您好,欢迎访问仪器信息网
注册
北京易科泰生态技术有限公司

关注

已关注

金牌15年 金牌

已认证

粉丝量 0

400-860-5168转1895

仪器信息网认证电话,请放心拨打

当前位置: 易科泰 > 解决方案 > 发现海洋绿藻生物量和直链淀粉超量积累的调控新方法

发现海洋绿藻生物量和直链淀粉超量积累的调控新方法

2022/11/25 15:17

阅读:129

分享:
应用领域:
农/林/牧/渔
发布时间:
2022/11/25
检测样品:
其他
检测项目:
植物生理
浏览次数:
129
下载次数:
参考标准:
植物生理生态 海洋绿藻 叶绿素荧光成像

方案摘要:

微藻淀粉可开发为生物能源、食品和生物塑料。缺氮/限氮可使淀粉积累达到干重的50%以上,是绿藻淀粉累积最常用的方法。然而,营养胁迫会抑制藻类细胞的生长,限制淀粉的生产速度。为此,华东理工大学生物反应器工程国家重点实验室的研究人员提出了一种新的调控方法,促进了新分离的绿藻Platymonas helgolandica的生长和高直链淀粉积累——即通过添加外源性葡萄糖和控制适当的昼夜节律时间,可获得最大的干重积累(Light:Dark = 12:12)和最大的淀粉浓度(Light:Dark = 6:18)。研究成果刊登在2022年《Biotechnology for Biofuels and Bioproducts》杂志。

产品配置单:

分析仪器

MC1000 8通道藻类培养与在线监测系统

型号: MC1000

产地: 捷克

品牌: 捷克PSI

¥10万 - 30万

参考报价

联系电话

AquaPen手持式藻类荧光测量仪

型号: AquaPen AP110

产地: 捷克

品牌: 捷克PSI

¥1万 - 5万

参考报价

联系电话

方案详情:

微藻淀粉可开发为生物能源、食品和生物塑料。缺氮/限氮可使淀粉积累达到干重的50%以上,是绿藻淀粉累积最常用的方法。然而,营养胁迫会抑制藻类细胞的生长,限制淀粉的生产速度。为此,华东理工大学生物反应器工程国家重点实验室的研究人员提出了一种新的调控方法,促进了新分离的绿藻Platymonas helgolandica的生长和高直链淀粉积累——即通过添加外源性葡萄糖和控制适当的昼夜节律时间,可获得最大的干重积累(Light:Dark = 12:12)和最大的淀粉浓度(Light:Dark = 6:18)。研究成果刊登在2022年《Biotechnology for Biofuels and Bioproducts》杂志。

 1.png

为进一步揭示不同培养模式下绿藻生理状态的差异,研究人员使用了藻类光合检测套件测定了自养组(24:0Glc)、混合营养组(24:0+Glc)、昼夜节律组(6:18Glc) 和异养组(0:24+Glc)的叶绿素荧光参数和呼吸速率,上述培养模式以(光照小时数:暗黑小时数,有无添加外源葡萄糖Glc)进行表示。

 2.png

A图中,Fv/Fm反映了光系统II (PSII)的效率。混合营养组的总体变化趋势与自养营养组相同。昼夜节律组的Fv/Fm在培养早期相对稳定,在后期迅速下降——可能由于细胞数量的迅速增加,单个细胞接收到的光更加有限。异养组持续保持极低的PSII效率。

B图展示了借助OJIP程序在第6天测定的多个参数。发现相比于混合营养组,昼夜节律组的单位反应中心(RC)吸收能量(ABS/RC)和电子传递能量(ETo/RC)的变化不明显,而每个活跃反应中心的捕获能量(TRo/RC)下降7.10% (p <0.05)。这可能是由于长期光照导致混合营养组反应中心关闭所致。

与自养组相比,添加葡萄糖的三组的TRo/ABSETo/ABS值均有所下降,说明葡萄糖的存在降低了吸收能量的捕获和传递。此外,异养组与混合营养组比较,TRo/ABS下降15.98%(p <0.05)DIo/RC提高76.52% (p <0.05),表明连续黑暗培养导致了能量捕获的显著减少和能量消耗效率的显著增加;ABS/RC增加18.03% (p <0.05),这可能反映了异养组细胞中的反应中心大量关闭。

C图中的OJIP快速叶绿素荧光动力学曲线,可发现自养组和混合营养组的曲线形状特征相似。而昼夜节律组和异养组的曲线形状发生了变化——与自养组相比,两组J点的荧光强度Vj分别变化了10.05%33.17%I点的荧光强度Vi分别变化了25.17%3.40%。最终,两组的Fv/Fm分别降低了9.71%20.67%,反映出PSII效率随着光照时间的减少而降低。

D图展示了呼吸速率随时间的变化曲线。与自养组相比,添加葡萄糖的三组的呼吸速率均有所提高。这是因为葡萄糖的存在能够有效促进有氧呼吸,释放能量,并产生丙酮酸合成代谢物。在第3天,异养组和昼夜节律组的呼吸作用明显增强,较自养组分别提高了145.12%63.67%。这一现象表明,在没有光的情况下,异养组通过上调呼吸来维持生长。在昼夜节律组中,呼吸速率的增加可能意味着更多能量产生和更快的生长。

通过以上细致详尽的分析,揭示了不同培养模式下海洋绿藻生长状态不同的生理基础。

藻类光合检测套件是由北京易科泰生态技术有限公司为藻类科研工作者量身定制的藻类光合作用测量方案,能够帮助研究人员轻松、完整地获取藻类光合生理数据,具有小巧便携、易操作、高性价比的特点。

检测套件既能测定藻类的气体交换参数,如光合放氧速率、暗呼吸速率、净光合速率,也能够测定叶绿素荧光参数,包括F0FtFmFm’、QYQY_LnQY_DnNPQQpRfdAreaMoSmPIABS/RC50多个参数,从而全面检测、评估藻类的光合-呼吸作用中物质和能量转化。

套件帮助微藻固碳、水质净化、全球变化、代谢生理等各个研究领域的藻类科研工作者轻松获得了准确、全面的藻类光合数据,仅举两例:

1. 颗石藻是海洋中最重要的钙化生物类群之一,也是主要的初级生产者,同时进行光合与钙化两种固碳作用(两者分别是碳汇和碳源过程),因此在海洋碳循环中起到重要作用。颗石藻表面往往覆盖一层又一层的颗石粒(Coccolith),形成壳状结构的颗石球(Coccosphere)。英国海洋生物协会和美国北卡莱罗纳大学威明顿分校联合研究发现:不同种的颗石藻对钙化作用的需求不同,破坏钙化作用会导致某些种的颗石藻无法维持完整的颗石球,产生细胞周期阻滞现象和重大的生长缺陷。但没有证据证明钙化作用会影响光合作用。论文发表于2018年《New Phytologist》杂志。

 3.png

2. Ben等人调查研究了有机污染物双酚ABPA)对嗜碱性绿藻Picocystis 的影响及后者对前者的去除能力,发现暴露于低浓度(<25mg/LBPA 5天不会抑制Picocystis的生长和光合作用;而高浓度(50-75mg/LBPA暴露尽管使Picocystis的净光合速率急剧下降,但PSII活性受到的影响较小(净光合速率接近零时,Fv/Fm仍至少为0.2),最终对其生长的抑制也不超过43%。高浓度BPA暴露下的Picocystis能够同时促进多种抗氧化酶的活性,可视作避免PSII受到额外损伤的防御机制。并且Picocystis通过生物降解和转化,高效率地移除了BPA。因此,高耐受性和高移除率使Picocystis在双酚A的水质净化方面具有巨大的潜力。论文发表于2018年《Ecotoxicology and Environmental Safety》杂志。

 4.png

 

参考文献:

1. Ben Ouada, S., Ben Ali, R., Leboulanger, C., Ben Ouada, H., & Sayadi, S. (2018). Effect of Bisphenol A on the extremophilic microalgal strain Picocystis sp. (Chlorophyta) and its high BPA removal ability. Ecotoxicology and Environmental Safety, 158, 18.

2. Shi, Q., Chen, C., He, T., & Fan, J. (2022). Circadian rhythm promotes the biomass and amylose hyperaccumulation by mixotrophic cultivation of marine microalga Platymonas helgolandica. Biotechnology for Biofuels and Bioproducts, 15(1), 75.

3. Walker, C. E., Taylor, A. R., Langer, G., Durak, G. M., Heath, S., Probert, I., Tyrrell, T., Brownlee, C., & Wheeler, G. L. (2018). The requirement for calcification differs between ecologically important coccolithophore species. The New Phytologist, 220(1), 147162.

 


下载本篇解决方案:

资料文件名:
资料大小
下载
发现海洋绿藻生物量和直链淀粉超量积累的调控新方法.docx
1146KB
相关方案

SisuROCK 高光谱成像技术检测土壤有机碳(SOC)和总氮(TN)

土壤有机质,尤其是有机碳和氮,在陆地生态系统中起着重要的作用,通过土壤管理增加土壤固碳可抵消全球化石燃料排碳的5-15%。高光谱成像技术可以将土壤特性测量从点尺度提升至空间尺度,是土壤科学管理、土壤有机质研究的有力工具。 加拿大阿尔伯特大学的研究者Sorenson利用Specim SisuROCK高光谱成像系统,采集三种不同轮作土壤剖面(a连续作物、b连续牧草、c作物和牧草混合农业生态轮作)的VNIR-SWIR高光谱数据,结合元素分析仪获取的各土壤样品有机碳(SOC)和总氮(TN)含量数据,基于小波分析与贝叶斯正则化神经网络建立SOC和TN预测模型。 结果表明,轮作中添加牧草增加了土壤SOC和TN的含量,但这些变化多集中在表层。这一结果具有重要的土地利用与管理意义,为用户提供决策支持,同时证明SisuROCK高光谱成像技术是研究土壤剖面中有机质空间分布的重要工具。 北京易科泰生态技术有限公司长期致力于生态-农业-健康领域仪器的研发、应用与推广,为土壤养分、污染、重金属检测、土壤-植物互作关系研究提供从实验室到野外,从地面到无人机遥感全方位解决方案。

环保

2024/07/10

高光谱成像技术检测鸭梨 α-法尼烯和共轭三烯

近日,河北省农林科学院生物技术与食品科学研究所果蔬贮运加工研究室程红博士团队,使用高光谱成像技术结合机器学习模型建立了一种无损快速检测方法,成功预测了鸭梨的虎皮病生物标志物α-法尼烯和CTols,并在国际化学光谱学TOP期刊Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy在线发表了题为“Potential of hyperspectral imaging for nondestructive determination of a-farnesene and conjugated trienol content in ‘Yali’ pear”的研究论文。 该论文采用北京易科泰生态技术公司提供的Specim-VNIR高光谱成像果品品质检测系统,借助其高分辨率、高信噪比、高帧频的特点,高效采集了大批量不同实验处理下的400-1000nm鸭梨高光谱数据集,将VIS-NIR高光谱成像技术和机器学习模型相结合,建立了一种基于高光谱成像技术的快速无损预测鸭梨中α-法尼烯和CTols含量的方法,以跟踪鸭梨的健康状态,预防鸭梨虎皮病。该研究结果为鸭梨虎皮病的无损检测提供了技术支撑,也充分体现了高光谱成像技术在果实品质高效、无损检测中的潜力。

农/林/牧/渔

2024/07/09

易科泰作物高光效育种技术方案

由中国科学技术协会、广西壮族自治区人民政府共同主办的第二十六届中国科协年会于7月2日在广西南宁开幕。主论坛上,发布了2024重大科学问题、工程技术难题和产业技术问题。由中国农学会推荐的“作物高光效的生物学基础”入选2024年十大前沿科学问题。 该问题指出:通过揭示作物高光效的生物学基础,创建高光效育种技术,提升光合作用效率,从根源上提升粮食单产具有巨大潜力,对保障我国粮食安全具有重大意义。 易科泰生态技术公司,凭借多年来在植物表型组学研究技术、叶绿素荧光成像与作物光合表型、光生物学等研究领域20余年的深耕细作及在国际先进仪器技术推广与服务中积累的丰富经验,推出全方位、多样化、定制化高光效育种仪器技术方案,为作物高光效育种研究提供强有力的技术保障。

农/林/牧/渔

2024/07/08

SpectraScan 高分辨率高光谱成像分析技术方案

高分辨率VNIR高光谱成像,空间分辨率1775 x像素,光谱分辨率3nm,波段数768;1000-2500nm SWIR高光谱成像,高灵敏度450FPS,384x像素空间分辨率,低温冷却MCT检测器,高信噪比SNR1050:1;多样化扫描成像主机系统供选配:实验室扫描成像系统、野外扫描成像系统、客户定制系统;广泛应用领域:农业(作物表型成像分析、种质资源检测、病害检测等)、健康(食品药品品质检测等)、地质矿物成分分析、材料检测分检、生态环境、土壤与地球科学、文博及刑侦等等。;Specim高光谱成像相机,出厂已经过光谱校准,每次扫描前测量一个内部标准参考目标,自动校准图像反射率;提供SDK,用于快速高效的应用程序开发。

地矿

2024/07/05

推荐产品
供应产品

北京易科泰生态技术有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 北京易科泰生态技术有限公司

公司地址: 海淀区高里掌路3号院6号楼1单元101B 联系人: 王老师 邮编: 100095 联系电话: 400-860-5168转1895

友情链接:

仪器信息网APP

展位手机站