑微结构可以提高传感器的灵敏度,但由于软材料在压力作用下的结构硬化问题使传感器的响应逐渐饱和,导致器件呈现较窄的传感范围和显著的非线性响应。针对这一问题,来自南方科技大学的郭传飞教授团队设计了由微穹顶阵列与带有次级微柱的微穹顶(分级微穹顶)阵列而形成的一种分级互锁结构,有效提升界面结构的可压缩性,显著降低结构硬化,实现柔性压力传感器的高灵敏度(49.1 kPa-1)、线性响应(相关系数R2>0.995)和宽传感范围的统一(~485 kPa)。传感器的响应/恢复时间小于5 ms,可以检测频率高达200 Hz的振动刺激,显示出良好的动态响应特性。将传感器用于机械手的抓取任务中,结合机器学习,帮助机械手识别被抓取物体的重量,提升机器人触觉感知能力。相关工作以“Graded Interlocks for Iontronic Pressure Sensors with High Sensitivity and High Linearity over a Broad Range”为题发表于国际期刊《ACS Nano》。 该研究使用面投影微立体光刻技术(nanoArch S130,摩方精密)打印具有微穹顶结构以及分级微穹顶结构的树脂作为模具,进一步地,通过模板法获得具有微穹顶结构的环氧树脂/Au电极及离子膜。打印模具尺寸:9 mm×9 mm×1.5 mm,单个微穹顶尺寸(电极模具):宽290 μm,高480 μm;次级微柱尺寸(离子膜模具):直径28 μm,高70 μm。每层打印精度设置为5 μm,以实现分级互锁结构的高精度、定制化打印。 这项工作为制造具有高灵敏度、高线性度和宽压力响应范围的柔性压力传感器提供了一种策略,在未来的触觉器件中具有广阔的应用前景。                    图1. 分级互锁结构的可压缩性及器件传感原理 分级互锁结构由微穹顶结构与带有次级微柱的微穹顶结构组成。微柱在分级互锁结构中具有重要作用。一方面,它提高了结构的可压缩性,减少结构硬化,使应力分布更均匀,有助于实现线性形变;另一方面,微柱结构的引入减小了电极与离子膜之间的起始接触面积,可有效提高了器件的灵敏度(图1)。 图2. 分级互锁型柔性压力传感器的制备该研究使用面投影微立体光刻技术打印具有微穹顶结构以及分级微穹顶结构的树脂作为模具。进一步地,通过模板法获得具有微穹顶结构的环氧树脂/Au电极及离子膜,并与平面电极PET/Au组合、封装,获得分级互锁型器件(图2)。 图3. 分级互锁型柔性压力传感器的传感性能分级互锁结构的设计实现了器件的高灵敏度、高线性度及宽传感范围的统一,同时提升了器件的响应速度,实现对高频振动刺激的精准检测,呈现出良好的动态响应特性(图3)。 图4. 分级互锁型柔性压力传感器的线性传感特性 将该传感器用于开发线性响应的电子天平,并用于测量几种未知物体的重量,其输出结果与商业电子天平的称量结果几乎一致,表明了自制电子天平对质量的测量比较准确、可靠,而且无需额外的非线性校准,大大简化数据处理过程(图4)。 图5. 基于机器学习的抓取任务感知与重量识别 柔性压力传感器的一个重要应用是为机器人带来触觉感知能力,使机器人能够像人类一样与外界互动。将分级互锁型传感器集成在气动抓手表面,实现机械手在抓取物体时的触觉感知;结合机器学习,帮助机械手识别物体的重量(图5)。原文链接:https://doi.org/10.1021/acsnano.1c10535作者:白宁宁

企业动态

2022.03.03

北京理工大学方岱宁院士、董浩文副教授课题组《Natl. Sci. Rev.》:面向超宽带声束工程的色散定制化消色差超构表面

 近年来,作为一种可调控波相位、极化方式、传播模式的超薄声学人工表面结构,声学超构表面(Acoustic metasurfaces)可以实现许多新奇的波控功能,在吸声降噪、医学超声、声波器件、探测、通信等领域展现了广阔的应用前景。然而,绝大多数声学超构表面都面临突出的窄带和功能色散问题,且主动调控的手段也存在功能色散、低可靠性、高系统复杂度和高制造成本等诸多挑战。更重要的是,可重构超构表面虽可保证离散频率下波动功能,但不太可能适用于含多个频率的宽带入射波包。因此,从工程应用的角度来看,声学超构表面亟需实现被动式超宽带、非频变特性,也需更多新的结构形式与调控机理。近期,北京理工大学方岱宁院士和董浩文副教授、香港理工大学成利院士、天津大学汪越胜教授、美国罗文大学沈宸助理教授、青岛大学赵胜东副教授密切合作,并联合德国锡根大学张传增院士、美国杜克大学Steven A. Cummer教授、中科院深圳先进技术研究院郑海荣教授和邱维宝研究员等国内外学者,在超构材料领域取得重要进展。该团队提出了定制化色散的逆向设计方法,利用面投影微立体光刻技术(nanoArch S140,摩方精密)实现了声学超构表面的高精度3D打印,成功构造了消色差声学超构表面,实现了高效、相对带宽为93.3%的声波定向传输、相对带宽为120%的能量聚焦、相对带宽为118.9%的超声粒子悬浮等超宽带声学波束工程,并揭示了超宽带消色差特性的力学机理,为超宽带、高效、多功能超构材料器件提供了新的设计范式,可为先进结构技术与完美波动调控的结合提供系统的理论与方法。该研究以“Achromatic metasurfaces by dispersion customization for ultra-broadband acoustic beam engineering”为题发表于《国家科学评论》(National Science Review, NSR, https://doi.org/10.1093/nsr/nwac030, 2022)。为获得超构表面的定制化色散特性,该研究提出了系统的超宽带消色差 “至下而上”逆向设计框架(图1)。为实现声波异常折射、聚焦和超声悬浮功能,超构表面需分别产生具备线性非色散、非线性非色散、非线性色散特性的三类波束,即:定向传输波束、聚焦束和局域空心束(图1b)。事实上,为实现特定的色散、严苛的相位分布与传输效率,所有超构表面单元必须同时满足特定的等效折射率、相对群延迟以及相对群延迟色散。因此,本研究建立了超构表面单元的“相位-效率-色散”的拓扑优化模型,利用遗传算法完成了超宽带、消色差、高效声学超构表面的逆向设计。图1:超宽带消色差超构表面的逆向设计方法 为证实逆向设计方法的正确性与有效性,本研究首先针对声波异常折射功能,设计出具有非对称局部腔体、弯曲空气通道的超构表面单元(图2a)。在低频宽带范围内(1600-4400 Hz),优化单元具备恒定的等效折射率与高传输率(图2b, 2c)以及线性非色散特性。值得注意的是,这种拓扑特征与传统的Helmholtz共振腔和迷宫结构非常不同。这种区别意味着超宽带非色散特性无法由单一构型所决定,而需要多种拓扑特征的组合来实现。仿真和实验结果也进一步验证了具有恒定折射角的高效、异常透射功能(图2d,2e)。图2:逆向设计的声学超构表面与其超宽带高效异常波束折射 本研究进一步设计出更复杂的非对称超构表面单元(图3a),其具备超宽带恒定的等效折射率(图3b),且折射率增加的程度逐渐降低;大部分超构表面单元均可保持高于80%的传输效率(图3c)。有趣的是,#4、#5、#6和#7单元具有非常相似的拓扑特征,但#3、#2单元却呈现完全不同的特征,这意味着单一的拓扑构型无法实现超宽带非色散功能。结果表明,优化的超构表面可实现具有恒定焦距、高效、声波聚焦功能(图3d,3e),证实了其超宽带[1000 Hz, 4000 Hz]、消色差特性。图3:逆向设计的声学超构表面与其超宽带高效聚焦 为更进一步展示所发展优化模型与方法的优势,本研究还针对宽低频、高度复杂的色散特性,设计出一系列具有非色散、非线性色散特性的高效超构表面单元(图4a)。通过特定的单元集成方式,构建了含13×13个微米尺度单元(4.2 mm×4.2 mm×1.2 cm,S140,摩方精密,10 μm打印精度)、轻质、超薄的3D声波超表面(5.46 cm×5.46 cm×1.2 cm)。结果表明,超构表面可在[16.5 kHz, 66 kHz]内产生具有恒定悬浮位置的局域空心束(图4e),从而实现了单边、稳定、超宽带的超声悬浮现象(图4f),显著优于目前已知的超声悬浮技术。此外,超构表面的波动功能对热粘滞损耗也具有很强的鲁棒性。图4:逆向设计的声学超构表面与超宽带、单边、稳定的超声粒子悬浮 为揭示超宽带消色差特性的机理,本研究详细地考察了具有线性非色散、线性非色散、非线性色散特性的3个代表性超构表面单元,分析了其相位响应(图5a-5c)、等效阻抗矩阵(图5d-5f)和散射性质(图5g-5i)。结果显示,优化的非对称单元均存在明显的内部共振(internal resonance),从而有效地补偿了由单个结构块体色散而产生的复杂相移。此外,3种单元也存在一定程度的双各向异性(bi-anisotropy)。更有趣的是,这种优化的超构表面单元还存在显著的多散射效应,可被视为一种新的超构表面设计自由度。 图5:超宽带消色差特性的协同作用机理 针对声波超宽带声束工程,本研究发展了融合相位、幅值、色散、功能的声学超构表面通用逆向设计框架,设计出一系列新型非对称超表面,实现了超宽带、消色差声波负折射、聚焦和超声悬浮三类功能,揭示了超宽带消色差特性的协同作用机理,即:集成的内部共振、双各向异性以及多散射效应。研究可为超宽带、被动式、多功能超构材料的构造提供系统性逆向设计方法,可为2D/3D弹性波/声波超构材料的大规模、集成设计提供重要的理论指导与结构基础。近年来,本团队已提出了多种弹性波/声波超构材料的逆向设计模型,揭示了宽带力学机理,实现了一系列高性能弹性波、声波、水声功能及器件,为超构材料宽低频响应的系统性创新设计提供了解决方案。作者:董浩文

企业动态

2022.03.02

< 1 ••• 16 17 18 19 20 ••• 21 > 前往 GO

深圳摩方新材科技有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 摩方新材

公司地址: 广东省深圳市龙华区红山6979商业区26栋5楼 联系人: 黄先生 邮编: 518110 联系电话: 400-860-5168转4666

友情链接:

仪器信息网APP

展位手机站