您好,欢迎访问仪器信息网
注册
北京易科泰生态技术有限公司

关注

已关注

金牌15年 金牌

已认证

粉丝量 0

400-860-5168转1895

仪器信息网认证电话,请放心拨打

当前位置: 易科泰 > 解决方案 > 如何在太空种菜?这项技术将给出答案

如何在太空种菜?这项技术将给出答案

2019/01/22 16:06

阅读:404

分享:
应用领域:
食品/农产品
发布时间:
2019/01/22
检测样品:
蔬菜
检测项目:
光合作用
浏览次数:
404
下载次数:
参考标准:
FluorCam叶绿素荧光成像技术

方案摘要:

叶绿素荧光动态测量分析是叶绿素荧光技术的核心内容,也是叶绿素荧光得以成为植物(包括藻类)生理生态研究重要内容的关键。Butler于1978年提出PSII光化学反应、叶绿素荧光及热散失三者的能量竞争模型,认为PSII反应中心将电子传递给原初电子受体QA,导致Kautsky诱导效应中的叶绿素荧光降低(“叶绿素荧光淬灭”),称为光化学淬灭(photochemical quenching),而由于热散失导致的叶绿素荧光淬灭则称为非光化淬灭(nonphotochemical quenching)。要通过叶绿素荧光估算光合作用强度(光化学反应),关键是要确定叶绿素荧光光化学淬灭过程和非光化学淬灭过程。Butler的光合作用能量竞争模型成为叶绿素荧光技术的重要理论基础。

产品配置单:

分析仪器

FluorCam叶绿素荧光技术叶绿素荧光成像系统

型号: FluorCam -

产地: 捷克

品牌: 捷克PSI

面议

参考报价

联系电话

方案详情:

上周,嫦娥四号上搭载的生物科普试验载荷显示试验搭载的棉花种子已长出嫩芽,这是在经历月球低重力、强辐射、高温差等严峻环境考验后,月球上萌发出的第一株植物。据重庆市政府发布会消息,科普载荷随嫦娥四号登陆月球的第一天(13日)23:18分加电开机后,载荷内微型生态系统开始进入生物月面生长发育模式。从开机到11220点地面发送了生物科普试验载荷断电指令,载荷正常关机,生物科普试验载荷在轨工作状态良好,累计工作时间长达212.75小时,主副相机累计拍照34次,下传照片170多幅。目前,生物科普试验载荷已进入断电状态,载荷内部在月夜温度零下52℃的情况下,所携带的六种生物将结束本次科普试验使命。

图片90.jpg 

那么,除了照片以外,我们是否有办法了解在这200多个小时中,位于月球背面的植物究竟经历了什么吗?

虽然我们笑称太空种菜是中国人种族天赋的延续。但作为航天技术的后发国家,我们不得不承认在这方面,美国还是走在我们前面。上世纪40年代,美国就将玉米种子发射升空并成功回收。此后,随着航天技术的发展,植物栽培实验基本成为航天活动,尤其是宇宙空间站的标配。可以说,太空生命科学研究一直是航天研究的热门领域。

20161月,美国宇航员斯科特-凯利在国际空间站中培育出了一朵百日菊,成为第一株在外太空开放的花朵。

图片91.jpg 

20174月,NASA的新一代先进植物培养器(Advanced Plant HabitatAPH)搭载联盟号MS-04货运飞船抵达国际空间站,按计划展开植物生理学及太空新鲜食物种植( growth of fresh food in space的研究。 

图片92.jpg

这不就是太空种菜吗?不要以为换个马甲就能骗过我们!(NASA FactsAdvanced Plant Habitat

    同时,为了检测植物在太空中的生长状况,NASA肯尼迪航天中心的工程师使用FluorPen叶绿素荧光仪检测培养器的拟南芥。

图片93.jpg 

叶绿素荧光?这是什么?

简单来说,叶绿素荧光是植物光合系统反应中心在照光后发出了一种红色的荧光。检测叶绿素荧光动态变化的技术即为叶绿素荧光技术,检测整个叶片乃至整株植物叶绿素荧光并成像的技术即为叶绿素荧光成像技术。

Kautsky  Hirsch 1931首次发表论文CO2同化新实验”报道了用肉眼发现叶绿素荧光现象:经过暗适应的植物材料照光后,叶绿素荧光先迅速上升到一个最大值,然后逐渐下降,最后达到一个稳定值(这种现象后被称作“Kautsky effect”Kautsky诱导效应),荧光强度的变化与CO2同化速率呈负相关。

图片94.jpg 

Kautsky最先发表科学论文描述叶绿素荧光诱导效应(Kautsky1931

叶绿素荧光动态测量分析是叶绿素荧光技术的核心内容,也是叶绿素荧光得以成为植物(包括藻类)生理生态研究重要内容的关键。Butler1978年提出PSII光化学反应、叶绿素荧光及热散失三者的能量竞争模型,认为PSII反应中心将电子传递给原初电子受体QA,导致Kautsky诱导效应中的叶绿素荧光降低(“叶绿素荧光淬灭”),称为光化学淬灭(photochemical quenching),而由于热散失导致的叶绿素荧光淬灭则称为非光化淬灭(nonphotochemical quenching)。要通过叶绿素荧光估算光合作用强度(光化学反应),关键是要确定叶绿素荧光光化学淬灭过程和非光化学淬灭过程。Butler的光合作用能量竞争模型成为叶绿素荧光技术的重要理论基础。

图片95.jpg 

光系统能量竞争模型示意图

Chlorophyll fluorescence is one of the most rapid and noninvasive tools for monitoring photosynthetic performance of plants under biotic and abiotic stress. (Lu et al., 2001)

——卢从明,中国科学院植物研究所光生物学重点实验室主任,最早应用叶绿素荧光技术的中国科学家之一

The use of chlorophyll a fluorescence measurements to examine photosynthetic performance and stress in algae and plants is now widespread in physiological and ecophysiological studies. (Baker, 2008)

——Neil R. Baker,埃塞克斯大学教授,其叶绿素荧光权威综述文章《Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo》引用次数达2200

目前,叶绿素荧光成像技术广泛用于植物生理、植物抗逆、作物育种、突变株筛选等各种植物与作物研究中,甚至直接预测植物的存活情况,是科学界公认的最快速、无损检测植物光合能力与逆境生理的重要技术之一。

图片96.jpg 

死或生?这是个问题——使用叶绿素荧光成像技术预测干旱胁迫下植物的死亡率(Guadagno C R, et al. 2017

除了叶绿素荧光成像技术以外,类似的植物检测技术还有RGB彩色成像与Ladar 3D成像技术(植物形态)、高光谱成像技术(植物反射光谱)、红外热成像技术(植物温度)等。这四种技术并称为四大植物表型无损检测技术。

先不说太空种菜的问题,实际上现在在地球上种菜都已经面临严峻的挑战。据联合国粮农组织2014年报告,三大主要谷物水稻、小麦和玉米的年产量增长率从1960-1990年的2.19-2.95%下降到1990-2010年的0.79-1.74%。而传统育种已经很难满足三大主要谷物的增产需求。除了保障耕种面积和维护生态环境,最有效的措施是开发利用优良的作物品种和先进的栽培技术,与之相关的工作都需要对大量植株的各种特征和性状即表型的鉴别与分析,以及对复杂的植物生长环境的监测与控制。在解决迫在眉睫的粮食安全问题上,以叶绿素荧光成像技术为核心的植物表型无损检测技术将位于非常重要的位置。不但科学界对植物表型检测技术寄予厚望,在各国政府的支持下,各个国内外研究机构已经建立了数十个大型和超大型植物表型分析平台。

图片97.jpg




部分已经建设的PlantScreen植物表型成像分析平台

虽然把叶绿素荧光技术应用在太空种菜上,国外走在了我们前面。但在未来我们中国的空间站上一定要用上更先进的植物表型成像技术。

为了实现在太空刷火锅的梦想,冲鸭!

图片98.jpg 

下载本篇解决方案:

资料文件名:
资料大小
下载
32-如何在太空种菜?这项技术将给出答案.docx
4313KB
相关方案

SisuROCK 高光谱成像技术检测土壤有机碳(SOC)和总氮(TN)

土壤有机质,尤其是有机碳和氮,在陆地生态系统中起着重要的作用,通过土壤管理增加土壤固碳可抵消全球化石燃料排碳的5-15%。高光谱成像技术可以将土壤特性测量从点尺度提升至空间尺度,是土壤科学管理、土壤有机质研究的有力工具。 加拿大阿尔伯特大学的研究者Sorenson利用Specim SisuROCK高光谱成像系统,采集三种不同轮作土壤剖面(a连续作物、b连续牧草、c作物和牧草混合农业生态轮作)的VNIR-SWIR高光谱数据,结合元素分析仪获取的各土壤样品有机碳(SOC)和总氮(TN)含量数据,基于小波分析与贝叶斯正则化神经网络建立SOC和TN预测模型。 结果表明,轮作中添加牧草增加了土壤SOC和TN的含量,但这些变化多集中在表层。这一结果具有重要的土地利用与管理意义,为用户提供决策支持,同时证明SisuROCK高光谱成像技术是研究土壤剖面中有机质空间分布的重要工具。 北京易科泰生态技术有限公司长期致力于生态-农业-健康领域仪器的研发、应用与推广,为土壤养分、污染、重金属检测、土壤-植物互作关系研究提供从实验室到野外,从地面到无人机遥感全方位解决方案。

环保

2024/07/10

高光谱成像技术检测鸭梨 α-法尼烯和共轭三烯

近日,河北省农林科学院生物技术与食品科学研究所果蔬贮运加工研究室程红博士团队,使用高光谱成像技术结合机器学习模型建立了一种无损快速检测方法,成功预测了鸭梨的虎皮病生物标志物α-法尼烯和CTols,并在国际化学光谱学TOP期刊Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy在线发表了题为“Potential of hyperspectral imaging for nondestructive determination of a-farnesene and conjugated trienol content in ‘Yali’ pear”的研究论文。 该论文采用北京易科泰生态技术公司提供的Specim-VNIR高光谱成像果品品质检测系统,借助其高分辨率、高信噪比、高帧频的特点,高效采集了大批量不同实验处理下的400-1000nm鸭梨高光谱数据集,将VIS-NIR高光谱成像技术和机器学习模型相结合,建立了一种基于高光谱成像技术的快速无损预测鸭梨中α-法尼烯和CTols含量的方法,以跟踪鸭梨的健康状态,预防鸭梨虎皮病。该研究结果为鸭梨虎皮病的无损检测提供了技术支撑,也充分体现了高光谱成像技术在果实品质高效、无损检测中的潜力。

农/林/牧/渔

2024/07/09

易科泰作物高光效育种技术方案

由中国科学技术协会、广西壮族自治区人民政府共同主办的第二十六届中国科协年会于7月2日在广西南宁开幕。主论坛上,发布了2024重大科学问题、工程技术难题和产业技术问题。由中国农学会推荐的“作物高光效的生物学基础”入选2024年十大前沿科学问题。 该问题指出:通过揭示作物高光效的生物学基础,创建高光效育种技术,提升光合作用效率,从根源上提升粮食单产具有巨大潜力,对保障我国粮食安全具有重大意义。 易科泰生态技术公司,凭借多年来在植物表型组学研究技术、叶绿素荧光成像与作物光合表型、光生物学等研究领域20余年的深耕细作及在国际先进仪器技术推广与服务中积累的丰富经验,推出全方位、多样化、定制化高光效育种仪器技术方案,为作物高光效育种研究提供强有力的技术保障。

农/林/牧/渔

2024/07/08

SpectraScan 高分辨率高光谱成像分析技术方案

高分辨率VNIR高光谱成像,空间分辨率1775 x像素,光谱分辨率3nm,波段数768;1000-2500nm SWIR高光谱成像,高灵敏度450FPS,384x像素空间分辨率,低温冷却MCT检测器,高信噪比SNR1050:1;多样化扫描成像主机系统供选配:实验室扫描成像系统、野外扫描成像系统、客户定制系统;广泛应用领域:农业(作物表型成像分析、种质资源检测、病害检测等)、健康(食品药品品质检测等)、地质矿物成分分析、材料检测分检、生态环境、土壤与地球科学、文博及刑侦等等。;Specim高光谱成像相机,出厂已经过光谱校准,每次扫描前测量一个内部标准参考目标,自动校准图像反射率;提供SDK,用于快速高效的应用程序开发。

地矿

2024/07/05

推荐产品
供应产品

北京易科泰生态技术有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 北京易科泰生态技术有限公司

公司地址: 海淀区高里掌路3号院6号楼1单元101B 联系人: 王老师 邮编: 100095 联系电话: 400-860-5168转1895

友情链接:

仪器信息网APP

展位手机站