您好,欢迎访问仪器信息网
注册
Sievers分析仪(威立雅)

关注

已关注

白金12年 白金

已认证

粉丝量 0

400-809-9576

仪器信息网认证电话,请放心拨打

当前位置: Sievers分析仪 > 公司动态
公司动态

增强化工处理的工业用水管理:有关合规性、可持续性和成本效益的策略

对化工企业而言,工业废水管理有利于提高效率,从而获得更多机遇。在制造业中,水起到至关重要的作用,可用于处理、加热、冷却、清洗或作为产品的重要成分。然而,工业用水中有90%或以上最终将成为废水1。在再利用或排放到环境之前进行废水处理通常会产生大量成本,但有时也会产生机遇。随着能源和材料成本不断的提高,且消费者和监管机构的要求也越来越高,全球有越来越多的行业面临着可持续性方面的问题。通过处理有毒的废水,化工企业可减少其水足迹并提高水的再利用率,从而实现更好的整体水管理。对于在缺水和干旱对生产造成威胁的地区运营的化工企业来说,水的回用尤其重要。此外,有毒物质排放可能会影响公司的声誉,公众会要求问责并采取行动纠正这种情况,包括更好的环境保护。然而,在废水管理方面,成本始终是化工企业的考虑因素之一。因此,尽量减少废水量成为减少废水处理成本的最佳途径。废水处理可根据流量和污染负荷,并结合排水质量要求,组合运用生物、化学和物理等处理手段。现场对水回收的投资可以快速抵消排放罚款和取水成本。这就是整个工厂的总体水足迹和水成本发挥作用的地方。为实现现场水回用,通常需要采用紫外(UV)、离子交换、活性炭、反渗透等先进的处理技术。水处理的要求通常取决于回收水的目的,比如:冷却水的水质要求低于锅炉给水。水处理策略与实践各种指导方针旨在限制制造业排放,鼓励工业更高效、更可持续地运营。例如欧盟成员国的工业排放指令,提出最佳可行技术(BAT,Best Available Techniques)和相关排放水平(AEL,Associated Emissions Levels),以指导各部门如何实现合规和改进。同样,美国《清洁水法案(Clean Water Act)》,也在不断发展,以推动废水处理的改进,避免污染或有毒事件。在企业层面,很多公司目前发布了环保项目和长期水质目标,并定期更新最新进展。虽然有部分目标可能相对较低,但对于股东、客户以及当地社区而言是负责任的表现。其中一项关键BAT技术是在关键位置监测关键工艺参数。出水口过往是首选的监测位置,但只有在上游增设监测才能真正实现优化和成本节约。为实现排水合规,必须确定废水的来源及其对废水处理造成的影响。运营方应创建工厂的水足迹图,以确定可能存在污染的区域以及有优化潜力的区域。然后,可根据水足迹图增设监测点,获取相关重要数据并做好水处理决策。通过水足迹图,工厂可确定目前的“痛点”并确保理解数据的目的所在。收集整个工厂的实验室数据通常是一个很好的起点。最初,如果多台工艺装置间没有变化,则可以认为它们是非关键点。但是,当处理阶段或处理步骤导致水质或水量发生显着变化时,运营方应将其视为关键控制点。为确定需监测的参数,除了原水和排水的质量之外,工厂需要仔细研究现场的处理方式和产品。如,在化工行业中,基础化学品或大宗化学品为塑料和聚合物,通常是能源行业和消费品的重要材料。因为原材料为有机化合物,所以此类化学品制造排放的废水通常含有极高含量的有机物,而且随生产发生剧烈变化。因此,为符合相关法规要求,很多制造商均设计采用缓冲罐来处理高浓度和低浓度。在特种化学品方面,材料由氮、硫、氯化合物等无机物制成。有时,环境或加工过程中的有机化合物会干扰纯度或加工效率。例如,氯碱生产使用饱和盐水和膜电解来生产氯和相关产品。回收盐水存在有机污染物积累的风险。有机污染会污染膜系统并导致计划外维护。跟踪污染物可以帮助保护膜系统免受损坏并保持生产力。除了温度、压力、流量、pH 值和电导率等物理和基本化学参数外,操作员还应考虑它们如何影响工艺控制、合规性和产品质量。就排放到环境中的物质而言,常见的关注参数包括有机物、无机物和营养物。有机物和营养物(碳、氮、磷)会导致藻类爆发和富营养化,影响当地环境,必须通过处理去除。这就是为什么监测和消除有机污染至关重要。检测方法许多地区检测需氧量是为了表明排放到环境中的有机物含量。生物需氧量BOD通过检测样品中化合物在五天或更长时间内的生物降解情况来实现这一点。由于消毒剂和清洁剂的干扰,其精度和灵敏度有限。化学需氧量COD使用强氧化剂(有时含毒性)在两到三个小时内化学分解样品中的化合物。然而,COD对有机物没有选择性,并且包括亚硝酸盐、氨和亚硫酸盐等无机物。含铁化合物也会影响COD检测的准确性。这使得在此过程中很难做出可操作的决策。例如,如果COD很高,很难确定它是来自有机物还是氨。由于重复性和灵敏度问题,如果废水中的BOD很低,低于20 ppm,则很难确保低于20 ppm的限值。总有机碳TOC通常是监测废水的首选,因为它不依赖使用有毒化合物,并在合理可行的时间范围内以适当的准确度(~2-5%)和精确度(~2-5%)提供读数。虽然历史数据库和许可证通常是针对COD编写的,但针对特定地点的评估对于转向TOC非常有价值。运营方通过将有机物氧化成二氧化碳,然后检测所得的二氧化碳来确定TOC。有多种技术可以检测TOC,包括TOC分析仪和尝试与分析仪关联的TOC传感器。传感器的缺点是,虽然速度更快,但它们存在干扰,关键化合物的回收率不足,并且只能捕获一部分有机物。TOC分析仪有不同的氧化技术和检测技术,具体取决于所需的应用。当检测与锅炉给水结合并产生蒸汽的回流冷凝水时,则所采用的技术必须能确定样品中确实不存在污染物。在这种情况下,灵敏度和速度是检测任何偏差的关键。对于其他应用,例如跟踪废水的负荷和污染度变化,稳固性是处理盐、固体、无机物和高有机负荷所需的关键属性。对于所有应用而言,与TOC检测技术同样重要的是TOC分析仪投入使用后以及整个工艺过程监测计划成功实施过程中的支持。除了性能之外,维护、附加参数、验证和自动化都是需要考虑的因素。在考虑成本和节水工作时必须考虑这些因素。分析工具旨在帮助回答问题并推动决策,因此企业可以从废水处理优化甚至现场回收的机会中受益。Sievers® TOC-R3在线TOC分析仪维护需求低、在线时间长,能使工业制造商提高盈利、避免停机、降低维护成本尽一切努力合规并提高可持续性改进工业用水管理为化工企业提供了确保遵守不断变化的法规、改善其公众形象、满足消费者需求、促进强大的环境和可持续文化并降低成本的机会。为了实现这些利益,企业必须衡量处理有效性、是否合规以及处理效率。除了废水优化之外,企业还可以通过监测策略了解与用水相关的其他潜在改进。例如,他们可以使用实际的清洁度数据来改善化学品和水的使用,而不是根据估计的清洁时间或循环次数做出决策。这些数据驱动的决策可以帮助化工企业避免过度清洁、最大限度地减少产品浪费并节省资源。他们还可以使用这些监测技术来跟踪蒸汽系统的供水,以保护热交换器、冷凝器等设备免受有害污染物的影响。控制工业用水能造福于各行业的制造商,原因不仅限于合规和成本,还因为管理工业用水能为改善运营、实现可持续发展目标和满足消费者需求,提供极佳的机遇。通过监测整个工厂的关键控制点,可减轻废水处理压力(特别是面向消费者的行业),从而更好地控制工业废水。改善污染跟踪的技术可帮助化工企业快速做出决策,确保合规并把握水回收和再利用的机会。作者:Amanda TyndallAmanda Tyndall是Sievers分析仪工业与环境市场产品经理。Amanda在水处理行业具有10多年经验。Amanda及其团队在工业和市政领域,通过从超纯水到废水检测的仪器解决方案,为客户解决水质挑战。Amanda拥有化学工程背景,获得范德堡大学(Vanderbilt University)学士学位和剑桥大学(University of Cambridge)硕士学位。参考文献"Water for Chemicals: Market Trends and Forecasts," 2023-2030. Insight Report. Bluefield Research. September 2023.◆ ◆ ◆联系我们,了解更多!

应用实例

2024.07.19

用Sievers M9总有机碳TOC分析仪选配电导率功能分析制药用水的最佳操作

本文提供有关如何用配置了电导率选项的Sievers® M9 TOC分析仪同时检测制药用水的TOC和电导率的最佳操作指导。取样用配置了电导率选项的M9分析仪来有效检测制药用水的关键之处包括:采用正确的取样技术1. 使用电导率和TOC双用(DUCT,Dual Use Conductivity and TOC)样品瓶根据USP 的规定,“第1阶段电导率可以在合适容器中进行离线检测”。1用于同步测试的合适容器是指在与样品接触时不影响样品的TOC或电导率的容器。测试表明,在采用正确取样技术的前提下,Sievers DUCT瓶体、瓶盖、垫片,在长达5天内,不会对样品的TOC和电导率造成明显的贡献。2,3Sievers DUCT样品瓶的清洁度极佳,认证的TOC低于10ppb,因而在使用之前无需漂洗。取样的最佳操作包括:使用之前请勿冲洗DUCT样品瓶。为避免污染,请勿用手触摸DUCT样品瓶和瓶盖的内部,请勿触摸样品瓶的垫片。一次加满DUCT样品瓶,瓶顶不留空间,以免样品产生湍流。取样之后,立即盖上瓶盖。请勿重复使用DUCT样品瓶来制备样品。使用设备的方法条件用M9分析仪来分析制药用水时,应当多次重复检测样品,以获得良好的统计稳健性和检测稳定性。用M9分析仪来检测TOC和电导率时,重复检测次数最好不少于4次,应舍弃其中的1次检测。检测第1阶段电导率时所用的是原始电导率和温度,因此无需选择补偿算法。M9分析仪给出原始电导率、温度、温度补偿值。对于制药用水,应报告原始电导率和温度。应根据“USP 第1阶段–温度和电导率要求”一章中的表1来确定接受标准。根据实测温度,相应的电导率值为制药用水的电导率限值。1图1:方法条件将检测低于500 ppb TOC的制药用水所需要的酸剂和氧化剂的流量分别设定为1.0微升/分钟(酸剂)和0.0微升/分钟(氧化剂)。此流量能够确保紫外反应器中的碳被完全氧化,同时又能避免样品过度氧化。另一种方法是使用可选的无机碳去除器(ICR,Inorganic Carbon Remover)。如果无机碳(IC,Inorganic Carbon)的检测值增大10倍左右,或大于TOC检测值,建议使用无机碳去除器来提高TOC检测的稳定性和精确度。4,5如果第1阶段电导率测试失败,请按照USP 进行第2阶段测试。确定确认频率用已知标样来挑战仪器及方法,为每次检测提供可信度。通过风险评估来确定测试的频率,用TOC系统适用性标样和电导率确认标样来确认方法在分析仪上的标称性能。使用达到接受标准的标样,能够确保对未知水样的分析满足药品级生产用水的药典要求。1,6药典虽未规定确认的频率,却规定生产单位应定期用电导率确认标样和系统适用性标样来确认方法。应通过评估每个流程特有的风险和潜在影响来确定确认的频率。风险管理要求明确定义和评估所有变量及其对流程的影响。必须考虑的因素包括标样使用频率、取样时间、系统适用性或确认失败的风险、不合规格(OOS,out-of-specification)结果的可能性、时间限制等。由于USP 和并未规定频率,因此各生产单位有责任自行制定稳健的工艺流程和程序来管理工艺特有的风险。重要的是要以实用且合理的频率来使用电导率确认标样和系统适用性标样,同时还要满足USP 和的最低要求。TOC系统适用性标样旨在确认分析仪在500 ppb TOC药典上限的相对回收能力。系统适用性标样确保分析仪能够达到适用的TOC回收率,从而使未知水样的分析结果不容置疑。电导率确认标样旨在确认M9分析仪的电导率检测的准确性。以合理的频率来运行电导率确认标样,能够确保未知水样检测的准确性,同时又满足药典要求。为了尽量减小标样的差异,我们建议使用Sievers分析仪出品的标准品和样品瓶,以获得浓度一致的、经过认证的标样。表1中列出Sievers系统适用性标样和电导率确认标样的使用效果最佳。您如果使用表1中的标样,就可以获得Sievers分析仪的OOS调查支持。如果您的样品、系统适用性或确认失败,Sievers分析仪的质量保证团队会为您彻底调查和解决内部变化因素和现场仪器性能故障,并在故障分析报告中讨论调查结果。产品名称部件号系统适用性标样组合STD 31004-01100 µS/cm HCl电导率确认标样STD 77050-01TOC和电导率分析的双用途DUCT样品瓶HMI 77500-01表1:最佳操作的消耗品最后,应确保分析仪的流路中始终有水。在用完最后一个标样之后,请用去离子水或MilliQ水进行注射器冲洗,用水来冲洗并取代分析仪中残留的样品。故障排除和设备维护由于离线检测第1阶段电导率的方法很敏感,而且可接受的浓度很低,许多用户专用一台Sievers M9 TOC分析仪来离线检测TOC和电导率7。如果用同一台M9分析仪来检测制药用水和非制药用水(即清洁验证样品),则要求进行额外的操作步骤来尽量减少切换两种样品时的交叉污染。这些额外步骤根据要分析的非制药用水的类型而定。有关此类操作的注意事项,请参阅技术文件UPW 07-10。8请根据Sievers分析仪的操作和维护手册来维护和确认分析仪,以达到仪器的最佳性能。结论采用正确的取样技术、方法条件、以及合理的确认频率,能够确保Sievers M9分析仪的TOC和电导率检测结果的准确性。本文中概述的最佳操作,帮助您在准确检测TOC和电导率的同时,满足药典的要求。参考文献USP  Water Conductivity. Retrieved February 14, 2019 from https://hmc.usp.org/sites/default/files/documents/HMC/GCs-Pdfs/c645.pdfSievers Lean Lab: Simultaneous Stage 1 Conductivity and TOC Lab Testing of Pharmaceutical Water (300 40030). Retrieved February 14, 2019 from https://www.Veoliawatertechnologies.com/kcpguest/documents/Application%20Notes_Cust/Americas/English/ANai_300_40030_EN.pdfDUCT Vial Performance and Stability (300 00297). Retrieved February 14, 2019 from  https://www.Veoliawatertechnologies.com/kcpguest/documents/Technical%20Bulletins_Cust/Americas/English/TBai_300_00297_EN.pdfReserve Sample Bottles for Conductivity and TOC (300 00299). Retrieved February 14, 2019 from https://www.Veoliawatertechnologies.com/kcpguest/documents/Technical%20Bulletins_Cust/Americas/English/TBai_300_00299_EN.pdfSievers Inorganic Carbon Remover (ICR) (300 00109). Retrieved February 14, 2019 from https://www.Veoliawatertechnologies.com/kcpguest/documents/Application%20Notes_Cust/Americas/English/ANai_300_00109_EN.pdfUSP  Total Organic Carbon. Retrieved July 25, 2019 from https://hmc.usp.org/sites/default/files/documents/HMC/GCs-Pdfs/c643.pdfLow Level Linearity Conductivity Study on the Sievers M9 TOC Analyzer (300 00339). Retrieved February 14, 2019 from https://www.Veoliawatertechnologies.com/kcpguest/documents/Application%20Notes_Cust/Americas/English/ANai_300_00339_EN.pdfUPW 07-10 Multiple Products Biological Contamination (800 19025) Retrieved February 14, 2019 from https://www.Veoliawatertechnologies.com/kcpguest/documents/Technical%20Bulletins_Cust/Americas/English/ai_UPW_07-10_EN.pdf◆ ◆ ◆联系我们,了解更多!

应用实例

2024.07.12

减少内毒素合规检测中鲎试剂的使用

近年来,在质量控制检测方面,制药技术有了重大改进和进步。其中一项检测是鲎试剂检测水和最终药品中的细菌内毒素,内毒素是一种有害的热原。传统的光度法鲎试剂检测——包括用于动态浊度法和动态显色法的96孔板检测——耗时且需要大量手动时间。现在,通过使用微流控技术,可以显著减少液体处理和手动时间,同时减少鲎试剂和样品量,并且保证合规性。合规化验需要多少鲎试剂?传统的鲎试剂检测使用96孔板,每个孔具有特定的形状和吸光度的路径长度。96孔板的路径长度根据制造商或厂商略有不同。这是因为平底96孔板上的孔通常是截头圆锥体,便于从模具中脱模。1由于孔的深度和形状,鲎试剂制造商规定了每个孔需要多少样品量和鲎试剂,以保持内毒素检测的1:1比例。动力学内毒素测定依赖于光密度(OD)变化和内毒素浓度之间的反比关系。OD是“用分光光度计测定的有机分子悬浮液或溶液在特定波长下吸收的光量”。2样品与鲎试剂的比例(1:1)非常重要。大多数鲎试剂制造商建议96孔板读数器和试管读取器使用100 µL样品至100 µL鲎试剂。有些鲎试剂使用的样品和鲎试剂少于100 µL,这些鲎试剂通常在具有较小孔的微孔板中运行。然而,1:1的比例仍然保持不变。多年来,已证明这种1:1的比例可以准确地得出内毒素结果。使用100 µL的样品和鲎试剂不是法规或药典的要求。相反,它是根据孔板或试管读取器的孔径大小、所需的路径长度和达到光密度的吸光度,给出使用多少体积(样品和鲎试剂)才能达到1:1比例的一项建议。微流控技术可以使用更小的反应体积进行准确、可靠和合规的内毒素检测近年来,鲎试剂检测出现了新的创新,如Sievers® Eclipse细菌内毒素检测仪。Eclipse利用微流控技术和向心力将小体积的液体准确地输送到微孔板上的特定部分,从而大大减少了所需的试剂量并简化了设置。30多年来,微流控一直是一个蓬勃发展的研究领域,因为它能够满足准确、经济高效、可靠和灵敏的化学和生物分析需求,而这正是内毒素分析所需要的。向心微流控用于鲎试剂测试Eclipse微孔板在五个区域中嵌入了不同浓度的标准品可制成标准曲线,每个浓度的标准品都有阴性对照。有21个样品区用户可以在一个板上运行多达21个样品,类似于96孔板读取器。每个样品区都含有阳性产品对照的内毒素。由于微流体需要较小的反应体积,但不会改变生物化学结构和特性,因此,将Eclipse微流控技术设计为使用比典型方法更少的鲎试剂,同时保证完全合规性。Eclipse的光密度是用比尔定律计算出来的。比尔定律,也称为比尔-朗伯定律,指出“化学溶液的浓度与其对光的吸收成正比。”3由于微流体的性质,包括流体通道和样品/鲎试剂室,Eclipse只需要1 mL鲎试剂,并确保每次测定的样品与鲎试剂比例为1:1。确保Sievers Eclipse的性能与传统的微孔板读取器相当在Eclipse的整个开发过程中进行了广泛的测试,以确保与96孔板读取器的性能相当。《美国药典》在一章中概述了验证分析方法时需要考虑的参数。Eclipse的系统性能是通过测定USP 中列出的不同参数来评估的。多年来,Sievers分析仪对来自多家厂商的多个鲎试剂批次进行了测试。除了鲎试剂水外,我们还在Eclipse和96孔板读取器上运行了药品样品。数据显示,Eclipse的性能与传统的微孔板读取器相当。总结即为,Eclipse使用符合药典的动态显色鲎试剂进行合规的细菌内毒素检测。根据USP 的验证数据表明,Eclipse相当于96孔板读取器。原文英文版刊登于《American Pharmaceutical Review》2023年5-6月刊,本文有所修改。参考文献Sievers Analytical Instruments. Determining equivalent onset optical density (OD) values on the Sievers Eclipse BET platform.McCullough, Karen Zink. The Bacterial Endotoxins Test: A Practical Approach. DHI Publishing, LLC, 2011.Helmenstine, Anne Marie. Beer’s Law Definition and Equation. Thought Co, 2019. https:// www.thoughtco.com/beers-law-definition-and-equation-608172◆ ◆ ◆联系我们,了解更多!

应用实例

2024.07.05

欧盟GMP附录1与污染控制策略——更快、更便捷的过程监测创新技术

对欧盟GMP附录1进行的修订反映了与无菌产品生产有关的不断变化的制药领域的新见解和期望。它阐明了制药企业如何利用创新工具(例如实时监测和快速方法)来加强对过程的理解,以便更好地识别风险并确保患者的用药安全。对附录进行修订以反映监管和制造环境发生的变化以及根据质量风险管理(QRM,Quality Risk Management)原则对工艺、设备、设施和生产活动进行更好管理的需要。新指南考虑了技术进步,涵盖洁净室、设备和公用工程设计以及新的快速微生物检测方法(RMMs,Rapid Microbiological Methods)的部署。虽然QRM概念在制药行业并不新,但附录1介绍了QRM在无菌产品生产中的积极应用,以避免在最终产品中造成微生物、颗粒和细菌内毒素/热原污染。附录1为“所有无菌产品生产设施、设备、系统和程序的设计和控制”提供了一般指南,并通过污染控制策略(CCS,Contamination Control Strategy)来评估为确保产品质量和安全而采取的所有控制和监测措施的有效性。根据附录1,污染控制“包括一系列相互关联的事件和措施。”通常对其进行单独评估、控制和监测,但其综合有效性应该一起考虑。”过程监测创新技术为了实现更快、更便捷的过程监测和污染控制,制药企业寻求能够提供全面信息以支持关键放行检测的仪器和工具,包括对评估点进行微生物和化学监测,以对风险进行管理并允许进行主动决策。在考虑细菌内毒素、微生物限度、总有机碳TOC和电导率检测时,制药企业需要采用过程分析技术(PAT)和监测工具,以共同完成以下工作:1对数据进行跟踪并形成趋势2实现实时决策3优化正常运行时间4减少不合格结果(OOS)的调查5保持质量高标准使用PAT仪器能够使制药企业利用创新技术来加强对过程的理解,改善过程控制并抑制各种类型的风险。需要抑制的风险包括与以下相关的风险:时间业务过程患者附录1 - 在污染控制策略中需要考虑哪些关键领域?根据附录1,“CCS的开发需要详细的技术和工艺知识”,并且“应考虑污染控制的各个方面,同时进行连续和定期的审查,从而根据审查结果对制药质量体系进行适当更新。”指南列出了在CCS中要考虑的各种要素。关键领域包括:■ 人员■ 公用工程■ 过程■ 设施■ 设备■ 材料上述列出的关键领域并不详尽,但包括关键污染源,并强调哪些领域有机会引入技术以实现更便捷的过程控制。在实际运作中,各要素并不是以孤立的方式运作,这意味着这些要素之间经常有重叠,而过程控制作为其中的链接。每一个CCS都从质量文化开始在设计和实施污染控制策略时,一切都始于质量文化。CCS直接影响患者的安全,因此附录1鼓励使用创新技术来监控生产过程。这可能包括细菌内毒素、微生物限度、TOC和电导率检测用PAT仪器。借助强大的CCS和监测工具,制药企业可以降低调查不合格结果(OOS)的风险,从而降低成本和不必要的资源使用。关注质量,将过程控制放在首位,以确保达到产品标准,迅速发现和解决任何偏差,并确保患者获得安全有效的药物。微生物限度、细菌内毒素、TOC和电导率快速检测如何实现更快、更便捷的过程监测?以下是四种能够节省时间、确保合规和降低风险的技术:1快速微生物检测方法(RMM)传统微生物检测方法,如微生物限度和无菌检测需要数天甚至数周才能获得结果。这些检测不仅会延迟生产,而且还不能提供实时信息,从而无法做出当前决策。为了加快这些检测的速度,制药企业应考虑实施RMM,以获得可操作性的结果,并用于监测整个设施和生产过程。附录1指出:“制药企业应考虑采用适当的替代监测系统,例如快速微生物检测方法,以加快检测微生物污染问题并降低产品风险。”采用创新技术来加强对过程的理解应考虑使用快速/替代方法和连续监测系统,以保护产品免受细菌内毒素/热原、颗粒和微生物污染等潜在外来污染源的影响。特别是,制药企业应考虑RMM,其中微生物检测结果可以与平板计数相关联,否则所获得的信息或数据可能不具有可操作性。例如,与传统方法相比,用于微生物检测的高通量流式细胞术可以提供快速微生物检测结果——如Sievers® Soleil快速微生物检测仪,并且还可以将其与平板计数相关联。这允许用户对可能与CCS许多要素相关的数据做出可操作性决策,如设施、环境监测(EM,environmental monitoring)、人员、水系统、设备、清洁验证、最终产品、材料等。RMM有助于实现材料或包装在生产过程中更快的周转时间,从而可以更快地将这些材料和包装放行到生产过程中。相反,当采用自动荧光装置或另一种方法进行测量时,信息可能不与平板计数关联,从而限制了检测方法的价值以及进行可操作性决策的能力。当RMM关联到平板计数时,在CCS中采用这些方法将被简化,替代方法的验证将增强采用PAT的信心,以最大程度地缩短获得检测结果的时间并提高正常运行时间。2细菌内毒素旁线评估与微生物限度检测类似,细菌内毒素污染在任何制药企业都存在高风险,应尽可能对其密切监测。然而,近40年来,细菌内毒素污染药典检测没有太大创新,而传统方法又容易出错。现在,随着向心微流体技术的进步,能快速、简单地设置细菌内毒素检测试验,与传统方法相比,能快速提供检测结果。因此,在附录1中讨论的许多领域中(人员、设施、公用工程、设备、清洁验证、过程、材料等),微生物污染检测得以加快,同时风险也降低。目前,新技术比以往任何时候都得以被广泛接受,用于代替传统方法,尤其是当新技术提供更快、更易于操作的药典检测时。细菌内毒素检测和向心微流体技术就属于这种情况,可以提供更快速、更简单的合规性检测。熟悉传统细菌内毒素检测方法的人都很清楚96孔板和凝胶法测定是多么耗时。这些方法还需要由训练有素的分析人员来完成,并且容易出错,即使非常合格的技术人员也是如此。旁线细菌内毒素检测对于清洁验证、过程监测或实时检测非常有价值,但是对于这些应用,必须拥有易于使用且对分析人员而言培训要求最低的检测系统。通过使用微流体技术的Sievers® Eclipse细菌内毒素检测仪,在进行药典分析时,分析人员技能要求被降低,设置时间减少,但获得检测结果的时间被加快。制药企业可以使高技能分析人员从事分析优化工作或从事可以提供更大价值的其它分析工作。通过使用创新向心微流体技术来简化细菌内毒素检测,检测可作为CCS的一部分轻松进行。Sievers Eclipse提供了细菌内毒素药典检测方法,不需要训练有素的微生物学专业分析人员,并大大减少所需的移液步骤,从而使制药企业更快、更便捷地获得检测结果。微流体技术也有助于实现可持续性发展目标。与传统96孔板和凝胶法检测相比,在Sievers Eclipse中使用向心微流体,鲎试剂的使用减少了90%。当制药企业寻求技术以为其CCS和可持续性发展目标提供支持时,应考虑采用向心微流体技术,以更快、更便捷地进行细菌内毒素检测,从而节省资源。3水系统实时放行检测(RTRT)和连续监测附录1指出,注射用水(WFI)系统“应包括连续监测系统,如TOC和电导率,因为与离散取样相比,这些系统可以更好地反映整体系统性能。”最终,连续监测将为水系统可能受到的潜在污染水平提供更好的衡量标准。实施诸如TOC和电导率实时检测、采用微流体技术来旁线评估细菌内毒素或采用快速微生物检测方法来进行微生物限度检测成为在水进入上游生产过程前对污染进行检测的关键。这些检测方法最终会降低获得结果的时间,并优化整体的正常生产运行时间。Sievers团队为Sievers® M500分析仪和实时放行检测验证提供支持,使制药企业在其工厂中成功实施RTRT。当在工厂中采用任何新仪器时,都需要进行验证。对于采用过程分析技术来实施RTRT,过程验证是关键。从传统的基于实验室的检测过渡到在线放行检测,会存在固有风险,这些风险包括采用单一仪器来监测整个设施或整个水系统。额外的检测包括进行风险评估,以评估哪些使用点可能对过程和产品最为重要。一旦确定后,制药企业就必须了解其如何影响这些使用点的清洁度。以上为过程验证步骤的单个示例,还有更多与整个过程验证相关的示例。在Sievers分析仪团队的验证支持下,制药企业会对其采用合规的实时检测或监测策略来增强其污染控制综合措施充满信心。4清洁验证连续监测对清洁验证样品进行连续检测,以确保在生产过程中使用的设备没有残留污染。TOC和电导率能够全面反映产品携带的化学污染情况,但是制药企业仍经常在实验室分析清洁验证样品,从而对设备放行造成延误。对于TOC和电导率实验室分析,在隔离样品时也有可能引入人为误差。采用Sievers® M9分析仪进行在线TOC和电导率检测以进行清洁验证,可获得与设备清洁度相关的实时结果,使制药企业能够放心地将设备投入生产,优化正常运行时间,消除由于QC工作流程而导致的延迟,并最终减少与隔离样品有关的任何人为误差。由于制药企业能够实时进行趋势分析和控制,并实时对结果做出决策,这就加强了制药企业的污染控制策略。细菌内毒素和微生物限度检测是降低清洁验证程序风险的重要组成部分,因为即使在清洁或消毒后,在设备上仍可能存在革兰氏阴性细菌。然而,这些传统的检测方法需要更简单、更快速,才能用于清洁验证的旁线或过程监测工具。现在,通过采用向心微流体方法的Sievers细菌内毒素检测仪和快速微生物检测方法的微生物限度检测,制药企业能够使用易于使用并更快产生结果的仪器来降低与设备污染相关的风险。通过配合使用Sievers TOC和电导率分析仪进行在线清洁验证,制药企业可以全面了解清洁过程,并能够快速做出决策以最大程度地提高设备的正常运行时间和生产能力。结论通过细菌内毒素、微生物限度、TOC和电导率检测来开发污染控制策略可实现连续监测,以优化正常运行时间并在此过程中及早识别污染。对这些参数进行检测的创新技术与附录1中的指南保持一致,能够使制药企业更好地理解和控制过程,并最大程度地降低污染风险。用于连续监测和快速监测的Sievers分析仪能使制药企业更简单、更快地实现其CCS目标,最终更快地检测出污染,并通过药品生产过程质量管理体系更便捷地维持患者安全的最高标准。原文英文版刊登于《American Pharmaceutical Review》2023 INTERPHEX特刊,本文有所修改。◆ ◆ ◆联系我们,了解更多!

应用实例

2024.07.01

有机物污染监测面临的不同挑战

在工业和环境过程监测的水质分析中,存在各种不同的应用和挑战——因为水不仅仅是水。水必须满足的要求因应用领域、成分和检测数据的用途而异。例如,在半导体制造和芯片生产中,需要超纯水并且必须不含污染物。而对于饮用水来说,需要一定量的溶解矿物质,同时不得含有任何细菌或其他致病物质。这些与应用有关的具体要求还对水处理和各工艺监测产生影响。让我们通过不同的有机污染监测示例来仔细研究这些影响。水体中有机成分的污染是一个重要的分析参数。有机化合物可能会破坏工艺过程,或在某些情况下,尽管有机物可以接受,但必须了解其浓度并定期监测,以便正确控制工艺过程。有机物监测工具和实时监测需求实验室分析仍经常使用化学需氧量(COD)和生化需氧量(BOD)来确定有机污染的程度。但是,在线分析对于更精确地实时监测工艺过程以及提高自动化程度来说,变得越来越重要。BOD分析需要5天时间,因此不能用于在线监测。由于COD分析时间需要2-3小时,且使用高毒性试剂,COD分析也不适合。相反,多年来,总有机碳TOC检测一直处于主导地位,用于快速监测有机污染,尤其是在工业领域。TOC也越来越多地应用于环境分析领域。与COD相比,TOC监测的优点是使用无毒试剂且检测时间仅需几分钟。此外,取决于所选择的检测技术,TOC分析可以在更大的浓度范围内进行检测,同时具有更高的精度。所有TOC分析仪的基本原理都是基于有机碳氧化形成二氧化碳。通过检测CO2,可以直接测定TOC含量。在线TOC监测——应对常见挑战有多种不同方法来实现这一检测目标。以下示例展示了与在线TOC监测要求相关的外部因素可能带来的不同挑战。通过采用正确的监测技术,就可以应对这些挑战。工艺挑战要求污水处理厂进水有机负荷高含有颗粒物稳健污水处理厂排水难以消解组分自我监测可靠冷凝水回用分析间隔短检测限低快速响应例1. 污水处理厂进水确定废水处理厂进水中的有机负荷对TOC分析仪提出了多项挑战。一方面,污染程度可能差异很大。这种情况主要发生在工业应用中,当批量工艺过程中的废水被排放或意外发生液体泄漏的时候。同时,这些有机物可能由难以分解的高度复杂的组分组成。此外,进水中可能会出现较高浓度的未溶解颗粒和溶解的无机成分(例如盐)。此应用对在线TOC分析仪的要求主要体现在稳健性方面。合适的监测仪表必须能完全检测出大跨度浓度波动,其波动范围可能在远低于100 ppm至高达数万ppm之间。同样,监测仪表还必须足够稳健,以检测更高浓度的溶解成分和颗粒成分。后者很容易导致内径较小的设备内部管道系统发生堵塞。此外,此类仪表在工艺过程中的安装条件往往很苛刻,这就需要稳健的设计。然而,了解有机负荷是优化后续清洁步骤的重要参数。在线TOC监测可以确保在有机负荷发生偏差时,生物处理阶段不会过载。过载会杀死分解有机物所需的细菌。在此情况下,由于适当的监测工具可以快速识别高有机负荷,因此可以将相应部分的进水有效地转移到缓冲池并维持细菌的健康。在负荷较低时,可以将高度污染的水回流。同样,在厌氧反应器中,要注意确保进水浓度尽可能恒定,以实现最佳的降解结果。反之,如果进水有机负荷过低,可根据TOC检测添加甲醇等有机物,使细菌有足够的食物进行高效降解。例2. 污水处理厂排水污水处理厂出TOC监测主要用于检查排水是否符合规定的排放限值。同时,它可以显示污水处理厂内的降解过程是否正常进行。在这些情况下,可以避免因超过限值而产生的罚款,并实现监管合规。废水在经过处理后,出水TOC浓度值明显低于进水。然而,残留的有机物通常是那些难以降解的物质。必须对这些物质进行精确检测,以便发现何时超过限值。因此,分析仪必须提供高度的可靠性,例如,捕获所有有机碳并具有广泛的自我监测功能。自动验证检测或校准应确保检测值始终正确。此外,可以使用自诊断功能来检查设备的整体状态,并依此开展预防性维护工作。这延长了分析仪的在线时间,并确保对限值进行无缝监测,以满足法规要求。例3. 冷凝水回用中的泄漏监测在工业应用中,蒸汽是最常用的传热介质。蒸汽发生用水必须满足特殊要求,以避免在锅炉和蒸汽阶段出现问题。要求对水进行预处理并添加水处理化学品。主要是抑制沉积物的形成和腐蚀。当水蒸发时会残留溶解的物质,形成水垢,导致锅炉中污泥积聚。但是,也会有蒸汽挥发性无机物和有机物进入气相并会积聚在管道和换热器中。这不仅减小了蒸汽通过的路径宽度,而且沉积物还降低了热传递,从而导致能量损失。此外,由于会造成一定的温度梯度,沉积物产生热应力,从而导致微小开裂和泄漏。腐蚀主要是由pH值过低引起。有机杂质在这里起着主要作用,因为在锅炉和蒸汽高温条件下,许多有机物分解并形成有机酸。这降低了蒸汽中的pH值,并加剧腐蚀,直至形成泄漏。除了预处理过程中去除不彻底外,有机物主要通过小泄漏进入蒸汽循环。由于锅炉水的处理复杂且昂贵,通常大部分冷凝蒸汽被返回。如果有机物通过热交换器中的小孔逸出到冷凝水中,它就会返回蒸汽循环。由于大多数有机物在分解之前并非离子态,因此传统的电导率测量无法检测到它们,也无法做到准确记录。在这里,TOC提供了一个解决方案。在此应用中,TOC分析仪面临的挑战是快速响应。与废水相比,除检测范围更低外,检测周期也很重要,因为检测目标是在被污染的冷凝水返回锅炉给水前就应该检测到是否发生了泄漏,从而避免花费巨大财力来更换锅炉给水。因此,更短的检测周期几乎可以无缝监测冷凝水,从而在污染成为问题前及时采取纠正措施。更轻松地检测有机污染并增强故障排除能力Sievers® TOC-R3是一款在线TOC分析仪,可满足常见工业工艺监测应用面临的上述挑战。1200℃无催化剂高温消解能够在较宽的检测范围内完全氧化复杂和颗粒有机碳。分析仪系统采用大内径管,可防止含颗粒的样品造成堵塞,该设计专门针对工业应用,使分析仪对环境条件不敏感。TOC-R3强大的自我监测功能为预防性维护提供信息,并提供了泄漏检测专门选项,可以非常快速地对泄漏进行检测。远程诊断和控制有助于增强故障排除,以避免停机。通过这些功能,可以应对有机污染监测所面临的最重要挑战——稳健、可靠、快速响应,从而提供实时信息,以更轻松地检测泄漏,管理工艺并满足法规要求。◆ ◆ ◆联系我们,了解更多!

应用实例

2024.06.21

电导率方法转换的桥接试验:从使用台式仪和探头转换为使用自动化的Sievers M9 TOC分析仪

究目的本研究的目的是证明使用配置了电导率选项的Sievers® M9总有机碳(TOC)分析仪和使用台式仪表和探头来测量《中国药典》2020版通则与USP 规格样品水第1阶段电导率这两种方法同样有效,并帮助用户从使用台式仪表和探头转换为使用配置电导率选项的Sievers M9 TOC分析仪。制药用水的电导率是指样品水在已知电势差上传导因离子运动而形成电流的能力值。电导率的计算方法是用电流强度除以电场强度。可以用离线的台式仪表和探头或者在线的电导率传感器来测量电导率1。随着温度和pH值变化,水分子自然离解成离子,从而使样品水具有可计算的电导率。外来离子也会影响样品水的电导率,并对样品水的化学纯度以及样品水在制药应用中的适用性产生较大影响。因此,国际通用的药典都有关于测量制药用水电导率的专论,给出了水的纯度和适用性的接受标准。USP 还对测量电导率的仪器规定了具体要求,并规定了具有不同接受标准的三个测量阶段,以帮助用户进行在线或离线测量。第1阶段测量的接受标准最严格,但此阶段最容易实施。第2和第3阶段测量则要求实验室人员进行离线的、耗时的实验台操作。对于制药商而言,最想进行的测量是离线或在线的第1阶段测量。根据USP ,如果要进行离线测量,测量就必须在合适的容器中进行。离线测量电导率所使用的合适容器的制造材料,不可以在与样品接触时浸出离子。传统的硼硅酸盐玻璃瓶会在样品水中浸出钠离子和其它离子,因此不适用于测量制药用水。Sievers电导率和TOC双用途瓶(DUCT,Dual Use Conductivity and TOC)的瓶体、瓶盖、垫片的测试表明,即使用DUCT瓶保存样品长达5天,也不会对样品的TOC和电导率产生明显的贡献。2,3目前许多制药商在测量制药用水的电导率时使用台式仪表和探头离线进行第1或第2阶段测量。这种测量方法有几个无法避免的缺点,比如数据不安全、样品的安全性不足、样品暴露于空气中、资源的使用效率低等。测量制药用水电导率的先进方法应当是进行自动化的第1阶段电导率测量,而存放和传输数据的电子安全数据库应完全符合21 CFR Part 11法规和最新的数据完整性法规。配置了电导率选项的Sievers M9 TOC分析仪就为用户提供了这种理想的第1阶段电导率测量方法。以下路线图显示如何从使用台式仪表和探头来离线测量第1阶段电导率,转换为使用配置了电导率选项的Sievers M9 TOC分析仪来自动测量第1阶段电导率。料配置了电导率选项的Sievers M9便携式TOC分析仪(SN#0043)配置了InLab 741 ISM电导率探头的梅特勒-托利多SevenCompact 仪(Mettler Toledo SevenCompact Meter)一盒Sievers DUCT电导率和TOC双用途样品瓶(HMI 77500-01)两套Sievers 100 μS/cm KCl电导率校准标样(STD 74470-01)(如果适用)一瓶500毫升Ricca 100 μS/cm KCl标样,25°C(CAT#5887-16)10毫升和1000微升移液器和吸头析步骤01通过DataPro2(请见下图)中的“样品电导率校准(Sample Conductivity Calibration)”系统任务,或者用M9的触摸屏,用100 μS/cm标样组(STD 74470-01)来校准M9分析仪,确保校准正确。02用100 μS/cm标样组(STD 74470-01)来校准梅特勒-托利多SevenCompact仪和InLab 741 ISM电导率探头,确保校准正确。请务必选用正确的电导率校准值。对于梅特勒-托利多SevenCompact仪,请选择以下校准标样路径:菜 单(Menu)/校准(Calibration),设置(Settings)/校准标样(Calibration Standard)/定制标样(Customized Standard)。输入100 μS/cm KCl标样,25°C。03为了最大程度上减少样品在传送过程中或转移到二级容器过程中被空气中的二氧化碳所污染,所有标样都应直接制备在DUCT样品瓶中²。请采用正确的样品制备技术,用100 μS/cm KCl储备溶液分别制备30毫升DUCT瓶装的100、75、50、25、12.5、10、5、2.5、1.25、1 μS/cm浓度的标样²。最佳做法是按从高浓度到低浓度的顺序来制备标样,这样就可以在制备和分析各种敏感的低浓度标样之间花费最短的时间。所需要的稀释体积,请参考表1。04低浓度电导率标样非常敏感,因此必须先运行最低电导率标样,最后运行最高电导率标样,方法条件如图1所示。M9分析仪报告原始电导率、温度、温度补偿电导率。USP 指出,对未知水样的所有阶段1的电导率测试是非温度补偿的。在进行校准、确认、比较研究时,应使用已知化合物的纯标样。例如,上述校准标样在25°C时为100 μS/cm KCl。为了正确地将测量值与此标准值进行比较,必须将电导率测量值补偿回参考温度25°C时的标准值。同样,由于是在两个电导率测量平台上测量这些纯净的已知标样,因此必须进行温度补偿以确保进行正确的比较。05采用正确的取样技术,用100 μS/cm KCl储备溶液分别制备DUCT瓶装的100、75、50、25、12.5、10、5、2.5、1.25、1.00 μS/cm浓度的标样,用于台式仪表和探头测量。低浓度标样非常敏感,因此必须最先在仪表和探头上运行最低电导率标样,最后运行最高电导率标样,方法条件如图1所示。确保将探头完全浸入DUCT瓶中。样品水在转移时可能会洒出来,因此建议将样品瓶放在二次容器(即防洒容器)中,以便在操作过程中用二次容器接住洒出来的水。06对于梅特勒-托利多SevenCompact仪表,确保选择25°C作为参考温度,并对测量值进行温度补偿。在仪表和M9上选择准确的补偿曲线和参考温度,这一点非常重要。KCl在低浓度时有非线性温度校正曲线,因此建议在仪表上选择非线性补偿曲线。测量时请将探头放入样品中,然后按“读取(Read)”键。待测量稳定后,表会提示“保存(Save)”或“退出(Exit)”。所有样品的测量数据都会记录在仪表上,然后导出用于分析。结果和讨论图2是配置了InLab 741 ISM电导率探头的梅特勒-托利多仪测量的电导率数据,包括实测响应和预期响应的数据对比。响应值连成直线,可以看到R²值和斜率,便于进行方法比较。图2中的数据显示,配置了InLab 741 ISM电导率探头的梅特勒-托利多仪的电导率线性非常适用于测量制药用水的第1阶段电导率。图3是Sievers M9 TOC分析仪测量的电导率数据,包括实测响应和预期响应的数据对比。响应值也连成直线,可以看到R²值和斜率,便于进行方法比较。图3中的数据显示,Sievers M9 TOC分析仪的电导率线性也适用于测量制药用水的第1阶段电导率。表2是配置了InLab 741 ISM电导率探头的梅特勒-托利多仪和配置了电导率选项的Sievers M9 TOC分析仪的线性方法对比数据。这两种不同设备的实测响应数据显示,Sievers M9的R²和斜率响应均略优于配置了InLab 741 ISM电导率探头的梅特勒-托利多仪的R²和斜率响应。本研究中的数据不仅确认了这两种设备方法都可以有效地测量电导率,更进一步证明了配置电导率选项的Sievers M9 TOC分析仪更具优势。用这两种设备方法的结果差异,部分归因于样品与周围空气能否有效隔离。当使用Sievers M9 TOC分析仪时,电导率和TOC标样都装在DUCT样品瓶里进行分析,从而有效地隔离了空气。而当使用梅特勒-托利多仪和探头时,需在测量过程中打开样品瓶的盖子以便插入探头。打开瓶盖后,空气中的二氧化碳就会污染样品。在测量电导率时,Sievers M9分析仪比传统的台式仪表和探头有更好的线性、斜率响应、样品处理。除此之外,Sievers M9分析仪还有其它优势。台式仪表和探头测量的数据通常以txt或csv格式存放在仪表上。这都不是安全的数据格式,容易被审计机构审查。而Sievers M9分析仪采用安全的数据文件格式,数据不会受到机构审查。此外,在使用台式仪表和探头时,通常需要用USB设备来从仪表向电脑传送数据,而使用USB来传送数据时,容易被审计机构审查数据完整性。M9分析仪的数据可以通过以太网自动导出到LIMS系统、SCADA系统、或其它数据管理平台。最后,台式仪表和探头需要专门的操作人员来制备和运行样品,费时费力。由于对温度、搅拌、测量稳定性的要求,每份样品的第2阶段电导率测量时间需长达30分钟。而将自动进样器和配置了电导率选项的Sievers M9 TOC分析仪一起使用时,就可以实现自动化的样品分析和数据采集。考虑到Sievers M9 TOC分析仪的上述诸多优点,及其卓越的分析结果,那么制药商放弃使用传统的台式仪表和探头,转而使用配置了电导率选项的Sievers M9 TOC分析仪来自动测量电导率,就成为非常明智的选择。两种设备方法的优缺点比较,请见表3。结论改变现行的分析方法通常是复杂的过程,而从传统的台式分析转换为自动分析可能更加复杂。本研究旨在说明如何从使用台式仪表和探头转换为使用配置了电导率选项的Sievers M9 TOC分析仪来测量电导率。本研究证明了台式设备和自动设备在测量USP 第1阶段电导率时具有同等分析性能,从而证明了从台式分析转换为自动分析的可行性。本研究还显示,用户可以相对容易地完成这一转换。最后如表3所示,当使用Sievers M9分析仪代替台式仪表和探头来测量电导率时,可以有诸多优点,例如数据可靠性、样品完整性、自动化运行等,这就使得从台式分析到自动分析的转换对寻求精益工艺流程的制药商极具吸引力。参考文献Sievers Lean Lab: Simultaneous Stage 1 Conductivity and TOC Lab Testing of Pharmaceutical Water (300 40030).DUCT Vial Performance and Stability (300 00297).Reserve Sample Bottles for Conductivity and TOC (300 00299).Low Level Linearity Conductivity Study on the Sievers M9 TOC Analyzer (300 00339).◆ ◆ ◆联系我们,了解更多!

应用实例

2024.06.14

内毒素检测的思考 - 采用药典方法同时减少鲎试剂的使用

鲎(hòu)与制药和医疗器械制造之间的联系是当今生物医学行业的一个重要课题——该行业在优先考虑可持续发展的同时,还要确保为患者提供的产品的安全性和质量。鲎血液中含有用于制造鲎变形细胞裂解物(LAL,limulus amebocyte lysate)的因子。鲎试剂是一种可以测试药品或医疗器械是否被细菌内毒素污染的试剂。通过一系列的级联反应,鲎血液因子会形成一个凝血机制,可以检测是否引入任何细菌危害。这项测试对于检测危险以及潜在的致命污染物至关重要,但对鲎及其被人们需要的血液,带来了压力。大西洋鲎 - 美洲鲎,是一种海洋节肢动物,生活在北美和中美洲的东海岸。特拉华湾有着世界上最大的产卵种群。1鲎物种大约有4.5亿年的历史,由于其独特的血液,是世界上研究最多的无脊椎动物之一。鲎广泛用于以下几个用途:如鸟类的食物来源(蛋)、商业鳗鱼和海螺渔业的饵料以及生物医学工业。1允许下诱饵来捕捉鲎,特别是在东北地区,被认为是大西洋鲎物种死亡和数量下降的主要原因。据报道,2020年大西洋海岸范围内鲎诱饵捕捉上岸量为456,675只。1在大西洋东南部的南卡罗来纳州,法律规定禁止利用诱饵来捕捞鲎。2所有捕获和收集鲎的渔场必须持有相关商业、教育或私人目的许可证。2这条法律对鲎种群保护极其重要,因为能够使鲎种群在东南部繁殖,并保护鲎物种免遭诱捕。如前所述,大量大西洋鲎被收集用于生物医学行业,以支持鲎试剂的生产。鲎血液通过采集和提取成年鲎的一部分血液来获得。按照渔业管理计划(FMP)的要求,由生物医学行业收集和抽血后的鲎大多放生于其生存的水域;然而,部分鲎在此过程中死亡。1根据2021年州合规报告,与主要死亡原因诱捕相比,鲎种群因生物医学而导致的死亡率非常低。2019年,在鲎基准种群评估中,按地区对鲎资源的种群状况进行了评估,发现随着时间的推移,特拉华湾和东南部地区的种群分别保持一致的中性和良好状态。1由于对鲎种群的担忧以及在生物医学方面对其血液的依赖,近年来对细菌内毒素检测的替代方法的认识有所提高。重组C因子(rFC)和重组鲎试剂(rLAL)是两种不使用鲎血液的替代方法。rFC是鲎凝血机制中的第一个凝血酶,rFC法采用C因子克隆。这种替代方法属于终点法,意味着在测试开始时读取一个读数,然后在测试结束时读取一个读数。当检测到内毒素时,它通过荧光读取器放大荧光底物来工作。由于这是检测细菌内毒素的替代方法,公司必须进行额外的严格测试,以证明与药典内毒素检测方法的等效性。FDA已经认可rFC是一种替代方法,如果替代方法和/或程序在准确性、灵敏度、精确度、选择性或对自动化或计算机化数据简化适应性方面以及在其它特殊情况下具有优势,各州公司可以使用替代方法和/或程序。3如果公司选择采用rFC分析,则应根据USP 细菌内毒素试验和USP 中药典程序验证中规定的要求对替代方法进行验证。3重组鲎试剂或rLAL测试也是一种替代测试它利用与传统鲎试剂相同的级联反应。这意味着它包含了采用重组制备工艺检测鲎血液中内毒素的所有因子。4这对于使用重组试剂向前迈进了一步,因为它包含所有凝血因子,并通过吸光度读取器进行传统的动力学分析。虽然这是内毒素检测无动物测试的一个进步,但它仍然被认为是一种替代方法,如果公司选择采用这种分析方法,则必须采用与rFC相同的检测时间和严格的过程。由于尝试验证和实施内毒素检测替代方法并不容易,一些公司可能会问目前到底有什么其它解决方案可以帮助实现更可持续和更有效的方法来检测产品的内毒素。Sievers® Eclipse细菌内毒素检测仪是一种在降低鲎试剂使用量同时又满足合规性上具有显著优势的解决方案。Eclipse可将鲎试剂的使用降低90%,同时满足所有全球制药法规要求。与传统的鲎试剂方法如96孔板和凝胶法相比,这是一个实质性的进步。Sievers Eclipse设计了一种新型微孔板,利用向心力、计量室和微流体通道来提高鲎试剂和样品的准确性并有助于快速分散。与传统内毒素分析一样,微流体系统能够使您开展相同的生物化学分析,但实际操作量最小,一致性更高,试剂消耗大大降低。通过减少高达90%的鲎试剂的使用,Eclipse减少了对地球上最灵敏、无与伦比的天然内毒素检测试剂的需求。Eclipse采用FDA许可的市售鲎试剂,并且满足全球药典法规,包括但不限于美国药典USP 、中国药典ChP四部、欧洲药典EP 2.6.14和日本药典JP 4.01中规定的所有要求。这能够使用户意识到需要保护当今宝贵的自然资源,同时仍然必须符合药物和医疗器械制造商必须满足的严格的分析和监管要求。立刻联系我们,了解既合规又节省鲎试剂的Sievers Eclipse细菌内毒素检测仪!参考文献Atlantic States Marine Fisheries Commission. (n.d.). Horseshoe Crab. Retrieved from http://www.asmfc.org/species/horseshoe-crab Floyd, B., & DeLancey, L. (2012, March 1). South Carolina Horseshoe Crab Fishery and Management Program Compliance Report for the Year 2011. Retrieved from https:// www.dnr.sc.gov/marine/mrri/pubs/SCComplianceHSC2011.pdf1. U.S. Department of Health and Human Services Food and Drug Administration. (2012, June). Guidance for Industry: Pyrogen and Endotoxins Testing: Questions and Answers.Associates Of Cape Cod Incorporated. (n.d.). Recombinant LAL Reagent PyroSmart NextGen™ Instructions For Use. ◆ ◆ ◆联系我们,了解更多!

参数原理

2024.06.07

新品发布:Sievers Soleil快速微生物检测仪

Sievers分析仪产品线再次增加新成员,为快速发展的制药和生命科学行业提供更强大的支持。据麦肯锡公司称,新模式在药物开发管线中所占的比例已从11%增加到21%,生产工艺流程也必须跟上步伐。要快速适应先进制造、过程分析技术(PAT)实施以及改进批量制造和工艺控制的要求,就需要在生产过程中保持灵活性。全新Sievers® Soleil快速微生物检测仪可提供近乎实时的数据,用于监测超纯水和生产工艺中微生物控制的有效性,最终提供与传统方法相关的可操作结果。随着Sievers Soleil的发布,Sievers分析仪已成为业内首家为制药工艺提供所有四种关键分析检测参数的品牌 — 微生物、细菌内毒素、总有机碳TOC和电导率。这一综合服务使Sievers分析仪成为水质检测解决方案和过程分析技术领域独一无二的单一来源供应商。使用Sievers Soleil,用户可以在45分钟内准确检测水系统、原材料和加工过程样品中的微生物污染,与需要数天才能得出结果的传统检测方法相比有了重大改进。通过近乎实时地提供与平板计数相关的微生物数据,制造商可以迅速采取行动控制污染事件并降低风险。这一新型快速微生物检测仪源于威立雅近期对Sentinel Monitoring Systems公司的收购。Sentinel公司的技术和专业知识,使Sievers分析仪的产品组合扩展到快速微生物检测的新兴市场。使用Sievers Soleil快速微生物检测仪,用户可以:针对制造工艺流程及时做出数据驱动型决策,从而降低风险、节省更多成本并在产品放行时增强信心。在实验室中或在整个制造过程中进行旁线检测(at-line),从而监测水系统、清洁验证、环境监测、原材料和原料药中的污染控制过程。只需3个移液步骤即可轻松进行检测。消除产品放行中的微生物检测瓶颈。30多年来,Sievers分析仪通过卓越的分析检测推动用户做出更明智的决策,帮助用户满足法规要求、优化流程并与最佳实践保持一致。Sievers Soleil延续了这一传统,实现了简单的微生物检测和更高的效率。作为水处理解决方案的先驱,威立雅始终致力于开发类似于Sievers Soleil这样的创新技术,以满足客户的需求。现在,Sievers Soleil快速微生物检测仪已正式在大中华区市场开售,即刻联系我们,了解Sievers分析仪产品如何帮助用户简化水质检测。点击查看Sievers Soleil快速微生物检测仪产品页面。点击查看Sievers Soleil快速微生物检测仪视频介绍◆ ◆ ◆联系我们,了解更多!

新品

2024.05.31

食品饮料生产厂用Sievers TOC-R3来检测水质异常和控制废水处理工艺

挑战一家食品饮料生产厂需要用更快速的技术方法来监测工艺废水的水质变化,以便在进行废水生物处理时及时防范新建的厌氧消化池中的有机物含量激增。具体来说,位于美国肯塔基州的一家酒厂装瓶车间在监测废水水质异常时遇到了挑战。酒厂还面临着日益严格的废水排放规则的限制。一直以来,该食品饮料厂都是将样品送到异地实验室进行分析,根据生物需氧量(BOD,Biological Oxygen Demand)来监测废水水质。但此方法捕获偏移事件的速度不够快。食品饮料厂亟需一种新的连续监测方法,该方法须能快速产生监测结果,易与BOD相关联,确保流入厌氧消化池的有机物流量稳定。在厌氧消化过程中,如果有机物含量过高,就会抑制微生物生长,从而降低废水处理效率。酒厂装瓶车间的各项工艺都会用到水,包括蒸馏、清洁、冷却、发酵等工艺。酒厂使用的约88%的原材料都会最终转化为废物1,因此酒厂产生的废水是餐饮业中最具挑战性的废水之一。快速掌握废水水质信息,能够使食品饮料厂迅速、自信地做出有助于提高废水排放合规性和企业盈利的决策。解决方案这家食品饮料厂购置了在线型总有机碳(TOC,Total Organic Carbon)分析仪,加强了污染泄漏检测,防止了在新建的厌氧消化池中发生有机物含量超标的事件。监测废水中的总有机碳(TOC)而非生物需氧量(BOD),具有以下诸多优点:获得实时监测数据,从而最大程度地掌握废水水质变化,帮助厂家快速做出正确决策有助于厂家对废水进行彻底的有机物监控、分流、处理提供更加精准、快速的监测结果,防止有机物含量超标提高厂家对工艺的掌握和控制BOD分析是通过测量需氧量来间接测量有机物含量,TOC分析则是直接测量有机碳含量,后者更能帮助厂家了解废水处理效果。BOD分析需5天方能得出结果,耗时太长,不利于厂家及时控制工艺。而TOC分析在短短几分钟内即可量化样品中的总有机污染物含量,能够及时为厂家提供决策所需的数据依据。 主要优点 用户采用连续的TOC监测,能够深入了解废水水质变化TOC数据有助于控制和改进废水处理工艺实验证明,Sievers® TOC-R3能够分析具有复杂基质的样品,帮助用户延长生产时间 结果 TOC-R3对于工艺废水中的有机物浓度变化有着高灵敏度,能够为用户提供快速、可靠的监测结果。用户采用TOC分析,可以得到实时监测信息,从而更好地掌握废水水质变化规律,优化厌氧消化池的性能。与BOD分析相比,TOC分析更有助于用户迅速和自信地做出工艺控制决策。监测结果食品饮料厂安装了Sievers TOC-R3在线型TOC分析仪,进行了为期3周的试运行,期间连续监测废水水质变化和有机物含量激增事件。TOC-R3对均化池前面的样品(即排放到城市之前的废水)进行测量。在试运行期间,我们还收集了BOD样品,以对比和确认TOC分析仪的监测结果。图1显示了Sievers TOC-R3快速监测废水水质异常事件的能力。我们可以从中得出以下主要结论:Sievers TOC-R3能够连续监测废水,甚至包括具有复杂、多变基质的废水帮助食品饮料厂了解BOD分析法所无法得到的工艺水水质变化模式和趋势用TOC分析法来监测有机物,有助于厂家迅速做出正确决策图1:第2周的酒厂废水酒厂知道全天的水质会不断出现波峰和波谷,但如果不进行连续监测,就无法知悉水质变化的确切时间和变化量。此次试运行结果表明,酒厂废水的水质根据生产活动而变化,无法预知一天中或一周中出现TOC峰值的确切时间。结论酒厂了解到,生产活动使废水的水质在整周内上下波动,酒厂可以用连续的TOC分析来轻松监测废水水质的变化。由于原有BOD分析的局限性,酒厂目前正在厂区建造一座新的废水处理设施,以监测和处理有机物含量变化更大的废水。该废水处理系统将包括厌氧消化池和“事故水槽罐”。当TOC分析仪检测到废水流中的有机物含量激增时,酒厂就会立即将该废水分流到事故水槽罐,然后将其稀释到适合厌氧消化池的足够安全的有机物浓度。Sievers TOC-R3能够处理具有复杂和多变基质的食品饮料行业废水样品,且无任何维护难度。酒厂装瓶车间安装了在线型TOC分析仪,从而能够更好地掌握废水水质的变化,确保对废水进行高效和健康的生物处理。参考文献Yogita Kharayat (2012). Distillery wastewater: bioremediation approaches. Journal of Integrative Environmental Sciences, 9:2, 69-91, DOI: 10.1080/1943815X.2012.688056 https://www.tandfonline.com/doi/pdf/10.1080/1943815X.2012.688056 Accessed on 09/01/2023.Ecologix Environmental Systems. Food & Beverage Industry Wastewater Treatment. https://www.ecologixsystems.com/industry-food-beverage/ Accessed on 09/01/2023.Alar Water Treatment. Food & Beverage Industry Wastewater Treatment. https://www.alarcorp.com/food-dairy Accessed on 09/01/2023.The Wastewater Blog. BOD, COD and TOC. Wastewater Treatment Topics, 05/10/2022. https://www.thewastewaterblog.com/single-post/2019/01/13/bod-cod-and-toc Accessed on 09/01/2023.Guilherme H.R. Braz, Nuria Fernandez-Gonzalez, Juan M. Lema, Marta Carballa. Organic overloading affects the microbial interactions during anaerobic digestion in sewage sludge reactors. Chemosphere,Volume 222, 2019, Pages 323-332, ISSN 0045-6535,https://www.sciencedirect.com/science/article/pii/S0045653519301171 Accessed on 11/30/2023.◆ ◆ ◆联系我们,了解更多!

应用实例

2024.05.24

优质TOC标准物质 — 自行配制 VS. 购买成品

挑战作为质量控制(QC)专家,您需要依靠有效的分析数据来做相关决定,包括如何符合严格的法规要求,制定紧凑的生产计划以及降低运行预算。分析数据是否可信基于以下几大元素:胜任的员工严格遵守标准操作流程(SOP)及法规要求有效确认并维护良好的仪器可追溯且合格的标准物品及消耗品解决方案随着现今对实验流程精益化和高效率的需求,越来越多QC专家正在寻找出色的供应商提供一个或多个以上的关键项目。使用第三方标准物质,如TOC标准品,就是一个很好的例子。通过将十分耗时的清洁、配置、文档制作及记录工作外包给一个值得信任的高质量生产商,QC专家可以更专注于本职工作或者实现部门目标。评估内部自制标准品的成本Sievers® TOC标准品与工厂内部自制的标准品相比,能节省巨大的成本,而且其优势不仅体现在成本上。低TOC背景的标准品需要非常复杂的污染控制策略以满足超纯水应用的性能水平,内部自制的标准品无法一直满足要求。是否能够成功提供低TOC背景的标准品所面临的最大挑战如下:玻璃器皿的洁净度及专属性技巧熟练、经过培训及表现稳定的技术人员空白水和原料的纯度样品瓶、瓶盖和垫片的洁净度任何数量的因素都可能导致标准品失败,从而导致不合格(out-of-specification, OOS)调查和潜在的生产延迟。通过使用Sievers认证的标准品,用户可以减轻自制标准品带来的负担和风险,包括维护所需的设备、培训和材料供应链。如果分析或标准品校验失败,Sievers的“故障分析报告”可以帮助用户减少责任风险,更快地对不合格(OOS)调查进行补充。您在决策自制还是购买现成TOC标准品时,以下四大成本因素可以作为参考:玻璃器皿清洁、溶液配置、设备校准、同行评审以及完成与公认的良好文档规范(Good Documentation Practice, GDP)一致的文档所需要的人力及物料成本安排实验室人员去配制标准品,而非执行实验室其他关键项目所损失的机会成本若内部自制的标准品失效,所造成的生产延时或实验室产出降低所造成的损失成本因承担制作符合国际单位制(International System of Units, SI)的可追溯性文档的所有责任所伴随产生的风险成本以下表格陈述了使用Sievers标准品而非自制标准品能够节省的物料及人力成本。该分析比较了用户每周或每月进行系统适用性标准品测试的成本,类似的比较也可以扩展到其他标准品。了解更多信息,请联系当地售后服务代表。使用Sievers®系统适用性标准品预计能节省的成本标注人力成本加上管理成本假设100 ppm溶液的保质期为4周所需其他杂项材料的估计费用假设每年进行3次不合格(OOS)调查包括运输成本结论Sievers认证的标准品可以节省大量成本,提供高质量的分析结果,并在发生不合格(OOS)事件时,为用户提供宝贵的支持。将标准品的生产外包给Sievers,使内部实验室资源可以专注于公司特定的有价值的项目和机会。◆ ◆ ◆联系我们,了解更多!

应用实例

2024.05.20

关于更改内毒素测试方法或鲎试剂供应商的生物制剂许可申请指南

背景本文概述了有关生物制剂许可申请(BLA,Biologics License Applications)的可用指南,以及由于内毒素测试方法修改或鲎试剂(LAL,Limulus Amoebocyte Lysate)供应商变化,如何实行变更。生物制剂许可申请针对药品,因此适用于成品药测试,而非制程中的样品或水样。本文还探讨了质量控制(QC)部门内的工作流程变更。完成了内毒素测试验证的成品药只有在向监管部门申报之后方可出厂,因而必须向监管部门申报测试方法或鲎试剂供应商的详细变更内容。请注意,在重新验证药品时,在申报中标注通用试剂或方法的公司,比标注特定试剂或方法的公司(例如标注“FDA许可供应商”或“药典光度法”)通常会有更大的灵活性,有更多的可用方法和试剂选项。在进行变更时,还须考虑公司内部的需求。大多数质量控制实验室和质量保证部门在进行变更时都会遵守特定的标准操作规程(SOP)和公司的质量管理体系(QMS)。在变更之前,通常先建立变更控制(Change Control)程序,并由跨职能部门出具详细的变更和评估文档。一旦决定变更,就启动变更程序,质量控制实验室启动重新验证程序以更改内毒素测试方法或鲎试剂。美国药典(USP)第章和欧洲药典(EP)第2.6.14节规定,“当发生任何可能影响测试结果的条件变化时,都必须重新测试干扰因素”1,2。在更改测试方法或鲎试剂供应商时,必须进行干扰因素测试或“产品筛选/验证”1。通常以不同的稀释度来筛选产品,以确定适用于新的测试方法或鲎试剂供应商的最佳稀释度。一旦确定了最佳稀释度,应测试三个离散批次的产品,以在新的条件下完成验证。如果实验室要从96孔板显色测试过渡到同样使用显色法的其它平台,由于测试的生物化学特性没有变化,建议对先前验证的稀释度进行单批次验证。法规和指南监管部门和行业指导文件都未对重新验证产品给出明确建议。本文将找出可用的建议,并指出建议的出处。鲎试剂有不同的配方,配方因供应商而异。当公司打算更换鲎试剂供应商,并想知道更换供应商后是否需要重新验证产品时,却从通用的USP、EP、JP章节中找不到明确答案。由美国国家标准学会(ANSI,American National Standards Institute)认证的医疗仪器促进协会(AAMI,Association for the Advancement of Medical Instrumentation)在其文档的第ST72:2019章节中提供了一些有关更改鲎试剂供应商的指南。该章明确指出,如果更改细菌内毒素测试(BET,Bacterial Endotoxins Testing)试剂的来源,或更改细菌内毒素测试技术(例如从凝胶法改为动态显色法),就须重新进行评估或适用性研究3。此章虽然适用于医疗器械,但FDA 表示,如果公司决定进行上述更改,可以遵照此章的指南。如果打算更改鲎试剂供应商或内毒素测试方法,必须申报该变更,或将变更包含在年度报告中。应采用哪种方式,取决于变更类型(例如变更鲎试剂供应商或变更测试方法等)。鲎试剂测试是药品出厂的关键性测试,因此申请生物制剂许可的公司必须在文档材料中包含鲎试剂测试。在重新验证产品时,由于需要采用不同的测试方法或内毒素试剂,因而申报工作可能很麻烦。FDA在行业指导文件“已批准的新药或简略新药的变更(Changes to An Approved NDA or ANDA)”的“规范(Specifications)”一章提供了有关申报变更的信息。该文件说明了以下两种与鲎试剂测试相关的变更申报:较小变更的申报(Minor Filing Change)和中度变更的申报(Moderate Filing Change)。有关内毒素测试方法或鲎试剂供应商的变更申报示例,请参见图1。图 1:生物制剂许可申请变更示例 较小变更的申报 可以在提交给FDA的年度报告中说明较小变更的内容。较小变更(例如在保持动态显色法的情况下变更鲎试剂供应商)对药品的影响不大。对于较小变更,公司只需提交“可比拟任务(Comparability Protocol)”来说明测试、研究、结果,以显示新的鲎试剂供应商的合格性。新药、简略新药、生物制剂的许可申请都需要提交年度报告,因此公司无需花时间来另行申报较小变更。 中度变更的申报 中度变更的申报有以下两种:1变更生效期(CBE,Changes Being Effective)在30天内:要求公司在分销涉及变更的药品之前的30天内向FDA提交补充材料。此补充材料应明确标注“补充材料 - 变更生效期在30 天内(Supplement-Changes Being Effective in 30 Days)”。如果FDA在收到补充材料后30天内告知申请人缺失部分信息,则申请人必须推迟分销药品,直到在补充材料中提供缺失的信息。2变更生效期在0天内(即立即生效):变更生效期在0天内的补充材料包括某些中度变更,允许公司在FDA收到补充材料后立即分销药品。如果变更了鲎试剂供应商或测试方法,FDA 会在新方法符合USP要求的情况下批准鲎试剂供应商的变更申请。从一种鲎试剂测试方法更改为另一种鲎试剂测试方法(例如从凝胶法改为动态显色法)通常被作为生效期在0天内(CBE-0)的变更来提交申报。对于此类变更,公司只需提交“可比拟任务”来说明测试、研究、结果,以显示新的测试方法的有效性。而生效期在30天内(CBE-30)的变更申报则较为保守,因为这会给FDA充足的时间来审查变更。总结本文概述了关于细菌内毒素测试的FDA文件和药典章节中的建议和指南。但请注意,这些文件都未给出明确的变更申报方式。质量控制实验室应咨询本公司的规则监管部门和质量保证部门,并根据公司的质量管理体系来确定最适合的变更。图1是关于内毒素测试方法的变更示例,以及最适合的申报方式。可以在公司的年度报告中包括变更申报,也可以直接向FDA提交变更通知。重新验证产品以确认内毒素测试系统是创新性的和完全符合监管要求的,这项工作并非想象中的那样麻烦。Sievers® Eclipse细菌内毒素测试平台具有简化工艺流程的任务功能,大大提高了质量控制实验室在变更测试平台时的工作效率。变更管理的前期投入,很快就会在自动化的测试工作中得到回报。Eclipse提高了实验室的工作效率,减少了培训工作量,简化了验证工作,从而大大降低了生产成本、节省了时间。参考文献USP Bacterial Endotoxins Test EP 2.6.14 Bacterial EndotoxinsANSI/AAMI ST72: Bacterial endotoxins - Test Methods, routine, monitoring, and alternatives to batchtesting。章节/步骤 9.6.1.2,第 10 页.◆ ◆ ◆联系我们,了解更多!

应用实例

2024.05.10

您喜欢的样品瓶风格?

您喜欢的样品瓶风格?为您所有的应用选择合适的样品瓶,以获得准确的TOC结果!不论是用于合规检测、清洁验证,还是难以回收的化合物检测,Sievers® TOC样品瓶都能确保最佳性能并最大程度地降低风险。准确、高效、自信 — 应该是您的风格。经认证、可追溯、有保证由TOC业内的全球领导者生产拥有我们的超标结果OOS调查作为后盾ievers认证 (可靠的质量保证符合法规检测的正确选择每次检测都能获得准确的TOC结果预清洁并经认证(拥有我们的超标结果OOS调查作为后盾导率和TOC两用 (DUCT) 样品瓶同时进行检测适用于同时进行第1阶段电导率和TOC合规性检测使用单个样品瓶进行自动检测,节省时间,省去样品处理,提高数据可靠性特种镀膜玻璃和隔垫,无离子析出,经认证(拥有我们的超标结果OOS调查作为后盾酸化样品瓶用于粘性蛋白质和肽在清洁验证应用中提高蛋白质回收率防止蛋白质和肽粘附在样品瓶表面可用于清洁验证擦拭样品(样品瓶内预填充了经酸化的水)或最终的淋洗样品拥有我们的超标结果OOS调查作为后盾色认证样品瓶用于洁净室在受控环境中使用无纸质包装,在ISO 7洁净室中生产为Sievers认证的样品瓶、电导率和TOC两用(DUCT)样品瓶和预酸化样品瓶提供蓝色认证包装拥有我们的超标结果OOS调查作为后盾在业内,只有Sievers一家公司既提供传统的低TOC样品瓶,又提供预酸化样品瓶和DUCT样品瓶。请考虑 Sievers所有的解决方案,以确定哪种TOC样品瓶最适合您的应用。下载《Sievers认证的样品瓶规格表》了解更多https://www.instrument.com.cn/netshow/SH102481/down_959868.htm◆ ◆ ◆联系我们,了解更多!

新品

2024.04.26

水和废水中的有机物监测

总有机碳(TOC)监测是行业了解其用水或废水质量的重要工具。它有助于确定水中存在的有机物质的量,有多种用途。TOC监测还使不同行业在多方受益,包括提高安全和加强环境保护,节省成本以及更好地遵守相关法规。但是,TOC监测也可能带来技术实施和成本等方面的挑战,这取决于应用的复杂性以及采用的仪表是否适用。什么是BOD、COD和TOC?检测有机物含量采用的最传统分析技术是生物需氧量(BOD)。随着技术的发展,法规允许采用其它方法来分析有机污染,如化学需氧量(COD)和总有机碳(TOC)。尽管BOD和COD已广泛使用,但TOC已成为越来越广泛接受的替代方法。BOD是确定废水有机污染的最常见的参数之一。该方法依靠微生物通过消耗样品中的氧气来分解有机物。如果水样品中有机物含量高,会导致溶解氧消耗增大。通过测量在20℃温度条件下培养五天所消耗的氧气量,BOD试验可以间接指示有机污染。化学需氧量(COD)是用于确定废水有机污染程度的另一种方法。该试验采用化学氧化来分解水中的污染物,然后测量在该分解过程中消耗的氧气。如果氧气消耗量增大,这说明品中有机物含量增高。2-3小时的分析时间少于BOD所需的时间,但需要用到有毒试剂。多年来的技术进步引入了总有机碳(TOC)分析仪,用于直接、快速检测水中有机物含量。与通过需氧量来确定有机物含量的BOD或COD不同,TOC分析仪是直接检测和定量分析样品中的碳。TOC分析仪将有机物氧化成CO2,然后通过电导率或非色散红外检测(NDIR)来测量CO2。样品氧化所采用的不同方法包括紫外线过硫酸盐、燃烧和超临界水氧化(SCWO)。TOC可通过特定相关性转换为BOD和COD。但是,在排放法规中,也有用TOC取代BOD/COD的趋势。挑战与TOC解决方案对于行业而言,总有机碳(TOC)监测对于确保其产品和工艺安全至关重要,同时,还有助于检测样品中有机化合物的量。在TOC监测方面,如果行业无法将其应用需求与合适的TOC技术相匹配,则将会面临诸多挑战。造成这种情况的原因有很多,包括取样技术欠缺,难以检测低浓度有机化合物以及分析方法不可靠。仪器商已经开发了不同的TOC解决方案来应对这些问题,从而降低了TOC监测的复杂性和成本,如下两个实例所示。电力行业挑战:煤气化装置要求在现场的水处理能力约为5,000-6,000 GPM,目标是零工艺水排放。由于该装置采用的是再生市政水,因此其蒸汽和冷凝水的来源中有机物含量高。因此,必须监测反渗透(RO)膜上的有机物负载量,以对处理工艺进行调整并保护宝贵的资产。解决方案:最初,在实验室进行TOC分析,后来采用在线TOC分析,以监测RO预处理性能并验证其可靠性。实时监测能够可靠、有效地调整预处理混凝剂的投加量。食品饮料行业  挑战:对于大型无菌生产企业,如果出现非无菌产品,会反复造成产品损失。他们一直在使用ATP检测拭子来检测微生物污染。但是,质量问题和产品损失则表明他们需要一种新技术。为了验证设备的清洁度并确保质量和安全,他们必须确保在开始灭菌前完全清除污染物和残余产物。除改进其清洗验证工艺外,生产企业还希望降低用水量和成本。解决方案:食品饮料生产企业需采用以turbo模式运行的Sievers® M9 TOC分析仪来进行TOC分析——每4秒钟提供一个数据点,以对原位清洗(CIP)后的冲洗样品进行监测。在审核过程中,证明这些数据对设施在CIP效果和设备清洁度方面很有价值。通过目视检查确认设备很脏,但通过ATP检测拭子检查发现设备干净,但事实上并非如此。来自TOC监测的定量和全面的数据能够进一步减少不必要的CIP次数,并针对不同产品对其进行优化,从而节约用水并改进清洗工艺。碳监测通过TOC分析进行碳监测是一种重要且有用的方法,可以在水通过工业设施时对水质进行检测。通过检测可能出现的任何工艺中断,防止导致停机并造成高昂维护费用,这还是一个保护宝贵设备资产的好方法。碳监测在以下方面很有用:资产保护工艺优化质量控制满足法规要求源水水质源水污染水平会发生很大变化。水质可能受到季节变化、暴风雨径流和当地火灾等多种因素的影响,这些因素可能会造成源水被有机物污染。你的源水告诉了你哪些信息?通过对源水直接进行碳监测,以:监测基线 — 确定源水的正常TOC水平。识别发生的变化 — 市政是否改变了工厂水源?是否有暴风雨或天气事件改变了进入装置的源水的质量?采取纠正措施 — 采用实时、直接的碳数据来调整水处理工艺。确保处理装置正常运行,并调整流量以确保按照足够的比例脱除。公用工程用水水质工业设施经常需要热量来推动化学反应或工艺原材料。在许多工业装置中,使用公用工程用水来产生热量或便于热交换。热量的产生通常通过锅炉给水和冷凝水返回来实现。超纯水在锅炉中加热,然后转化为蒸汽。你的公用工程用水告诉了你哪些信息?通过对公用工程用水直接进行碳监测,以:监测基线 — 确定锅炉给水的最佳TOC含量,以满足设备保护的质量要求。确定正常的冷凝水水平。识别变化 — 快速检测由于处理低效或水源变化而导致的锅炉给水变化。无论是冷却液本身还是其它工艺流体,能够快速发现冷凝水泄漏。采取纠正措施 — 调整处理以确保锅炉给水的质量,如果被污染,则将冷凝水转移到废水收集设施或实施停车以防止污染影响产品或设备。废水处理工艺碳监测可以以多种途径用于废水处理,包括监测处理设施的废水负荷、生物处理效率或最终排放质量是否合规。你的废水告诉了你哪些信息?对废水直接进行碳监测,以:监测基线 — 定量分析原始废水中的碳负载量,以了解系统的真正养料负载量。识别变化 — 检测可能影响处理的任何变化倾向或较大波动。采取纠正措施 — 调整投加量、停留时间或进行分流,以优化处理并实现废水排放标准中规定的质量目标。对工业用水实施直接碳监测可使许多不同行业受益匪浅。TOC是控制产品质量、优化工艺、保护反渗透膜和锅炉等资产以及确保满足法规要求的绝佳工具。TOC能够为决策提供快速、准确的数据,并正在被写入世界各地更多的监管指南中。通过采用有机物监测,世界上许多不同的行业都在有效地监测用水和废水的质量。◆ ◆ ◆联系我们,了解更多!

应用实例

2024.04.19

ANSI/AAMI ST72:2019法规概述及其与Sievers Eclipse月食细菌内毒素检测

背景美国医疗器械促进协会(AAMI,Association for the Advancement of Medical Instrumentation)是医疗器械行业的国内和国际通用标准的主要制定者,也是医疗技术和消毒领域专业人员获得实用信息、支持和指导的主要机构。AAMI标准化计划获得美国国家标准化协会(ANSI,American National Standards Institute)关于医疗保健技术产品、工艺和相关服务的认证。具体而言,ANSI/AAMI ST72:2019细菌内毒素规则标准为细菌内毒素检测(BET,Bacterial Endotoxins Test)提供了指导,并规定了使用鲎试剂细菌内毒素检测法来检测医疗器械、部件、原材料上的细菌内毒素含量的通用标准1。正如USP第章2,ANSI/AAMI ST72:2019还讨论了细菌内毒素检测法的药典要求,以及细菌内毒素检测法在适用要求下的有效性。这包括但不限于以下内容:鲎试剂和分析员的资格确认线性标准曲线范围阳性产品对照(PPC,Positive Product Controls)阳性产品对照回收范围ANSI/AAMI ST72要求光度学检测技术(包括动态浊度法和动态显色法)需要使用整个内毒素浓度检测范围的线性标准曲线。线性要求相关系数的绝对值|r|在鲎试剂(LAL,Limulus Amebocyte Lysate)生产厂家所规定的内毒素浓度范围内必须大于等于0.980。这适用于每一次检测,包括对鲎试剂和分析员的资格确认。鲎试剂资格确认:必须使用至少3个内毒素浓度来生成标准曲线。对于每个内毒素浓度,必须测试3次并生成大于等于0.980的相关系数值|r|。分析员资格确认:与鲎试剂资格确认相似,分析员必须运行至少3个内毒素浓度的标准曲线。对于每个内毒素浓度,必须测试3次并生成合格的|r|。阳性产品对照(PPC):阳性产品对照必须至少一式两份,并且在位于或接近标准曲线的中间浓度处有一个内毒素加标值。阳性产品对照的实测内毒素接受标准为50 - 200%之间。样品:样品必须至少一式两份。标准曲线:至少有3个浓度,每个浓度至少有2个重复值。阴性对照:必须至少一式两份。Sievers® Eclipse月食细菌内毒素检测仪的合规性Sievers® Eclipse是完全合规的内毒素检测仪,满足美国药典USP 、欧洲药典EP 2.6.14、日本药典JP 4.01、中国药典ChP、ANSI/AAMI ST72所规定的药典要求,这些要求满足总体接受标准。Eclipse自带标准曲线,提供5个浓度(范围为50-0.005 EU/毫升,一式三份),每个样品均带阳性产品对照,因此确保满足检测的所有规则要求。参考文献ANSI/AAMI ST72: Bacterial endotoxins - Test Methods, routine, monitoring, and alternatives to batch testing.USP Bacterial Endotoxins Test.◆ ◆ ◆联系我们,了解更多!

参数原理

2024.04.12

采用精益实验室做法检测制药用水——如何优化检测与放行?

多年来,由于需要等待QC结果,制药用水的放行一直面临着风险。这是因为制药用水检测既费时又费力,需要分析人员从水回路中分离样本进行实验室评估,而微生物等检测要等几天时间才能知道结果。即使药典检测无需等待数日——如内毒素、总有机碳(TOC)和电导率,但在效率和减少人为误差方面仍有许多不足之处。等待检测结果可能会迫使人们选择冒险放行制药用水或推迟生产,这两者都可能付出高昂代价。制药企业需要更简单、更高效的分析检测解决方案来对制药用水检测进行精益管理并提高过程效率。随着过程分析技术(PAT)以及创新的仪器和软件的引入,精益实验室现在变得触手可及。药典制药用水检测和PAT药典制药用水检测要求检测四个参数:电导率、TOC、内毒素和微生物。控制这四个参数可确保制药所有领域用水的纯度。最近,已经开发了一些技术来更好地支持和简化制药生产用水的放行,并提高PAT的采用率,以提高效率。例如,用于TOC和电导率的实时放行检测(RTRT,Real-time Release Testing)、用于细菌内毒素检测(BET,Bacterial Endotoxins Testing)的微流体技术以及用于微生物检测的快速微生物方法(RMMs,Rapid Microbiological Methods),都可以用于对QC实验室流程进行精简并减少与水质检测相关的人为干扰。通过采用精益实验室做法/PAT,制药企业可从流程效率的提高、产品上市速度的加快、分析人员工作量的减少以及最大化可持续发展中获益,同时又能保持数据可靠性和合规性。TOC、电导率、内毒素和微生物检测 实验室、旁线和在线检测如果您正在寻找切实可行的步骤来精简制药用水检测过程,就需要考虑检测的方方面面,如:样品处理、仪器能力、数据审查、过程和可持续性。基于目前的可用技术,精益实验室可采用实验室检测、旁线检测或在线检测,每种检测方法都有自己的优缺点。表1:_优点缺点实验室检测标准过程成本低灵活由专家基于数据做出决策样品完整性延迟批次放行重复审查/批准样品与其它QC检测一起排队等待 旁线检测降低初始成本灵活性高仪器专用样品处理量(比实验室检测少)必须传输数据在线检测全自动化数据集成样品完整性过程控制减少人为因素初始成本较高灵活性低实验室样品检测的缺点是可能会引入污染物,延迟生产用水的放行,有条件的放行可能会带来风险。实验室检测的替代方法包括旁线检测和在线检测。如果经过适当验证,可将在线检测用于实时放行检测(RTRT),即采用经过验证的在线记录仪表对生产用水实时放行。RTRT维持一个闭环系统,通过消除人为因素来确保过程和样品的完整性。正如您想象的那样,从实验室检测向旁线检测和在线检测过渡,能够降低制药用水检测所需的劳动力和耗材。从长远来看,可以通过更少的资源和材料来节省时间和金钱,并优化效率。TOC与电导率最常用的方法是在实验室使用TOC分析仪和电导率探头进行TOC和电导率测量。这需要从不同的使用点分离样本,以便在实验室进行分析。分离样品、将样品转移到实验室并进行分析这一系列过程不仅劳动强度大、成本高,而且还会引入污染物,导致检测结果假性合格或不合格(OOS)。为了减少对电导率和TOC进行常规取样和分析,许多最终用户正在向RTRT过渡。对于电导率和TOC分析,有三种情况可以使用在线仪表:(1)用于过程/药典监测;(2)用于过程控制和理解;(3)用于药典监测、放行、过程控制和理解。RTRT涉及在所有三种情况中使用在线仪表,并允许实时监测和放行制药级用水用于生产。这需要进行额外验证,从而在根本上提高在这三种情况中使用在线仪表的信心。内毒素如何精简内毒素检测的实验室分析?目前为止,在过去的40年中鲎试剂检测几乎没有创新,并且现今大多数检测仍采用耗时的传统方法。而现在,有了更好的新方法。采用向心微流体平台的自动化分析能够提供最简单的内毒素自动化检测,节省大量时间并减少出错机会。随着这项技术在Sievers Eclipse月食细菌内毒素检测仪中的引入,内毒素分析实现了自动化,同时完全符合药典要求。微流体检测的好处:5-10分钟设置时间 与96孔微孔板相比,移液步骤减少了89%(从242减少至不到30),提高了员工的可持续性与传统方法相比,培训大大降低鲎试剂用量减少90%自动创建与加载标准曲线自动创建与加载阳性产品对照(PPC)与96孔板一样,微流体系统能够使您开展相同的生物化学反应,但人工工作量更小、一致性更高、试剂消耗更少。预加载的标准品和PPC用于自动形成标准曲线和PPC峰值,为您节省大量时间,减少移液步骤和出错机会。通过引入微流体技术,您还可以降低冷藏室存储量并降低实验室占地面积。Eclipse微孔板可以在室温下存储,因此无需在2-8℃冰箱中占用额外空间。Eclipse分析仪比96孔板读数器或机器人系统更小且更加紧凑,这样就可以提供更多的桌面空间。Eclipse内毒素检测软件还允许设置客户端服务器,因此可以远程审查和签署内毒素数据,最大限度减少亲临实验室的需要。微生物自19世纪晚期琼脂开始被用作生长培养基以来,微生物的生长和计数基本上没有发生变化。由于其可靠性和准确性,微生物检测历来依赖琼脂平板对制药用水中的微生物进行量化。尽管采用药典规定的微孔板计数来确定活微生物是可靠的,但其耗时耗力,通常需要至少两名分析人员。超纯制药用水的微生物检测需要繁殖培养数日才能用琼脂平板读取。通常人工记录结果,这为数据可靠性缺口留下了机会。由于精确的平板计数需要时间,在微生物结果出来之前,大多数制药用水在被放行时具备风险。为了降低风险和减少微生物检测的时间,快速微生物方法(RMM)正在微生物行业兴起。与药典平板计数相比,RMM能够更快地提供生物学结果。RMM可以在不到一个小时内返回结果。通过在实验室中引入RMM,您可以通过以下方式改进您的流程:缩短返回结果的时间降低污染事件的风险在每个阶段监控流程对水的放行更具有信心结论制药用水检测不必如此耗时和困难。随着实验室实施PAT并朝着更精简的流程发展,药典检测可以得到优化和简化,而不会对法规要求造成影响。向精益实验室过渡的重要转变包括:采用PAT技术、减少人为因素和出错机会以及采用更高效的工作方法——实验室检测、旁线检测或在线检测。当采用合适的工具并提供有效的支持时,简化实验室流程并转向实时放行检测很容易实现,将为您节省大量的时间和资源。原文英文版刊登于《American Pharmaceutical Review》2022年10月刊,本文有所修改。◆ ◆ ◆联系我们,了解更多!

应用实例

2024.04.07

用TOC和电导率进行实时、低流量的制药污物可清洁性分析

简介制药清洁验证和确认成功与否,关键在于能否设计出强有力的清洁工艺。从前,制药清洁工艺的设计主要着眼于将药力或毒性最强的活性药物成分(API,Active Pharmaceutical Ingredients)的残留量降到允许限值(MAC,Maximum Allowable Carryover)以下。美国食品药物管理局(FDA)和医药界的专家们强调风险和工艺管控,以及对验证清洁工艺的充分了解。企业在设计验证清洁工艺时,越来越重视完全可清洁性和主污物识别等概念。1在传统的完全可清洁性(Cleanability)分析中,人们将各种潜在污物分开,在最差清洁条件(如浓度、温度等条件)下按照清洁所需时间对所有污物进行排序。然后用清洁所需时间来确定主污物,优化清洁工艺以减少主污物残留量。传统方法假定,在清除主污物的同时,所有其它污物都能被更彻底地清除掉。在传统的可清洁性分析中,人们把视觉清洁度当做定性度量,用目视来排序2。传统分析受限于时间和资源,无法提供足够的取样频率,排序依赖于视觉等主观因素。为了克服上述缺点,我们设计出了全新的可清洁性研究,用Sievers® M9总有机碳(TOC)分析仪来模拟清洁周期中的设备冲洗,对污物进行可清洁性定量排序。此方法能够更好地识别主污物,帮助企业进行定量分析,设计出行之有效的清洁工艺。对污物进行实时可清洁性分析在分析中,我们采用Sievers® M9 TOC分析仪的Turbo在线运行模式,用低流量取样模块来分析一系列具有代表性的制药污物。Sievers M9的Turbo模式可以进行近乎实时的数据采集,每4秒钟进行一次TOC测量。有了这一独创功能,Sievers M9分析仪能够在清洁设备的同时分析冲洗结果。当此功能同低流量取样模块一起使用时,分析仪能够在最终冲洗量或流量受限的情况下分析冲洗结果。Sievers M9分析仪的标准“集成在线取样系统(iOS,Integrated On-Line Sampling)”的最小流量为30 mL/分钟,低流量取样模块的最小流量为3 mL/分钟。在可清洁性分析中,我们采取以下全新的操作:1用Turbo模式实时测量TOC和电导率,以表征各种污物的冲洗情况。2根据拖尾因子(TF,Tailing Factor)而非简单的冲洗时间来对污物排序。在传统上,拖尾因子属于色谱参数,用于量化分析物同柱子固定相之间造成峰形干扰的相互作用。在可清洁性分析中,我们将拖尾因子用于TOC测量,来识别主污物、优化清洁工艺(见图1)。图1:样品色谱图中显示拖尾因子的排序点方法为了模拟对沾有污物的制药设备的冲洗,Sievers M9便携式TOC分析仪配置了一个6端口和2位阀,和预先沾有污物的2毫升不锈钢样品线圈(见图2a和2b)。将高效液相(HPLC,High Performance Liquid Chromatography)泵连接到阀,将超纯水(UPW,Ultra Pure Water)通过沾有污物的样品线圈泵入M9分析仪进行测量。先将阀旋转到旁路位置(见图2a),使超纯水不流经样品线圈,直接进入M9分析仪的取样模块,以获得超纯水的基线测量值。当超纯水的基线读数稳定后,将阀旋转到运行位置(见图2b),使超纯水流经样品线圈进入分析仪。然后用Turbo模式下的Sievers M9分析仪测量TOC和电导率,得出每种污物的可清洁性结果。图2a:阀的旁路位置 | 图2b:阀的运行位置用此方法分析以下化合物:淀粉乳糖布洛芬牛血清白蛋白(BSA)血红蛋白乙醇(EtOH)结果图3和图4分别显示了测试的6种化合物的实时低流量可清洁性TOC和电导率值。图4中右上角的放大部分是低浓度电导率曲线。根据TOC拖尾因子,从最差到最好可清洁性的污物排序如表1所示。图3:Sievers M9分析仪在Turbo模式下测得的TOC图4:Sievers M9分析仪在Turbo模式下测得的电导率表1:根据拖尾因子排列污物分析结果显示,在测试的6种污物中,清洁性最差的主污物是血红蛋白(见表1)。如果采用传统的清洁工艺设计,会将布洛芬设别为毒性或药力最强的污物,会围绕着减少或清除布洛芬来设计清洁工艺,而忽略其它种污物的存在。分析表明,在测试的所有污物中,布洛芬最容易清除。如果采用传统的清洁工艺设计,就无法将其它污物降至最低水平,因而很难通过工艺验证。结论随着美国食品药品管理局和制药界专家越来越重视对工艺的充分控制和了解,将污物的可清洁性纳入清洁工艺设计的考虑之中就变成重中之重。通过可清洁性分析来识别主污物,决定了到能否设计出强有力的、行之有效的清洁工艺。在可清洁性分析中采用TOC测量等非专属方法,能够有效地定量识别清洁性最差的主污物。在用非专属方法进行清洁验证和确认时,还可以通过监测活性药物成分、清洁剂、降解物、赋形剂、以及其它污染物来控制和了解工艺。高效液相(HPLC)等特定方法只能提供单一活性药物成分或特定分析物的信息,无法提供清洁工艺的全面信息。此项分析展示了成功地使用Turbo模式下的Sievers M9 TOC分析仪以低流量和在线运行模式来实时测量TOC和电导率,实时分析污物的可清洁性。此项分析还将拖尾因子应用到污物排序,成功地设别出清洁性最差的主污物。Sievers分析仪系列产品为您的清洁应用需求,提供完整的TOC分析解决方案。参考文献“Guidance for Industry. Process Validation: General Principles and Practices.” U.S. FDA Pharmaceutical Quality/Manufacturing Standards (CGMP), fda.gov, www.fda.gov/downloads/drugs/guidances/ucm070336.pdf. Accessed 15 May 2018.Jordan, Kelly, et al. “Cleanability of Pharmaceutical Soils from Different Materials of Construction.” Pharmaceutical Technology, vol. 38, no. 7, 2 July 2014, www.pharmtech.com/cleanability-pharmaceutical-soils-different-materials-construction. Accessed 15 May 2018.◆ ◆ ◆联系我们,了解更多!

应用实例

2024.03.29

有奖直播课|合规、一致、清晰的细菌内毒素检测

#小碳微课堂#又开课了!3月29日(周五)下午2:00我们将举行《合规、一致、清晰的细菌内毒素检测》直播课。此次直播课,我们还将从报名观众中随机抽取10名幸运儿送出一份小礼品,快来报名吧!(礼品随机发送)蒲公英制药书《验证工程师的跃迁,从入门到专业》三合一数据线(报名时,请准确填写您的快递地址。获奖名单将于4月初在微信公众号中公布,敬请留意。)时间:2024年3月29日周五  14:00形式:网络直播课,需注册报名,直播结束后可随时回看费用:免费在制药、医疗设备和其他生命科学行业中,细菌内毒素检测对患者安全和质量控制至关重要。细菌内毒素检测用于制药水系统,包括用作成分水的注射用水(WFI),以及最终药品、兽药、生物和医疗器械等产品。所检测的药品和医疗产品包括注射用药品(通过注射,如静脉注射、皮下注射、肌肉注射和皮内注射)和直接或间接接触血液、心血管系统、淋巴系统或脑脊液的医疗装置。全球药典USP 、EP 、《中国药典》ChP四部 和JP 描述了细菌内毒素检测(BET)和内毒素限度的要求。FDA指南为生物产品、药品和设备制造商提供了药典程序中涉及的检测建议和验收标准的建议。此次直播课程中,我们将与您分享以下议题,欢迎收看:细菌内毒素的简介、特性、危害及影响内毒素检测的重要性、相关法规、药典方法内毒素检测的干扰控制新一代内毒素检测仪:Sievers® Eclipse月食细菌内毒素检测仪讲师介绍郭玉静Sievers分析仪大中华区生命科学产品技术工程师生化工程硕士,毕业于伦敦大学学院(UCL,University College London)。现任Sievers分析仪大中华区生命科学产品技术工程师。专注于微生物实验室和细菌内毒素检测,致力于为客户提供合规、简化、高效的细菌内毒素检测解决方案。报名方式扫下列二维码,进行会议注册,注册成功后,我们将于直播当天通过微信公众号给您发送课程直播提醒,直播时登录直播链接,验证注册时的手机号,即可收看课程。若您未收到微信提醒,直播时可通过Sievers分析仪微信公众号菜单:最新资讯-小碳微课堂,进入课程直播。如您当天无法收看直播,课程结束后您也可以登录直播链接,验证注册时的手机号,收看课程回放。◆ ◆ ◆联系我们,了解更多!

企业动态

2024.03.22

总有机碳TOC分析仪有哪些模式,哪一种适合您?

图1:碳的类型*可吹扫有机碳POC也称为挥发性有机碳(VOC)。如果用户需要监测水的有机物或评估总有机碳(TOC)仪器,首先需要通过几个英文缩写了解不同的监测模式。用户可能已有TOC分析仪的相关经验,了解需使用的模式或合规报告需使用的模式(这种情况下更容易确定应该使用哪种模式)。然而,如果不是以上任一种情况,则可能难于区分不同模式之间的差别和确定需使用的模式。本文为您简单介绍不同模式间的差别。以下是TOC分析仪的各种模式列表及其说明和用途。虽然TOC分析仪可能有多种模式用于不同的用途,但大多数仪器并不具有所有模式。TC:总碳总碳模式可用于检测样品的所有碳形态,即同时包括有机和无机两种形态。此模式并不涉及样品酸化或吹扫(详见以下“无机碳”部分),也就是说,是对原始样品进行原状检测。总碳模式最适合以下情况:不需要区分有机碳和无机碳不需要对样品进行预处理只需要获取趋势分析信息总碳模式的最佳应用:冷凝水回流IC:无机碳无机碳模式的对象是特定的化合物,例如碳酸氢盐、碳酸盐、溶解二氧化碳等。通过吹气,或者降低pH以转化平衡为CO2状态,无机碳化合物被吹扫出来。如果对样品不进行吹扫与酸化,无机化合物仍留在溶液中,会被计为TC的部分。这是一种平衡的关系,我们看待TOC时会理解更深刻。无机碳模式最适合以下情况:过程监测需要检测无机化合物,为设备和管道提供保护需要监测水的缓冲能力pH值稳定的样品需要防止锅炉结垢(避免产生碳酸盐沉淀)需要监测薄膜脱气无机碳模式的最佳应用:污水处理厂锅炉给水饮用水TOC:总有机碳在总有机碳模式中,样品的总碳减去无机碳得出总有机碳(TC-IC=TOC)。与其他模式比较,TOC模式更准确,可达到ppb级或以下。总有机碳模式最适合以下情况:需要对过程进行监测,例如排水、清洗或回用必须满足合规要求需要低浓度检测的灵敏度和准确度与总有机碳比,无机碳值相对较低样品的挥发性有机化合物(VOC)含量较高样品的基质在搅拌时会起泡总有机碳模式的最佳应用:制药超纯水(UPW)和清洁验证锅炉给水半导体制造(超纯水)饮用水工艺用水(食品饮料、油气、化工等)NPOC:不可吹扫有机碳不可吹扫有机碳不可吹扫有机碳模式是工艺监测中有机物监测的公认最常用模式。在NPOC模式中,对样品进行酸化将无机化合物转化为二氧化碳。然后,使用不含二氧化碳的空气进行吹扫,以去除无机化合物或可吹扫化合物。对样品中残留的有机碳(即不可吹扫有机碳)进行分析。如果可吹扫有机碳(POC)极少,则总有机碳与不可吹扫有机碳基本相等。不可吹扫有机碳的准确度可达到ppm级。不可吹扫有机碳模式最适合以下情况:需要监控工艺过程样品基质中可吹扫有机碳含量较低不可吹扫有机碳模式的最佳应用:废水排放(工业或市政)POC/VOC:可吹扫/挥发性有机化合物可吹扫/挥发性有机化合物可吹扫或挥发性有机化合物模式用于检测挥发性或半挥发性有机物。有两种途径检测VOC:采用光电离检测(PID)技术直接检测VOC;使用公式VOC=TOC-NPOC计算VOC。PID通过检测样品吹扫分离的中间的带正电荷的碳离子,实现挥发性有机化合物的检测。这些离子通过电极进行收集并检测所产生的电流。此模式可通过NPOC结果与POC结果求和得出TOC值。可吹扫/挥发性有机化合物模式最适合以下情况:为满足控制和安全要求,需要监测挥发性有机化合物不需要区分样品所含的不同种挥发性有机化合物的种类(只需要了解总体值)可吹扫/挥发性有机化合物模式的最佳应用:石化废水冷却塔和排污BOD/COD:生物/化学需氧量生物/化学需氧量BOD和COD是几十年来一直用于确定有机物含量的两个基本参数。BOD确定降解微生物所需的氧气量,而COD确定化学氧化存在的污染物所需的氧气量。这些方法通过测量消耗的氧气量来间接确定有机污染 — BOD需要数天时间,COD需要数小时时间。除了分析时间较长外,这两种方法都存在可能造成干扰的化合物。氯和盐会干扰BOD,而硫化物、氯化物、亚硝酸盐和二价铁会干扰COD。有些化合物能够耐受COD的化学氧化,例如苯。最初,BOD和COD值通过实验室化验获得,但由于前文所述的缺点,目前已有几种分析仪可以通过特定地点的数据相关性来提供这些值。TOC分析仪直接检测和量化样品中存在的碳,并可以提供转换为BOD和COD浓度的实时数据。BOD/COD模式最适合以下情况:相关法规要求报告BOD/COD需要分析仪数据与实验室结果之间的比较样品中不含会干扰BOD/COD的化合物BOD/COD模式的最佳应用:废水排放(工业或市政)结论选择TOC分析仪的模式并非仅选择默认或最常用的模式。监测有机物的最适用模式取决于样品基质、应用以及用户的数据用途。从一开始就选择合适的模式可确保实施过程无缝衔接,使得此后生成的数据非常可靠。作者:Sara SpeakSara Speak是Sievers分析仪的产品应用专员,为化工、石化、食品饮料、市政污水等行业客户提供支持和应用的相关专业意见。Sara与客户合作,提供相关培训,为产品的安装提供支持,优化设备的应用并验证不同检测应用的可行性。在担任产品应用专员之前,Sara曾任工厂服务技术员,负责Sievers仪器的维修和故障排除。Sara曾在食品饮料行业工作(MillerCoors和Leprino Foods),任QA实验室技术员。Sara拥有丹佛大都会州立大学(Metropolitan State University of Denver)化学学士学位和小提琴演奏音乐学士学位。◆ ◆ ◆联系我们,了解更多!

参数原理

2024.03.15

样品与鲎试剂的1:1比例:其重要性以及在Sievers Eclipse月食细菌内毒素检测仪上的确认过

目的细菌内毒素检测(BET,Bacterial Endotoxins Testing)的创新技术问世后,证明平台间检测的等效性就变得至关重要。“Sievers® Eclipse比例确认测试”旨在确认使用96孔板时的样品与鲎试剂的1:1比例始终对使用Eclipse微孔板也同样有效。只要保持1:1比例,就能使样品和鲎试剂(LAL,LimulusAmoebocyte Lysate,鲎变形细胞溶解物)之间的生物化学反应保持不变。即使在使用Sievers Eclipse平台时减少光学孔的总容积,每个孔中的1:1比例也能保持不变,用户可以确信样品和标准品的内毒素测量值是准确有效的。背景和重要性使用96孔板的动态显色法细菌内毒素检测技术,要求在每个孔中加注标准品或样品与鲎试剂的混合液,然后观察液体的颜色变化。检测成功的关键在于精确控制样品和鲎试剂的用量。USP 规定,对于某些检测参数(例如体积比、反应起效时间、pH值等),应遵循鲎试剂生产商提供的使用说明(IFU,Instructions for Use)。使用说明通常以下两种方式之一来表明如何达到正确的样品和鲎试剂的体积比:❶直接表明样品和鲎试剂的比例应为 1:1;❷指示用户加入100 µL的空白鲎试剂水、内毒素标准品、产品样品、阳性产品对照,然后向所有使用的孔中加入100 µL的鲎试剂。有的使用说明指示用户准备1:1样品与鲎试剂混合液时,建议使用100 µL(而非典型的200 µL)作为孔的总容积,并指出100 µL有助于达到最佳的检测灵敏度。该使用说明表明,1:1的比例关系(而非孔的总容积)才是检测成功的关键。只要每个孔中的样品和鲎试剂的比例是1:1,反应就能准确进行,产生的结果就是等效的。如果比例不是1:1,那么样品与鲎试剂的用量就不对,就会对反应动力学过程和整体检测结果产生显著影响。除了孔的总容积之外,还需考虑反应速度。如果反应较快,那么起始反应时间就较短,内毒素浓度就较高。如果反应较慢,则情况相反——起始反应时间较长,内毒素浓度较低。错误的比例还会影响鲎试剂在与样品混合时的自然缓冲能力。如果达不到1:1的精确比例,则反应混合液的pH值就不在建议的6-8范围之内,就会影响检测的整体反应动力学过程。1:1比例确认测试1:1比例确认测试旨在证明在Sievers Eclipse微孔板的104个孔中都达到了鲎试剂和样品的1:1精确比例。进行测试时,用户需要一个新的Sievers Eclipse微孔板和Sievers Eclipse 1:1比例确认套件,该套件包括一个水瓶和一个染色剂瓶。开始分析之前,Eclipse软件会指导用户在对应的位置和鲎试剂LAL端口,完成水和染色剂的准备和注射。然后,Eclipse微孔板按照正常分析时的步骤运行。1:1比例确认测试不依赖于动力学酶促反应,因此测试所需的总时间较短。1:1比例确认测试的报告内容分析完毕后,Eclipse软件的“1:1比例结果(1:1 Ratio Results)”选项卡中会显示报告。报告内容除了包括在运行测试之前输入的常规信息(例如分析仪序列号、Eclipse微孔板信息、1:1比例确认样品信息),还包括104个光学孔的各自的平均光密度。在报告的“结果”部分下面,分别显示微孔板“染色剂”部分和“水”部分的总体平均光密度。染色剂分别同微孔板另一半上的染色剂和水混合,产生上述两个平均值。下面的方程1用于计算总体平均光密度值,该值显示溶液的混合是否成功。这可以用来表示在正常分析时样品和LAL是如何混合的。方程式1:在染色剂与染色剂混合的孔中,理想的比例为1(即染色剂平均值)。在染色剂与水混合的孔中,染色剂被稀释到原来浓度的一半,理想的比例为0.5(即水平均值)。将这两个平均值相除,得出的理想比例为2,表示到达光学孔的染色剂和水的量完全相同。对于本次测试来说,1.90至2.10之间的比例都是有效的,不影响整体反应动力学曲线和内毒素回收率。结论Sievers Eclipse微孔板是精密设计的微流控液体处理设备。此款微孔板利用计量分配腔,以恒定的通道几何形状和运动方式,将精确等量的样品和鲎试剂同时送到光学孔中。正是Eclipse微孔板的精密的液体控制能力,确保了每次检测的所有104个光学孔中都达到样品与鲎试剂的1:1关键性比例。鲎试剂生产商提供的使用说明可能会直接表明1:1比例,也可能会指导用户混合一定量的样品和鲎试剂,但液体总体积未必一定是200 µL。如果光路径较长,或者为了进行精确移液,生产商会建议设置较大容积,以提高检测精度。对于标准的96孔微孔板来说,建议设置的孔的总容积在75-200 µL范围内。“为了进行有效测量,建议设置的微孔板的最小孔容积通常大于最大孔容积的1/3。”1 所以,每次检测的每个孔中的样品与鲎试剂的比例达到1:1,非常重要,而没有必要使用整个孔的容积。在Sievers Eclipse平台上进行1:1比例确认测试的结果证明,即使孔的总容积显著减小,每次检测的每个光学孔中都能达到至关重要的1:1比例。始终保持1:1的精确比例,用户就能确认在转换平台时,生物化学过程是等效的。建议每年由Sievers分析仪认证的现场服务工程师或代表来完成此项确认测试任务。参考文献Pusterla, Tobias, PhD. “Which is the best microplate for my assay?” BMG Labtech, 2018 May 30. https://www.bmglabtech.com/which-is-the-best microplate-for-my-assay/◆ ◆ ◆联系我们,了解更多!

参数原理

2024.03.08

成功进行清洁验证的5大秘诀

制药企业不断面临进行清洁验证的挑战以下是确保实施成功、合规清洁验证的五种方法Part 01为您的清洁程序确定合适的技术和最有效的部署方案(实验室、在线、旁线)了解您的清洁过程。为清洁过程选择正确的技术是成功实施清洁验证的关键。对于清洁验证,有许多常用的分析方法。专属性方法 如在清洁过程中对特定分析物进行UV/VIS或HPLC试验。尽管可以对目标分析物进行检测并使人们确信目标分析物已经清洗干净,但这些测试无法检测到可能影响产品质量、产量、效能或安全的其它化合物,如降解物或洗涤剂。这种类型的分析仅限于在实验室使用。非专属性方法 如总有机碳TOC分析法,与专属性方法相比,可对清洁度有更全面的了解。TOC法不只是检测一种分析物,而是通过采用一种方法来检测清洁剂、降解物、API和赋形剂。TOC还可根据您的工艺提供多种最佳部署方案(实验室、在线、旁线)。了解有关最佳部署方案长按识别二维码,获取更多信息Part 02简化方法验证和仪器确认需要进行方法验证和仪器确认,以表明方法参数适当,并且仪器适用于该方法。尽管这些对于清洁程序的成功与否至关重要,但方法验证和仪器确认并不一定非得很复杂。开发一种合适的方法来提供充分的化合物回收率、线性、稳固性和专属性数据,并设定合适的接受标准。重要的是要证明这些分析数据满足要求,并确保所选择的技术能够满足可靠的方法开发需求。方法开发和验证应本着实用性、可实现、可验证并具有说服性原则。对仪器进行全面确认,以验证仪器的安装、操作和性能满足其预定的用途要求。一些仪器制造商会提供相关文件和服务来协助您全面完成仪器确认工作。Part 03选择最佳消耗品,以实现最佳回收率和样品可靠性样品瓶和标准品等消耗品会对分析方法的成败产生极大影响。请确保您为清洁工艺选择可追溯、合规和和合适的消耗品。应该定期对系统进行挑战,以确保方法的适用性。选择浓度合适的一种或多种化合物,以反映您的清洁工艺,并且对清洁验证使用的仪器进行适当的挑战。一些供应商会提供特殊消耗品,以提高验证方法成功实施的概率。例如,如果您的工艺涉及到蛋白质检测,则对TOC样品瓶进行预先酸化可大大提高经常被漏报的粘性蛋白质的回收率。在开发检测方法时,请考虑此类解决方案。在线分析相较于实验室分析,可以降低使用样品瓶的成本并提高样品的可靠性。自动化分析在一定程度上消除了取样误差,同时节省了金钱和时间。Part 04利用数据来控制、深入了解和优化清洁工艺选择能够生成可信、可验证并用于故障排除和重要CGMP决策数据的技术。如果数据没有经过验证且不准确,就很难深入了解和控制清洁工艺。拥有准确的数据可以使人们对结果充满信心,并以此做出重大质量决策。如果采用TOC,在选择具体TOC技术进行清洁验证时应格外小心,因为某些技术不适合用于精确分离和检测。TOC分析仪提供了可以洞悉清洁工艺的三个单独的数据,以最终实现对清洁工艺的控制、深入了解和优化。一个样品分析可以给出无机碳、总有机碳和电导率数据。通过这些数据可用于确定清洁工艺失败的根本原因,采取纠正和预防措施或优化清洁周期。Part 05数据可靠性在CGMP设置中,数据可靠性比以往任何时候都重要,在清洁验证中实施分析技术时必须考虑数据可靠性。FDA已经对采用相关分析方法时不遵守数据可靠性标准多次发出了警告函。具体来说,当采用HPLC时,常见的问题是没有对峰值进行积分或没有对鬼峰产生的原因进行调查。在清洁验证中出现未知峰不可避免,但必须对其进行彻底调查并记录。使用TOC进行清洁验证不仅可以全面了解清洁度,并且一些分析仪还完全符合21 CFR PART 11规定的要求和数据可靠性准则。数据应保存在安全的数据库中,能够随时访问,所有工作均应保存在安全审核记录中。在利用数据做出重要质量决策时,需要制定和实施强有力的程序来保证数据的可靠性和安全性。当采用在线TOC分析进行清洁验证时,由于不存在数据转录、打印和未验证数据传输的环节,因此具有更高的数据安全性和可靠性。◆ ◆ ◆联系我们,了解更多!

应用实例

2024.03.01

Sievers元宵好礼,等您开启

灯火阑珊启新篇汤圆甜蜜伴新程2024开工大吉Sievers分析仪与您一起携手同行,事业兴“龙”!参与我们的元宵节特别活动赢开工好礼长按识别二维码,进入游戏游戏在线时间:即日起至2024年2月27日周二中午12:00【本活动仅限仪器使用单位人员参加(已购买或尚未购买均可),Sievers分析仪保留活动解释权】游戏规则:每局游戏时间为40秒,40秒时间内,在仪器图中找到小龙汤圆并点击,得1分,找到的汤圆越多,得分越高,成绩达到10分,即为挑战成功。我们将于3月上旬,在所有挑战成功的参与者中随机抽取31位获奖人,送出礼品。获奖名单将于3月上旬在“Sievers分析仪”微信公众号中公布,敬请关注。【tips:每人最多99次参与机会】 【首次游戏开始前需要填写邮寄地址及个人信息,请准确填写,以便获奖后给您寄送奖品(信息不真实或不完整无法参与抽奖)】游戏奖品:一等奖3名 双肩包二等奖8名 摩飞便携烧水杯三等奖20名 MOMAX无线充电鼠标垫汤圆甜,事业更甜2024焕新启程Sievers分析仪将继续用优质产品和贴心服务与您一起乘风破浪,合力共赢!关注我们的视频号,了解更多◆ ◆ ◆联系我们,了解更多!

企业动态

2024.02.23

微电子超纯水应用中总有机碳TOC监测的操作、校准和自动归零的指导

在微电子超纯水(UPW)应用中,水系统中的总有机碳(TOC)浓度极低,通常为亚ppb级。本文介绍如何优化微电子超纯水应用中的在线TOC分析,包括操作步骤指导。Sievers等厂商生产的分析仪,检测限均在0.02至0.03 ppb之间。典型的超纯水系统的TOC浓度在0.2至0.4 ppb之间,或者说仅比分析仪的检测限高一个数量级。当要测量的TOC浓度非常接近分析仪的检测限时,我们可以优化分析仪的性能以获得理想的测量结果,但此时的校准方法必需有别于测量高TOC时所采用的校准方法。硬件选择Sievers专门为微电子应用设计了两款TOC分析仪  — Sievers® M9e和M500e。虽然这两款分析仪有着相似的低浓度测量性能,但Sievers M9e使用酸剂和氧化剂,因而能测量2.5 ppm(2.5 ppm是Sievers M500e的测量上限)以上的TOC值,还能测量高IC值,或测量pH不是中性的水样。酸剂和氧化剂会向样品中引入痕量有机物,本文稍后介绍对此的空白校正程序。如果不是特别需要使用酸剂和氧化剂,我们建议您在应用中使用Sievers M500e分析仪。Sievers M500e有两种配置可供选择 —“集成在线取样器(iOS,Integrated On-line Sampler)”和“不锈钢取样块(Stainless Steel Sample Block)”。iOS可以进行在线测量,并能在不切断样品连接的情况下将吸样样品或参考标样送入分析仪,非常便捷。iOS对校准和确认校准特别有用。由于后面提到的原因,对于测量低ppb和亚ppb的TOC分析仪来说,传统的校准意义不大。因此,我们建议在低ppb和亚ppb应用中使用配置不锈钢取样块的Sievers M500e。取样块不仅能降低仪器成本,而且能形成更适合低ppb和亚ppb应用的封闭式取样系统。校准和自动归零影响分析仪校准的两个因素是“增益(gain)”和“偏移(offset)”。“增益”影响校准曲线的斜率,“偏移”影响校准曲线通过零点的位置。这两种因素对仪器分析性能的影响力的大小取决于超纯水系统的TOC浓度和分析仪的测量范围之间的关系。超纯水系统的TOC浓度越接近分析仪的检测限(或接近于零),自动归零在优化分析仪性能时所起的作用就越大,而校准的作用就越小(见图1)。图1:TOC校准可以用低ppb或亚ppb TOC校准标样来校准要测量的范围吗?用于制备校准标样的样瓶,即便经过最严格的清洁,认证的TOC都仅低于10 ppb,因此无法用于制备亚ppb校准标样。此外,样瓶和校准标样的制备过程会给标样带来TOC误差(通常会增加几个ppb的TOC),因此校准标样仅在称重误差和测量误差可以忽略不计的几百ppb以上的范围有效。当分析仪在校准点附近工作时,调整上述浓度(如1 ppm校准)下的校准(增益)会对报告结果的准确性产生正面影响,但当分析仪在低于校准点几个数量级的浓度(接近于零)下工作时,调整校准就对报告结果的影响非常小。从图1中可以看出,将校准曲线移至最坏情况的校准上限或下限时,对亚ppb下的仪器响应没有影响。TOC自动归零在低浓度下,改变零点或“偏移”对仪器性能的影响最大,最能保证测量的可靠性,最有利于“仪器到仪器”的一致性(见图2)。图2:TOC自动归零Sievers M9e和M500e用自动归零(Auto-Zero)来确保分析仪在没有TOC的情况下报告为零。分析仪的手册对自动归零有详细的说明。自动归零非常有用,能够帮助优化分析仪的低TOC测量性能,并有利于达到“仪器到仪器”的一致性。Sievers M9e和M500e的TOC自动归零策略在漂洗新安装的分析仪或进行维护工作时,分析仪的零点都会受影响。水系统的特性(例如水系统中的无机碳含量)也会对零点产生较小影响。因此,我们建议进行以下自动归零过程,以保持分析仪的最佳性能:在安装新分析仪后的漂洗期间,应每天运行自动归零,运行一周左右。在第一周之后到第一个月结束前,每周运行一次自动归零。在第一个月之后,每月运行一次自动归零,并保持此运行频率,因为预计以后不会有明显变化。在进行日常维护(包括更换紫外灯、样品管、去离子树脂盒等)之后,应漂洗分析仪一整天,然后进行自动归零。此时无需进行校准。如果此时进行校准,校准虽没有坏处,但也没有好处,还会延长预防性维护后(post-PM,post-Preventative Maintenance)的漂洗时间,因为系统需要时间从接触ppm浓度的校准标样后恢复过来。在进行初次预防性维护后的自动归零之后,可以在一周后重复运行自动归零程序,然后恢复到典型的每月自动归零常规操作。如果将分析仪移动到新位置,应在读数稳定后运行自动归零。与日常维护一样,可以在一周后再次运行自动归零,然后恢复典型的每月自动归零常规操作。如果进行了重要的维修工作(即更换主要部件),应在维修后进行校准,以确保分析仪的基本性能不变。对于配置了不锈钢取样块的分析仪,可以临时安装iOS以便进行校准。Sievers维修技术人员都经过培训,具备执行此项服务的能力。Sievers M9e和M500e分析仪的电导率自动归零Sievers M9e和M500e也具有电导率自动归零功能。TC和IC通道的温度和电导池只接触到含有少量CO2的去离子水,因而无需针对电导率的增加而进行校准。随着时间推移,当离子污染物从电导池浸出时,电导池的偏移就会发生变化。电导率自动归零校准任务能够调整TC和IC池的偏移。与TOC自动归零不同,电导率自动归零无需经常进行。我们建议在诊断负TOC值时运行电导率自动归零。只可由技术支持或现场服务工程师来运行电导率自动归零。Sievers M9eTOC分析仪试剂空白不使用试剂的Sievers M500e专用于测量亚ppb级的TOC值。Sievers M9e常用于高TOC应用,包括需要添加氧化剂来测量ppm级的TOC应用,或需要酸化样品和去除IC的高浓度无机碳的系统监测。在有些应用中,样品的TOC很低,但电导率或IC很高,这时就需要使用Sievers M9e的功能来进行理想的TOC测量。超纯水应用无需使用氧化剂,本文讨论的操作程序只适用于酸剂。Sievers M9e使用电子级酸剂,但电子级酸剂也会向样品中引入痕量的有机污染物,这些有机物对低浓度读数的影响虽小,但仍不可忽视。Sievers M9e(固件1.06及更高版本)带有自动酸剂空白(Reagent Blank)程序,能测量酸剂实际产生的有机污染物的量,并根据所选流量来应用偏移量,从而将有机污染物从报告的TOC值中扣除。各个酸剂盒所产生的痕量有机污染物稍有不同,每次在安装新酸剂盒后,都需要运行试剂空白程序。◆ ◆ ◆联系我们,了解更多!

操作维护

2024.02.19

清洁验证的在线TOC方法:应用PAT原理,增强自动化程度、真正质量控制且降低成本

由于复杂性提高及成本限制,越来越多的药品生产商为其系统和工艺配备自动化。例如,如果由于设备配置、产品或清洗剂的应用,需要复杂的清洗程序,则要求相对耐用的自动系统,以确保完全去除潜在的污染。就地清洗(Clean-in-place,CIP)和离线清洗(Clean-out-place,COP)系统比手动清洗,显示出更高的可靠性和一致性,并为减少人为错误提供保证。虽然CIP系统自动化将导致资金成本的提高,但运行成本可显著下降。除了日常系统功能,诸如为玻璃清洗机上样或从控制点启动系统运行,CIP系统可应用到工艺流程中的某些点,消除手动操作行为的风险。本文提供通用指导,如何使用Sievers® M500在线TOC分析仪,监控经过自动CIP工艺的最后注射用水(WFI)或纯化水(PW)步骤。带有iOS的M500在线TOC分析仪自动CIP工艺概述一般来说,制药工艺设备、管道、接头、玻璃器皿和备件的所有自动清洗顺序遵循的工艺流程,从最后的漂洗步骤抽取样品,并按照经验证的分析方法进行分析。该步骤通常包括TOC、电导率和pH。如果它们也需要通过公司的正规验证过程的话,则其他试验,如细菌内毒素或微生物限度,也会需要。在最后漂洗步骤之后,应对设备进行有记录的目视观察以确保设备是清洁的。从低成本且高效可靠的工艺设备清洗,到提高产品质量,CIP技术对于生产设备具有显著的优势。CIP系统可包括当前循环和再循环步骤,以便降低运行和废水成本1。纯化水预漂洗和排放纯化水预漂洗和排放是生物或活性制药成分(API)生产设备自动清洗工艺的第一步骤。第一步骤主要去除设备表面上存在的大量污染物或痕量物质。当与设备表面接触之后,通常将漂洗溶液送到排放口,而不是再循环,以防止CIP系统的污染。鉴于此阶段的目的是去除设备表面的大量残留和任何痕量物质,在这个阶段,取样测定TOC、pH或电导率,没有价值。纯化水清洗剂的清洗和排放这个步骤,使用酸性或碱性清洗剂清洗工艺设备。此清洗步骤用于去除此前纯化水(PW)预漂洗时没有清除的物质。此步骤可能在工艺设备表面和相关管道遗留痕量的清洗剂残留。在工艺过程的这一点,如果存在清洗剂,电导率将急剧上升。然后通过停止CIP装置的供应,并让待清洗设备达到合适的操作规格,再次冲洗,然后排放。此步骤再循环,也并不少见。纯化水后漂洗和排放清洗剂清洗之后,使用PW来漂洗设备表面,去除清洗剂的痕量残留以及任何潜在的残留产品或物质。漂洗溶液通常送到排水口,而不进行再循环,以防止CIP系统的污染。PW漂洗液冲洗系统和设备之后,TOC和电导率水平应较低。还是很少在本步骤之后测量TOC、PH或电导率,因为预计PW或WFI仍然含有残留的清洗剂和其他残留产品。注射用水漂洗、再循环、测量和排放末段的WFI漂洗,包括泵送WFI到CIP漂洗罐及相关管道,然后到达设备末端。如果可行,该溶液通常进行再循环以监控电导率和TOC水平。此工序的最后WFI步骤彻底漂洗用于生产环节的相关管道和设备。此步骤最适合监控TOC和电导率,二者都可以通过Sievers M500在线TOC分析仪进行测量。任何痕量的清洗剂残留将通过该分析仪的TOC和电导率测量进行指示。为了释放设备用于以后的工艺过程,必须符合所有的验证运行参数,而且TOC和电导率结果必须在公司规定的容许值或合格标准[即TOCPAT应用:用于清洁验证2的在线TOC分析为减少与清洁验证相关的停机时间,应用过程分析技术(Process Analytical Technology,PAT)3,各公司将Sievers M500在线TOC分析仪放置在CIP回流管道,监控清洗过程的最后步骤,以确保系统的清洁,并且实时放行设备。如何应用Sievers M500在线TOC分析仪获得高质量水平及成本节约?与其他清洁或冲洗周期相比,通常WFI漂洗循环非常快速,只持续很短的时间,取决于某些运行参数。同时,某些末段的漂洗循环连续地排放,直到达到一定水平的电导率或体积,因此急剧增大WFI水生产和废水处理的成本。这些局限促使各公司在验证的时段内对其末段WFI漂洗进行再循环,使得TOC分析仪可进行取样,并向PLC/SCADA系统反馈数据。大多数CIP系统配有CIP供液和回流泵,只需要最小水量在整个系统提供正吸,从而为再循环和准备进行的适当分析(例如TOC、电导率、流量、pH、温度)提供机会。自动化是在线TOC分析的另一要素。在制药行业有众所周知的案例,在其中可自定义PLC或SCADA控制命令,可从几分钟到几个小时在任何位置保持再循环。有时药品制造厂商利用自动化水平连续地再循环,并在获得一定水平的电导率、pH或流量后进行保持,以便让仪器进行适当的取样。一旦样品分析后,即可确认再循环步骤,及完成以后的步骤。更高的自动化已经内置在Sievers M500的设计中,并让仪器与PLC或SCADA系统进行通讯。当WFI回流到CIP平台进行TOC和电导率测量时,TOC分析仪开始分析。图1. 安装于在线清洗验证工艺过程中的Sievers M500在线TOC分析仪Sievers M500分析仪置于待机模式,直到最后的WFI步骤,这时被激活以监控水的状态。在监测过程中,TOC分析仪继续与PLC或SCADA系统通讯,提供实时结果。在这一点上,TOC和电导率分析在整个漂洗步骤中一直进行,直到系统排水前的适当时间。一旦进行测量而且TOC、电导率、流量或时间参数符合漂洗循环的要求,PLC或SCADA系统然后指示TOC分析仪返回待机模式。当符合验证的合格标准后,设备可释放,并在设备的使用记录中正确记载。现在设备已经清洗并且核准使用,消除了样品污染的机会以及由于“等待实验室结果”状态造成的设备停机。鼓励对清洗过程、清洗剂和合格限值全面了解,以确保不会出现由再循环步骤导致的产品或清洗剂残留。4并非所有的在线TOC分析仪均相同虽然清洁验证从实验室TOC分析转到在线TOC分析的概念不是全新的,但直到不久前,实际用于实施该变化的可用TOC方法都特别难于实施而且很少成功。即使某些TOC分析仪指示可直接测量TOC并通过了系统适用性5,但这些声明与当前的实验室TOC方法并没有关联性。此外,直接电导率或差示直接电导率TOC方法,当溶液电导率高时(如含氢氧化钠、清洗剂、氯仿等),容易受到干扰。由于专利的Sievers膜电导技术,Sievers M500的在线TOC方法与清洁验证中当前使用的实验室方法一样好用、可靠和准确。参考文献就地清洗(CIP)指南,A Guide to Clean In Place (CIP).。 由A & B Process Systems提供的白皮书。www.abprocess.com。在Sievers清洁验证支持包中提供在线TOC清洁验证文件。关于此工艺的更多信息可访问www.sieversinstruments.com—行业—制药—清洁验证。FDA,工业PAT指南 — 创新制药开发、制造和质量保证的框架,Guidance for Industry PAT—A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance。LeBlanc, Destin. 单独使用漂洗样品的更多内容:清洁验证技术,清洗备忘录(2006年4月),More on Using Rinse Sampling Alone: Cleaning Validation Technologies, Cleaning Memo. (2006, April)。Godec, Richard. 在线TOC性能的科学比较(2006年1月),Science-Based On-Line TOC Performance Comparison. (2006, January)。◆ ◆ ◆联系我们,了解更多!

应用实例

2024.02.04

内毒素检测的样品保存时间研究和样品批量检测

概述本文讨论有关内毒素检测的样品“批量检测(Batch Testing)”和样品“保存时间(Hold Times)”,以及如何通过简单研究来最大化提高检测效率。质量控制实验室和研发实验室并不都是高通量实验室。很多实验室每天或每周只收到少量需要进行鲎试剂的样品。为了使鲎试剂检测更省钱、更高效,实验室会先将样品保存起来,攒够一定数量的样品时,才会用96孔板或Sievers® Eclipse微孔板进行“批量检测”。批量检测能为用户节省昂贵的鲎试剂。确定样品保存时间的重要性进行批量检测可以提高检测效率、降低总检测成本。然而,不少实验室的内部“标准操作规程(SOP,Standard Operating Procedure)”列明了检测的时间要求,例如必须在收到样品或采集样品后的24小时内进行检测。这种时间限制使小型实验室无法保存批量样品,而实际需要进行的检测也并非如此急迫。监管部门并不强制要求用户在一定时间内进行检测,而“良好生产规范(GMP,Good Manufacturing Practice)”普遍要求用户在样品不损失内毒素的前提下确定正确的检测时间要求,也就是“样品保存时间”。研究并确定正确的样品保存时间,能够为平衡检测的质量、成本、效率提供关键依据,也有助于用户了解何时应将样品送达实验室进行分析,何时可以获得检测结果。研究内毒素检测的样品保存时间为了节约昂贵的鲎试剂、消耗品成本,提高微孔板的使用率,用户应进行简单的样品保存时间研究,以确定在批量检测的样品保存时间超过24小时的情况下样品不会损失内毒素。样品保存时间研究旨在帮助质量控制实验室制定正确的“标准操作规程”,明确规定样品在检测之前可以存放的时间1。样品保存时间研究的重要内容之一是存放样品的容器。用于内毒素检测的样品应采集并存放在不干扰鲎试剂检测和不吸收内毒素的容器中。聚丙烯容器会吸收内毒素,而聚苯乙烯或硼硅酸盐玻璃容器是最佳的样品容器。至少对4个时间点进行样品保存时间研究,才能确保研究结果有效且准确2。比如,研究的时间点可以选在第0天、第1天、第3天、第7天。可以对水样品、制程样品、原料样品、甚至成品药样品进行保存时间研究,确定检测前的有效保存时间。在进行保存时间研究时,对每一种样品加入已知浓度的内毒素。建议用户在标准曲线中点处加入尽量低的浓度的内毒素。但加入的浓度越高,越能在2倍该浓度内回收样品。例如美国注射剂协会(PDA)“TR 82技术报告”中规定加入的浓度为5 EU/mL(EU/mL:每毫升内毒素活性单位)2。在建议的所有时间点检测样品,测量并确认样品未损失内毒素。如果不进行研究就保存样品,检测就可能出现假阴性结果,从而导致患者安全风险。实验室一旦确认样品在7天内未损失内毒素,就可以在“标准操作规程”中规定样品的保存时间或要求的检测时间可以延长到7天,以便每周一次性集中检测所有保存的样品,而非每天都耗费精力来检测样品。Sievers Eclipse提高检测效率Sievers Eclipse是完全合规的内毒素检测平台,满足USP 、EP 2.6.14、JP 4.01、ChP 等药典的要求。此平台提供包含5个参考标准品内毒素(RSE,Reference Standard Endotoxin)浓度的嵌入式标准曲线,浓度范围为50-0.005 EU/mL,一式三份,为每个样品提供嵌入式阳性产品对照液(PPC, Positive Product Control)。此平台是高通量内毒素检测平台,用户可以在单次检测中大大增加样品数量,从而提高检测效率、降低总体成本。已经或打算延长样品保存时间的用户在用Eclipse进行检测时,可以采用鲎试剂“冻融法(Freeze-Thaw)”。事实证明,在初次重构后冷冻鲎试剂,稍后在Eclipse上用解冻的该试剂来检测样品,检测结果同非冻融法完全一致3。结论GMP建议用户为样品检测确定正确的样品保存时间。用户可以进行简单研究,最大化提高质量控制实验室的样品检测通量,大大减少总体操作时间,从而提高实验室的效率、降低成本。参考文献H.Skalski. Low Endotoxin Recovery Hold-Time Study Considerations. Charles River Laboratories, April 2020.PDA Technical Report No. 82. Low Endotoxin Recovery. PDA, 2019.LAL Reagent Storage Evaluation Using the Sievers* Eclipse BET Platform. Sievers Analytical Instruments, 2022.◆ ◆ ◆联系我们,了解更多!

应用实例

2024.01.26

分析方法验证:在制药行业中采用TOC方法进行清洁验证

寻求改进质量和提高效率的药品生产商对使用Sievers® 总有机碳(TOC)分析仪进行清洁验证的兴趣越来越浓。大多数制药或生物科技厂家目前都配有TOC分析仪以符合美国药典USP、中国药典ChP的水检测要求,以放行纯化水或注射用水用于清洁或生产过程。因此,大多数厂家已经拥有用于清洁验证的TOC测定方法。TOC是FDA认可的一种方法①,用于评估所给样品中所有含碳的化合物,以确保所有设备的清洁都符合所建立的清洁标准。TOC分析允许开发一种方法,用于检测由化合物、分析物或残留物通过直接(擦拭)或间接(冲洗)取样而形成的碳浓度。潜在目标残留物包括药物活性成分(API)、药品赋形剂、蛋白质、蛋白质副产品和清洁剂或成分。1996年,国际协调会议(ICH)在FDA(CDER & CBER②)的协助下,创建了指导文件《Q2B:分析步骤的验证》。该文档的目的是为制药公司如何考虑清洁验证分析程序的各种验证特征提供参考。本文提供了与下列参数相关的多个实例,这些实例均与TOC方法验证有关,因而此应用说明呼应了Q2B指导文件:检出限和定量限确定分析物的准确度和精确度线性和回收百分比分析方法的稳固性③检出限和定量限检出限(LOD)用于评估何时信号是仪器噪音的结果还是化合物的反应。LOD被视为样本中分析物的最低检测量,但没有必要的足够的统计确定性来定量。定量限(LOQ)是对数据有意义还是无意义提供指导而建立的值。低于LOQ的仪器反应表示存在有机物,但无法定量实际浓度。分析仪中的读数高于已建立的LOQ则被视为可定量或有意义的数据。为了确定背景TOC的浓度并推导出用于清洁验证方案的LOD和LOQ,必须准备低TOC的水空白或棉签空白(如果适用)来计算实验中水和小瓶的碳成分。一旦已经从这些样本中确定了标准偏差,则通常是将标准偏差分别乘以3和10来获得LOD和LOQ④。确定分析物的准确度和精确度了解TOC分析方法验证中准确度和精确度的区别非常重要。准确度与测得值和分析物的真实值的接近程度相关。通常,准确度是计算仪器验证时测得的标准品的TOC浓度与预期的标准品TOC浓度的差值百分比(即+7%)所得。精确度通过标准偏差或RSD(相对标准偏差)度量。精确度与所给样本的多个分析结果相互之间的接近程度相关。在TOC方法验证期间,通过分析加了(添加)已知浓度的目标残留物的样品可以测定准确度和精确度,并可以评定差值百分比和RSD。ICH文件推荐至少在三个浓度级别上至少进行九次测定来评估准确度和精确度,这三个浓度级别涵盖了仪器的指定范围⑤。线性和回收百分比验证通常,线性测试校验仪器反应值是否与所研究分析物的浓度具有线性关系。图1演示了TOC浓度范围从1.00 ppm到7.50 ppm,牛血清白蛋白(BSA)的线性关系,其中含低TOC水的小瓶中加了已知浓度的BSA。这个例子演示了理论浓度(x轴)对所测得的浓度(y轴)作图所得到的两者之间的线性关系,y=(m)x+b。分析仪的反应值与所研究化合物的相关系数(R²)应大于0.97。图1. 数据使用Sievers实验室TOC分析仪获得为了确定TOC方法用于分析目标残留物的适用性,有必要确定分析方法可达到的回收率。以下例子使用CIP-100制备已知TOC度的溶液,并将已知量的样本放到不锈钢片上,演示了直接取样方法。在BSA的例子中,在不锈钢片上添加三个递增浓度的CIP-100清洁液,擦拭不锈钢片,然后将此棉签放到已知量的低TOC水中。表1提供了从不锈钢片表面获得的回收百分比结果。分析方法的稳固性与实际回收率同样重要的是,用于确定所研究化合物回收百分比的TOC分析方法的重现性或稳健性。在清洁验证方法开发中稳固性是指结果不受方法中参数、或样本之间的小而微妙的变化的影响的能力。还提供了正常使用期间的可靠性指示(例如各个分析员的取样方法)。若希望得到高回收率,回收率一直保持可重复性也同等重要或更为重要,并在整个方法开发期间一直需要对回收率进行检测。表1和表2提供了CIP-100棉签回收率分析信息,由两个不同的分析员测试样本间的变化。要考虑的最后几点评估制药产品质量水平的测试步骤要遵从各项要求。具体到清洁验证来说,当前的药品生产质量管理规范[21 CFR 211.194(a)] 要求,用于评估药品是否符合已建立规范的测试方法必须满足准确度和可靠性的合适标准⑦。同时考虑到分析方法的验证是通过实验室研究建立的过程,本应用说明中说明的(TOC)方法的性能特征满足计划进行的分析应用的某些要求,例如符合药典的水排放和清洁验证。参考文献FDA网站:www.fda.gov/cder/guidance/cGMPs/equipmenthtm。药品评估与研究中心(CDER)和生物制品评估和研究中心(CBER)。Guidance for industry Q2B: Validation of Analytical Procedures. Methodology. November 1996. ICH, FDA, CDER, CBER.Taylor, John K. Quality Assurance of Chemical Measurements. Lewis Publishers imprint of CRC Press; 1987.USP  Validation of Compendial Methods.The Swab Recovery Determination of CIP-100 in Solutions by TOC Analysis Using a Sievers TOC Analyzer, Steris Corporation Analytical Method; 1993. 7. 21 CFR 211.194(a) Laboratory Records.21 CFR 211.194(a) Laboratory Records.◆ ◆ ◆联系我们,了解更多!

应用实例

2024.01.19

液相色谱LC与TOC联用: Sievers M9 SEC检测器

Sievers® M9 SEC是一款特殊改装的Sievers M9总有机碳TOC分析仪,设计用作溶解有机碳(Dissolved Organic Carbon,DOC)检测器,连接到高性能体积排除色谱系统(Size Exclusion Chromatography,SEC)。背景介绍2002年的《环境科学技术杂志》文章(Her et al., 2002年)首次描述M9 SEC,从此研究人员开始广泛采用M9 SEC来分离和定量溶解在水中的各种天然有机物(NOM)的分子量组分。由于某些分子量的有机物可能会污染膜,在氯化饮用水之后极易转变为三卤甲烷(THM),并且干扰微电子制造过程,或加快锅炉腐蚀,因此人们可以通过量化这些有机物的组分来优化各种水处理工艺。一些有机物分子在UV光谱段没有吸收,它们不会被检测。这些分子当中的一些在水处理工艺中非常重要,因为它们会造成问题,如多聚糖olysaacharide等。如下图所示,TOC检测器捕捉到更多的组分。M9 SEC通过捕获所有有机碳组分,而不仅仅是具有UV信号的组分,增强了HPLC SEC UV分析。可以更好地了解样品特征,有助于作出工艺决策。TOC作为LC检测器的优势:不会错过任何一个有机组分TOC检测限到ppb级别,最高的灵敏度Sievers M9 SEC检测器十多年来,研究人员手动改造了前一代Sievers 800型和900型TOC分析仪。现在Sievers直接推出M9 SEC检测器,发货时带有所有必要的改装部件,可以用作SEC检测器,也可以转换成一台普通的TOC分析仪进行校准。M9 SEC的主要改进内容包括:增强了信噪比,改进低浓度检测改进了对潜在干扰的排除享有原厂保修和售后服务M9 SEC必须同已有的高性能体积排阻色谱系统一起使用,该系统需带有适当的磷酸盐缓冲液流动相。在连接和使用M9 SEC检测器时,需有特殊应用的层析柱、数据采集软件、以及其他部件。HPLC SEC系统中M9 SEC的示意图Sievers M9 SEC检测器的规格Sievers M9 SEC便携式溶解有机碳(DOC)检测器是一种改造的M9e便携式TOC分析仪,可作为HPLC SEC系统的一部分,通过分离和定量所有有机碳组分来加强分析能力。▲ 点击可查看大图参考文献Her, N., G. Amy, D. Foss, J. Cho, Y. Yoon, P. Kosenka. (2002). “Optimizing of method for detecting and characterizing NOM by HPLC – size exclusion chromatography with UV and on-line DOC detection.” Environ. Sci. Technol. 36: 1069–1076. Allpike, B., A. Heitz, C. Joll, R. Kagi. (2005). “Size exclusion chromatography to characterize DOC removal in drinking water treatment.” Environ. Sci. Technol. 39: 2334-2342.◆ ◆ ◆联系我们,了解更多

应用实例

2024.01.12

快速高效精确 | 你要的TOC分析仪都在这里:Sievers TOC选型指南

为尽可能降低工艺和法规风险,选择最适合的总有机碳TOC分析仪至关重要。了解Sievers®全系列TOC分析仪,寻找适合您的型号,立刻收藏以下谱图吧!如您需要更清晰的pdf版Sievers全系列TOC分析仪谱图,请点击链接下载!自1997年为美国国家航空航天署(NASA)的太空计划开发出第一款总有机碳(TOC)分析仪之后,Sievers分析仪根据市场需求,又取得了许多技术突破,推出了灵敏度高、选择性好、操作简便的TOC分析仪。Sievers TOC分析仪涵盖了从0.03 ppb到50000 ppm的动态分析范围,能够提供跨越不同行业和应用的解决方案,广泛应用于制药/生物医药、电子半导体、电力、化工、石化、环保、食品饮料、科研院校等众多领域。除了您可信赖的仪器外,我们的Sievers认证服务、标准品和样品瓶以及应用专业知识也是无与伦比的。Sievers TOC分析仪用于超纯水和纯水M9实验室/在线/便携TOC分析仪和M500/M500e在线TOC分析仪,这些仪器结合了紫外线/过硫酸盐氧化法和专利的Sievers膜电导检测技术,能够对超纯水进行最为精准的TOC测量。此项技术最初是根据美国宇航局(NASA)的合同为监测空间站饮用水的质量而开发的,采用此技术生产的Sievers 800型TOC分析仪代表了TOC分析技术领域的真正突破。如今新一代的Sievers超纯水TOC分析仪具有无与伦比的分析性能、可靠性、易用性,能够全面满足您在超纯水/纯水监测方面的应用要求,以及当今最严格的质量标准。M9e在线型、便携式0.03 ppb - 50 ppmM9实验室型、便携式、在线型 0.03 ppb - 50 ppmM500e在线型0.03 ppb - 2500 ppb M500在线型0.03 ppb - 2500 ppbCheckPoint在线/便携TOC传感器,是第一款可用电池供电的TOC检测仪。它能够进行快达15秒钟的水系统诊断和故障排除。CheckPoint的重量只有3.6公斤(7.9磅,含电池),非常易于操作和维护。CheckPoint在线型Pharma制药行业型号:0.21 ppb - 1000 ppbe半导体行业型号:0.05 ppb - 1000 ppb用于自来水、工业用水M5310 C实验室/在线/便携TOC分析仪,使用Sievers膜电导检测技术。M5310 C实验室型和便携式都可以搭配Sievers自动进样器使用,便携式可吸样检测也可在线监测,所有型号的M5310 C都有TOC去除率计算功能。使用M5310 C分析仪能快速简便地对水处理设施进行TOC分析,实现换热器泄漏监测,帮助优化混凝、絮凝等工序的化学加药,同时符合GB/T 5750-2023《生活饮用水标准检验方法》,并帮助饮用水厂符合消毒副产物(DBP)规则。M5310 C实验室型、便携式、在线型4 ppb - 50 ppm用于工艺过程用水及污水InnovOx实验室/在线TOC分析仪,用于监测工业过程、环境、废水样品,具有0.05至50,000 ppm的动态检测范围。两种型号的仪器都采用创新的超临界水氧化(SCWO)技术,具有极佳的氧化稳定性和超长的仪器有效运行时间。InnovOx实验室型、在线型 50 ppb - 50000 ppmTOC-R3在线TOC分析仪,使用高温非催化燃烧技术,提供稳健、可靠、快速响应的监测,解决关键的工业用水和环境水挑战。除了传统的总碳(TC)、不可吹扫有机碳(NPOC)、总无机碳(TIC)和总有机碳(TOC)监测功能外,Sievers TOC-R3能轻松实现总结合氮(TNb)的低成本监测,并具有直接测量可吹扫有机碳(POC)/挥发性有机碳(VOC)的独特能力。TOC-R3在线◆ ◆ ◆联系我们,了解更多!

参数原理

2024.01.05

Sievers Eclipse内毒素检测仪为您简化内毒素检测程序的每一步

细菌内毒素检测方法分为两类,凝胶检测技术和光度检测技术。凝胶检测技术又分为凝胶限度法和凝胶半定量法;光度检测技术又分为浊度法和显色法,其中,浊度法分为动态浊度法与终点浊度法,显色法分为动态显色法与终点显色法。在这些方法中,定量分析使用较多的为动态显色法,下表从不同维度比较了不同内毒素动态显色检测系统的区别。Eclipse®为您简化内毒素检测程序的每一步——从库存到批次放行Sievers® Eclipse®月食细菌内毒素检测仪使用微流控自动化和最新的兼容软件来简化您内毒素检测程序的每一步,从供应链和存储到验证、常规检测和签字放行。通过以下方式降低成本并最大程度减少仓储微孔板仅需在室温条件下进行储藏鲎试剂冷藏可降低10倍无需存储RSE或CSE — 内毒素标准品已预先存储于Eclipse微孔板中使用以下方式改进系统实施和cGMP放行几天内即可完成系统验证每个Eclipse微孔板能够验证7种最终产品最少化台式分析仪的维护量 — 无需机器人通过以下方式简化并提高检测量9分钟内即可轻松完成检测,少于30个移液步骤自动执行标准曲线、阳性产品对照PPC和自动混合仅需要简短的分析人员培训出现错误的机会有限省时的模板和附件信息库通过以下方式简化产品放行简化批次检测、数据审核和放行远程数据审核和样品签核全面的专属性检测的审计追踪通过以下方式最大化灵活性并确保合规性企业级的软件解决方案自定义权限数据可靠性和ALCOA+21 CFR Part 11微流体技术的使用让内毒素检测变得轻松、快速。通过简化内毒素检测,制药商可以确保产品安全、同时提高样品检测率并减轻分析员的负担。立刻联系我们,了解更多Eclipse内毒素检测仪的信息。◆ ◆ ◆联系我们,了解更多!

应用实例

2024.01.03

内有福利 | Sievers分析仪 | “双旦”将至,感恩相伴,前路同行

Merry Christmas一年将尽,最后留白2023,我们以心致敬相伴的时光“双旦”将至,感恩有你Sievers分析仪愿您福启新岁,万事顺意!我们已经准备好惊喜福利参与游戏赢好礼扫码参加游戏时间即日起至2024年1月1日中午12:00【本活动仅限仪器使用单位人员参加(已购买或尚未购买均可),Sievers分析仪保留活动解释权】 游戏规则游戏时间为40秒,在40秒时间内,夹住1台仪器得10分,夹住的仪器数量越多,得分越高,成绩达到30分,即为挑战成功。我们将于1月上旬,在所有挑战成功的参与者中随机抽取50位获奖人,送出礼品。获奖名单将于1月中下旬在“Sievers分析仪”微信公众号中公布,敬请关注。【tips:夹子必须在仪器正上方才能夹住仪器哦,每人最多99次参与机会】 【首次游戏开始前需要填写邮寄地址及个人信息,请准确填写,以便获奖后给您寄送奖品(信息不真实或不完整无法参与抽奖)】奖品设置一等奖 5名外交官双肩背包二等奖 15名 MOMAX无线充电鼠标垫三等奖 30名  台历+笔记本1套Happy New Year未完待续,未来可期2024,我们用心祈愿滚烫的未来希望Sievers分析仪的产品与服务继续伴您一起历尽千帆,前路同行!◆ ◆ ◆联系我们,了解更多!

企业动态

2023.12.22

TOC检测的质量控制

作为分析仪器制造商,客户往往希望我们针对其TOC分析仪的质量控制和验证问题予以指导。本文提供与校准、确效、系统适用性以及实验室对照样品相关的多个兴趣领域的知识。内容源自我们低含量的TOC检测经验,以及诸如Greenberg等人的《水和废水检验的标准方法》,第18版(美国公共卫生协会,Washington D.C,1992)和Taylor编著的《化学测量质量保证》(Lewis Publishers,Chelsea,MI,1987)等行业标准参考资料。校准基础Sievers® M9/900系列TOC分析仪提供众多的校准和确效选项,因此对某些客户来说,可能难于选择适合应用的正确方式。以下是一些简单的提示:01单点校准时,务必选择高于水样TOC范围的校准标准。务必确保您的最高校准标准大于您水样中的TOC含量。这样您可确保您的样品处于该仪器所示的线性范围内。对于未知样品范围宽的用户,Sievers M9/900还可使用1 mg C/L和50 mg C/L之间设置的五点校准组合进行校准。02定期使用线性范围内的一个或多个标准样确效校准。优良实验室规范(GLP)建议在感兴趣的范围内确效。此篇应用文献中将会有更多这方面的详细信息。03不要使用实验室对照标准样,使用单独配制的校准标准样。此独立确效概念是用于显示您的仪器中任何重大偏差的重要相互校验。例如,许多客户使用KHP标样进行校准,而使用单独的蔗糖标准确效性能。Sievers分析仪提供多种用于校准、确效和实验室控制的标准溶液,以满足此需求。校准准确度与校准偏差校准是所有仪器系统的基础步骤。其目的是使测量过程中的偏差最小化。优良实验室规范(GLP)要求确效步骤以确认在校准过程中没有引入偏差。校准确效具有两个明显的功能:1)测量校准步骤的准确度;或2)指示校准偏差。在有效校准之后即刻进行准确度确效,以提供校准曲线准确度的简单度量。用于确效准确度的标样,不应使用校准用标样,应单独配制,或使用不同的化合物。这种情况下,确效标样起到完全独立的校准对照标样的作用。与之不同,如果在迟些时候(例如校准后六个月)进行确效,其主要目的是提供校准偏差的指示。用于确效校准偏差的标样应该与校准时使用的标样浓度相同。使用Sievers M9/900系列的客户具有实行确效方案的选项,以匹配上述任意一种或两种情况。Sievers M9/900系列TOC校准标样使用范围从1至50 mg C/L的NIST可追踪KHP进行制备。对应的确效标样使用范围从0.5 mg C/L至50 mg C/L的NIST蔗糖进行制备。我们的许多分析纯化水(PW)或注射用水(WFI)的客户选择以1 mg C/L进行校准,而以0.5 mg C/L确效准确度。这种方案使得客户在感兴趣的范围以上进行校准,并在兴趣点确效准确度。如果校准偏差的指示超出容许差,这种情况我们建议在1 mg C/L进行确效。测试系统适用性的周期是多久?要生成有效的分析数据,所要求的不仅仅是一台高质量仪器。实际上,它需要一个控制良好的测量系统,其包括以下所有四个因素:称职并受过很好培训的人员遵循标准操作步骤(SOP)有效并维护良好的仪器可追踪的参考材料最新的USP 章和EP 方法中的TOC法规要求各TOC分析仪按照制造厂商的建议校准,并且定期证明各分析仪的适用性。但USP和EP法规没有解释系统适用性测试(SST)的进行周期。答案涉及两个基本又对立的考虑:系统超出容许差的相关风险证明系统在容许差之内的成本应该对这两方面考虑的多个构成因素进行评估,因为它们适用于您自己的设备。1SST不合格相关的风险是什么?不合格对设备有什么影响?2进行测量人员的经验水平如何?操作人员是否有足够的技术并受过充分的培训,以延长SST之间的周期?3测量系统是否始终如一地通过测试?测量系统在延长的时间周期内是否稳定可靠?4是否有可遵循的行业趋势或公司指南?审计员是否接受与规范不同的计划?5进行SST的成本是多少?如何测试系统适用性?通过测试三种溶液确定TOC分析仪的适用性:空白溶液(Rw)、0.5 mg C/L蔗糖(Rs)以及0.5 mg C/L的1,4-苯醌。响应效率(RE)按以下计算:RE = 100[(Rss-Rw)/(Rs-Rw)]如果85%实验室对照标样的重要性实验室对照标样(LCS)是显示测量系统处于控制的常用方法,对于诸如医药和民用饮用水等高度控制的行业尤其如此。LCS通常使用每批样品进行分析。对照标样的浓度范围应与实际样品一致或位于感兴趣的特定范围内(如WFI测试为0.5 mg C/L)。最好使用外部供应商提供的经认证的NIST可追溯标样,因为他们会提供最严格的手段来评测测量系统。如果内部制备的标样用于日常的质量控制,我们建议周期性使用外供的经认证的参考材料用于确效。例如,某些客户选择制备自己的溶液作为日常检查标样,但依靠Sievers提供认证的参考材料进行每周的系统适用性测试。当预算有限时,类似这种双级方法是很好的平衡。◆ ◆ ◆联系我们,了解更多!

应用实例

2023.12.15

< 1 2 3 ••• 8 > 前往 GO

Sievers分析仪(威立雅)

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: Sievers分析仪(威立雅)

公司地址: 上海市浦东新区张东路1761号创企天地5号楼 联系人: 市场部 邮编: 201203 联系电话: 400-809-9576

仪器信息网APP

展位手机站