您好,欢迎访问仪器信息网
注册
北京易科泰生态技术有限公司

关注

已关注

金牌15年 金牌

已认证

粉丝量 0

400-860-5168转1895

仪器信息网认证电话,请放心拨打

当前位置: 易科泰 > 解决方案 > FluorCam多光谱荧光成像技术应用案例——什么是多光谱荧光成像

FluorCam多光谱荧光成像技术应用案例——什么是多光谱荧光成像

2020/05/19 09:48

阅读:183

分享:
应用领域:
农/林/牧/渔
发布时间:
2020/05/19
检测样品:
林产品
检测项目:
植物病虫害
浏览次数:
183
下载次数:
参考标准:
FluorCam多光谱荧光成像技术

方案摘要:

FluorCam多光谱荧光成像系统与红外热成像、高光谱成像等其他植物表型成像技术结合,已经广泛应用于植物病害(细菌、病毒、真菌)、干旱、养分亏缺、重金属、除草剂等胁迫造成的次生代谢与表型组学研究,其中植物病害表型为最主要的研究方向。

产品配置单:

分析仪器

FluorCam大型植物叶绿素荧光成像平台

型号: FluorCam大型植物叶绿素荧光成像平台

产地: 捷克

品牌: 捷克PSI

面议

参考报价

联系电话

FluorCam台式植物多光谱荧光成像系统

型号: FluorCam台式植物多光谱荧光成像系统

产地: 捷克

品牌: 捷克PSI

¥20万 - 50万

参考报价

联系电话

方案详情:

FluorCam多光谱荧光成像技术应用案例——什么是多光谱荧光成像

1. 多光谱荧光的发现及特性

二十世纪八九十年代,植物生理学家对植物活体荧光——主要是叶绿素荧光研究不断深入。激发叶绿素荧光主要是使用红光、蓝光或绿光等可见光。当科学家使用UV紫外光对植物叶片进行激发,发现植物产生了具备4个特征性波峰的荧光光谱。

image.png

图1. 左:烟草叶片上表面UV激发荧光光谱(Buschmann,1998);中:多光谱荧光彩色光谱示意图;右:不同颜色激发光的荧光激发特性(Benediktyová, 2009)

这4个特征性波峰的波长分别为蓝光440nm(F440)、绿光520nm(F520)、红光690nm(F690)和远红外光740nm(F740)。这个特征激发荧光光谱就称为多光谱荧光(Multi-color Fluorescence,MCF)。其来源和荧光特性请见表1。

表1.UV激发多光谱荧光特性(Buschmann,1998,略有修改)

A.蓝绿荧光(Blue-Green Fluorescence,BGF)

荧光色素:

主要是细胞壁中共价结合的阿魏酸,由液泡中的肉桂酸和类黄酮调控

位置和来源:

a)细胞壁(主要来自于叶片表皮)

b)液泡(与溶解的酚类有相互作用)

激发:

UV

荧光特性:

辐射范围:

400-570nm

最大值(波峰):

440-450nm(蓝光,F440),520-530nm(绿光,F520)

胁迫指示:

蓝色荧光与红色和远红荧光比例:F440/F690,F440/F740的增加或减少;某些植物中绿色荧光的增加

B.叶绿素荧光(Chlorophyll Fluorescence,Chl. F)

荧光色素:

叶绿素a

位置和来源:

叶片叶肉细胞,叶绿体

激发:

红光、绿光、蓝光、UV等

荧光特性:

辐射范围:

650-800nm

最大值(波峰):

690nm(红光,F690),730-740nm(远红光,F740)

胁迫指示:

短期胁迫:

荧光诱导动力学变化(通过叶绿素荧光技术进行分析),F690/F740增加30%

长期胁迫:

荧光诱导动力学变化(通过叶绿素荧光技术进行分析),叶绿素含量减少,F690/F740大幅增加。F690/F740是原位叶绿素含量的反向指标。

2. 多光谱荧光的发展

进一步的研究发现,并称为蓝绿荧光(Blue-Green Fluorescence,BGF)的F440和F520在正常生长的植物中强度很低。而在植物受到胁迫尤其是病害感染后,其强度才会显著上升。

与来源于光系统的叶绿素荧光不同,蓝绿荧光来源于一系列植物次生代谢物质,包括多酚、植保素、黄酮类、阿魏酸、苯丙素类等。这类物质在植物生长状态良好时含量很低,植物只有在受到胁迫后才会大量合成,这一方面是由于初级代谢受到抑制和干扰,另一方面这些次生代谢产物也是植物应对胁迫尤其是病害防御机制的重要组成部分。

F690和F740则属于叶绿素荧光,其强度与叶绿素含量和光合电子传递相关。F690  F740认为与叶绿素浓度成负相关。同时F440  F690,F440  F740可以作为极早期胁迫指示指标,F440  F520则反映长期胁迫变化(Pineda, 2008)。

3. FluorCam多光谱荧光成像技术

FluorCam多光谱荧光成像技术是在国际知名FluorCam叶绿素荧光成像技术基础上扩展升级而来的。这是目前国际上唯一能够进行多光谱荧光成像分析的商用科研仪器技术,而且也是唯一将多光谱荧光成像技术和叶绿素荧光成像技术结合为一体的商用科研技术。

目前,基于FluorCam多光谱荧光成像技术有三款仪器系统,分别为FluorCam一体式多光谱荧光成像系统、FluorCam模块式多光谱荧光成像系统、FluorCam落地式大型多光谱荧光成像平台,用于满足不同的实验需求。

image.png

图2. 左:FluorCam一体式多光谱荧光成像系统;中:FluorCam模块式多光谱荧光成像系统;右:FluorCam落地式大型多光谱荧光成像平台

    FluorCam多光谱荧光成像系统除了可以进行多光谱荧光成像和叶绿素荧光成像分析,还可以扩展GFP成像、PAR吸收率成像、NDVI成像、QA再氧化成像、OJIP成像等成像分析功能。

FluorCam多光谱荧光成像系统与红外热成像、高光谱成像等其他植物表型成像技术结合,已经广泛应用于植物病害(细菌、病毒、真菌)、干旱、养分亏缺、重金属、除草剂等胁迫造成的次生代谢与表型组学研究,其中植物病害表型为最主要的研究方向。

image.png   

图3.左;细菌性甘薯茎腐病感染烟草的FluorCam叶绿素荧光与多光谱荧光成像分析;右:丁香假单胞菌感染菜豆的FluorCam多光谱荧光成像分析(Pérez-Bueno, 2016, 2015)

参考文献:

1. Buschmann C, Lichtenthaler HK. 1998, Principles and characteristics of multi-colour fluorescence imaging of plants, Journal of Plant Physiology, 152: 297-314

2. Benediktyová, Z. & Nedbal, L. 2009. Imaging of multi–color fluorescence emission from leaf tissues. Photosynthesis research 102, 169-175

3. Pineda M, et al. 2008, Multicolor Fluorescence Imaging of Leaves—A Useful Tool for Visualizing Systemic Viral Infections in Plants, Photochemistry and Photobiology, 84: 1048-1060

4.Pérez-Bueno M L, et al. 2015, Spatial and temporal dynamics of primary and secondary metabolism in Phaseolus vulgaris challenged by Pseudomonas syringae, Physiologia Plantarum 153: 161-174.

5.Pérez-Bueno M L, et al. 2016. Temporal and Spatial Resolution of Activated Plant Defense Responses in Leaves of Nicotiana benthamiana Infected with Dickeya dadantii. Front Plant Sci. 6: 1209

北京易科泰生态技术公司提供植物表型研究全面技术方案:

lFluorPen、FluorCam叶绿素荧光/多光谱荧光技术

lSL3500、FytoScope智能LED光源与生长箱

lSpectraPen/PolyPen、Specim高光谱测量技术

lThermo-RGB红外热成像技术

lPlantScreen植物高通量表型成像分析平台

lEcoDrone无人机遥感技术方案


下载本篇解决方案:

资料文件名:
资料大小
下载
5-FluorCam多光谱荧光成像技术应用案例——什么是多光谱荧光成像-5.15.docx
1769KB
相关仪器

更多

FluorCam台式植物多光谱荧光成像系统

型号:FluorCam台式植物多光谱荧光成像系统

¥20万 - 50万

FluorCam大型植物叶绿素荧光成像平台

型号:FluorCam大型植物叶绿素荧光成像平台

面议

相关方案

SisuROCK 高光谱成像技术检测土壤有机碳(SOC)和总氮(TN)

土壤有机质,尤其是有机碳和氮,在陆地生态系统中起着重要的作用,通过土壤管理增加土壤固碳可抵消全球化石燃料排碳的5-15%。高光谱成像技术可以将土壤特性测量从点尺度提升至空间尺度,是土壤科学管理、土壤有机质研究的有力工具。 加拿大阿尔伯特大学的研究者Sorenson利用Specim SisuROCK高光谱成像系统,采集三种不同轮作土壤剖面(a连续作物、b连续牧草、c作物和牧草混合农业生态轮作)的VNIR-SWIR高光谱数据,结合元素分析仪获取的各土壤样品有机碳(SOC)和总氮(TN)含量数据,基于小波分析与贝叶斯正则化神经网络建立SOC和TN预测模型。 结果表明,轮作中添加牧草增加了土壤SOC和TN的含量,但这些变化多集中在表层。这一结果具有重要的土地利用与管理意义,为用户提供决策支持,同时证明SisuROCK高光谱成像技术是研究土壤剖面中有机质空间分布的重要工具。 北京易科泰生态技术有限公司长期致力于生态-农业-健康领域仪器的研发、应用与推广,为土壤养分、污染、重金属检测、土壤-植物互作关系研究提供从实验室到野外,从地面到无人机遥感全方位解决方案。

环保

2024/07/10

高光谱成像技术检测鸭梨 α-法尼烯和共轭三烯

近日,河北省农林科学院生物技术与食品科学研究所果蔬贮运加工研究室程红博士团队,使用高光谱成像技术结合机器学习模型建立了一种无损快速检测方法,成功预测了鸭梨的虎皮病生物标志物α-法尼烯和CTols,并在国际化学光谱学TOP期刊Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy在线发表了题为“Potential of hyperspectral imaging for nondestructive determination of a-farnesene and conjugated trienol content in ‘Yali’ pear”的研究论文。 该论文采用北京易科泰生态技术公司提供的Specim-VNIR高光谱成像果品品质检测系统,借助其高分辨率、高信噪比、高帧频的特点,高效采集了大批量不同实验处理下的400-1000nm鸭梨高光谱数据集,将VIS-NIR高光谱成像技术和机器学习模型相结合,建立了一种基于高光谱成像技术的快速无损预测鸭梨中α-法尼烯和CTols含量的方法,以跟踪鸭梨的健康状态,预防鸭梨虎皮病。该研究结果为鸭梨虎皮病的无损检测提供了技术支撑,也充分体现了高光谱成像技术在果实品质高效、无损检测中的潜力。

农/林/牧/渔

2024/07/09

易科泰作物高光效育种技术方案

由中国科学技术协会、广西壮族自治区人民政府共同主办的第二十六届中国科协年会于7月2日在广西南宁开幕。主论坛上,发布了2024重大科学问题、工程技术难题和产业技术问题。由中国农学会推荐的“作物高光效的生物学基础”入选2024年十大前沿科学问题。 该问题指出:通过揭示作物高光效的生物学基础,创建高光效育种技术,提升光合作用效率,从根源上提升粮食单产具有巨大潜力,对保障我国粮食安全具有重大意义。 易科泰生态技术公司,凭借多年来在植物表型组学研究技术、叶绿素荧光成像与作物光合表型、光生物学等研究领域20余年的深耕细作及在国际先进仪器技术推广与服务中积累的丰富经验,推出全方位、多样化、定制化高光效育种仪器技术方案,为作物高光效育种研究提供强有力的技术保障。

农/林/牧/渔

2024/07/08

SpectraScan 高分辨率高光谱成像分析技术方案

高分辨率VNIR高光谱成像,空间分辨率1775 x像素,光谱分辨率3nm,波段数768;1000-2500nm SWIR高光谱成像,高灵敏度450FPS,384x像素空间分辨率,低温冷却MCT检测器,高信噪比SNR1050:1;多样化扫描成像主机系统供选配:实验室扫描成像系统、野外扫描成像系统、客户定制系统;广泛应用领域:农业(作物表型成像分析、种质资源检测、病害检测等)、健康(食品药品品质检测等)、地质矿物成分分析、材料检测分检、生态环境、土壤与地球科学、文博及刑侦等等。;Specim高光谱成像相机,出厂已经过光谱校准,每次扫描前测量一个内部标准参考目标,自动校准图像反射率;提供SDK,用于快速高效的应用程序开发。

地矿

2024/07/05

推荐产品
供应产品

北京易科泰生态技术有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 北京易科泰生态技术有限公司

公司地址: 海淀区高里掌路3号院6号楼1单元101B 联系人: 王老师 邮编: 100095 联系电话: 400-860-5168转1895

友情链接:

仪器信息网APP

展位手机站