您好,欢迎访问仪器信息网
注册
北京诚驿恒仪科技有限公司

关注

已关注

金牌17年 金牌

已认证

粉丝量 0

400-860-5168转1029

仪器信息网认证电话,请放心拨打

当前位置: 诚驿科技 > 公司动态
公司动态

甲基an非他命及其衍生物的检测方法

  作用:  对du品种类的鉴定具有否定作用,即只能对du品的种类进行初步鉴定和筛选,能及时地为缉毒部门是否对被检查人采取有关强制措施提供科学依据。但是,du品现场快速检验一般不具有认定作用,若要认定某可疑du品是何种du品、含有哪些成分、含量是多少以及来源于何处等,都必须送实验室进行全面科学的检验后,才能给出鉴定结论,最终作为诉讼及定罪的依据。  方法:  一般有外观观察法和化学显色法两类方法。前者是主要依据各种du品不同的物理特性(如气味、物态及外观形态等)对du品的种类进行初步认定的一种方法。该类方法存在着较大局限性,其主要原因是即使同一种类的du品其外观形态也会有差异。  后者是根据不同du品与不同化学试剂发生化学反应(即显色反应)所呈现出的颜色,进行du品种类初步认定的一类方法。这类方法同样也存在着局限性,由于显色反应一般都不属于专一反应,因而会出现错误鉴定结论的情况。  du品的实验室检测方法  1.化学筛选法  在实验室中使用该类方法的主要目的是:对可疑du品进行分类,在缩小范围的基础上进行确证性检验。就一般而言,du品的化学筛选反应可分为五组:马改氏试剂与鸦pian、吗啡、海luo因及  an非他明的反应;亚硝基铁qing化钠、碳酸钠试剂与甲基an非他明的反应;快兰B试剂与大麻的反应;硫氰酸钻试剂与可ka因的反应;硝酸钴、异丙胺试剂与巴比妥类药物的反应。  2.蒲层色谐分析法(TLC)  定性检验du品的一种常规分析方法。具有设备简单、操作容易、灵敏度高及可靠性强等特点。可用于各类du品的检验。  3.相色谐法(GC)  是检验du品最常用的仪器分析方法。属无损分析,具有分离效果好、灵敏度高、分析速度快及可靠性强等特点。可用于各类du品的定性及定量分析  4.红外光谙法(IR)  主要用于du品的定性分析。属无损分析,且有快速、准确等优点,但对检材的纯度要求相对较高。  5.紫外一可见光谱法(UV)  可用于部分du品(具有双键和共轭体系结构)的定性及定量分析。具有快速等特点。  6.高效液相色谐法〔HPLC)  主要用于热稳定性差、挥发性低及分子量较大的du品定性、定量分析。其分析的du品范围正好与气相色谱法的分析范围形成互补,且分离效能要比气相色谐法高。  7.气相色谐一质谐联用分析法(GC-MS)  气相色谐一质谐联用分析法和气相色谱一傅立叶红外光谐联用分析法。是目前专门用于分析尚无标准品或成分复杂的混合du品的理想方法。既有分离和结构测定双重功能,又有快速、灵敏度高及可靠性强等特点。  8.其他分析方法等  甲基an非他命及其衍生物的检测方法  1.化学筛选法  ①马改氏实验:an非他明、甲基an非他明呈橙—棕色  ②没食子实验:MDA和MDMA呈亮暗绿色。  2.薄层色谐法  ①溶液配制,用甲醇或乙醇制备标准溶液和检材溶液  ②展开剂,乙酸乙脂:甲醇:浓氨水=85:10:50  ③显色剂,碘花铋钾试剂  3.气相色法  ①分析祭件:  毛细管柱:DB-5(相当于S-54);25m×0.25mm弹单性石英毛细管柱;  FID检测器;  检测度:280℃;进样温度:250℃;  升温程序:柱温:110℃,保持1分钟(以10℃/min的升温速率)→150℃(以30℃/min的升温速率)→270℃,保持10分钟;  ②标准溶液及检材溶液的配制  內标溶液、单一纯品溶液及含內标的混合纯品溶液皆用乙酸乙醋制备,内标物为1-禁胺  ③定性分析:  分別吸取单一纯品溶液、混合纯品及检材溶液各1-2ul注入色谱仪中,各进样2-3次,记录各RT值,并据其得出结论。  定量分析:  分別吸取含内标的混合纯品溶液、检材溶液各1-2ul注入色谐中,各进样2-3次,记录各峰面积值,根据du品含量公式计算各成分的含量。  4.高效液相色谐法  ①正相梯度技术分析条件:  流动相:甲醇:硝酸铵缓冲溶液(90:10)  速率:2.0mL/min  检洲器:254nm UV  进样体积:1-5 ul。  ②色谐溶液的配制:标准溶液和检材溶液均用甲醇制备。  ③定性分析:测定可疑检材的保留时间或分离比,并与标准品加以比对,得出鉴定结。  5.红外光谱法  ①分析条件:  缝隙:1mm扫描  速度:3分/全程  ②样品制备:其一为溴化钾压片法;其二是液膜法  ③定性分析:测定可疑检材的紅外吸收光谱图,通过与标准谱图比对,得岀鉴定结论。

厂商

2019.03.04

平行样之间的偏差都是如何规定?

  质量控制的方式有很多,平行双样就是最常用的一个,那么平行双样怎样才算合格呢?各种平行样之间的偏差又是如何规定的呢?  1.直接容量法、中和法、碘量法、EDTA法、非水滴定法的差值不得超过0.5%。  2.直接重量法测定含量的差值不得超过1.0%。  3.比色法、分光光度法、电位滴定法测定含量的差值不得超过2.0%。  4.高效液相色谱法测定含量或效价时:相对标准偏差不得超过1.0%(当含量限度>50.0%时);相对标准偏差不得超过5.0%(当含量限度20.0~50.0%时);相对标准偏差不得超过10.0%(当含量限度  高效液相色谱法测定相关物质时,当检出值小于定量限或报告限,忽略不计;当检出值为定量限或报告限~0.1%时,相对标准偏差不得超过50.0%;当检出值为0.1~0.5%,相对标准偏差不得超过25.0%;当检出值为>0.5%,相对标准偏差不得超过10.0%。  5.气相色谱法测定残留溶剂时,当检出值小于定量限或报告限,忽略不计;当检出值为定量限或报告限~500ppm,相对标准偏差不得超过50.0%;当检出值为500~1000ppm,相对标准偏差不得超过25.0%;当检出值为>1000ppm,相对标准偏差不得超过15.0%。气相色谱法测定含量时,参照高效液相色谱法测定含量的标准。  6.生物效价测定法相对标准偏差不得超过5%。  7.水分检测的平行样之间:当检出值小于 0.1%,检测结果差值忽略不计;当检出值为0.1~1%,检测结果差值不得超过0.1%;当检出值大于1%,检测结果相对标准偏差不得超过15%。  8.熔点测定两份平行样差值相差不超过1℃。  9.比旋度测定两份平行样差值相差不超过2°。  10.pH值测定两份平行样差值相差不超过0.2。  11.炽灼残渣当两份平样检出值小于0.1%,差值相差不超过0.02%;当检出值为0.1~1%,检测结果差值不得超过0.1%;当检出值大于1%,检测结果相对标准偏差不得超过15%。  12.干燥失重测定当检出值小于 0.1%,检测结果差值忽略不计;当检出值为0.1~1%,检测结果差值不得超过0.1%;当检出值大于1%,检测结果相对标准偏差不得超过15%。  13.其它项目(例如:限度检查)不需要评价平行样之间的偏差。  注:以下评价标准,差值是指两份数值直接相减。

厂商

2019.03.04

超低烟气排放除尘解决方案

烟气超低排放实际上是指烟气中颗粒物的超低排放,排放烟气中不仅包括烟尘,而且包括湿法脱硫过程中产生的次生颗粒物,因此要实现烟气的超低排放必须进行必要的除尘处理。除尘技术一般包括:烟气脱硝后烟气中烟尘的去除,称之为一次除尘技术,主流技术包括:电除尘技术?袋式除尘技术和电袋复合除尘技术;脱硫后对烟气中颗粒物的再次脱除或烟气脱硫过程中对颗粒物的协同脱除,称之为二次除尘或深度除尘技术,脱硫后对烟气中颗粒物的脱除主要采用湿式电除尘技术,脱硫过程中对颗粒物的协同脱除主要采用复合塔脱硫技术,并采用高效的除雾器或在湿法脱硫塔内增加湿法除尘装置?下面详细介绍一下这几种除尘技术。一次除尘技术1电除尘技术电除尘技术利用强电场电晕放电,使气体电力产生大量自由电子和离子,并吸附在通过电场的粉尘颗粒上,使烟气中的粉尘颗粒荷电,荷电后的粉尘颗粒在电场库仑力的作用下吸附在极板上,通过振打落入灰斗,经排灰系统排出,从而达到收尘的目的。优点:除尘效率较高,压力损失小,使用方便且无二次污染,对烟气的温度及成分敏感度不高,设备运行检修相对容易,安全可靠性较好。局限:设备占地面积较大,除尘效率受煤种和飞灰成分的影响较大。依据电极表面灰的清除是否用水,电除尘可分为干式电除尘和湿式电除尘?干式电除尘常被称作电除尘,如静电除尘技术、低低温电除尘技术;湿式电除尘常被称作湿电,湿电仅用于湿法脱硫后的二次除尘?(1)静电除尘技术静电除尘技术是在电晕极和收尘极之间通上高压直流电,所产生的强电场使气体电离、粉尘荷电,带有正、负离子的粉尘颗粒分别向电晕极和收尘极运动而沉积在极板上,使积灰通过振打装置落进灰斗。静电除尘器与其他除尘设备相比,耗能少,除尘效率高,适用于除去烟气中0.01~50μm的粉尘,而且可用于烟气温度高、压力大的场合。但由于静电除尘器基于荷电收尘机理,静电除尘器对飞灰性质(如成分、粒径、密度、比电阻、黏附性等)较为敏感,特别对高比电阻粉尘、细微烟尘捕集困难,运行工况变化对除尘效率也有较大影响。另外其不能捕集有害气体,对制造、安装和操作水平要求较高。(2)低低温电除尘技术低低温电除尘技术是通过烟气冷却器降低电除尘器入口烟气温度至酸露点以下的电除尘技术?低低温电除尘技术因烟气温度降至酸露点以下,粉尘比电阻大幅下降,且击穿电压上升,烟气流量减小,可实现较高的除尘效率;同时,烟气温度降至酸露点以下,气态SO3将冷凝成液态的硫酸雾,通过烟气中粉尘吸附及化学反应,可去除烟气中大部分SO3;在达到相同除尘效率前提下,与常规干式电除尘器相比,低低温电除尘器的电场数量可减少,流通面积可减小,运行功耗降低,节能效果明显。但粉尘比电阻降低会削弱捕集到阳极板上粉尘的静电黏附力,从而导致二次扬尘有所增加?2袋式除尘技术袋式除尘技术利用过滤原理,用纤维编织物制作的袋式过滤单元来捕捉含尘烟气中的粉尘。堆积在滤袋表面的粉饼层在此反向加速度及反向穿透气流的作用下,脱离滤袋面,落入灰斗。落入灰斗后的灰再经输灰系统外排。优点:布袋除尘器占地面积小;除尘效率高,一般可保证出口排放浓度在50mg/m3以下;处理气体量范围大;不受煤种、飞灰成分、浓度和比电阻的影响;结构简单,使用灵活;运行稳定可靠,操作维护简单。局限:受滤袋材料的限制,在高温、高湿度、高腐蚀性气体环境中,除尘时适应性较差。运行阻力较大,平均运行阻力在1500Pa左右,有的袋式除尘器运行不久阻力便超过2500Pa。另外,滤袋易破损、脱落,旧袋难以有效回收利用。3电袋复合除尘技术电袋复合除尘技术是电除尘技术与袋式除尘技术有机结合的一种复合除尘技术,利用前级电场收集大部分烟尘,同时使烟尘荷电,利用后级滤袋区过滤拦截剩余的烟尘,实现烟气净化?未被前级电区捕集的荷电粉尘,由于电荷作用使细微颗粒极化或凝并成粗颗粒,同时由于同性电荷的排斥作用,到达滤袋表面堆积的粉尘层排列有序?结构疏松,呈棉絮状,粉尘层阻力低,容易清灰剥离,因而产生了荷电粉尘增强过滤性能的效应,降低运行阻力,延长滤袋寿命?电袋复合除尘器按照结构型式可分为一体式电袋复合除尘器?分体式电袋复合除尘器和嵌入式电袋复合除尘器?其中一体式电袋复合除尘器技术zui为成熟,应用zui为广泛?优点:对煤种和烟尘比电阻变化的适用性比电除尘器强,运行阻力低于纯布袋除尘器,滤袋寿命较布袋除尘器更长,电耗低于电除尘器。局限:由于兼有电除尘和布袋除尘两套单元,运行维护较为复杂。二次除尘技术1湿式电除尘技术湿式电除尘技术是用水冲刷吸附在电极上的粉尘?根据阳极板的形状,湿式电除尘器分为板式、蜂窝式和管式等,应用较多的是板式与蜂窝式。湿式电除尘器安装在脱硫设备后,可有效去除烟尘及湿法脱硫产生的次生颗粒物,并能协同脱除SO3、汞及其化合物等?影响湿式电除尘器性能的主要因素有湿式电除尘器的结构型式、入口浓度、粒径分布、气流分布、除尘器技术状况和冲洗水量?优点:对粉尘的适应性强,除尘效率高,适用于处理高温、高湿的烟气;无二次扬尘;无锤击设备等易损部件,可靠性强;能有效去除亚微米级颗粒、SO3气溶胶和石膏微液滴,对有效控制PM2.5、蓝烟和石膏雨。局限:排烟温度需低于冲刷液的绝热饱和温度;在高粉尘浓度和高SO2浓度时难以采用湿式电除尘器;必须要有良好的防腐蚀措施;湿式电除尘器冲洗水虽采用闭式循环,但要与脱硫水系统保持平衡。2复合塔脱硫技术复合式脱硫塔工作时烟气由引风机鼓入脱硫塔内,在脱硫塔径向进风管内设有*级喷淋装置,对烟气进行预降温和预脱硫,经过降温和预脱硫的烟气由脱硫塔中下部均匀上升,依次穿过三级喷淋装置形成的高密度喷淋洗涤反应区和吸收反应区,脱硫液通过螺旋喷嘴生成极细的雾滴为烟气与脱硫液的充分混合提供了巨大的接触面积,使得气液两相进行充分的传质和传热的物理化学反应,从而达到SO2的高效脱除。脱硫塔内置有两级脱水除雾装置,经过脱硫后的烟气继续上升,依次经过两层折板除雾装置,通过雾气、小液滴在折板处的多次撞击形成较大液滴,大液滴与烟气分离后下落,脱水后的烟气通过烟道至烟囱排放。针对以上几种除尘技术的选择,当电除尘器对煤种的除尘难易性为“较易”时,可选用电除尘技术;当煤种除尘难易性为“较难”时,可优先选用电袋复合除尘技术,300MW等级及以下机组也可选用袋式除尘技术;对于一次除尘就要求烟尘浓度小于10mg/m3或5mg/m3不依赖二次除尘实现超低排放的,可优先选择超净电袋复合除尘技术?其他情况下(包括煤种的除尘难易性为“一般”),可结合二次除尘技术效果?煤质波动情况?场地条件?投资与运行费用等因素综合考虑选择?另外,还可遵循原则:一次除尘器出口烟尘浓度为30mg/m3~50mg/m3时,二次除尘宜选用湿式电除尘器;一次除尘器出口烟尘浓度小于30mg/m3,二次除尘也可选用湿式电除尘器,实现更低的颗粒物排放浓度,更好地适应煤炭市场等因素的变化,投资与运行费用也会适当增加?一次除尘器出口烟尘浓度为10mg/m3~30mg/m3时,二次除尘宜选用复合塔脱硫技术协同除尘,并确保复合塔的除雾除尘效果?

厂商

2019.02.28

氮氢空气体发生器技术原理

气体发生器可以制备色谱、质谱分析检测时的燃料,是实验室常用设备之一,主要有空气发生器、氢气发生器和氮气发生器三种。三种气体发生器的产气原理和注意事项又分别是什么呢?空气发生器原理空气发生器是利用压缩机对气体进行压缩,贮藏在贮气罐内,方便日后使用。空气压缩器主要由压缩机、储气罐、过滤器、干燥器等组成。主要是把空气中的水分、油渍等杂质过滤出去,经过稳压装置,输出稳定、干净的空气。空气发生器用于国内外各种型号气相色谱仪、火焰光度计,它取代钢瓶使您的工作更加方便。使用注意事项:1、为了确保气体纯度,空气发生器每工作1000小时,需要更换活性炭一次(活性碳为20-40目,铅笔芯式);2、空气发生器工作过程中压缩机不启动,热保护继电器启动,说明压缩机温度过高,待冷却后即可自动恢复正常;3、进气口过滤器需定期清洗(周期视室内粉尘情况而定,可用超声波清洗)以保持进气通畅,否则易引起压缩机工作负载增大并发热,温度过高时会发生过热保护而导致停机;4、从观察窗观看变色硅胶的情况,用户可根据需要更换新的硅胶,或进行干燥处理;5、因空气发生器压缩机是感性负载,通断电时的瞬时电流比正常工作时高数倍,较易熔断保险,应选用8A保险管;6、由于空气发生器压缩机为开路工作方式,故润滑油会随水排出机外,造成消耗,所以在使用一年后适当给压缩机加润滑油,加油口在压缩机出气口旁边(或从进气口亦可),建议加18号冷冻机油200克;7、为避免机内存水过多,影响空气纯度,所以,每次关机前需按下排水开关数秒钟即可。(可将排水口接入塑料瓶中避免水外溅),每日排水不得少于一次。氮气产生器原理压缩空气经压缩后进入冷干机降温脱水,在经过过滤器除油、除尘,然后进入装有碳分子筛的吸附塔,选择性地吸附掉氧气、二氧化碳等杂质气体组分,产生高纯度氮气。氮气发生器的工作原理大致分为三种:以电化学分离法和物理吸附法相结合的方式;采用中空纤维膜分离和采用气相色谱技术用新型合成分子筛分离。各种工作原理的注意事项电化学分离法和物理吸附法:采用这种原理产生的氮气存在的问题很多。主要的问题有:1.加KOH水溶液的氮气发生器所产生的氮气中含水量高且带有一定腐蚀性。2.存在返液现象。3.氮气纯度偏低,对色谱仪的热导检测器的热敏元件会造成氧化,时间一久热导检测器的灵敏度降低。鉴于存在以上三点的问题,很多色谱仪厂家、仪器经销商及维修人员均不建议使用该种原理产生氮气的发生器来做气相色谱仪载气。采用中空纤维膜法:氮膜系统可将廉价的空气中氮从78%提高到95%以上,zui高可得到99.9%的纯氮。该氮气发生器可以用于气相色谱仪做载气,仅适用于分析组分成分要求不高的行业。采用气相色谱技术用新型合成分子筛分离:这是一种新型的空气分离方法,它以压缩空气为原料,合成分子筛为吸附剂,气相色谱分离吸附流程,在常温低压下,利用空气中的氧和氮在分子筛中的扩散速度不同,把氧和氮加以分离,氮气的纯度和产气量可按客户需要调节。所产生气体流速稳定,氮气纯化彻底,产出的氮气纯度高,zui高可得到99.9995%的纯氮,适用于各种气相色谱检测器。该发生器可以生产出高质量和高纯度的氮气,运行稳定可靠,不需要任何化学消耗品。操作方便,可24小时无人值守。且它可以在不需任何监管和zui低保养的情况下无故障地运行。综上所述,采用气相色谱分离技术用合成分子筛分离法的氮气发生器优于采用电化学分离法和物理吸附法以及中空纤维膜法的氮气发生器。它可以应用于国内外各种不同类型的气相色谱仪用作载气,是性能优良维护方便的新一代氮气发生器。氢气发生器原理纯水水解,无腐蚀,纯度高(另一种方法是碱液电解,电解液为氢氧化钾或氢氧化钠,腐蚀性高,国产设备常用)。超纯氢气钯膜纯化原理电解采用目前膜分离技术,由红外光电反馈装置与开关电源组成的压力控制系统,使氢气的发生量根据输出的需要自动调整,维持输出流量和压力的稳定。这种原理主要的问题有:1.加KOH水溶液的氢发生器所产生的氢气中含水量高且带有一定腐蚀性,容易造成色谱仪调试不稳定,一旦长时间使用该氢气做载气必然造成色谱柱柱效降低。2.利用该原理产生的氢气如果长时间使用,会造成严重的返液现象。为了防止返液,厂家设计了各种装置来尝试解决这个问题,但是均不能解决根本性的问题。毕竟它还是要加液的,一旦防返液的装置出现故障就会造成气路及色谱柱报废,严重的甚至可能导致气相色谱仪全部报废。3.气体的纯度大多没有经过检测,虽然可以通过基线和柱子使用寿命判断其纯度,结果却是给色谱柱造成不必要的损失。所以,氢气作为辅助气还行,做载气纯度不够。在选择氢发生器时优先考虑质量有保证的厂家,也可以加装在线纯度检测装置保证气体纯度。气体发生器与钢瓶、液氮罐的比较

厂商

2019.02.28

HPCE高效毛细管电泳基本原理

  高效毛细管电泳(high performance capillaryelectrophoresis,HPCE)是近年来发展起来的一种分离、分析技术,它是凝胶电泳技术的发展,是高效液相色谱分析的补充。该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,HPLC分析高效、快速、微量。  电泳迁移  不同分子所带电荷性质、多少不同,形状、大小各异。一定电解质及PH的缓冲液或其它溶液内,受电场作用,样本中各组分按一定速度迁移,从而形成电泳。  电泳迁移速度(v)可用下式表示:  v=uE  其中E为电场强度(E=V/L,V为电压,L为毛细管总长度)。u为电泳淌度。  电渗迁移  电渗迁移指在电场作用下溶液相对于带电管壁移动的现象。特殊结构的熔合硅毛细管管壁通常在水溶液中带负电荷,在电压作用下溶液整体向负极移动,形成电渗流。带电微粒在毛细管内实际移动的速度为电泳流和电渗流的矢量和。  分离分析类型  根据其分离样本的原理设计不同主要分为以下几种类型:  ①毛细管区带电泳(capillary zoneelectrophoresis,CZE);  ②毛细管等速电泳(capillarychromatography,CITP);  ③毛细管胶速电动色谱(miceller electrokineticcapillary chromatography,MECC);  ④毛细管凝胶电泳(capillarygelelectrophoresis,CGE);  ⑤毛细管等电聚焦(capillary isoelectricfocusing ,CIEF)。  毛细管区带电泳(CZE)为HPCE的基本操作模式,一般采用磷酸盐或硼酸盐缓冲液,实验条件包括缓冲液浓度、pH值、电压、温度、改性剂(乙腈、甲醇等),用于对带电物质(药物、蛋白质、肽类等)分离分析,对于中性物质无法实现分离。毛细管胶束电动色谱(MECC)为一种基于胶束增溶和电动迁移的新型液体色谱,在缓冲液中加入离子型表面活性剂作为胶束剂,利用溶质分子在水相和胶束相分配的差异进行分离,拓宽了CZE的应用范围,适合于中性物质的分离,亦可区别手性化合物,可用于氨基酸、肽类、小分子物质、手性物质、药物样品及体液样品的分析。毛细管等速电泳(CITP)采用先导电解质和后继电解质,构成不连续缓冲体系,基于溶质的电泳淌度差异进行分离,常用于离子型物质(如有机酸),并因适用较大内径的毛细管而可用于微制备,但本法空间分辨率较差。毛细管等电聚焦电泳(CIEF)用于具兼性离子的样品(蛋白质、肽类),等电点仅差0.001可分离的物质。毛细管凝胶电泳(CGE)依据大分子物质的分子量大小进行分离,主要用于蛋白质、核苷酸片段的分离。此外,还有毛细管电色谱(CEC)及非水毛细管电泳(CNACE),用于水溶性差的物质和水中难进行反应的分析研究。目前CZE和MECC用得较多,本文以这两种方法为例来说明HPLC的原理。  CZE的基本原理  HPLC选用的毛细管一般内径约为50μm(20~200μm),外径为375μm,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象;电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。  MECC的基本原理  MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。

厂商

2019.02.27

【质谱】26种GC-MS常见故障的原因及排除

  气质联用技术已广泛应用于各领域,成为分析复杂混合物最为有效的手段之一。在使用仪器的过程中,经常会出现各种各样的故障,影响分析测试工作的正常进行,因此,如何迅速、准确地判断故障原因,及时地予以排除,是仪器操作人员经常面临和急需解决的问题。  故障及排除  1.调谐参数改变时, 调谐峰强度的变化滞后  产生故障的可能原因及排除方法:  a.离子源被污染,排除方法是对离子源依次用甲醇、丙酮超声清洗各15min;  b.预四级杆被污染,排除方法是对预四级杆依次用甲醇、丙酮超声清洗各15min;  c.离子源部件未安装到位,电路未接通,排除方法是将离子源拆下,重新安装。    2.调谐时,需过高的离子能量  产生故障的可能原因及排除方法:  a.高离子能量过高是由于离子源被污染,推斥电压过高是预四级杆、四级杆被污染,排除方法是对离子源、预四级杆、四级杆依次用甲醇、丙酮超声清洗各15min及保养维护;  b. 质谱仪调谐未达到zui佳状态,排除方法是重新调谐质谱仪。    3.调谐参数改变时,仪器响应不明显  产生故障的可能原因及排除方法:  离子源短路或电路未接通,排除方法是取出离子源, 用万用表测量各部件间的电路连接是否正常。    4.调谐峰的形状不好,有肩峰  产生故障的可能原因及排除方法:  a.质谱仪调谐未达到zui佳状态,排除方法是重新调谐质谱仪;  b.离子源被污染,排除方法是对离子源依次用甲醇、丙酮超声清洗各15min;  c.分析器有缺陷或损坏,排除方法是检查分析器外观是否有缺陷或损坏。    5.调谐时,无参考峰出现  产生故障的可能原因及排除方法:  a.参考标样全氟只丁氨瓶中无参考标样,排除方法是添加参考标样全氟砚丁氨于质谱仪内置的参考样瓶中;  b.参考标样的管路被堵塞,排除方法是拆下管路,用丙酮超声清洗;  c.空气泄漏,排除方法是检查空气峰m/z 28的高度,若大于10%氦气峰m/z 4的高度,表明有空气泄漏,用注射器将丙酮滴在各接口处,通过观察丙酮的分子离子峰m/z 58的强度变化, 进一步查明泄漏的确切位置。    6.出现不规则、粗糙的调谐峰  产生故障的可能原因及排除方法:  a. 离子源被污染,排除方法是对离子源依次用甲醇、丙酮超声清洗各15min;  b. 灯丝老化,排除方法是更换灯丝;  c.质谱仪调谐未达到zui佳状态,排除方法是重新调谐质谱仪。    7.m/z 18、28、32峰大于10%氦气峰m/z   产生故障的可能原因及排除方法:  a. 空气泄漏,排除方法是检漏,检查柱子的连接情况;  b. 氦气即将用尽, 气瓶内杂质富集,排除方法是更换载气瓶并安装脱气装置;  c. 新近清洗的离子源未烘干,排除方法是设置250℃的离子源温度烘烤离子源;  d. 柱子被污染,排除方法是老化柱子。    8.灯丝状态良好时,无离子产生  产生故障的可能原因及排除方法:  a. 离子源需要重新校准,排除方法是利用校准工具重新校准离子源;  b. 空气泄漏严重,排除方法是检漏并紧固各连接处。    9.调谐时, 高质量峰m/z 502、614不显示  产生故障的可能原因及排除方法:预四级杆短路,排除方法是将预四级杆拆下, 用氦气或氮气吹干。  校准和灵敏度的故障排除  10.质谱仪的质量标尺无法校准  产生故障的可能原因及排除方法:  a. 质谱仪调谐未达到zui佳状态,排除方法是重新调谐质谱仪;  b. 离子源温度过高或过低,排除方法是将离子源温度设在180~220℃;  c. 空气泄漏,排除方法是检查空气峰m/z 28的高度, 若大于10%氦气峰m/z 4的高度,表明有空气泄漏,用注射器将丙酮滴在各接口处,通过观察丙酮的分子离子峰m/z 58的强度变化, 进一步查明泄漏的确切位置;  d. 发射电子的能量不合适,排除方法是将发射电子的能量设定为70eV。    11.灵敏度低  产生故障的可能原因及排除方法:  a. 质谱仪调谐未达到zui佳状态,排除方法是重新调谐质谱仪;  b.质谱仪的质量标尺校准不精确,排除方法是重新校准质谱仪的质量标尺;  c.离子源被污染,排除方法是对离子源依次用甲醇、丙酮超声清洗各15min;  d.离子源温度过高或过低,导致样品分解或吸附在离子源内,排除方法是调节离子源温度;  e.柱子伸人离子源内的深度不合适,排除方法是调整柱子进人离子源的深度;  f.分流进样器和阀有故障,排除方法是检查进样器和阀;  g.柱效降低,排除方法是更换柱子;  h.进样器被污染,排除方法是对衬管依次用甲醇、丙酮超声清洗各15min或更换衬管  i.检测器电压太低,排除方法是检测器电压应为350~450V  j.空气泄漏,排除方法是检查空气峰m/z 28的高度,若大于10%氦气峰m/z 4的高度,表明有空气泄漏,用注射器将丙酮滴在各接口处,通过观察丙酮的分子离子峰m/z 58的强度变化,进一步查明泄漏的确切位置。    12.质量色潜图中无噪音  产生故障的可能原因及排除方法:  检测器电压太低,排除方法是提高检测器电压。    13.噪音过多  产生故障的可能原因及排除方法:  a. 离子源被污染,排除方法是对离子源依次用甲醇、丙酮超声清洗各15min;  b. 供电系统产生杂峰,排除方法是安装电源净化装置。  谱图的故障及排除  14.出现平失峰  产生故障的可能原因及排除方法:  a. 柱子中的样品过载,排除方法是分流进样或稀释样品;  b. 检测器过载,排除方法是降低检测器电压。    15.保留时间不稳定  产生故障的可能原因及排除方法:  a. 毛细管柱的固定相发生降解,排除方法是切去毛细管柱端0.5m或更换柱子;  b. 进样器漏气,排除方法是改善进样器密封状况;  c. 载气管路泄漏,排除方法是检漏并紧固。    16.高沸点化合物灵敏度低、峰形差  产生故障的可能原因及排除方法:  a. 离子源温度太低、导致样品被吸附,排除方法是提高离子源温度;  b. 气相色谱接口的温度太低,排除方法是提高气相色潜接口的温度, 使之与升温程序的终温一致;  c. 气相色谱升温程序的终温太低,排除方法是提高气相色谱升温程序的终温。    17.峰拖尾  产生故障的可能原因及排除方法:  a. 进样器的温度太低,排除方法是提高进样器的温度;  b. 气相色谱接口的温度太低,排除方法是提高气相色谱接口的温度;  c. 载气流速太小,排除方法是提高载气流速;  d. 衬管、柱子被污染,排除方法是对衬管依次用甲醇、丙酮超声清洗各15min,老化柱子。    18.出现歪斜峰或变型峰  产生故障的可能原因及排除方法:  a. 扫描速度太低,致使每个色谱峰的扫描次数不够,排除方法是提高扫描速度,尽可能使每个色谱峰的扫描次数大于6次;  b. 色谱峰太窄,排除方法是改变色谱条件;  c. 质普仪调谐未达到zui佳状态,排除方法是重新调谐质谱仪;    19.同位素比例不正确  产生故障的可能原因及排除方法:  a. 质谱仪的质址标尺校准不精确,排除方法是重新校准质谱仪的质量标尺;  b. 质谱仪调谐后的各质量峰比例不正确,排除方法是重新调谐质谱仪;  c.空气泄漏,排除方法是检查空气峰m/z 28的高度, 若大于10%氦气峰m/z 4的高度,表明有空气泄漏,用注射器将丙酮滴在各接口处,通过观察丙酮的分子离子峰m/z 58的强度变化,进一步查明泄漏的确切位置。    20.分广离广峰太弱  产生故障的可能原因及排除方法:  a.离于源的温度、电流过高(超过裂解温度和电离电流),排除方法是调整离子源温度、电流;  b. 化学电离气压过高或过低(对于化学电离源),排除方法是调整化学电离气压。    21.质谱图中同位素峰丢失  产生故障的可能原因及排除方法:  a. 质谱仪的质量标尺校准不精确,排除方法是重新校准质谱仪的质量标尺;  b. 质谱仪调谐未达到zui佳状态,排除方法是重新调谐质谱仪;  c. 离子源被污染,排除方法是对离子源依次用甲醇、丙酮超声清洗各15min;  d. 检侧器电压太低,排除方法是提高检侧器电压;  e.检侧器故障,排除方法是检查检侧器的灵敏度。    22.质谱的重现性不好  产生故障的可能原因及排除方法:  a. 离子源被污染,排除方法是对离子源依次用甲醇、丙酮超声清洗各15min;  b. 离子源加热器不稳定,排除方法是更换离子源加热器;  c.灯丝损坏,排除方法是更换灯丝;  d. 质谱仪调谐未达到zui佳状态,排除方法是重新调谐质谱仪;  e.质谱仪的质量标尺校准不精确,排除方法是重新校准质谱仪的质量标尺;  f. 空气泄漏,排除方法是检查空气峰m/z 28的高度,若大于10%氦气峰m/z 4的高度,表明有空气泄漏,用注射器将丙酮滴在各接口处,通过观察丙酮的分子离子峰m/z 58的强度变化,进一步查明泄漏的确切位置。    23.总离子流色谱图中出现大的干扰峰  产生故障的可能原因及排除方法:  a. 空气泄漏,排除方法是检查空气峰m/z 28的高度, 若大于10%氦气峰m/z 4的高度,表明有空气泄漏,用注射器将丙酮滴在各接口处,通过观察丙酮的分子离子峰m/z 58的强度变化,进一步查明泄漏的确切位置;  b. 载气质量有问题,排除方法是更换载气;  c. 样品被污染,排除方法是改进样品前处理方法。    24.总离子流色谱图逐渐升高  产生故障的可能原因及排除方法:  a.柱子的固定相流失(特征峰为m/z 207、281),排除方法是老化或更换柱子;  b.空气泄漏,排除方法是检查空气峰m/z 28的高度,若大于10%氦气峰m/z 4的高度,表明有空气泄漏,用注射器将丙酮滴在各接口处,通过观察丙酮的分子离子峰m/z 58的强度变化,进一步查明泄漏的确切位置。    25.总离子流色谱图缓慢下降  产生故障的可能原因及排除方法:  a. 吹扫阀被关闭,排除方法是打开吹扫阀;  b. 吹扫流速太低,排除方法是提高吹扫流速。    26.色谱峰过宽  产生故障的可能原因及排除方法:  a. 进样器的温度太低,排除方法是提高进样器的温度;  b.柱子中的样品过载,排除方法是分流进样;  c.气相色谱升温太慢,排除方法是改变气相色谱的升温程序。

厂商

2019.02.27

红外光谱(傅里叶)谱图解析实例

  利用红外吸收光谱进行有机化合物定性分析可分为两个方面:一是官能团定性分析,主要依据红外吸收光谱的特征频率来鉴别含有哪些官能团,以确定未知化合物的类别;二是结构分析,即利用红外吸收光谱提供的信息,结合未知物的各种性质和其它结构分析手段(如紫外吸收光谱、核磁共振波谱、质谱)提供的信息,来确定未知物的化学结构式或立体结构。  主要步骤  1.计算不饱和度  由于红外吸收光谱不能得到样品的总体信息(如分子量、分子式等),如果不能获得与样品有关的其它方面的信息,仅利用红外吸收光谱进行样品剖析,在多数情况下是困难的。为此应尽可能获取样品的有机元素分析结果以确定分子式,并收集有关的物理化学常数(如沸点、熔点、折射率、旋光度等),计算化合物的不饱和度。不饱和度表示有机分子中碳原子的不饱和程度,可以估计分子结构中是否有双键、三键或芳香环。计算不饱和度u的经验公式为:  式中,n1、n3和n4分别为分子式中一价、三价和四价原子的数目。通常规定双键(C=C,C=O)和饱和环烷烃的不饱和度u=1,三键的不饱和度u=2,苯环的不饱和度u=4(可理解为一个环加三个双键)。因此根据分子式,通过计算不饱和度u,就可初步判断有机化合物的类型。  2.确定特征官能团  由绘制的红外吸收谱图来确定样品含有的官能团,并推测其可能的分子结构。  按官能团吸收峰的峰位顺序解析红外吸收谱图的一般方法如下:  (1)查找羰基吸收峰vC=O 1900~1650cm-1是否存在,若存在,再查找下列羰基化合物。  ①羧酸查找vO-H 3300~2500cm-1宽吸收峰是否存在。  ②酸酐查找vC=O 1820cm-1和1750cm-1的羰基振动耦合双峰是否存在。  ③酯查找vC=O 1300~1100cm-1的特征吸收峰是否存在。  ④酰胺查找vN-H 3500~3100cm-1的中等强度的双峰是否存在。  ⑤醛查找官能团vC-H和δC-H倍频共振产生的2820cm-1和2720cm-1两个特征双吸收峰是否存在。  ⑥酮若查找以上各官能团的吸收峰都不存在,则此羰基化合物可能为酮,应再查找vas,C-C-C在1300~1000cm-1存在的一个弱吸收峰,以便确认。  (2)若无羰基吸收峰,可查找是否存在醇、酚、胺、醚类化合物。  ①醇或酚 查找vO-H 3700~3000cm-1的宽吸收峰及vC-O和δO-H相互作用在1410~1050cm-1的强特征吸收峰,以及酚类因缔合产生的γO-H 720~600cm-1宽谱带吸收峰是否存在。  ②胺 查找vN-H 3500~3100cm-1的两个中等强度吸收峰和δN-H 1650~1580cm-1的特征吸收峰是否存在。  ③醚 查找vC-O 1250~1100cm-1的特征吸收峰是否存在,并且没有醇、酚vO-H 3700~3000cm-1的特征吸收峰。  (3)查找烯烃和芳烃化合物。  ①烯烃 查找vC=C 1680~1620cm-1强度较弱的特征吸收峰及vC=C-H在3000cm-1以上的小肩峰是否存在。  ②芳烃 查找vC=C 在1620~1450cm-1出现的4个吸收峰,其中1450cm-1为最弱吸收峰;其余3个吸收峰分别为1600cm-1, 1580cm-1和1500cm-1。以1500cm-1吸收峰较强,1600cm-1吸收峰居中,1580cm-1吸收峰最弱,并常被1600cm-1处吸收峰掩盖而成肩峰。因此1500cm-1和1600cm-1双峰是判定芳烃是否存在的依据。此外还可查找v C=C-H在3000cm-1以上低吸收强度的小肩峰是否存在。  (4)查找炔烃、氰基和共轭双键化合物。  ①炔烃 查找vC=C 2200~2100cm-1的尖锐特征吸收峰和vC=C-H 3300~3100cm-1的尖锐的特征吸收峰是否存在。此吸收峰易与其它不饱和烃区分开。  ②氰基 查找vC≡N 2260~2220cm-1特征吸收峰是否存在。  ③共轭双键 查找vC=C=C 1950cm-1特征吸收峰是否存在。  (5)查找烃类化合物查找甲基-CH3, vC-H在2960cm-1(vas)和2870cm-1 (vs) 2个吸收峰;亚甲基-CH2-,vC-H在2925cm-1(vas)和2850cm-1(vs)的2个吸收峰;甲基和亚甲基的δC-H(as)在1460cm-1的吸收峰;甲基的δC-H(s)在1380cm-1的吸收峰;4个以上亚甲基的φ-CH2-在722cm-1吸收峰(它随CH2个数减少,吸收峰向高波数方向移动);亚甲基-CH2-,γC-H在910cm-1的强吸收峰;次甲基,γC-H在995cm-1的强吸收峰。  上述诸多吸收峰是否存在,可作为判定烃类存在与否的依据。  对一般有机化合物,通过以上解析过程,再查阅谱图中其它光谱信息,与文献中提供的官能团特征吸收频率相比较,就能比较满意地确定被测样品的分子结构。  3.谱图解析结果的确证  当谱图解析确定了样品组成后,还要查阅标准红外吸收光谱图,进行对比,以确证解析结果的正确性。  现有3种标准红外吸收谱图,即萨特勒红外标准谱图集(Sadtler catalog of infrared standard spectra)、分子光谱文献(documentation of molecular spectroscopy, DMS)穿孔卡片和Aldrich红外光谱库(the Aldrich litrary of infrared spectra)。  以下以5个实例说明IR谱图解析方法。  例1某未知物的分子式为C12H24,试从其红外吸收光谱图(图1)推出它的结构。  图1未知物C12H24红外光谱图  解:  (1)由分子式计算其不饱和度:,该化合物具有一个双键或一个环。  (2)谱图解析  ①由谱图可看到在1900~1650cm-1无vC=O的强吸收峰,在1300~1000cm-1也无一个vas,C-C-C的弱吸收峰,分子式中无氧,可初步判定此化合物不是羧酸、酸酐、酯、酰胺、醛和酮。  ②在3700~3000cm-1无宽的vO-H或vN-N吸收峰,表明其不是醇、酚、胺类化合物;在1250~1100cm-1无vC-O吸收峰,分子式中无氧,表明其也不是醚类化合物。  ③按波数自高至低的顺序,对吸收峰进行解析。首先由3075cm-1出现小的肩峰说明存在烯烃vC-H伸缩振动,在1640cm-1还出现强度较弱的vC=C伸缩振动,由以上两点表明此化合物为一烯烃。  ④在3000~2800cm-1的吸收峰表明有-CH3、-CH2-存在,在2960cm-1、2920cm-1、2870cm-1、2850cm-1的强吸收峰表明存在-CH3和-CH2-的vC-H(as)、vC-H(s),且-CH2-的数目大于-CH3的数目,从而推断此化合物为一直链烯烃。在715 cm-1出现的小峰,显示-CH2-的面内摇摆振动δ-CH2-,也表明长碳链的存在。  ⑤在980cm-1、915cm-1的稍弱吸收峰为次甲基和亚甲基产生的面外弯曲振动γC-H。  ⑥在1460cm-1吸收峰为-CH3、-CH2-的不对称剪式振动δC-H(as) ;1375cm-1为-CH3的对称剪式振动C-H(s),其强度很弱,表明-CH3的数目很少。  由以上解析可确定此化合物为1-十二烯,分子式为  例2某未知物分子式为C4H10O,试从其红外吸收光谱图(图2)推断其分子结构。  图2未知物C4H10O的红外光谱图  解:  (1)由分子式计算它的不饱和度:,表明其为饱和化合物。  (2)谱图解析  ①由谱图可看到1900~1650cm-1无vC=O的强吸收峰,在1300~1000cm-1无vas,C-C-C的弱吸收峰,但有强吸收峰,可初步判定此化合物不是羧酸、酸酐、酯、酰胺、醛和酮。  ②在3500~3100cm-1未出现vN-H的中强度双峰,表明无铵存在;但在3350cm-1出现强吸收的宽峰表明存在vO-H伸缩振动,其已移向低波数表明存在醇的分子缔合现象。  ③在2960cm-1、2920cm-1、2870cm-1吸收峰,表明存在-CH3、-CH2-的伸缩振动vC-H。  ④1460cm-1吸收峰,表明存在-CH3、-CH2-的不对称剪式振动δC-H(as)。  ⑤1380cm-1、1370cm-1的等强度双峰,表明存在C-H的面内弯曲振动δC-H,其为异丙基分裂现象。  ⑥1300~1000cm-1的一系列吸收峰表明存在C-O的伸缩振动vC-O,即有一级醇-OH存在。  由以上解析可确定此化合物为饱和的一级醇,存在异丙基分裂。可确定其为异丁醇,分子式为   例3 分子式为C8H8O的未知物,沸点为220℃,由其红外吸收光谱图(图3)判断其结构。  图3未知物C8H8O的红外光谱图  解:  (1)从分子式计算不饱和度:,估计其含有苯环和双键(或环烷烃)。  (2)谱图解析  ①在1680cm-1呈现vC=O的强吸收峰,可能为羧酸、酸酐、酯、酰胺、醛、酮等化合物。因分子式中无氮,可排除酰胺;在3300~2500cm-1,无vO-H的宽吸收峰,可排除羧酸;在2820cm-1和2720cm-1无vC-H和δC-H倍频共振的双吸收峰,可排除醛;在1830cm-1和1750cm-1无vC=O的羰基振动耦合双峰,可排除酸酐。  由于在1200~1000cm-1存在3个弱吸收峰,可能为vas,C-C-C或vC-O伸缩振动吸收峰,因此,此化合物可能为酮或酯。  ②1600cm-1、1580cm-1、1500cm-1处的3个吸收峰是苯环骨架伸缩振动vC=C的特征,表明分子中有苯环。  ③在1265cm-1呈现的强吸收峰为芳酮特征,其为羰基和芳香环的耦合吸收峰。  ④在3000cm-1以上仅有微弱的吸收峰,表明分子中仅含少量的-CH3或-CH2-。  ⑤在2000~1700cm-1仅有微弱的吸收峰,其为γC-H面外伸缩振动,是苯衍生物的特征峰。  ⑥1380cm-1吸收峰,表明有-CH3的面内弯曲振动(对称剪式振动)δC-H(s) 。  ⑦900~650cm-1的吸收峰,为苯环C-H面外弯曲振动γC-H,750cm-1、690cm-1的2个强吸收峰,表明化合物为单取代苯。  由以上解析可知,此化合物为苯乙酮,分子式为。  例4某未知物的分子式为C6H15N,试从其红外吸收光谱图(图4)推断其结构。  解:  (1)由分子式计算其不饱和度:,其为饱和化合物。  (2)谱图解析  图4未知化合物C6H15N的红外光谱图  ①谱图中在1900~1650cm-1无vC=O的强吸收峰,且分子式中无氧,可判定此化合物不是羧酸、酸酐、酯、酰胺、醛和酮。  ②由3330cm-1和3240cm-1出现vN-H的2个中等强度吸收峰,可初步判断它可能为胺类。在1606cm-1呈现δN-H的特征中等强度宽峰,在1072cm-1呈现vC-N弱吸收峰和在830cm-1呈现的γN-H宽吸收峰,都进一步确证此化合物为胺类。  ③在3000~2800cm-1出现的分裂的强吸收峰,表明存在-CH3、-CH2-的伸缩振动vas,C-H和vs,C-H ;在1473 cm-1出现强峰为-CH3、-CH2-面内弯曲振动δas,C-H;在1382 cm-1出现中等强度的单峰为-CH3面内弯曲振动δs,C-H;在723cm-1出现的中强吸收峰,为4个以上-CH2-直接联结时的平面摇摆振动φCH2。  由以上解析,可确定此化合物为正己胺,分子式为CH3(CH2)5NH2。  例5某未知物的分子式为C6H10O2,试从其红外吸收光谱图(图5)推断其结构。  图5未知物C6H10O2的红外光谱图  解:  (1)由分子式计算其不饱和度:其可能含有1个三键或2个双键。  (2)谱图解析  ①谱图中在1900~1650cm-1有一个vC=O的强吸收峰,且分子有2个氧原子,并在1300~1100cm-1有一vC-O强吸收峰,表明其为典型的羧酸酯类化合物。  ②在2200~2100cm-1无vC≡C的尖锐吸收峰,在3300~3100cm-1无vC≡C-H的尖锐吸收峰,表明其不是炔类化合物。  ③在1680~1620cm-1有强度较弱的肩峰,表明其为vC-C的较弱吸收峰,此化合物可能为不饱和脂肪酸酯。  ④在2900~2800cm-1有一弱的吸收峰,其为甲基vC-H(s)吸收峰和亚甲基vC-H(s)吸收峰,表明分子中含有-CH3和-CH2-。  ⑤在1460cm-1有弱吸收峰,为甲基和亚甲基的δC-H(as)吸收峰;在1380cm-1吸收峰为甲基δC-H(s)。吸收峰;在910cm-1吸收峰为亚甲基γC-H吸收峰。  由以上解析、分子式及不饱和度,可推断此化合物为2-甲基丙烯酸乙酯,分子式为。

厂商

2019.02.26

顶空进样器的操作、清洗和维修

  顶空进样器是气相色谱法中一种方便快捷的样品前处理方法,其原理是将待测样品置入一密闭的容器中,通过加热升温使挥发性组分从样品基体中挥发出来,在气液(或气固)两相中达到平衡,直接抽取顶部气体进行色谱分析,从而检验样品中挥发性组分的成分和含量。  使用顶空进样技术可以免除冗长繁琐的样品前处理过程,避免有机溶剂对分析造成的干扰、减少对色谱柱及进样口的污染。该仪器可以和国内外各种型号的气相色谱仪相连接。  如何正确操作顶空进样器  操作步骤  1、设置参数并放置样品。设置“样品”、“阀箱”、“ 管路”温度。样品为50度,阀箱130度,管路140度。温度稳定后放入样品,平衡30分钟后进行下面的操作。  2、进样前吹洗。设置吹洗压力为0.2-0.3Mpa。按吹洗键,约30s后关闭。  3、准备进样。先将取样管扎入相应的瓶内,再将进样管扎至色谱进样口。观察顶空进样器压力示数,由小变大。待稳定时,调节“载气调节”旋钮使压力示数增加一个格(0.02Mpa)。  4、进样、开始采样。按“进样”同时操作色谱仪开始采样。听到“咔”然后“砰”的声音。2s-3s后取出取样管。  5、拔出进样管。将“载气调节”归零。  6、吹洗30s后完成本次进样。  操作使用注意事项  1、由于进入顶空的载气同时进入GC,所以用于顶空的气体也应净化。  2、顶空瓶加热温度,定量管温度,传输线温度应由小到大,传输线小于等于进样口的温度。  3、应用顶空时,GC气体总流量应是顶空的气流加上GC气流量,计算分流比时应注意。可以用流量计测量后计算。  4、时间设置中,样品充满定量管的时间应充分,定量管的平衡时间不应太长,进样的时间应足够长。  5、顶空进样器的压力调节如果是手动的话,建完方法后应记录样品加压和载气压力值,以免由于阀状态的变化引起压力变化。  主要特点  取样泵和进样阀配合,负压取样,无外添加气体的稀释影响,灵敏度高、定量精确;圆周均布的样品加热位,使不同瓶位间的温度梯度更小,提高分析结果的稳定性;进样阀、定量环管及样品传输管路可控制温度,避免样品在传输中冷凝;取样管路和进样阀带反吹功能,防止交叉污染;单片微机控制、液晶显示温度参数、薄膜键盘输入;超温掉温断电保护,使用安全;进样针头可自由更换,方便连接国内外各种型号的气相色谱。  怎么清洗顶空进样器  无特殊情况下,清洗顶空进样器主要用纯水、甲醇或无水乙醇等冲洗或超声清洗,污染严重可用棉签轻轻擦拭,不可用力过度,避免破坏内表面产生活性点,然后放置到烘箱70度烘干后干燥冷却密封存放即可。  清洗步骤如下  1、设置传送带温度为60℃,设置样品定量管和传送管温度为Off。  2、一旦样品定量管和传送管温度冷却到低于60℃,关闭通往顶空进样器的气体,拆下出口端的放空管线。  3、在传送带中插入u一个空的样品瓶。  4、用手提起样品瓶。  5、用一次性注射器抽取约6ml的纯净水注射进HSS放空管。  6、降低样品瓶然后取出来。重复步骤3到5(注射两到三次将清洗彻底)。  7、再设置一个空样品瓶并提起,然后使用一次性注射器注射足够的空气将水吹扫出来。  8、讲传送管一端插入一个烧杯或类似容器中,并使用一次性注射器从HSS气体管出口注入约10ml水,然后注入约10ml甲醇。  9、使用一次性注射器注射足够的空气以吹扫出水。  10、重新安装好管线并打开气流。然后,切换样品瓶到Load-INJ反复几十次以将水和甲醇全部吹出样品阀和管线。  顶空进样器维护保养  顶空进样是气相色谱法中一种方便快捷的样品前处理方法,其原理是将待测样品置入一密闭的容器中,通过加热升温使挥发性组分从样品基体中挥发出来,在气液(或气固)两相中达到平衡,直接抽取顶部气体进行色谱分析,从而检验样品中挥发性组分的成分和含量。  隔垫  主要起到密封进样、清洗进样针的作用,一般隔垫可达到一百次进样以上寿命,不同厂家不同材质寿命不一。如发现进样口压力下降,可检查是否隔垫磨损严重,密封性变差,必要时更换。隔垫碎屑可导致本底升高,还有可能污染衬管、堵塞色谱柱,应经常更换,不必等到非换不可的程度。很多色友在安装更换隔垫一般拧得过紧,这样会导致隔垫过于收缩、变硬,进样时隔垫容易产生碎屑,寿命大幅下降,一般以不漏气稍紧一些即可。  衬管  衬管在GC中主要起到样品汽化室的作用,样品在衬管中汽化并被带入气相中,有去活和不去活之分,也有分流/不分流、不分流、分流、直接进样、直接连接、聚焦、PTV等多种之分。不定期更换或未正确使用会导致峰形变差、溶质歧视、重现性差、样品分解、出现鬼峰等结果。衬管的维护保养主要是清洗、硅烷化和合理使用玻璃棉。  (1)一般清洗顶空进样器主要用纯水、甲醇或无水乙醇等冲洗或超声清洗,污染严重可用棉签轻轻擦拭,不可用力过度,避免破坏内表面产生活性点,然后放置到烘箱70度烘干后干燥冷却密封存放即可。  (2)硅烷化是消除载体表面活性zui有效的办法之一。它可以消除载体表面的硅醇基团,减弱生成氢键作用力,使表面惰化。一般的方法是用5~8%硅烷化试剂的甲苯溶液浸泡或回流1个小时以上,然后用无水甲醇洗至中性,烘干备用。常用的硅烷化试剂有二甲基二氯硅烷(DMCS)、三甲基氯硅烷(TMCS)和六甲基二硅氨烷(HMDS)。以DMCS的硅烷化效果zui好,HMDS其次,TMCS较差。  (3)顶空进样器玻璃棉的使用。在大部分的实际应用中,通常可以在衬管里面填充一定量的玻璃棉以增加样品的汽化效率,同时还可以起到防止隔垫碎屑堵塞色谱柱的作用,但是如果玻璃棉未经去活或断点较多,会使得活性点增加,会起到反作用。以下应用不推荐使用玻璃棉:酚类、有机酸类、农药类、胺类、滥用药物类、反应性极性化合物类、热不稳定化合物等。  (4)金属密封垫(分流/不分流平板):密封和限流等作用,有纯铜、不锈钢、镀金等材质,以镀金zui好。定期或按需检查,有污染情况可卸下用纯水或有机溶剂超声清洗,可用棉签轻柔擦拭表明,不可用硬物划伤上表面。  (5)色谱柱密封垫:密封色谱柱与衬管连接处作用。一般为纯石墨、特氟隆、金属、按比例添加Vespel或100%Vespel等物质。纯石墨材质一般都是一次性使用,如果密封效果还可以,也可多次使用。其他材质可多次使用,以密封不漏气为准。

厂商

2019.02.22

环境大气中VOC检测的四大知识点

  环境空气中VOCs检测在环境检测检测的基本项目之一,地位自不用多说,所以,做好VOCs检测就成了必然,而想做好VOCs检测这四个知识点是必须要知道的,四个知识点都是哪些呢?  知识点一:定义  VOCs是挥发性有机化合物(volatileorganic compounds)的英文缩写。关于VOC的定义,不同的标准有不同的定义。  1.美国ASTM D3960-98标准将VOC定义为任何能参加大气光化学反应的有机化合物。美国联邦环保署(EPA)的定义:挥发性有机化合物是除CO、CO2、H2CO3、金属碳化物、金属碳酸盐和碳酸铵外,任何参加大气光化学反应的碳化合物。  2.世界卫生组织(WHO,1989)对总挥发性有机化合物(TVOC)的定义为,熔点低于室温而沸点在50~260℃之间的挥发性有机化合物的总称。  3.有关色漆和清漆通用术语的国际标准ISO 4618/1-1998和德国DIN 55649-2000标准对VOC的定义是,原则上,在常温常压下,任何能自发挥发的有机液体和/或固体。同时,德国DIN 55649-2000标准在测定VOC含量时,又做了一个限定,即在通常压力条件下,沸点或初馏点低于或等于250℃的任何有机化合物。  4.巴斯夫公司则认为,最方便和最常见的方法是根据沸点来界定哪些物质属于VOC,而最普遍的共识认为VOC是指那些沸点等于或低于250℃的化学物质。所以沸点超过250℃的那些物质不归入VOC的范畴,往往被称为增塑剂。  这些定义有相同之处,但也各有侧重  如美国的定义,对沸点初馏点不作限定,强调参加大气光化学反应。不参加大气光化学反应的就叫作豁免溶剂,如丙酮、四氯乙烷等。而世界卫生组织和巴斯夫则对沸点或初馏点作限定,不管其是否参加大气光化学反应。国际标准ISO 4618/1-1998和德国DIN 55649-2000标准对沸点初馏点不作限定,也不管是否参加大气光化学反应,只强调在常温常压下能自发挥发。  甲醛也是挥发性有机化合物,但甲醛易溶于水,与其他挥发性有机化合物有所不同,室内来源广泛,释放浓度也高。因此,常把甲醛与其他挥发性有机化合物分别阐述。  除甲醛以外,绝大多数挥发性有机化合物一般都不溶于水而易溶于有机溶剂。在室内它们各自的浓度往往不是很高,但是若干个VOC共同存在于室内空气中时,其联合作用是不可忽视的。由于它们种类多,单个组分的浓度低,常用于TVOC表示室内中的挥发性有机化合物总量的。TVOC是衡量建筑物内装饰装修和家具等室内用品。对室内空气质量影响程度的一项重要指标。  知识点二:VOC、VOCs和TVOC的区别  1.VOC  VOC物质是指易挥发的有机物质。VOC是挥发性有机化合物(volatile organic compoundS)的英文缩写。普通意义上的VOC就是指挥发性有机物;但是环保意义上的定义是指活泼的一类挥发性有机物,即会产生危害的那一类挥发性有机物。实际上,VOC可分为二类:  一类是普通意义上的VOC定义,只说明什么是挥发性有机物或者是在什么条件下是挥发性有机物;另一类是环保意义上的定义,也就是说,是活泼的那一类挥发性有机物,即会产生危害的那一类挥发性有机物。非常明显,从环保意义上说,挥发和参加大气光化学反应这两点是十分重要的。不挥发或不参加大气光化学反应就不构成危害。  2.VOCS  在我国,VOCs(volatileorganic compounds)挥发性有机物,是指常温下饱和蒸汽压大于70 Pa、常压下沸点在260℃以下的有机化合物,或在20℃条件下蒸汽压大于或者等于10 Pa具有相应挥发性的全部有机化合物,从环境监测的角度来讲,指以氢火焰离子检测器检出的非甲烷总烃类检出物的总称,主要包括烷烃类、芳烃类、烯烃类、卤烃类、酯类、醛类、酮类和其他有机化合物。这里重点要说明的是:VOC和VOCS其实是同一类物质,即挥发性有机化合物(Volatile Organic CompoundS)的英文缩写,由于挥发性有机化合物一般成分不止一种,因此VOCS更jing准。  3.TVOC  室内空气品质的研究人员通常把他们采样分析的所有室内有机气态物质称为TVOC,它是Volatile Organic Compound三个词*个字母的缩写,各种被测量的VOC被总称为总挥发性有机物TVOC(Total Volatile Organic CompoundS)。TVOC是三种影响室内空气品质污染中影响较为严重的一种。  世界卫生组织(WHO,1989)对总挥发性有机化合物(TVOC)的定义为,熔点低于室温而沸点在50~260℃之间的挥发性有机化合物的总称。在常温下可以蒸发的形式存在于空气中,它的毒性、刺激性、致癌性和特殊的气味性,会影响皮肤和黏膜,对人体产生急性损害。  知识点三:环境中空气检测国家标准  环境空气总烃的测定气相色谱法HJ 604-2017  大气固定污染源氯苯类化合物的测定气相色谱法HJ/T 66-2001  大气固定污染源苯胺类的测定气相色谱法HJ/T 68-2001  固定污染源排气中甲醇的测定气相色谱法HJ/T 33-1999  固定污染源排气中氯乙烯的测定气相色谱法HJ/T 34-1999  固定污染源排气中乙醛的测定气相色谱法HJ/T 35-1999  固定污染源排气中丙烯醛的测定气相色谱法HJ/T 36-1999  固定污染源排气中丙烯腈的测定气相色谱法HJ/T 37-1999  固定污染源排气中非甲烷总烃的测定气相色谱法HJ/T 38-2017  固定污染源排气中氯苯类的测定气相色谱法HJ/T 39-1999  空气质量三甲胺的测定气相色谱法GB/T 14676-93  空气质量硫化氢、甲硫醇、甲硫醚和二甲二硫的测定气相色谱法GB/T 14678-93  固定污染源废气挥发性有机物的采样气袋法HJ 732-2014  环境空气硝基苯类化合物的测定气相色谱法HJ 738-2015  环境空气挥发性卤代烃的测定活性炭吸附-二硫化碳解吸/气相色谱法HJ 645-2013  环境空气苯系物的测定活性炭吸附/二硫化碳解吸-气相色谱法HJ 584-2010  环境空气苯系物的测定固体吸附/热脱附-气相色谱法HJ 583-2010  环境空气苯系物的测定活性炭吸附/二硫化碳解吸-气相色谱法HJ 584-2010  固定污染源废气挥发性有机物的测定固相吸附-热脱附/气相色谱-质谱法HJ 734-2014  环境空气挥发性有机物的测定吸附管采样-热脱附/气相色谱-质谱法HJ 644-2013  环境空气和废气气相和颗粒物中多环芳烃的测定气相色谱-质谱法HJ 646-2013  环境空气硝基苯类化合物的测定气相色谱-质谱法HJ 739-2015  GC&GCMS环境空气相关标准解析  GC&GCMS 22项  其中GC项目18项,发布时间:1994到2017年  GCMS 项目4项,发布时间:2013年-2015年  知识点四:环境空气检测分类  根据检测步骤之间的关联,分为以下2种:  1.实验室Lab检测(off-line检测)  先采样,采样完成后人工将样品送到实验室分析,即采样与分析检测之间有一定时间差。  实验室lab检测的典型客户:环境监测站实验室,第三方检测实验室,化工园区空气质量检测实验室,职业卫生空气检测实验室等。  另外需要指出的是,目前国内22项标准都是针对实验室检测  实验室lab检测采样+浓缩几种方式  气体进样阀+GSV进样  吸附管采样+液体解析  吸附管采样+热脱附解析(TD)  苏玛罐采样+冷凝预浓缩  气袋采样+冷凝预浓缩  2.原位实时检测(on-line检测)  先采样,采样完成后无需人为干预,直接通过管路等传输自动控制,样品进仪器分析,得到结果。即为原位分析。一般都需要远程控制。

厂商

2019.02.21

原子发射光谱分析中的干扰效应及校正方法

  在原子发射光谱分析中存在的干扰效应会对样品的测量结果产生系统误差或偶然误差。干扰现象依据产生的机理可分为光谱干扰和非光谱干扰两类,光谱干扰是指待测元素分析线的信号和干扰物产生的辐射信号分辨不开的现象;非光谱千扰包括物理干扰、化学干扰和电离干扰。  一、光谱干扰  原子发射光谱仪工作时,由于激发光源的能量高,在200~1000nm波长范围会产生10万~1000万条谱线,平均在0. lmm宽度就分布上百条谱线,因而几乎每个元素的分析线都会受到不同程度的谱线干扰。当使用ICP光谱仪时,比其它光源会出现更强的谱线重叠干扰,而成为ICP-AES中的主要干扰。  光谱干扰可分为谱线重叠干扰和背景干扰两类。  1、谱线重叠干扰  它是指被测定元素的分析线上被另外一个元素的谱线重叠或部分重叠,分为两种情况:  (1)谱线直接重叠即干扰线与分析线完全重合。  此时可用干扰系数法进行校正,它是指千扰元素所造成分析元素浓度的增加与干扰元素浓度的比值。  如测定地质样品中的Cr元素,当用Cr的分析线205.552nm进行测定时,大量Fe的存在会产生干扰,若Fe的质量浓度为1000mg/L时造成Cr的质量浓度增加0.2 mg/ L,此时Fe对Cr的干扰系数K为:       被测元素分析受干扰时测得的浓度为表观浓度cs,其用干扰系数校正后,即得真实浓度cT:  CT=CS-KcD  式中,CD为干扰元素的浓度。  使用干扰系数法应满足以下几点:  ①必须已知干扰元素的浓度,并在被测元素分析浓度范围内,保持为常数。  ②干扰系数K与光谱仪的分辨能力相关,使用不同的仪器,测得K值也不相同,文献资料中的K值只作为参考,多数情况应自行测定。  在ICP光谱分析中,对常见元素分析线产生的干扰线波长以及常见元素干扰系数,可从ICP光谱分析专著中查阅。  (2)复杂谱线重叠分析线和两条或两条以上的干扰线重叠或部分重叠。此时若使用干扰系数法会得到错误结果,因此时干扰系数K不是常数,需使用多谱线拟合程序来进行校正。  在现代原子发射光谱仪中,由于高分辨技术的应用,减少了光谱干扰,特别是中阶梯光栅和全息光栅的广泛应用,大大降低了杂散光,提高了色散率,有效地消除和减少了光谱干扰。  2、背景干扰  它是指有连续发射形成的带状光谱叠加在分析线上而形成的干扰。背景干扰分为四种情况,如图所示。  光谱背景干扰的几种情况  (a)简单平滑光谱背景;(b)斜坡背景;(C)弯曲背景;(d)复杂结构背景  (1)简单平滑光谱背景分析线谱峰被平滑背景叠加后,平行向上移动,可采用离峰单点校正,即从含背景的峰值强度中扣除背景强度值:  IA=IAB=ICB  (2)斜坡背景分析左右背景强度随波长发生渐变,但变化是线性的,可用离峰两点校正,即在谱峰两侧等距离处,测定此两点背景强度,取其平均值,再从含背景的峰值强度中扣除背景平均值:  (3)弯曲背景分析线位于与其共存元素高强度谱线的一侧,形成渐变弯曲的斜坡背景,如果分析线强度较大,则仍可按线性斜坡背景的离峰两点校正方法进行,若分析线强度较低,则此法校正的误差较大,会给出不正确的测定数据。对这种光谱背景校正,用空白背景校正法,即用不含待测元素的溶液测出空白对应的谱线强度,再用被测元素测得的谱线强度(表观强度)减去空白对应的谱线强度,即完成校正。  (4)复杂结构背景这种光谱背景通常由分子光谱谱带或谱线混合叠加而成。对这种背景采用空白溶液校正法是最合适的。  背景于扰的存在会影响分析结果的准确度,应予以扣除,但采用的扣除方法又会引入附加的误差,因而应依据背景产生的原因尽量减弱或抑制背景,应选用不受干扰的分析线再进行谱线强度测定。  二、非光谱干扰  在原子发射光谱分析中,非光谱干扰有物理干扰、化学干扰和电离干扰。  1、物理干扰  分析试液物理特性,如黏度、密度和表面张力的差异,影响ICP雾化效率,引起谱线强度的变化,称物理干扰或物性干扰,它又分为酸效应和盐效应两类:  (1)酸效应在ICP分析中,样品需经酸溶解制成试样溶液,由于酸的类型和浓度的不同,会产生对谱线强度的影响。通常随酸度增加会显著降低谱线强度,无机酸对谱线强度的影响会按下述顺序递增:HCI  酸效应是以在酸存在时的谱线强度与无酸存在时(去离子水溶液)谱线强度的比值来表示的(I酸/I水)。  (2)盐效应当试样浓度增加(含盐量增加),其黏度、表面张力等物性均会增大,从而影响进样量,雾化效率和气溶胶传输效率降低,并进而影响分析线的谱线强度的降低。  消除物理干扰的根本方法是采用基体匹配法,即保持标准溶液和分析试样溶液及空白溶液中的酸度和盐含量相同。  2、化学干扰  化学干扰又称“溶剂蒸发效应”,是原子吸收法和火焰光度法普遍存在的干扰效应。如测Ca时,磷酸根或Al会产生干扰,此时应加入释放剂来降低化学干扰,在ICP光谱分析中,其影响较小,但仍存在。  3、电离干扰对易电离的元素,其挥发进入火焰中,随电离的发生,使电子密度增加,会使电离平衡MM++e-向中性原子方向偏移,也会使谱线强度下降,因而在火焰光度法中,电离干扰是很严重的。在ICP光谱分析中,电离干扰要弱许多,但仍存在。  电离干扰对钠元素光谱的影响有如下规律:  (1)电离干扰对Na的离子线会降低谱线强度,对Na原子线会增强谱线强度。  (2)提高对炬焰的观测高度达15mm时,Na原子浓度高达1700ug/mL时,可降低Na对Ca(422.673nm)谱线的电离干扰。但在一般情况下,提高观测高度,电离干扰会增强,这可能是由于在较高观测高度,ICP炬焰的温度会降低而使谱线强度下降。  为消除电离干扰,可采用基体匹配法,或在定量分析时,使用标准加入法。  三、基体效应  基体效应是指样品中主要成分发生变化时,对分析线谱线强度和光谱背景的影响,它也是光谱分析中干扰效应的一种。  基体效应的产生,实质上是各种干扰效应的总和。基体效应主要是非光谱干扰,但也包括光谱干扰中的背景干扰和激发于扰。  激发干扰是指由于样品成分变化,导致ICP光源温度、电子密度、原子及离子在光源中分布发生变化,而引起分析线谱线强度和光谱背景变化的现象。  由上述可知基体效应是多种干扰效应产生综合作用的结果。  基体效应与干扰元素的种类、含量(浓度)相关,也受ICP光谱分析条件,如高频功率、载气流量,观测高度的影响。  基体效应可用存在基体效应时分析线的谱线强度IB与无基体(空白)效应存在时分析线的谱线强度INB的比值B来表示。  B=IB/INB  当B>1时,基体效应增强,B  为了降低光谱分析时基体效应的影响,可采用以下几种方法:  (1)采用稳健性(robust)分析条件又称强化条件。在ICP光谱分析中,应采用较高的高频功率、较低的载气流量、适中的观测高度,可以抑制基体效应。  (2)采用基体匹配法在配制标准溶液系列时,要加入与分析样品溶液相同量的基体成分,使标准溶液系列的主要成分与分析样品溶液相匹配。  (3)标准加入法当采用基体匹配法时,加入的基体成分要比分析试样的纯度高1.2个数量级,有时难于获得,此时可采用标准加入法,而无须使用基体成分材料。  (4)化学分离法待分离出基体成分后,再对样品溶液进行ICP光谱分析。

厂商

2019.02.21

土壤混合样品采集布点方法

  为了使采集的监测样品具有好的代表性,必须避免一切主观因素,需要我们牢记土壤采样的基础知识。为了能更好地进行土壤分析检测,检测人员也应该掌握土壤的采样知识。  为获取有代表性的土壤样品,土壤采样必须根据采样标准中的原则和要求进行布点和采集。样品是由总体中随机采集的一些个体所组成,因此样品与总体之间,既存在同质的“亲缘”关系,样品可作为总体的代表,但同时也存在着一定程度的异质性,差异愈小,样品的代表性愈好;反之亦然。  依据  《土壤环境质量标准》(GB15618-2018)  《土壤环境监测技术规范》(HJ/T 166 -2004)  采样器具准备  工具类:铁锹、铁铲、圆状取土钻、螺旋取土钻、竹片以及适合特殊采样要求的工具等。  器材类:GPS、罗盘、照相器材、卷尺、铝盒、样品袋、瓶、样品箱等。  文具类:样品标签、采样记录表、铅笔、资料夹等。  监测点位布设  (一)布点原则  土壤监测点位布设方法和布设数量是根据其目的和要求,并结合现场勘查结果确定该区域内土壤监测点位。同时必须遵循如下5个原则。  1.全面性原  布设的点位要全面覆盖不同类型调查监测单元区域。  (二)代表性原则  针对不同调查监测单元区域土壤的污染状况和污染空间分布特征采用不同布点方法,布设的点位要能够代表调查监测区域内土壤环境质量状况。  (三)客观性原则  具体采样点选取应遵循“随机”和“等量”原则,避免一切主观因索,使组成总体的个体有同样的机会被选入样品,同级别样品应当有相似的等量个体组成,保证相同的代表性。  (四)可行性原则  布点应兼顾采样现场的实际情况,考虑交通、安全等方面情况:保证样品代表性zui大化、zui大限度节约人力和实验室资源。  (五)连续性原则  布点在满足本次调查监测要求的基础上,应兼顾以往土壤调查监测布设的点位情况,并考虑长期连续调查监测的要求。  2.布点情况  3.混合样品采集布点方法  由于土壤本身存在着空间分布的不均一性,为更好地代表取样区域的土壤性状,采用以地块为单位,多点取样,再混合成一个混合样品。  注意事项  (1) 布点验证:点位布设不能最终确定前,可进行现场调查及预采样相结合,根据背景资料与现场考察结果,采集一定数量的样品分析测定,用于初步验证污染物空间分异性和判断土壤污染程度,为布点方式作适当的验证。  (2) 补充布点:正式采样、监测结束后,若发现布设的样点未能满足调查目的,则要增设采样点补充采样。  (3)点位布设经现场勘查,遇到下列几种情形的,应予以调整。  ① 当采样区落在大面积为水面(河湖、库)区域时,应取消该区域点位;网格内部分区域为河(湖、库)区内时,应将点位平移至网格区内的最近距离的非河(湖、库)区选择备采点。②当采样区以农田土壤为主,采样点落在公路带时,在公路两侧300 m以外分别选取一个点作为备采点采样。③当采样区落在高原区,区域受人类生产活动影响较小,可适当缩减区域内监测点位,在适合采样地布设点位,使监测结果基本可代表高原区域内所有土壤环境质量。④避免在山林(草、沙)区中心地带选点。⑤坡脚、洼地等具有从属景观特征的地点不设采样点。⑥城镇、住宅、道路、沟渠、粪坑、坟墓附近等处人为干扰大,失去土壤的代表性,不宜设采样点。⑦尽量避开多种土类、多种母质母岩交错分布的地区布设采样点。  采样深度  取样方法:  地表层:铁锹、铁铲、竹片直接取样;  分层取样:手工操作和机械操作土钻,进入一定深度的土壤,将土柱提上,,按需要切割采样;或铁锹、铁铲等挖一剖面,分层取样。  取样量  各点(层)取1kg土样装入样品袋,对多点均量混合的样品可反复按四分法弃取。  记录  样品采集时,将现场采样点的具体情况,如土壤剖面形态特征等做详细记录。样品采集完后袋内外均应附标签,标明采样编号、名称、采样深度、采样地点、日期、采集人,并填写采样记录。  注意事项  (1) 对照采样点不能设在田边、沟边、路边或肥堆边。  (2) 有腐蚀性或要测定挥发性化合物,用广口瓶装样;含易分解有机物的待测定样品,采集后置于低温(冰箱)中。  (3) 分层采样次序:自下而上,先采剖面的底层样品,再采中层样品,之后采上层样品。  (4) 测量重金属的样品,则应避免使用金属器具取样。可用竹片或竹刀去除与金属采样器接触的部分土壤,再用其取样。

厂商

2019.02.20

生物显微镜的使用与保养

  一、生物显微镜的使用  (一)使用环境与工作习惯  1、使用环境  显微镜的工作场所应当清洁、干燥、无震动、无腐蚀性气体存在。  2、工作习惯  (1)台面和凳子的高度要适当。  (2)镜检时,即便用单目显微镜,也须两眼同时睁开,用左眼观察。以便右眼绘图或记录。如一只眼睁,一只眼闭,眼睛容易疲劳,无法久看。工作时间较长时,可两眼轮流观察。  (二)使用前的准备  1、光学系统的安装  对新购或已经卸掉光学系统的显微镜,使用前必须先将显微镜安装起来。安装时,为了防止向下掉灰尘,应按照先上后下的顺序,即按照目镜、物镜、聚光镜、反射镜的顺序来安装。图10-3-1为显微镜的安装图。箭头所示为光学元件的安装位置。  安装物镜时,应先将镜筒升高或载波物台下降,使转换器与载物台之间保持一定的距离。握往物镜,把它放入转换器的螺丝口处,先略向反时针方向旋转,待物镜配上丝纹后,再按顺时针方向旋入,旋至中等程度松紧即可。安装物镜时,应根据物镜的放大倍数,从小到大顺时针安装。转换物镜时,不要用手推着物镜旋转,那样会使物镜的光轴歪斜。zui好用手捏着转换器的转动盘旋转,或用手扶着与物镜转换器衔接处的滚花外圆旋转。  目镜和物镜装好后,再将聚光镜插入载物台下面的聚光器支架内。插入的高度应使聚光器升至zui高时,聚光镜上透镜的端面稍低于载物台的平面,以免载玻片与聚光器的镜头相碰。然后,将聚光器的固定螺丝旋紧。对非电光源的显微镜来说,zui后要把反射镜插入聚光器下面的插孔内。  2、校正光轴  校正光轴的意义在于使物镜、目镜、聚光镜的主光轴和可变光栏的中心点重合在一条直线上。所以又叫做合轴调节或中心调节。如果光轴歪斜,会使像差增大,分辨率和清晰度都要下降。  检查方法是将可变光栏开至zui大,把低倍物镜旋入光轴,降低镜筒,使物镜与载物台之间的距离小于该物镜的工作距离(5mm以下)。不放标本,调节反射镜的角度,使视场最亮;或调节光源灯的亮度,使视场明暗合适。  然后,拔掉目镜,直接从镜筒中观察。一边把可变光栏慢慢缩小或打开数次,当光栏关至最小时,光栏的像(此时只有一点点)应正好落在物镜通光孔的中心。当光栏开大到一定程度时,光栏孔的像应正好与物镜通光孔的黑圈相重合。若符合上述两个条件,说明它们“合轴”。否则,就需要调整。  目镜和物镜都是固定的,无法进行调整。合轴调节主要是调整聚光镜的位置。有些显微镜聚光器支架两旁有两个光轴校正螺丝,调节这两个螺丝,即可合轴。另一种聚光器是由框架上三个相隔120°的螺丝支持住,其中一个装有弹簧,可以伸缩;另外两个螺丝,可以旋动。调整这两个螺丝,便可合轴。  显微镜的光轴校正好后,如果没有拆下聚光器或其它特殊原因,不必经常校正。  3、准备好标本  准备好高质量的标本备用。  (三)反射镜、聚光器的使用方法和对光方法1、调光  对采用反射镜的的显微镜,一般都使用平面反射镜去反射太阳的散射光。只有在光线不足或窗外有干扰时,才使用凹面反射镜。  采用电光源的显微镜,将光亮调合适即行。  2、聚光器的用法  (1)聚光器高度的调节 一般的聚光镜,在平行光照射的情况下,其焦点落在它上端透镜平面中心上方约1.25mm处。当使用高倍镜或油镜时,由于放大率大,镜像亮度小,需要较强的照明。因此,应把聚光器升至zui高,以便使聚光镜的焦点正好落在标本平面上。但在使用低倍物镜时,可将聚光器适当下降。  (2)可变光栏的用法 可变光栏起两个作用。一是控制射向标本的光通量;二是改变聚光器的数值孔径。在这两个作用中,后者是主要的。为了使物镜的分辨率得到充分的利用,从原则上说,聚光器的数值孔径应与物镜的相同。否则,分辨率或清晰度会受影响。  3、对光方法  对电光源显微镜来说,使用时,只要将光调节在合适的亮度即行。不需要进行对光。但对使用自然光的低档显微镜来说,要想获得良好的观察效果,必须充分利用照明光线。因此,镜检之前应先对光。对光时,将低倍镜旋入光轴,聚光器适当升高,可变光栏开至zui大。然后,从目镜中观察,同时转动反射镜,直至视场最明亮、清晰为止。如果利用自然光,则尽量躲避窗框和窗外树枝的干扰。  (四)物镜的正确调焦  对光完成后或调节合适光亮后,升高镜筒或降低载物台,将标本玻片夹在移动器即标本夹上,并将欲检查的部分移至载物台通光孔的中央,然后开始调焦。  无论作何种检查,均应从低倍镜开始。调焦时,先用粗动手轮将镜筒下降,使低倍镜的前透镜与盖玻片之间的距离略小于该物镜的工作距离(5mm以下)。为了避免物镜压在标本玻片上,可从侧面窥视。然后,一边从目镜中观察视野,一边利用粗动手轮将镜筒徐徐上升,待初见物像后,改用微动手轮作精细调焦,直至物像最清晰为至。低倍物镜的视场大,有利于观察标本的全貌。也可利用移动器或纵、横向调节手轮寻觅所观察的目标。如有必要,可将寻得的目标移至视场的中心,为高倍镜观察作好准备。  从低倍物镜转换为高倍物镜时,如果物镜是显微镜的原配,所用的载玻片、盖玻片又符合标准,一般都可以进行“等高转换”。即转换后,只要稍微调节一下微调旋钮,即可看到清晰的图像。但油镜不强求齐焦,zui好先将镜筒升高后再转换,zui后按低倍镜的调焦方法重新调焦。  使用油镜的方法如下:先将镜筒升高,取下标本玻片,稍稍降低聚光器,并在聚光器的镜头上滴两滴香柏油(油中不应有气泡。如有,可用小木签除去),再将标本玻片放回原处,把聚光器升高,使载玻片的底面与香柏油接触。这样,就完成了聚光镜的油浸。接着,在盖玻片上滴上1滴香柏油。然后从侧面窥视,利用粗调使镜筒尽量下降,直至油镜的前透镜浸没在香柏油中(但尚未接触玻片),这样,又完成了物镜的油浸。然后,一边从目镜中观察,一边利用微动手轮将镜筒缓缓上升(注意不要拧错了方向,压碎盖玻片),直至视野中出现最清晰的物像为止。  聚光镜的油浸,还可以采用另一种滴油方法:即不直接把油滴在聚光器的镜头上,而是把载玻片翻过来,将油滴在载玻片的底面上,然后再翻过去,对准放置于聚光器上面,再使聚光器上升,来完成聚光器的油浸。这种方法虽然不那么顺手,但比较安全。有些人使用玻璃棒直接与聚光镜接触来涂抹香柏油,这种方法容易划伤镜片,不宜采用。  在使用油镜时,允许在聚光镜与标本之间不加香柏油,即聚光镜上仍以空气为介质,但这会牺牲物镜的分辨率。  如用油镜观察后,如又需要转回高倍物镜观察,应将盖玻片上的油擦去,以免沾污高倍物镜。但聚光器上的油可以不擦,只要把光栏适当缩小一点即可。  油镜使用完毕后,要及时将香柏油擦拭干净。镜头上可先用干净的擦镜纸擦1~2次,把大部分的油擦掉。然后用二甲苯滴湿的擦镜纸擦两次,之后用擦镜纸擦干净即行。聚光镜的擦拭方法与此相同。如标本需要保存,玻片上的香柏油可用“拉纸法”擦拭干净。即将擦镜纸复盖在玻片上,在纸上滴上一滴二甲苯,趁湿将纸条平拖着往外拉,连续几次即可擦干净。

厂商

2019.02.19

HPLC的日常维护和使用注意事项

  HPLC以它定量分析结果准确、分析周期短、分析范围广及分析检测限低等优势,在食品添加剂、药物成分分析等多领域得到了广泛的应用。本文就液相色谱仪在实际操作时应注意的事项及维护做了简单介绍。  主要部件介绍  输液系统  输液系统主要包括在线脱气装置、高压输液泵、梯度洗脱装置。在线脱气装置主要功能是流动相在进入柱子前排除气泡。高效液相色谱柱的填料颗粒小,通过 2~5 mm 的色谱柱受到的流动阻力很大,因此需要通过高压输液泵抽取流动相输送至色谱柱。  高压泵按输液性能可分为恒压、恒流泵。按机械结构可分为:液压隔膜泵、气动放大泵、螺旋注射泵和往复柱塞泵。  进样器  进样器是将分析样品送入色谱柱的装置,分为手动、自动进样器两种。手动进样器一般配有20~100μL的定量环。  色谱柱  色谱柱以液体为流动相,以广义的固相为固定相来进行分析样品的分离工作。  色谱柱按照分离模式大致可以分为正相色谱柱和反相色谱柱。  检测器  检测器是将色谱柱分离出样品的物理或化学特性转换为可以测量的电信号,通过色谱图记录下来,由色谱图中的峰形状判断分离效果,依据标物、分析样色谱图的出峰时间、峰面积分别对样品进行定性定量分析。  维护及使用注意事项  1.开关机操作注意  分析准备工作做好后,依次打开稳压电源、高压输液泵、柱温箱、检测器,待各部件自检结束,打开连接仪器的电脑,启动工作软件。分析工作结束后,关闭工作软件,再依次关闭检测器、柱温箱和高压输液泵。  2.对流动相的要求  为保证液相色谱仪器的正常使用,所有流动相必须是色谱级的,且经过过滤杂质、排除气泡后装入干净的流动相贮存瓶中待用。  (1)流动相的物理化学性能要求  对分析物要有足够的溶解能力,以利于提高检验的灵敏度;流动相的黏度要小,以保证合适的柱降压;流动相的沸点要低,以利于制备分离时样品的回收;流动相的 PH 值一般应在 2~7.5;使用期限不得超过 2 天,否则产生细菌污染管路。  (2)流动相的过滤  流动相在使用前都必须经过滤,以除去杂质微粒。同时要定期清洗吸滤头,以防杂质通过其进入流动相。应依据其是否是水溶性选择水膜或有机膜(0.45 μm 或 0.22 μm),使用溶剂过滤装置,通过真空泵抽气过滤。  (3)流动相的脱气  流动相必须预先脱气,否则易产生气泡,影响泵的工作。此外,溶解在流动相中的氧能与某些有机溶剂形成有紫外吸收的络合物,提高背景吸收,会在梯度洗脱时造成基线漂移或形成鬼峰。常有的脱气方法有在线真空脱气法、超声波脱气法、抽真空脱气法三种。  3.色谱柱的维护及使用注意事项  所有分析样品zui好把pH值调节到适合色谱柱的pH值范围内。进样要避免超负荷,这是保持色谱柱性能持久良好的重要方法之一。手动进样器进样的话,进样时动作要快速准确。分析物成分复杂时,要在色谱柱前加色谱保护柱以保护色谱柱。每次分析工作开始时,要对色谱柱进行平衡,用含10%流动相中的有机溶剂的水溶液进行排气和冲洗色谱柱和管路,冲洗30分钟左右,将色谱柱中的纯有机溶剂替换掉,然后再用至少10倍柱体积的流动相平衡色谱柱,直至基线平衡后方可进样。  每次分析工作结束后,一定要立即用一定量的水溶液彻底冲洗色谱柱中的缓冲盐液,再用对被测物洗脱能力强的溶剂来冲洗色谱柱,冲洗时间不能小于1小时,洗脱溶剂的用量至少为柱体积的20倍。若不及时冲洗色谱柱,杂质长时间积累在其中,易堵塞色谱柱,降低柱效性能。长期这样,会加速减少色谱柱使用寿命。色谱柱4天以上不使用,应从仪器上取下,用封头螺帽把两头紧紧密封。色谱柱保存时注意不要强烈震动、碰撞。  4.高压输液泵的维护及使用注意事项  每次分析工作结束后,都应及时清洗泵。当有缓冲盐做流动相时,缓冲盐与有机溶剂互相交换前一定要用5%的甲醇水溶液清洗泵,防止盐在有机相中结晶损坏泵中各组件。缓冲盐溶液的浓度不要过高,要控制在5%以下,否则高浓度的缓冲盐会磨损密封垫和活塞,降低其使用寿命。长时间使用高浓度的缓冲盐,必须用10%的异丙醇色谱级溶液清洗泵,从而保护柱塞和密封垫。  输液泵工作前要设置工作压力范围,正常工作压力一般不要超过 30 Mpa,否则经常高压会使密封环变形,产生漏液。平时分析工作要养成记录压力的好习惯,这样如果工作压力超过平时正常压力的10%~15%,就应及时查找原因。  5.紫外检测器的维护及使用注意事项  紫外检测器有一定的使用寿命,所以平时应尽量减少氘灯的使用时间,在柱平衡进行一大半之后,在走基线之前,打开检测器光源;分析结束后即可关闭检测器光源。要保持检测器四周环境清洁,实验室尽量少开窗户,定期地面进行吸尘工作,防止检测器工作时由于静电吸附灰尘颗粒覆盖在光学元件上。检测器池内存在气泡就会产生噪音,噪音会干扰定量分析,所以流动相须充分脱气后再使用。  应定期清洗流通池。如观察到流通池内部无气泡或脏物,应清洗流通池。通过注射器用异丙醇等有机溶剂冲洗池内,以清洗透镜。如是含有缓冲盐的溶剂作流动相,应在使用异丙醇冲洗前用水替换池中原先有的溶剂。

厂商

2019.02.19

材料特性表征方法之扫描电镜

  在材料领域中,扫描电镜技术发挥着极其重要的作用,利用扫描电镜可以直接研究晶体缺陷及其产生过程,可以观察金属材料内部原子的集结方式和它们的真实边界,也可以观察在不同条件下边界移动的方式,还可以检查晶体在表面机械加工中引起的损伤和辐射损伤等。  扫描电镜的结构及主要性能  扫描电镜可粗略分为镜体和电源电路系统两部分。镜体部分由电子光学系统、信号收集和显示系统以及真空抽气系统组成。  1.电子光学系统  由电子枪,电磁透镜,扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。  2.信号收集及显示系统  检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。现在普遍使用的是电子检测器,它由闪烁体,光导管和光电倍增器所组成。  3.真空系统  真空系统的作用是为保证电子光学系统正常工作,防止样品污染。  4.电源系统  电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。  扫描电镜工作原理  扫描电镜由电子枪发射出来的电子束,在加速电压的作用下,经过磁透镜系统汇聚,形成直径为5nm,经过二至三个电磁透镜所组成的电子光学系统,电子束会聚成一个细的电子束聚焦在样品表面。在末级透镜上边装有扫描线圈,在它的作用下使电子束在样品表面扫描。  由于高能电子束与样品物质的交互作用,结果产生了各种信息:二次电子、背反射电子、吸收电子、X射线、俄歇电子、阴极发光和透射电子等。这些信号被相应的接收器接收,经放大后送到显像管的栅极上,调制显像管的亮度。由于经过扫描线圈上的电流是与显像管相应的亮度一一对应,也就是说,电子束打到样品上一点时,在显像管荧光屏上就出现一个亮点。扫描电镜就是这样采用逐点成像的方法,把样品表面不同的特征,按顺序,成比例地转换为视频信号,完成一帧图像,从而使我们在荧光屏上观察到样品表面的各种特征图像。  扫描电镜衬度像  1.二次电子像  在入射电子束作用下被轰击出来并离开样品表面的核外电子叫做二次电子。这是一种真空中的自由电子。二次电子一般都是在表层5~10 nm深度范围内发射出来的,它对样品的表面形貌十分敏感,因此,能非常有效地显示样品的表面形貌。二次电子的产额和原子序数之间没有明显的依赖关系,所以不能用它来进行成分分析。  2.背散射电子像  背散射电子是被固体样品中的原子核反弹回来的一部分入射电子,背散射电子来自样品表层几百纳米的深度范围。由于它的产能随样品原子序数增大而增多,所以不仅能用作形貌分析,而且可以用来显示原子序数衬度,定性地用作成分分析。  背散射电子信号强度要比二次电子低的多,所以粗糙表面的原子序数衬度往往被形貌衬度所掩盖。  试样制备技术  和透射电镜相比,扫描电镜试样制备比较简单。在保持材料原始形状情况下,可以直接观察和研究试样表面形貌及其它物理效应(特征),这是扫描电镜的一个突出优点。扫描电镜的有关制样技术是以透射电镜、光学显微镜及电子探针X射线显微分析制样技术为基础发展起来的,有些方面还兼具透射电镜制样技术,所用设备也基本相同。但因扫描电镜有其本身的特点和观察条件,只简单地引用已有的制样方法是不够的。扫描电镜的特点是:  ①观察试样为不同大小的固体(块状、薄膜、颗粒),并可在真空中直接进行观察。  ②试样应具有良好的导电性能,不导电的试样,其表面一般需要蒸涂一层金属导电膜。  ③试样表面一般起伏(凹凸)较大。  ④观察方式不同,制样方法有明显区别。  ⑤试样制备与加速电压、电子束流、扫描速度(方式)等观察条件的选择有密切关系。  上述项目中对试样导电性要求是最重要的条件。在进行扫描电镜观察时,如试样表面不导电或导电性不好,将产生电荷积累和放电,使得入射电子束偏离正常路径,最终造成图像不清晰乃至无法观察和照相。  1.块状试样制备  导电性材料:主要是指金属,一些矿物和半导体材料也具有一定的导电性。这类材料的试样制备最为简单。只要使试样大小不得超过仪器规定(如试样直径zui大为φ25mm,最厚不超过20mm等),然后用双面胶带粘在载物盘,再用导电银浆连通试样与载物盘(以确保导电良好),等银浆干了(一般用台灯近距离照射10分钟,如果银浆没干透的话,在蒸金抽真空时将会不断挥发出气体,使得抽真空过程变慢)之后就可放到扫描电镜中直接进行观察。  非导电性材料:试样的制备也比较简单,基本可以像导电性块状材料试样的制备一样,但是要注意的是在涂导电银浆的时候一定要从载物盘一直连到块状材料试样的上表面,因为观察时候电子束是直接照射在试样的上表面的。  2.粉末状试样的制备  首先在载物盘上粘上双面胶带,然后取少量粉末试样在胶带上的靠近载物盘圆心部位,然后用洗耳球朝载物盘径向朝外方向轻吹(注意不可用嘴吹气,以免唾液粘在试样上,也不可用工具拨粉末,以免破坏试样表面形貌),以使粉末可以均匀分布在胶带上,也可以把粘结不牢的粉末吹走(以免污染镜体)。然后在胶带边缘涂上导电银浆以连接样品与载物盘,等银浆干了之后就可以进行zui后的蒸金处理。  3.溶液试样的制备  对于溶液试样我们一般采用薄铜片作为载体。首先,在载物盘上粘上双面胶带,然后粘上干净的薄铜片,然后把溶液小心滴在铜片上,等干了(一般用台灯近距离照射10分钟)之后观察析出来的样品量是否足够,如果不够再滴一次,等再次干了之后就可以涂导电银浆和蒸金了。

厂商

2019.02.18

超净实验室里|盐酸 硝酸 高纯酸 纯化装置

酸纯化器也称酸蒸馏器、高纯酸提取系统、酸纯化系统、亚沸腾蒸馏器、高纯酸蒸馏纯化器。常规实验室分析中,各种酸及试剂被广泛应用于日常的样品处理及分析中。然而,令众多消费者被感头疼的是酸及试剂的纯度。许多实验室常常由于酸的纯度较差,造成分析结果的偏差与错误。市售的超纯酸往往由于价格较贵,很难满足日常分析中对酸的大量需求。因此,提纯优化酸的质量,是zui为经济可行的途径。DST-1000酸逆温差纯化器蒸馏出的高纯酸,可以满足ICP、ICP-MS极低的检测限需要,为苛刻的分析应用提供实验室级超纯酸。较短的时间内纯化低成本的酸试剂以达到痕量分析要求,节约成本,方便实验。 酸纯化器是利用热辐射原理,保持液体温度低于沸点温度蒸发,再将其酸蒸气冷凝从而制备高纯水和高纯试剂,广泛应用于样品处理及分析中。CH高纯酸蒸馏系统,所用容器均采用Teflon耐腐蚀无吸附塑料,可以处理HNO3、HCL、HF等实验室的常用酸。实验证明将金属杂质含量约10PPB的酸经过一次蒸馏后,金属杂质含量可以降低到0.01PPB左右。若对酸要求更高,可增加提纯次数。    DST-1000可以一次纯化1L原酸,并可将1 ppb级金属元素原酸转换成10ppt级高纯酸,由此为金属痕属元素分析实验室节约了巨大成本。DST-1000可蒸馏硝酸,盐酸和HF,并能在约12小时内蒸馏出500ml高纯酸。对于高纯酸需求量多的实验室,可以选用DST-4000。设计特点DST-1000配置冷凝筒,外配加热单元。所有接触液体的部分皆为PFA材质。需要纯化的酸通过底部外置的试管注入,试管有液位指示标记。电源提供加热套热源。由控制器控制温度,分高中低三档。置酸室中的酸缓慢加热,并产生酸蒸气。酸蒸气在冷凝室中冷凝,形成水珠,通过收集通道,进入1000ml收集瓶。圆弧形的蒸馏筒顶部方便水蒸气冷凝和酸蒸气冷凝。无需水冷,安装简易,减少浪费。收集瓶配有转换盖使得酸蒸馏的时候提供空气冷凝,当收集瓶装满酸的时候可以排出空气。两个排气口都配备滤膜,可以防止空气中的杂质进入。压力平衡管保持蒸馏过程中压力平衡。高纯酸的产酸速率与蒸酸温度有关。gao档位温度的产酸速率约为40ml/hr。蒸酸温度只影响产酸速率,不影响产酸纯度。加热元件加热酸的温度远低于酸的沸点,因此不会产生酸蒸气夹带杂质污染高纯酸的现象。较低的zui高温限制值及内置的保险丝,确保蒸馏过程的安全。在无人值守时使用DST-1000或长期蒸酸时,可使用低档位温度设置。在需要取用高纯酸时,可随时停止蒸馏。当置酸室内剩余酸的体积约为50-100ml时,可手动关掉加热单元。冷却后,将剩余的酸排到废液桶内。DST-1000的安装简单,底面尺寸仅为36.5cm*20cm,高为45cm。DST-1000的主机可放在zui小的通风厨内使用。其控制器通过3米的电线连接主机,可放置于通风橱外边使用。

厂商

2019.02.15

正确使用化学品安全技术说明书

  化学品安全技术说明书(Safety data sheet for chemical products, SDS)是涵盖化学品基本特性、燃爆性能、健康及环境危害、安全处置和储存、泄露应急处理以及法规遵从性等信息的综合文件,共包括16部分内容。GB/T 17519-2013《化学品安全技术说明书编写规定》对每部分内容进行了规范。  实验安全无小事,1997-2016年间全国高校实验室共发生110多起典型事故。这些事故中有相当一部分是由于实验人员不规范操作造成的或者是由于对化学试剂性质不了解,在事故发生时处理不当使得事态进一步扩大。对这类事故的一个有效预防手段就是合理使用SDS。  首先,对每一个进入实验室进行实验操作的工作人员在进入实验室之前都应该经过专门培训,熟知常用化学试剂的性质,掌握一般事故发生时的处理措施;  其次,每一个实验室都应该配备一份本实验室所有试剂的SDS或者制作成化学品安全周知卡,如图1所示,摆放在实验室中最容易被拿到的地方以备事故发生时实验人员可以第yi时间找到该化学品危险性概述、急救措施和消防措施。确保实验人员能有针对性的采取正确的措施将事故损失降到zui低。  16部分内容进行简单介绍  第yi部分,化学品及企业标识。  主要描述化学品的中英文名称、俗名、生产企业的具体信息。  第二部分,成分/组成信息。  主要描述化学品的有害成分、含量及CAS号。  第三部分,危险性概述。  主要描述化学品危险性类别、侵入人体的途径、健康危害、环境危害以及燃爆危险。如western blot常用的丙烯酰胺是一种蓄积性的神经毒物,主要损害神经系统。中毒主要因皮肤吸收引起。该物质可燃,有毒,为可疑致癌物。  第四部分,急救措施。  人体在没有防护措施的情况下暴露于大量的化学品时应该采取的紧急处理措施,如苯酚进入眼睛时应立即翻开上下眼睑,用流动清水或生理盐水冲洗至少15分钟,就医。  第五部分,消防措施。  主要描述化学品的危险特性,如甲醇遇明火、高热能会引起燃烧爆炸;其蒸汽比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃,灭火剂可用抗性泡沫、二氧化碳、干粉、砂土扑救。再比如盐酸能与一些活性金属粉末发生反应,放出氢气,如遇火情,灭火时应选用碱性物质如碳酸氢钠、碳酸钠、消石灰等中和,也可用大量水扑救。  第六部分,泄露应急处理。  描述化学品泄露之后的应急处理措施。该部分描述了各种化学品小量泄漏及大量泄漏时针对性的处理措施。  第七部分,操作处置与储存。  主要描述了操作注意事项与储存注意事项:比如盐酸应贮存于阴凉、通风的库房,库温不超过30℃,相对湿度不超过85%,由于盐酸易与胺类、碱金属、易(可)燃物发生反应,因此存放时应与这些物质分开存放,同时储存区应备有泄露应急处理设备和合适的收容材料。  第八部分,接触控制/个体防护。  描述了化学品zui高容许浓度、监测方法以及呼吸系统、眼睛、身体、手的防护。其中手防护是我们实验过程中最常使用,也是最容易做到的一种防护措施。但是不同性质的化学物质需要使用相应材质的手套才能达到防护效果,比如使用盐酸时应佩戴橡胶耐酸碱手套;使用乙腈时应佩戴橡胶耐油手套,实验室常用的ding腈手套就属于橡胶耐油手套。选购手套时zui好看清材质与说明,不要乱用一通。  第九部分,理化特性。  主要描述了化学品的外观与性状、熔沸点、闪点、爆炸上限以及溶解性和主要用途。  第十部分,稳定性和反应性。  主要描述了化学品的稳定性、禁配物、避免接触的条件、聚合危害以及分解产物信息。  第十一部分,毒理学资料。  主要描述了引起化学品急性、亚急性、慢性中毒的中毒剂量,中毒表现以及致癌、致畸、致突变特性。  第十二部分,生态学资料。  主要描述化学品的生物降价性、非生物降解性以及生物富集性。例如,汞是常见的重金属污染物之一,主要以颗粒物、元素蒸汽、二氯化gong蒸汽、无机亚汞、甲基汞化合物等形式释入环境。大部分汞以无机的和苯基的形态进入水环境、通过细菌的甲基化活动进入水生生物链,进一步在鱼虾类动物体内发生生物蓄积,最终通过这些生物的食用进入人体。  第十三部分,废弃处理。  主要描述了化学品的废弃物性质以及废弃处置方法。一般情况下实验室废弃试剂都是交由有专业资质的部门统一回收处理,实验室工作人员通常只需做好废弃物保管工作即可。  第十四部分,运输信息。  主要描述化学品的危险货物编号、包装标志、包装方法以及运输注意事项。每一种化学试剂根据其理化特性的不同,包装是有一定区别的,比如高氯酸的包装方法有以下几种:玻璃瓶或塑料桶(罐)外全开口钢桶;磨砂口玻璃瓶或螺纹口玻璃瓶外普通木箱;安瓿瓶外普通木箱。  第十五部分,法规信息。  主要描述相关法律法规中对该化学品安全生产、使用、储存、运输、装卸等方面的相应规定。  第十六部分,其他信息。  化学品安全技术说明书的获取方式:  1、生产企业应随化学品向用户提供该文件,所以您可以在购买产品时向化学品供应商索要;

厂商

2019.02.14

色谱常用检测器如何清洗?

  在色谱操作过程中,检测器有时受固定相流失及样品中的高沸点成分、易分解及腐蚀性物质的作用而被沾污,以至不能正常进行工作,因而提出了如何清洗检测器的问题。若沾污的物质仅xian于高沸点成分,通常可将检检器加热至zui高使用温度后,再通入载气,就可清除。使用有放射源的检定器时加热要多加小心,例如通常以氚源作成的电子捕获检定器一般都不能超过200度,此外还应注意加热的温度不能损坏检测器的绝缘材料。如用加热法不适宜,也可以用纯的丙酮等溶液从进样口注入(每次可注入几十微升)进行清洗,这在沾污程度较轻时是有效的。  若以上方法都不能解决沾污问题,应将鉴定器卸下进行较彻底的清洗,先选择适宜溶剂,要既能溶解沾污物,又不能损坏鉴定器,用注射器注入测量池进行清洗。若有条件,用超生波清洗就更理想些,要注意的是:清洗过的部分不能用手摸。  一、热导检测器TCD的清洗  将热导检测器冷却至室温并取下色谱柱,将隔垫置于检测器入口的螺母或者接头组件上,将螺母或接头组件置于检测器接头上并拧紧,确认有尾吹气流,通过隔垫向检测器注射10μL~100μL甲苯、苯、丙酮、十氢萘等溶剂,注射总量至少1mL,完成注射之后允许尾吹气继续流动10min以上,缓慢增加热导池的温度,使其比正常操作温度高20℃~30℃,30min之后将温度降低至正常值,并按照正常情况安装色谱柱。  注意:不能向检测器中注射卤代溶剂!  对于柱流失、样品污染产生沉积物污染热导检测器。引起基线漂移、噪声增加或测试色谱图响应改变时,可以采用热清洗,即通过加热检测器池体以蒸发掉污染物。  二、氢焰离子化检测器FID的清洗  当沾污不太严重时,可不必卸下清洗,此时只需要将色谱柱取下,用一根管子将进样口与检测器联接起来,然后通载气并将检测器炉温升至120度以上,从进样口先注入20微升左右的蒸馏水,再用几十微升丙酮或氟里昂(Freon113等)溶剂进行清洗。在此温度下保持1-2小时检查基线是否平稳,若仍不满意可重复上述操作或卸下清洗。  当沾污比较严重时,必须卸下清洗。先卸下收集极,正极,喷嘴等,若喷嘴是石英材料制成的,先将其放在水中进行浸泡过夜。若喷嘴是不锈钢等材料做成,则可与电极等一起,先小心用细砂纸(300-400#)打磨,再用适当溶剂(浸泡如甲醇与苯1:1),也可以用超声波清洗,zui后用甲醇洗净,放置于烘箱中烘干。  注意:勿用含卤素的溶剂(如LV仿、二氯甲烷等)。以免与聚四氟乙烯材料作用,导致噪声增加。  洗净后的各个部件,要用镊子取,勿用手摸。烘干后装配时也要小心,否则会再度沾污。装入仪器后,先通载气30分钟,再点火升高检测室温度,zui好先在、120度保持数小时之后,再升至工作温度。  三、电子捕获检测器ECD的清洗  电子捕获检测器中有放射源,通常为Ni63,因此要特别小心。  先拆开检测器中有放射源箔片,然后用2:1:4的硫酸、硝酸及水溶液洗检测器的金属及聚四氟乙烯部分。当清洗液已干净时,再用蒸馏水清洗,然后用丙酮洗,再置于100度左右的烘箱中烘干。对H3源箔片,先用己烷或戊烷淋洗,绝不能用水洗。废液要用大量水稀释后弃去。对Ni63源更应小心,绝不能与皮肤接触,只能用长镊子操作。先用乙酸乙酯加碳酸钠淋洗或用苯淋洗,再于沸水中浸泡5分钟,取出烘干,装入鉴定器中。装入仪器后通载气30分钟,再升至操作温度,几小时后备用。清洗剩下的废液要用大量水稀释后才能弃去。  四、氮磷检测器(NPD)的清洗  气相色谱仪NPD需要进行定期清洗,在大多数情况下,只包括清洗收集极和喷嘴。一般气相色谱仪都配有刷子和金属丝。刷子用于清扫喷嘴口的颗粒物。不要迫使太粗的金属丝或探针进入喷嘴口,否则喷嘴口将被破坏若喷嘴变形,将会导致灵敏度下降或峰形变差。用刷子清洁之后,可以用超声波清洗各个部件。最终将需要更换喷嘴,因此,强烈推荐在手头有备用的喷嘴。  经过一段时间的使用,来自于铷珠或样品的残留物将会积聚在收集极上,并导致基线问题。在更换铷珠2-3次后,应该清洗检测器。  每次拆装均会造成金属垫片等的磨损。几次拆装之后(5次或更多次),密封环就可能无效导致基线不稳。更换检测器部件时一定要将检测器温度降低到室温。 因为NPD没有任何火焰,其喷嘴不像FID喷嘴那样收集二氧化硅和燃烧烟尘。虽然可以清洗喷嘴,但是简单的用新喷嘴取代脏喷嘴往往更加实用。清洗喷嘴记得用金属丝,并且是清洁的,小心操作,千万不要损坏喷嘴的内部,也可以使用超声波清洗喷嘴。

厂商

2019.02.14

食品中农药残留的多种检测方法

  农药残留关系着食品安全,是重要的食品检测的项目,现阶段食品中农残的检测方法多种多样,除了最常用的色谱质谱联用外,还有波谱、毛细管电泳、免疫分析和酶抑制法等多种检测技术。  农药残留(Pesticide residues), 是农药使用后一个时期内没有被分解而残留于生物体、收获物、土壤、水体、大气中的微量农药原体、有毒代谢物、 降解物和杂质的总称。  施用于作物上的农药,其中一部分附着于作物上,一部分散落在土壤、大气和水等环境中,环境残存的农药中的一部分又会被植物吸收。残留农药直接通过植物果实或水、大气到达人、畜体内,或通过环境、食物链最终传递给人、畜。农残剥离器 可以降解 水果蔬菜表面的农药残留。  1.波谱法  该方法是根据有机磷农药中某些官能团或水解、还原产物与特殊的显色剂在特定条件下发生氧化、磺酸化、酯化、络合等化学反应,产生特定波长的颜色反应来进行定性或定量(限量) 测定。  2.色谱法  (1)薄层色谱法(TLC)  薄层色谱法是一种成熟的、应用也较广的微量快速检测方法。它在农药残留测定技术上有它独特的用处,它既是重要的分离手段,又是定性、定量的分析方法。  检测过程一般先用适宜的溶剂提取有机磷农药,经纯化浓缩后,在薄层硅胶板上分离展开,显色后与标准的有机磷农药比较Rf 值进行定性测定或用仪器进行定量测定。  (2)气相色谱法(GC)  该方法是利用经提取、纯化、浓缩后的有机磷农药注入气相色谱柱,程序化升温汽化后,不同的有机磷农药在固相中分离,经不同的检测器检测扫描绘出气相色谱图,通过保留时间来定性,通过峰或峰面积与标准曲线对照来定量。一次可同时测定多组份,简便快捷,灵敏度高,准确性也好。而色谱条件的zui佳设定是气相色谱技术的关键。  (3)高效液相色谱法(HPLC)  高效液相色谱法是在液相色谱柱层析的基础上,引入气相色谱理论并加以改进而发展起来的色谱分析方法。高效液相色谱法在农药残留分析的应用越来越广泛,是因为高效液相色谱法能适合分析沸点高而不太容易汽化、热不稳定和强极性农药及其代谢产物;且可以与柱前提取、纯化及柱后荧光衍生化反应和质谱等联用,易实现分析自动化;同时一些新型检测器的问世在一定程度上提高了高效液相色谱法的检测灵敏度。与气相色谱法相比,不仅分离效能好,灵敏度高,检测速度快,而且应用面广。  3.色谱一质谱联用法  色谱一质谱联用技术既发挥了色谱法的高分离能力,又发挥了质谱法的高鉴别能力,能在多种残留物同时存在的情况下对其进行定性定量分析,尤其适合于多残留分析。GC—MS是目前应用较为成熟且广泛的色质联用技术,它既具有气相色谱的高分离性能,又具有质谱准确鉴定化合物结构的特点,可达到同时定性、定量检测的目的,多用于农药代谢物、降解物的检测和多残留检测。  4.毛细管电泳  过去农药多用HPIE和GC的方法测定,但最近可用CE分离测定。分离模式主要用CZE和毛细管胶束电动色谱(MEKC)。毛细管电泳已用于奶、啤酒、谷物、水果、蔬菜和猪肉等食品中的农药残留的测定。  5.免疫分析技术  免疫分析技术应用于农药残留检测方面的有放射免疫分析和酶免疫分析,目前酶免疫分析技术尤其是酶联免疫分析在农药残留检测中的应用研究在国外非常活跃,应用也日趋普遍。ELISA是利用抗原与抗体的特异性、可逆性结合反应为基础的检测方法,其检测水平可达ng甚至pg级。ELISA广泛应用于食品中农药残留如有机磷农药、有机氯农药、除草剂、氨基甲酸酯类农药、兽药残留(如氯霉素)、真菌毒素等的分析检测上。作为一种快速筛选方法,EKSIA法在分析复杂基体样品时,因为基体干扰和交联反应等问题,往往存在假阳性的问题。因此如果需要对样品进行定量和确证还需要其他的分析方法。  6.酶抑制法  酶抑制法是研究最多且相对成熟的一种对部分农药进行残留快速检测的技术。酶抑制法测定农药残留应用较多的是乙酰胆碱酯酶,其对有机磷农药较敏感,测定的灵敏度高,选择性强,但价格昂贵,而且部分农药对其的抑制并不明显,需要附加氧化助剂或预处理,以提高对农药检测的灵敏度。于是有人研究用丁酰胆碱酯酶及动植物酯酶代替乙酰胆碱酯酶。于基成等通过对大量的植物进行筛选,初步获得了活性较高的植物酶源,并利用酶抑制法快速检测了蔬菜中敌百虫、对硫磷等有机磷农药残留。  7.生物传感器  应用固定化AChE的薄膜和pH电极组装的生物传感器测定了有机磷和氨基甲酸酯类农药残留。目前,生物传感器法的研制与应用是农药残留检测技术中的研究热点,在测定方法多样化、提高测量灵敏度、缩短响应时间、提高仪器自动化程度以及适应现场检测能力等方面已取得了长足进步。用于研究农药残留检测的生物传感器所使用的生物物质主要为酶、全细胞、细胞器、受体或抗体等,相应有酶传感器、全细胞传感器和免疫传感器等,尤其是免疫传感器的应用可大大提高检测灵敏度并大大缩短检测时间。而生物传感器与光纤技术结合的产物——光导纤维传感器,则在快速检测和在线检测中有着广阔的应用前景。  8.活体检测法  活体检测法是利用活体生物来进行生物测定的技术。如农药与细菌作用后可影响细菌的发光强度,通过细菌发光强度,以检测农药残留量。但该法只对少数农药有反应,无法辨别残留的种类,准确性较低。敏感家蝇检测方法就是用样品喂食家蝇,根据家蝇的死亡率测定农药残留量。该技术方法直接、过程简单、容易掌握,无需复杂仪器用户便可自行检测,缺点是检测时间较长,定性粗糙准确性低,只对少数农药有效,而且由于其他生物对不同农药的毒性反应与人畜可能不同,因此影响对农药残留量的判断。

厂商

2019.02.13

误差和不确定度到底有什么区别?

  1.区分误差和不确定度很重要。误差定义为被测量的单个结果和真值之差。所以,误差是一个单个数值。原则上已知误差的数值可以用来修正结果。  注意:误差是一个理想的概念,不可能被确切地知道。  2.不确定度是以一个区间的形式表示,如果是为一个分析过程和所规定样品类型做评估时,可适用于其所描述的所有测量值。一般不能用不确定度数值来修正测量结果。  3.误差和不确定度的差别还表现在:修正后的分析结果可能非常接近于被测量的数值,因此误差可以忽略。但是,不确定度可能还是很大,因为分析人员对于测量结果的接近程度没有把握。  4.测量结果的不确定度并不可以解释为代表了误差本身或经修正后的残余误差。  5.通常认为误差含有两个分量,分别称为随机分量和系统分量。  6.随机误差通常产生于影响量的不可预测的变化。这些随机效应使得被测量的重复观察的结果产生变化。分析结果的随机误差不可消除,但是通常可以通过增加观察的次数加以减少。  实际上算术平均值或一系列观察值的平均值的实验标准差不是平均值的随机误差。它是由一些随机效应产生的平均值不确定度的度量。由这些随机效应产生的平均值的随机误差的准确值是不可知的。  7.系统误差定义为在对于同一被测量的大量分析过程中保持不变或以可以预测的方式变化的误差分量。它是独立于测量次数的,因此不能在相同的测量条件下通过增加分析次数的办法使之减小。  8.恒定的系统误差,例如定量分析中没有考虑到试剂空白,或多点设备校准中的不准确性,在给定的测量值水平上是恒定的,但是也可能随着不同测量值的水平而发生变化。  9.在一系列分析中,影响因素在量上发生了系统的变化,例如由于试验条件控制得不充分所引起的,会产生不恒定的系统误差。  例1、在进行化学分析时,一组样品的温度在逐渐升高,可能会导致结果的渐变。  例2、在整个试验的过程中,传感器和探针可能存在老化影响,也可能引入不恒定的系统误差。  10.测量结果的所有已识别的显著的系统影响都应修正。注意测量仪器和系统通常需要使用测量标准或标准物质来调节或校准,以修正系统影响。与这些测量标准或标准物质有关的不确定度及修正过程中存在的不确定度必须加以考虑。  11.误差的另一个形式是假误差或过错误差。这种类型的误差使测量无效,它通常由人为失误或仪器失效产生。记录数据时数字进位、光谱仪流通池中存在的气泡、或试样之间偶然的交叉污染等原因是这类误差的常见例子。  12.有此类误差的测量是不可接受的,不可将此类误差合成进统计分析中。然而,因数字进位产生的误差可进行修正(准确),特别是当这种误差发生在首位数字时。  13.假误差并不总是很明显的。当重复测量的次数足够多时,通常应采用异常值检验的方法检查这组数据中是否存在可疑的数据。所有异常值检验中的阳性结果都应该小心对待,可能时,应向实验者核实。通常情况下,不能仅根据统计结果就剔除某一数值。  14.一般实验室获得的不确定度并没有考虑出现假误差或过错误差的可能性。

厂商

2019.02.13

新疆理化所研发出含汞废水的高效吸附剂

汞作为危害zui大的重金属之一,被广泛应用于农药、氯碱化学、电池、电子器件等行业。水中的汞离子活性高,对人体健康和生态系统产生严重威胁。汞污染的治理已成为全球环境科学技术领域关注的主要问题之一。中国国家污水综合排放标准对工业废水中汞的排放规定了严格的限量,zui大允许浓度为0.05 mg/L。因此,含汞废水的深度处理成为了汞污染治理领域的一个挑战,研究和开发能高效去除水生环境中汞离子的吸附材料成为保障生态环境安全的迫切需求。HPFC对溶液中汞离子的吸附中国科学院新疆理化技术研究所环境科学与技术研究室科研人员以羧甲基壳聚糖为骨架,用戊二醛做交联剂,聚乙烯醇为致孔剂,将多支化的聚乙烯亚胺交联到羧甲基壳聚糖上得到多孔的、半互穿的三维网络结构的聚乙烯亚胺功能化的羧甲基壳聚糖纳米吸附剂(HPFC),制备出一种对汞离子具有高效吸附性能的材料。该材料具有以下特性:20 mg的 HPFC对20 mL、浓度798.1 mg/L 汞离子吸附45min后,去除率达到99.9%,最终汞离子的浓度下降至0.02 mg/L,低于国家污染排放标准;zui大吸附容量1594 mg/g,同时该材料有很强的耐酸性,当溶液pH低至1.5时,汞离子的去除率仍然高达90%;吸附选择性好,对Hg(II)的吸附系数比对Cu(II)、Cd(II)、Pb(II)离子的吸附系数高3~4个数量级;稳定性好,5次重复使用后对Hg(II)去除率仍不低于90%。研究人员通过FTIR和XPS光谱分析,结合密度泛函理论(DFT)计算,阐明了HPFC对Hg的吸附主要来源于吸附剂上含氮官能团和含氧官能团的协同作用。

厂商

2019.02.12

紫外可见分光光度计的结构原理及应用

  一、什么是紫外可见分光光度计  紫外可见分光光度计是一类很重要的分析仪器,无论在物理学、化学、生物学、医学、材料学、环境科学等科学研究领域,还是在化工、医药、环境检测、冶金等现代生产与管理部门,紫外可见分光光度计都有广泛而重要的应用。  分光光度计是杜包斯克(Duboscq)和奈斯勒(Nessler)等人在1854年将朗伯-比尔(Lambert-Beer)定律应用于定量分析化学领域,并且设计了第yi台比色计。到1918年,美国国家标准局制成了第yi台紫外可见分光光度计。此后,紫外可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,使光度法的灵敏度和准确度也不断提高,其应用范围也不断扩大。目前市场上有两类主流产品:扫描光栅式分光光度计和固定光栅式分光光度计。  二、紫外可见分光光度计的发展  在分光元器件方面,经历了棱镜、机刻光栅和全息光栅的过程,商品化的全息闪耀光栅已迅速取代一般刻划光栅。在仪器控制方面,随着单片机、微处理器的出现以及软硬件技术的结合,从早期的人工控制进步到了自动控制。在显示、记录与绘图方面,早期采用表头(电位计)指示、绘图仪绘图,后来用数字电压表数字显示,如今更多地采用液晶屏幕或计算机屏幕显示。在检测器方面,早期使用光电池、光电管,后来更普遍地使用光电倍增管甚至光电二极管阵列。阵列型检测器和凹面光栅的联合应用,使仪器的测量速度发生了质的飞跃。  在仪器构型方面,从单光束发展为双光束,现在几乎所有高级分光光度计都是双光束的,有些高精度的仪器采用双单色器,使得仪器在分辨率和杂散光等方面的性能大大提高。随着集成电路技术和光纤技术的发展,联合采用小型凹面全息光栅和阵列探测器以及USB接口等新技术,已经出现了一些携带方便、用途广泛的小型化甚至是掌上型的紫外可见分光光度计。而光电子技术和MEMS技术的发展,使得有可能将分光元件和探测器集成在一块基片上,制作微型分光光度计。随着发光二极管(LED)光源技术及产业的日益成熟,以LED为光源的小型便携又低廉的分光光度计已成为研究开发的热点。除了空间色散的分光方式,也有人对声光调制滤光和傅立叶变换光谱在紫外可见区的应用进行了研究。  仪器的软件功能可以极大地提升仪器的使用性能和价值,现代分光光度计生产厂商都非常重视仪器配套软件的开发。除了仪器控制软件和通用数据分析处理软件外,很多仪器针对不同行业应用开发了专用分析软件,给仪器使用者带来了极大的便利。  三、紫外可见分光光度计的结构  一般地,紫外可见分光光度计主要由光源系统、单色器系统、样品室、检测系统组成,如图1所示。光源发出的复合光通过单色器被分解成单色光,当单色光通过样品室时,一部分被样品吸收,其余未被吸收的光到达检测器,被转变为电信号,经电子电路的放大和数据处理后,通过显示系统给出测量结果。  分光光度计的主要部件如下所述。  光源:发出所需波长范围内的连续光谱,有足够的光强度,稳定。可见光区:钨灯,碘钨灯(320~2500nm)紫外区:氢灯,氘灯(180~375nm);氙灯:紫外、可见光区均可用作光源。  单色器:将光源发出的连续光谱分解为单色光的装置。  棱镜:依据不同波长光通过棱镜时折射率不同。  光栅:在镀铝的玻璃表面刻有数量很大的等宽度等间距条痕(600、1200、2400条/mm)。利用光通过光栅时发生衍射和干涉现象而分光。  吸收池:用于盛待测及参比溶液。可见光区:光学玻璃池;紫外区:石英池。  检测器:利用光电效应,将光能转换成电流讯号。光电池,光电管,光电倍增管。  检流计(指示器):刻度显示或数字显示、自动扫描记录。  四、紫外可见分光光度计的原理  物质的吸收光谱本质上就是物质中的分子和原子吸收了入射光中的某些特定波长的光能量,相应地发生了分子振动能级跃迁和电子能级跃迁的结果。由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同,因此,每种物质就有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础。  分光光度分析就是根据物质的吸收光谱研究物质的成分、结构和物质间相互作用的有效手段。紫外可见分光光度法的定量分析基础是朗伯-比尔(Lambert-Beer)定律。即物质在一定浓度的吸光度与它的吸收介质的厚度呈正比,其数学表示式如下  A=abc  A—吸光度;a—摩尔吸光系数;b—吸收介质的厚度;c—吸光物质的浓度。  光学系统原理  由光源钨灯和氘灯发出的复合光经由步进电机控制带动反光镜M1,反射通过入射狭缝,并进入单色器中,光栅衍射出的单色光经准直镜M2调焦,会聚通过出射狭缝,光束到达斩光器时,一段时间内的光射成为参比光路,另一段时间内的光透射成为样品光路。zui后两光交替地照射在检测器(光电倍增管),如图2所示。  电器系统原理  光电倍增管检测出的信号经由前置放大器,驱动卡传递给微机控制器,由微机控制器推动驱动卡居中协调各部分,如图3所示。  五、紫外可见分光光度计的特点  分光光度法对于分析人员来说,可以说是最常用和有效的工具之一。几乎每一个分析实验室都离不开紫外可见分光光度计。分光光度法具有以下主要特点。  1.灵敏度高  由于新的显色剂的大量合成,并在应用研究方面取得了可喜的进展,使得对元素测定的灵敏度有所推进,特别是有关多元络合物和各种表面活性剂的应用研究,使许多元素的摩尔吸光系数由原来的几万提高到数十万。  2.选择性好  目前已有些元素只要利用控制适当的显色条件就可直接进行光度法测定,如钴、铀、镍、铜、银、铁等元素的测定,已有比较满意的方法了。  3.准确度高  对于一般的分光光度法,其浓度测量的相对误差在1~3%范围内,如采用示差分光光度法进行测量,则误差可减少到0.X%。  4.适用浓度范围广  可从常量(1%~50%)(尤其使用示差法)到痕量(10-8~10-6%)(经预富集后)。  5.分析成本低、操作简便、快速、应用广泛  由于各种各样的无机物和有机物在紫外可见区都有吸收,因此均可借此法加以测定。到目前为止,几乎化学元素周期表上的所有元素(除少数放射性元素和惰性元素之外)均可采用此法。在国际上发表的有关分析的论文总数中,光度法约占28%,我国约占所发表论文总数的33%。  六、紫外可见分光光度计的应用  1.检定物质  根据吸收光谱图上的一些特征吸收,特别是zui大吸收波长λ max和摩尔吸收系数ε,是检定物质的常用物理参数。  2.与标准物及标准图谱对照  将分析样品和标准样品以相同浓度配制在同一溶剂中,在同一条件下分别测定紫外可见吸收光谱。若两者是同一物质,则两者的光谱图应完全一致。如果没有标样,也可以和现成的标准谱图对照进行比较。这种方法要求仪器准确,精密度高,且测定条件要相同。  3.比较zui大吸收波长吸收系数的一致性  由于紫外吸收光谱只含有2~3个较宽的吸收带,而紫外光谱主要是分子内的发色团在紫外区产生的吸收,与分子和其它部分关系不大。具有相同发色团的不同分子结构,在较大分子中不影响发色团的紫外吸收光谱,不同的分子结构有可能有相同的紫外吸收光谱,但它们的吸收系数是有差别的。如果分析样品和标准样品的吸收波长相同,吸收系数也相同,则可认为分析样品与标准样品为同一物质。  4.反应动力学研究  借助于分光光度法可以得出一些化学反应速度常数,并从两个或两个以上温度条件下得到的速度数据,得出反应活化能。  5.纯度检验  紫外吸收光谱能测定化合物中含有微量的具有紫外吸收的杂质。如果化合物的紫外可见光区没有明显的吸收峰,而它的杂质在紫外区内有较强的吸收峰,就可以检测出化合物中的杂质。  6.氢键强度的测定  不同的极性溶剂产生氢键的强度也不同,这可以利用紫外光谱来判断化合物在不同溶剂中氢键强度,以确定选择哪一种溶剂。  7.络合物组成及稳定常数的测定  金属离子常与有机物形成络合物,多数络合物在紫外可见区是有吸收的,我们可以利用分光光度法来研究其组成。

厂商

2019.02.12

各元素分析仪器的分析过程及性能对比

  元素分析仪器顾名思义肯定是用来做元素分析的,那么,小析姐考考你,什么是元素?元素是怎定义?我们究竟要检测的是个什么东西?  元素定义:是具有相同质子数(核电荷数)的同一类原子的总称.到目前为止,人们在自然中发现的元素有90余种,人工合成的元素有20余种.  元素(element)又称化学元素,指自然界中一百多种基本的金属和非金属物质,它们只由几种有共同特点的原子组成,其原子中的每一原子核具有同样数量的质子,质子数来决定元素是由种类。  明白了我们要检测的东西是什么,接下来就进入正题,看看各元素分析仪器的分析过程及性能对比。  主要元素分析仪器:  1.紫外\可见光分光光度计(UV);  2.原子吸收分光光度计(AAS);  3.原子荧光分光光度计(AFS);  4.原子发射分光光度计(AES);  5.质谱(MS);  6.X射线分光光度计(XRF );  常见分析仪器的归属类型  ICP-OES:是原子发射光谱的一种,原名ICP-AES后改名为ICP-OES;  ICP-MS: 无机质谱(MS),用于分析元素价态及含量,也用于同位素分析;  FAAS、GAAS和 HGAAS(HAAS):火焰原子吸收、石墨炉原子吸收和氢化物原子吸收。  各种元素分析仪器分析过程、特点及应用  紫外\可见光分光光度计(UV)  分析过程:  原理:利用比耳定律(A=ξbC),其中ξ为摩尔吸光系数,对于固定物质为常数;b为样品厚度;C为样品浓度;A为吸光度。很明显,在样品厚度和摩尔吸光系数一定的情况下A与样品浓度成正比。  主要特点  1.灵敏度高  2.选择性好  3.准确度高  4.适用浓度范围广  5.分析成本低、操作简便、快速、应用广泛  原子吸收和荧光分光光度计  分析过程  主要特点  1、灵敏度高FAAS可以测试ppm-ppb级的金属;  2、原子吸收谱线简单,选择性好,干扰少。  3、操作简单、快速,自动进样每小时可测定数百个样品;  4、测量精密度好,火焰吸收精密度可以达到1-2%,非火焰可以达到5-10%  5、测定元素多,可测试70多种元素,利用化学反应还可间接测试部分非金属。  主要特点  1、有较低的检出限,灵敏度高。  2、干扰较少,谱线比较简单。  3、仪器结构简单,价格便宜。  4、分析校准曲线线性范围宽,可达3~5个数量级。  5、由于原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定。  原子发射分光光度计  分析过程  主要特点  1、高温,104K;  2、环状通道,具有较高的稳定性;  3、惰性气氛,电极放电较稳定;  4、具有好的检出限,一些元素可达到10-3~10-5ppm;  5、ICP稳定性好,精密度高,相对标准偏差约1%;  6、基体效应小;  7、光谱背景小;  8、自吸效应小;  9、线性范围宽;  10、一般只能测定液体。  质谱分析法  主要过程  主要特点  1.质量测定范围广泛;  2.分辨高;  3.绝dui灵敏度,可检测的最小样品量。  X荧光光度计(XRF)  分析过程  特点:  1、快速,测试一个样品只需2min-3min;  2、无损,测试过程中无需损坏样品,直接测试;  3、含量范围广;  各元素测试仪器优劣对比  1.工作范围  2.无机分析产品的检出限  3.干扰  4.费用

厂商

2019.01.31

新型超分辨显微技术的研究进展

  从17世纪开始,现代生物学的发展就与显微成像技术紧密相关。然而,由于受光学衍射极限的影响,传统光学显微成像分辨率最小约为入射光波长的一半。因此,科学家们一直在不断努力,试图寻找突破光学显微镜分辨极限的方法。  在超分辨显微技术飞速发展的同时,现有成像技术的缺陷也日益显现,例如成像分辨率和成像时间不可兼得;对透镜制造技术提出了一定要求的同时,也限制了观测的视野;日益复杂的设备使得操作和维护也越来越困难……为了解决上述问题,需要发展一些新型的超分辨技术以适应不同领域的要求。  表面增强超分辨技术  现有超分辨技术在样品纵向图像的获取上可分为两类:  1. 通过增加可获取的信号纵深以更好地获取样品的三维图像,如双光子荧光显微技术等;  2.通过降低可获取的信号纵深以更好地获取样品表面的图像,如等离子结构照明显微技术(PSIM)和基于芯片的宽视场纳米显微术(CWN)等。  下面主要介绍第2类技术中的两种新型前沿显微技术,二者都是利用特殊材料的样品作为载物台对照明光进行有效的调制,以增强样品表面的成像效果。  等离子结构照明显微技术  PSIM是于2014年由WeiFF等在传统结构光照明显微(SIM)原理的基础上利用表面等离子体干涉(SPI)代替光学干涉,从而获得达到SIM两倍分辨率的新型超分辨显微技术,该技术的关键在于对表面增强拉曼散射(SERS)的应用。  近年来,SIM由于其光毒性低、成像速度快、适用于观察活细胞等优点得到了越来越广泛的应用,然而传统SIM由于原理上的限制只能达到衍射极限两倍左右的成像分辨率。PSIM将SIM与可调制的SPI结合起来,用SPI序列作为新的照明光源代替传统SIM中的激光干涉条纹,利用振镜扫描实现条纹变化,通过重建达到了相当于传统SIM两倍的分辨率。  图1 PSIM技术下的直径为100 nm的荧光颗粒。(a)传统的荧光显微;(b)重建的PSIM图像;(c)对应的SEM图像;(d-e)a,b两图的傅里叶变换,黄色虚线代表光学传递函数。(f)蓝色的为传统荧光成像的截面强度分布,绿色和红色为PSIM重建后的两个轴向分布  相比之下,PSIM主要有以下优点:  1.高分辨率。与传统SIM技术和SSIM技术相比,PSIM的优势在于在不减帧速且不利用饱和荧光效应的前提下获得高分辨率的显微图像。  2.高信噪比。倏逝波在垂直方向上快速衰减,通过将激发光限制在样品表面一个很小的区域内即可得到较高的信噪比。  3.成像分辨率不依赖于NA。PSIM原理上不依赖于NA的限制,利用较小NA的物镜仍可获得比SIM更高分辨率的图像。  4.极大的应用前景。对于诸如哺乳动物细胞等需要对其表面进行观测的样品,PSIM是一种能够较好地解决衍射极限问题、同时还具备较高对比度的成像手段。这种技术将在高速超分辨领域内产生巨大的影响。  芯片照明超分辨  基于芯片的CWN,简称芯片照明超分辨,利用照明光在波导片与样品界面处产生的瞬逝场使得样品仅在表面极薄的部分得到激发,从而减弱获取信号中背景信息的干扰,实现超分辨。  CWN技术是由Grandin等在2006年提出的,并由Diekmann等在2017年进行改进。Diekmann等利用波导片实现了照明光与探测光的完全分离,在原有的平板波导的基础上研制了可控能力更强的肋形波导和带状波导,如图2所示,将复杂的光学功能集成在以波导片为主体的通用平台上。  图2 波导片a.在原有平板波导的基础上部分蚀刻可制成肋形波导;b.在原有平板波导的基础上完全蚀刻至SiO2底板可制成带状波导。两种情形下波导通道的宽度都是25-500 μm  CWN的主要优点有:  1.波导片的应用将激发光路完全从显微系统中分离出去,使用时无需考虑光路的耦合,大大降低了整套设备的复杂度;  2.波导片利用光在高折射率材料和周围介质(水或细胞)间的界面上发生全内反射的原理,高效地利用瞬逝场照明样品;  3.由于其对照明光在空间上的严格限制,图像具有较高的信噪比;  4.由于照明光与成像光的物镜非相关,因此可以随意根据需要更换不同放大倍数/分辨率的物镜;  5.由于该技术对光信号的利用效率高,使用NA较小的物镜即可在获得较大视场的同时,确保图像的分辨率不至于太差。  Diekmann等利用两种互补的技术———ESI技术和直接STORM(dSTORM)技术,展现了基于波导芯片的超分辨荧光显微成像技术的功能。这项技术解决了一直以来存在于超分辨显微技术中的缺陷,提高了超分辨显微系统的应用性能,有极大的市场价值和开发前景。此外,该技术为研究者提供了新的思路,基于芯片的激光产生、过滤和调制技术将为超分辨显微领域带来发展的新动力。可以预见,未来的超分辨显微领域将会因为光子集成电路的发展而再次产生较大的飞跃。  偏振超分辨成像技术  荧光的基本物理尺寸包括强度(反映荧光浓度)、波长(吸收和发射光谱)、时间(荧光衰减寿命)和偏振(由偶极子取向产生)。想比于其他三个维度,偏振在超分辨领域的发展仍处于初级阶段。  2014年,Walla课题组提出了偏振调制超分辨(SPoD)技术。该技术在不需要结构光照明、开关调制以及闪烁荧光探针的条件下通过偏振调制以及偏振角度缩小实现了超分辨成像,将偏振引入超分辨显微成像领域。偏振调制数据采用SPEED反卷积算法进行解调,从而重构超分辨图像。该方法虽然可以实现超分辨,但重构期间会导致偶极子方向信息丢失。  2016年10月31日,北京大学课题组及其合作者提出了一种新的基于偏振偶极子方位角的SDOM技术。该技术利用稀疏增强反卷积算法代替了SPEED算法,同时从荧光强度和荧光各向异性等方面来考虑偏振调制能否带来更多超分辨信息,完美回答了上述争论问题,并在实现相同强度分辨率的条件下进一步获取了偶极子取向信息。  另一种偏振超分辨技术主要基于单分子成像。Cruz等提出的偏振解析dSTORM(polar-dSTORM)可在一帧中测量单个荧光偶极子,并通过随机切换开/关状态在其他帧中测量其他的偶极子取向,再通过重建获得整体的超分辨率图像。在polar-dSTORM中,为了保持单分子定位中的高信噪比,使用两个探测通道来实现平面取向内偶极子取向信息的测量,并忽略单个偶极子的摆动信息。通过重建算法计算每帧中单个分子的方位角和位置,可以实现单分子的准确定位和取向测量。  相比于其他超分辨技术,利用偏振实现超分辨的优势在于:在不牺牲成像速度和样品毒性的前提下获取样品的超分辨信息;可在不影响原系统性能的条件下很容易与现有的成像系统相结合使用。因此,未来荧光偏振超分辨显微镜可在更多的生物领域中发挥作用。  还有一种不依赖于光学技术来突破衍射极限的方法,该方法是在衍射极限存在的条件下人为地放大生物样品,从而观察到更细微的结构信息。这便是我们接下来要讲述的利用化学方法将样品物理放大的膨胀样品超分辨成像技术。  膨胀样品超分辨成像技术  膨胀样品显微术(ExM)的概念是由Chen等于2015年提出的,该技术利用高吸水性分子吸水溶胀的特性,将样品物理放大以达到超分辨显微的效果。这种高吸水性分子最常见的用途之一就是婴儿尿布。我们知道在吹气球的时候,气球吹得越大,气球的厚度越薄,也就是说,我们想要让样本放得更大,就需要减少细胞中那个由高吸水性分子形成的网的密度,如此一来zui大的问题便是细胞在溶胀过程中无法各向同性的扩大,会导致细胞结构变得极其不稳定,也就没有了观察的意义。  如何将一个样品在高度放大的同时保留其原有结构呢?  研究人员通过努力找到一种方法使得细胞在溶胀的过程中还可以保持其结构的稳定,而这种方法便是采用另一种高吸水性分子凝胶。在样本随着吸水分子的膨胀倍增之后,让凝胶去破坏原有吸水分子间的交联以保持样品结构的稳定,随后再次让样本膨胀,进一步放大它的尺寸。如此一来,样本可放大到20倍左右,分辨率达到25 nm。  ExM便宜、快速且分辨率高,在超分辨显微成像中已是一个巨大的突破,可实现常规超分辨光学显微镜可达到的效果。相比于传统显微镜,ExM的时间分辨率无附加限制,但空间分辨率可以达到25 nm。相比于原有超分辨技术,其样品制备要求与传统显微镜相同,因而适用范围较广。  表 几种新型成像方法对比  上述几种新型的超分辨技术在不同的应用中各有所长,为光学成像领域带来了新的曙光。随着人们对生命科学领域的不断深入探索,超分辨技术将会继续发展以满足不同的应用需求。

厂商

2019.01.31

厌氧反应器的16个技术问答!

  1、厌氧反应器内出现泡沫、化学沉淀等不良现象的原因是什么?   厌氧反应器中有时会产生大量泡沫,泡沫呈半液半固状,严重时可充满气相空间并带入沼气管道,导致沼气系统的运行困难。   产生泡沫的主要原因是厌氧系统运行不稳定,因为泡沫主要是由于CO2产量太大形成的,当反应器内温度波动或负荷发生突变等情况发生时,均可导致系统运行的不稳定和CO2的产量增加,进而导致泡沫的产生。如果将运行不稳定因素及时排除,泡沫现象一般也会随之消失。在厌氧污泥培养初期,由于CO2产量大而甲烷产量少,也会出现泡沫,随着甲烷菌的培养成熟,CO2产量减少,泡沫一般也会逐渐消失。进水中含有蛋白质是产生泡沫的一个原因,而微生物本身新陈代谢过程中产生的一些中间产物也会降低水的表面张力而生成气泡。厌氧生物处理过程中大量产气会产生类似好氧处理的曝气作用而形成气泡问题,负荷突然升高所带来的产气量突然增加也可能出现泡沫问题。   碳酸钙(CaCO3)沉淀:处理废水钙含量高或利用石灰补充碱度,都会增加产生碳酸钙沉淀的可能性。高浓度的碳酸氢盐和磷酸盐都有利于钙的沉淀。   鸟粪石(MgNH4PO4)沉淀:进水中含有较高浓度的溶解性正磷酸盐、氨氮和 镁离子时,就会生成鸟粪石沉淀。厌氧处理系统鸟粪石沉淀主要在管道弯头、水泵入口和二沉池进出口等处出现。   2、厌氧生物处理的三个阶段是怎样的?   理论研究认为三个阶段,即厌氧消化过程分为水解发酵阶段、产乙酸产氢阶段、产甲烷阶段三部分。   水解发酵阶段和产乙酸产氢阶段又可合称为酸性发酵阶段。在这个阶段,污水中的复杂有机物,在酸性腐化菌或产酸菌的作用下,分解成简单的有机物,如有机酸,醇类等,以及CO2、NH3和H2S等无机物。由于有机酸的积累,污水的pH值下降到6以下。此后,由于有机酸和含氮化合物的分解,产生碳酸盐和氨等使酸性减退,pH值回升到6.6~6.8左右。   ⑴ 水解酸化阶段。污水中复杂的大分子、不溶性的有机物在细胞外酶的作用下水解为小分子、溶解性有机物,然后渗入细胞体内,水解产生挥发性有机酸、醇类及醛类等。   ⑵ 产氢产乙酸阶段。在产氢产酸菌的作用下,各种有机酸分解转化为乙酸、氢和二氧化碳。   ⑶ 产甲烷阶段。产甲烷菌将乙酸、氢及二氧化碳转化为甲烷。   3、厌氧消化的三个阶段和COD转化率有多少?   4、水解酸化法的优点是什么?   ⑴ 池体不需要密闭,也不需要三相分离器,运行管理方便简单。   ⑵ 大分子有机物经水解酸化后,生成小分子有机物,可生化性较好,即水解酸化可以改变原污水的可生化性,从而减少反应时间和处理能耗。   ⑶ 水解酸化属于厌氧处理的前期,没有达到厌氧发酵的最终阶段,因而出水中也就没有厌氧发酵所产生的难闻气味,改善了污水处理厂的环境。   ⑷ 水解酸化反应所需时间较短,因此所需构筑物体积很小,一般与沉淀池相当,可节约基建投资。   ⑸ 时间酸化对固体有机物的降解效果较好,而且产生的剩余污泥很少,实现了污泥、污水一次处理,具有消化池的部分功能。   5、厌氧生物处理的主要特点有哪些?   ⑴ 能耗较低:因为厌氧生物处理不需要供氧,能源消耗约为好氧活性污泥法的1/10,还能产生具有较高热值的甲烷气(CH4)。每去除1gCODcr可以产生0.35标准升甲烷或0.7标准升沼气。沼气的热值为22.7KJ/L,甲烷的热值为39300KJ/m3,一般天然气的热值为34300KJ/m3 。   ⑵ 污泥产量低:因为厌氧微生物的增殖速率比好氧微生物低得多,好氧生物处理系统每处理1kgCODcr产生的污泥量为0.25~0.6kg,而厌氧生物处理系统每处理1kgCODcr产生的污泥量只有0.02~0.18kg。   ⑶可对好氧生物处理系统不能降解的一些大分子有机物进行彻底降解或部分降解。   ⑷ 厌氧微生物对温度、PH等环境因素的变化更为敏感,运行管理好厌氧生物处理系统的难度较大。   ⑸ 水温适应广:好氧处理水温在10~35℃之间,当高温时就需采取降温措施;而厌氧处理水温适应广泛,分低温厌氧(10~30℃)、中温厌氧(30~40℃)和高温厌氧(50~60℃)。   6、厌氧生物处理的影响因素有哪些?   ⑴ 温度。存在两个不同的zui佳温度范围(55℃左右,35℃左右)。通常所称高温厌氧消化和低温厌氧消化即对应这两个zui佳温度范围。   ⑵ pH值。厌氧消化zui佳pH值范围为6.8~7.2。   ⑶ 有机负荷。由于厌氧生物处理几乎对污水中的所有有机物都有降解作用,因此讨论厌氧生物处理时,一般都以CODcr来分析研究,而不象好氧生物处理那样必须以BOD5为依据。厌氧处理的有机负荷通常以容积负荷和一定的CODcr去除率来表示。   ⑷ 营养物质。厌氧法中碳氮磷的比值控制在CODcr:N:P=(200~300):5:1即可。甲烷菌对硫化氢的zui佳需要量为11.5mg/L。有时需补充某些必需的特殊营养元素,甲烷菌对硫化物和磷有专性需要,而铁、镍、锌、钴、钼等对甲烷菌有激活作用。   ⑸ 氧化还原电位。氧化还原电位可以表示水中的含氧浓度,非甲烷厌氧微生物可以在氧化还原电位小于+100mV的环境下生存,而适合产甲烷菌活动的氧化还原电位要低于-150mV,在培养甲烷菌的初期,氧化还原电位要不高于-330mV。   ⑹ 碱度。废水的碳酸氢盐所形成的碱度对pH值的变化有缓冲作用,如果碱度不足,就需要投加碳酸氢钠和石灰等碱剂来保证反应器内的碱度适中。   ⑺ 有毒物质。   ⑻ 水力停留时间。水力停留时间对于厌氧工艺的影响主要是通过上流速度来表现出来的。一方面,较高的水流速度可以提高污水系统内进水区的扰动性,从而增加生物污泥与进水有机物之间的接触,提高有机物的去除率。另一方面,为了维持系统中能拥有足够多的污泥,上流速度又不能超过一定限值。   7、营养物质对厌氧生物处理的影响体现在哪些方面?   厌氧微生物的生长繁殖需要摄取一定比例的CNP及其他微量元素,但由于厌氧微生物对碳素养分的利用率比好氧微生物低,一般认为,厌氧法中碳氮磷的比值控制在CODcr:N:P=(200~300):5:1即可。还要根据具体情况,补充某些必需的特殊营养元素,比如硫化物、铁、镍、锌、钴、钼等。   在厌氧处理时提供氮源,除了满足合成菌体之外,还有利于提高反应器的缓冲能力。如果氮源不足,即碳氮比太高,不仅导致厌氧菌增殖缓慢,而且使消化液的缓冲能力降低,引起pH值下降。相反,如果氮源过剩,碳氮比太低、氮不能被充分利用,将导致系统中氮的积累,引起pH值上升;如果pH值上升到8以上,就会抑制产甲烷菌的生长繁殖,使消化效率降低。一般说来,氮的浓度必须保持在40~70mg/L的范围内才能维持甲烷菌的活性。   8、pH值对厌氧处理的影响体现在哪些方面?   厌氧微生物对其活动范围内的pH值有一定的要求,产酸菌对pH值的适应范围较广,一般在4.5~8.0之间都能维持较高的活性。而甲烷菌对pH值较为敏感,适应范围较窄,在6.6~7.4之间较为适宜,zui佳pH值为7.0~7.2。因此,在厌氧处理过程中,尤其是产酸和产甲烷在一个构筑物内进行时,通常要保持反应器内的pH值在6.5~7.2之间,zui好保持在6.8~7.2的范围内。   厌氧处理要求的zui佳pH值指的是反应器内混合液的pH值,而不是进水的pH值,因为生物化学过程和稀释作用可以迅速改变进水的pH值。反应器出水的pH值一般等于或接近反应器内部的pH值。   含有大量溶解性碳水化合物的废水进入厌氧反应器后,会因产生乙酸而引起pH值的迅速降低,而经过酸化的废水进入反应器后,pH值将会上升。含有大量蛋白质或氨基酸的废水,由于氨的形成,pH可能会略有上升。因此,对不同特性的废水,可控制不同的pH值,可能低于或高于反应器所要求的pH值。   9、维持厌氧反应器内有足够碱度的措施有哪些?   ⑴ 投加碱源:增大系统缓冲能力的碱源可以使用碳酸氢钠和石灰等。   ⑵ 提高回流比:正常厌氧消化处理设施的出水中含有一定的碱度,将出水回流可以有效补充反应器内的碱度。   10、什么是VFA和ALK?VFA与ALK的比值有什么意义?   VFA表示的是厌氧处理系统内的挥发性有机酸的含量,ALK则表示的是厌氧处理系统内的碱度。   厌氧消化系统正常运行时,ALK一般在1000~5000 mg/L(以CaCO3计)之间,典型值在2500~3500mg/L之间,VFA一般在50~2500mg/L之间,必须维持碱度和挥发酸浓度之间的平衡,使消化液pH保持在6.5~7.5的范围内。只要碱度和挥发酸浓度能保持平衡,当碱度超过4000mg/L时,即使VFA超过1200mg/L,系统也能正常运行。而碱度与酸度能保持平衡的主要标志就是VFA与ALK的比值保持在一定的范围内。   VFA/ALK反应了厌氧处理系统内中间代谢产物的积累程度,正常运行的厌氧处理装置的VFA/ALK一般在0.3以下,如果VFA/ALK突然升高,往往表明中间代谢产物不能被甲烷菌及时分解利用,即系统已出现异常,需要采取措施进行解决。   如果VFA/ALK刚刚超过0.3,在一定时间内,还不至于导致pH值下降,还有时间分析造成VFA/ALK升高的原因和进行控制。如果VFA/ALK超过0.5,沼气中的CO2含量开始升高,如果不及时采取措施予以控制,会很快导致pH值下降,使甲烷菌的活动受到抑制。此时应加入部分碱源,增加反应器内的碱度使pH值回升,为寻找确切的原因并采取控制措施提供时间。如果VFA/ALK超过0.8,厌氧反应器内pH值开始下降,沼气中甲烷的含量往往只有42%~45%,沼气已不能燃烧。这时候必须向反应器内大量投入碱源,控制住pH值的下降并使之回升,如果pH值持续下降到5以下,甲烷菌将全部失去活性,需要重新培养厌氧污泥。   11、为什么VFA是反映厌氧生物反应器效果的重要指标?   VFA表示的是厌氧处理系统内的挥发性有机酸的含量,而挥发性有机酸是厌氧生物处理系统的中间产物。   厌氧生物处理系统实现对废水中或污泥中有机物的有效处理,最终是通过产甲烷过程来实现的,而产甲烷菌所能利用的有机物就是挥发性有机酸VFA。如果厌氧生物反应器的运转正常,那么其中的VFA含量就会维持在一个相当稳定的范围内。   VFA过低会使甲烷能利用的物料减少,厌氧反应器对有机物的分解程度降低;而VFA过高超过甲烷菌所能利用的数量,又会造成VFA的过度积累,进而使反应器内的pH下降,影响甲烷菌正常功能的发挥。同时甲烷菌因各种原因受到伤害后,也会降低对VFA的利用率,反过来造成VFA的积累,形成恶性循环。   因此,所有的厌氧反应器都应把VFA作为一个控制指标来分析化验和及时掌握。   12、什么是升流式厌氧污泥反应器UASB?   升流式厌氧污泥反应器的英文是Upflow Anaerobic Sludge Blan-ket,简称为UASB,其基本特征是在反应器的上部设置气、固、液三相分离器,下部为污泥悬浮区和污泥床区。   13、什么是膨胀颗粒污泥床EGSB?   膨胀颗粒污泥床的英文是Expanded Granular Sludge bed,简写为EGSB,是在UASB反应器的基础上发展而来的。EGSB反应器与UASB反应器的结构非常相似,所不同的是EGSB反应器中采用高达2.5~6m3/(m2·h)的水力负荷,这远大于UASB常用的约0.5~2.5m3/(m2·h)的水力负荷。因此,在EGSB反应器中,颗粒污泥床处于部分或全部“膨胀化”状态,即污泥床的体积由于颗粒之间的平均距离的加大而增加。为了提高水力负荷(即上流速度),EGSB反应器采用较大的高度与直径比和较大的回流比。   14、什么是颗粒污泥?   颗粒污泥的形成实际上是微生物固定化的一种形式,其外观为具有相对规则的球形或椭圆形黑色颗粒。颗粒污泥的粒径一般为0.1~3mm,个别大的有5mm,密度为1.04~1.08g/cm3,比水略重,具有良好的沉降性能和降解水中有机物的产甲烷活性。   在光学显微镜下观察,颗粒污泥呈多孔结构,表面有一层透明胶状物,其上附着甲烷菌。颗粒污泥靠近外表面部分的细胞密度较大,内部结构松散、细胞密度较小,粒径较大的颗粒污泥往往有一个空腔,这是由于颗粒污泥内部营养不足使细胞自溶而引起的。大而空的颗粒污泥容易破碎,其破碎的碎片成为新生颗粒污泥的内核,一些大的颗粒污泥还会因内部产生的气体不易释放出去而容易上浮。   15、使升流式厌氧反应器内出现颗粒污泥的方法有哪几种?   UASB反应器运行成功的关键是具有颗粒污泥,使UASB反应器内出现颗粒污泥的方法有以下三种:   ⑴ 直接接种法:从正在运行的其它UASB反应器中取出一定量的颗粒污泥直接投入新的UASB反应器后,由少到多逐步加大处理的污水水量,直到设计水量。这种方法反应器投产所需时间最快,但一般只有在启动小型UASB反应器采用这种方法。   ⑵ 间接接种法:将取自正在运行的厌氧处理装置的厌氧活性污泥,如城市污水处理厂的消化污泥,投入UASB反应器后,创造厌氧微生物zui佳的生长条件,有人工配制的、含有适当营养成分的营养水进行培养,形成颗粒污泥后,再由少到多逐步加大被处理的污水水量,直到设计水量。   ⑶ 直接培养法:将取自正在运行的厌氧处理装置的厌氧活性污泥,如城市污水处理厂的消化污泥,投入UASB反应器后,用被处理污水直接培养,形成颗粒污泥后,再逐步加大被处理的污水水量,直到设计水量。这种方法反应器投产所需时间较多,可长达3~4个月,大型UASB反应器常采用这种方法。   16、厌氧污泥培养成熟后有何特征?   培养结束后,成熟的污泥呈深灰到黑色,有焦油气味但无硫化氢气味,pH值在7.0~7.5之间,污泥容易脱水和干化。对进水的处理效果高,产气量大,沼气中甲烷成分高。培养成熟的厌氧消化污泥的基本指标和参数见下表。

厂商

2019.01.30

油品的闪点、燃点与自燃点测定

  油品的闪点、燃点与自燃点是油品的安全性指标,是大多数油品的必检项目之一,为了能更好的的进行检测实验室,今天咱们就来说说它们的意义和油品组成之间的关系。  在油品检测的指标中,有一个重要的指标,那就是闪点。闪点是衡量油品在贮存、运输和使用过程中安全程度的指标,因此做好闪点检测至关重要。  1.闪点  油品的闪点是预示出现火灾和爆炸危险程度的指标,采用标准的开口闪点测定仪或闭口闪点测定仪来进行测定,是评价石油产品安全性的指标。闪点是可燃性液体的蒸气同空气的混合气在临近火焰时,发生短暂闪火的zui低温度。  闪火是微小的爆炸,意味着在此温度下油品挥发产生的油蒸气已在空气中达到爆炸所需的浓度。只有混合气中可燃性气体的体积分数达到一定数值时,遇火才能爆炸。浓度过小或过大都不会发生爆炸,这个浓度范围称为爆炸界限。在爆炸界限内,可燃气在混合气中的zui低体积分数称为爆炸下限;zui高体积分数称为爆炸上限。  油品的闪点就是指常压下,油品蒸气与空气混合达到爆炸下限或爆炸上限的油温。通常情况下,高沸点油品的闪点为其爆炸下限时的油品温度。因为该温度下液体油品已有足够的饱和蒸气压,使其在空气中的含量恰好达到油品的爆炸下限.因此一遇明火立即发生爆炸燃烧。  由于在试验条件下油品用量很少,着火后瞬间可燃混合气即已烧尽,所以人们看到的只是短暂的火苗一闪。而低沸点油品,如汽油及易挥发的液态石油产品,在室温下的油气浓度已经大大超过其爆炸下限,其闪点实际上是它的爆炸上限的油品温度。若冷却以降低汽油的蒸气压,也可以测得爆炸下限所对应的闪火温度。  由于闪点是衡量油品在贮存、运输和使用过程中安全程度的指标,所以测定低沸点油品爆炸下限的温度没有实际意义。  2.燃点  在测定油品开口杯闪点后继续升高温度,在规定条件下可燃混合气能被外部火焰点燃,并连续燃烧不少子5s时的zui低温度,称为燃点,通常称为开口杯法燃点,是采用标准开口闪点和燃点测定仪进行测定,原则与测定开口闪点一致。闪点低子45℃液体的称为易燃液体,闪点大于45℃的液体称为可燃液体。  3.自燃点  将油品加热到很高的温度后,再使之与空气接触,无需引火点燃,油品即因剧烈氧化而产生火焰自行燃烧,这就是油品的自燃现象,能发生自燃的zui低油温,称为自燃点。,用标准的自燃点测定仪进行测定。  各类油品的闪点、燃点和自燃点的大致范围如下表:  三者的组成关系:  1.与化学组成有关:通常情况下,烷烃比芳烃容易氧化,故含烷烃多的油品自燃点比较低,但其闪点却比粘度相同而含环烷烃和芳烃较多的油品高。在同类烃中,随相对分子质量增大,自燃点降低,而闪点和燃点增高。对碳原子数相同的烃类,自燃点的顺序为:烷烃环烷烃,烯烃>芳烃。  2.与馏分组成有关:油品的闪点与其蒸气压有关,亦与其馏分组成有关,油品的沸点越高、馏分越重、相对分子质量越大,其闪点越高。反之,油品的沸点越低,馏分越轻,相对分子质量越小,越易挥发,其闪点和燃点越低。油品闪点和燃点的高低取决于低沸点烃类含量,烷烃的闪点比对应的烯烃要高。  油品闪点的高低取决于油品中沸点zui低的那部分烃类的含量。当有极少量轻油混人到高沸点油品中时,就能引起闪点显著降低。例如,某润滑油中掺人1%的汽油,闪点可从200℃降至170℃。正是由于这一原因,原油的闪点是很低的,它和低闪点油品一起被列人易燃物品之中。与燃点相反,油品的沸点越低,越不易自燃,其自燃点就越高;反之,自燃点越低。对同一烃类:沸点越高其燃点越高;沸点越高其自燃点反而较低。

厂商

2019.01.30

实验室质谱分析操作使用

  质谱具有很高的灵敏度和分辨率,在定性和定量方面具有较大优势,所以,目前配置质谱的实验室越来越多,质谱相对于色谱来说,除了对环境的要求极高,操作和维护同样更加频繁。  质谱仪种类非常多,工作原理和应用范围也有很大的不同,从应用角度,质谱仪可以分为下面几类:  1.有机质谱仪  由于应用特点不同又分为:  ①气相色谱-质谱联用仪(GC-MS)  在这类仪器中,由于质谱仪工作原理不同,又有气相色谱-四极质谱仪,气相色谱-飞行时间质谱仪,气相色谱-离子阱质谱仪等。  ②液相色谱-质谱联用仪(LC-MS)  同样,有液相色谱-四器极质谱仪,液相色谱-离子阱质谱仪,液相色谱-飞行时间质谱仪以及各种各样的液相色谱-质谱-质谱联用仪。  ③其他有机质谱仪  主要有:基质辅助激光解吸飞行时间质谱(MALDI-TOFMS),傅立叶变换质谱仪(FT-MS)  2.无机质谱仪  包括:火花源双聚焦质谱仪。  感应耦合等离子体质谱仪(ICP-MS)。  二次离子质谱仪(SI-MS)  除上述分类外,还可以从质谱仪所用的质量分析器的不同,把质谱仪分为双聚焦质谱仪、四极杆质谱仪、飞行时间质谱仪、离子阱质谱仪、傅立叶变换质谱仪等。  质谱仪维护小妙招  质谱仪周围环境要求:  ①周围无强烈震荡源及电磁感应装置;  ②电源要求为接地交流电;  ③室温要求:15-28℃;  ④相对湿度要求:20%~80%;  可见,使用过程中要特别注意室内温度和湿度的控制。一般没有外置飞行管的飞行时间质谱对环境的要求更严格,外部环境会直接影响质量轴的准确性。质谱仪采用两级抽气结构,前级为机械泵,后级为分子涡轮泵。工作时,先由前级泵,将真空腔内的压强降低几个数量级,再由后级泵降至工作所需压强。  一. 开机:  质谱仪的开机首先开气,再开机械泵,再打开质谱仪的电源,等真空度达到后再开启分子涡轮泵,等真空度达到后才可以进行协调校正,一般至少需要抽12个小时才能达到。每次开机后都需要校正后才能使用质谱仪。  二.样品测试过程:  与液相色谱联用时,流动相需要先用膜过滤,需要区别有机膜和水膜,样品也同样需要过滤或者用>10000rpm的转速离心去掉固体杂质。  流动相不能用难挥发的酸或盐,如,磷酸盐和硼酸盐,液相常用的TFA会抑制离子电离,也不建议使用;表面活性剂在质谱中响应很高,尤其是ESI源,所以,所有管和器具的清洗不能用洗洁精,用来改善分离和色谱峰形的离子对试剂也应慎用,与质谱联用时建议使用的是甲酸、乙酸、甲酸铵、乙酸铵和氨水等。  根据选用的离子源调整液相方法,ESI源一般用0.3-0.6mL/min,常规HPLC分析柱的规格是5μm,4.6×250mm的,一般流速都是1mL/min,可以采用柱后分流的方式来调整进入质谱的流量。同时,要根据进入质谱的流量和样品性质调整雾化气温度和雾化气的流量。  样品测试结束后,需要清洗进样管路,清洗后停泵,待离子源温度降低后再选择待机状态。  三.日常定期维护:  前期,机械泵随着样品的检测会有有机溶剂进入泵中,需要定期打开震气阀震气20min左右,震气时间不能太长,太长会导致泵油消耗过快。根据检测量来调整震气的频率,一般建议一周一次。  离子源腔体和取样锥孔、挡盖用无尘纸和50%甲醇水清洗,一般一周一次。  机械泵的泵油需要定期更换,一般半年更换一次,如果泵油看起来很脏,需要提前更换。更换泵油时需要将泵油全部倒出,再更换新的泵油,不同品牌的泵油不能混用。一般实验室的质谱仪都会在长假的时候进行大的维护。  一般日常维护除了更换泵油之外,都是不需要在卸真空的状态下进行,质谱内部的清理和维护一般比较少做到,建议交给维修工程师来做,内部金属件可以用氧化铝粉来打磨,其他组件注意不要碰到有机试剂,尤其是密封圈之类的。  四.关机:  关机需要先vent,放空系统,再关闭机械泵。  质谱操作说明及注意事项  质谱操作说明及日常使用注意事项:  1.开机  1)打开主电源,打开旁路泵电源,打开毛细管加热装置(CPS)。  2)观察压力显示面板,用▲▼箭头调节黑条显示位置,使其调到Turbo Back 选项,按两次进入键(〇),开启涡轮分子泵和背景泵;按返回键(〓)回到主面板。观察Turbo进度,使其达到正常运转(黑条到头)。按▼箭头调节至AIMX选项,观察压力显示,使其在1*10-6以下。zui佳工作压力为5*10-6以下。  3)压力达到要求后,打开控制箱(RC Interface),听见滴的一声,打开MA soft的软件开始实验设置。  2.软件操作  1)新建文件:File-New File新建文件,出现主窗口;  2)查看Global:RGA和Shutdown中的参数,确认灯丝状态,在Global:RGA灯丝点着一根,而在Shutdown中灯丝是全部熄灭的,选择OK;  3)双击Scan mass,选择实验模式,里面有Bar,Profile 和MID 三种模式,做全谱扫描时用Bar或Profile,一般用Profile可调节扫描速率和精度,比较精确。针对特定质量数的扫描用MID模式。当采用Profile模式时,可选择扫描范围。当需要分段扫描时,先选定Scan mass点击一下,再点击工具栏上选项,可添加通道。  4)针对不同扫描范围选择不同检测器时,可双击检测器单元,出现一对话框,根据气体压力范围选择不同的监测器,Faraday检测器的压力范围是:1*10-5-10-10,SEM检测器的压力范围是:1*10-7-10-14。  5)选中Scan mass,按住Ctrl 可多选,点击New Graph View, 出现扫描窗口。  6)点亮灯丝,观察控制箱上灯丝状态,当灯丝亮启后,点击绿色开始按钮,开始扫描。  注意:两个灯丝不能同时打开,勿点击Degas analysis Source, 容易烧坏灯丝,点击该按钮前,请与该公司工程师联系。  7)当需要查看各个循环次数时,可选择要查看的Scan窗口,点击右键,选择Mode-Historical data,当需要转化到目前的扫描窗口时,选择Real time。  8)当扫描结束时,点击黄灯结束当前循环后停止,红灯则马上停止扫描。  9)可选择路径自己保存数据File-Save As , 可导出Excel 数据File-Export-File  10)格式可选择曲线颜色:Views—Trend View setup ; 在Windows中可改变窗口形式。  11)在Edit-Library-compound中可查看各物质的峰含量图谱,可点击New进行添加新物质。  12)双击Repeated,出现一对话框(Scan structure Cycles),“Shutdown after Scanning”表示灯丝的状态,在该框前打√,则表示做完一个实验灯丝则自动关掉;不打√,则表示做下个实验时不需要开灯丝。  3.关机  1)关闭MAS soft 软件,然后关闭控制箱。  2)关泵,使用▲▼箭头调节黑条显示位置,使其调到Turbo Back 选项,按两次进入键(〇),关掉涡轮分子泵和背景泵;按返回键(〓)回到主面板。观察Turbo进度,当听到涡轮分子泵放气的声音,观察黑条进度,确认分子泵完全关闭(黑条没有)。再关掉CPS,关闭旁路泵,关闭主电源。  4.注意事项:  1)实验过程中,切勿用肥皂泡检查气路,包括自己的气路在检查时也一定要与质谱接口断开(非常重要,很多质谱都因为学生采用肥皂泡检漏使得四级杆污染无法继续使用);  2)一般情况下,质谱要保持正常运行状态,除非15天以上不用仪器,方可关闭。因为质谱需要一定时间稳定(24h以上),频繁开关质谱也会加速真空规污染。在预知停电的情况下,请提前关掉质谱。  3)泵油的更换:要经常观察泵油颜色,当变成黄褐色时应立即更换。如果仪器使用频繁且气体比较脏,则要求至少半年更换一次,加入泵油量不超过最上层液面。  4)QIC20散热过滤网应定期进行清洗(每两个月清洗一次),在夏天没有空调的房间使用时尽量打开上盖,以防影响仪器散热。  5)毛细管在不与外部仪器连接时,不要直接放置在脏的桌面上,尽量悬空放置;毛细管内部的过滤器要定期清洗,在拆装过程中注意不要丢失部件。  6)在仪器运输过程中,如果有油泵需要放出泵油(若干净可进行收集以后继续使用)、卸掉RF射频头,单独运输。

厂商

2019.01.29

黄曲霉素的检测方法大全

  2011年蒙牛黄曲霉素事件让黄曲霉素走进了大众的视野,黄曲霉毒素(AFT)是迄今发现的霉菌毒素中毒性zui大、对人类健康危害极为突出的一类霉菌毒素,有AFB1、AFB2、AFG1、AFG2等多种形式,它们存在于土壤、动植物、各种坚果中,特别是容易污染花生、玉米、稻米、大豆、小麦等粮油产品,对人和动物有强烈的毒性。  黄曲霉素检测最初以薄层层析法为主,发展到高效液相色谱法、微柱法、酶联免疫吸附法等多种方法普遍应用,其进展与新的化学检测手段和新仪器的出现密不可分。这些新方法、新手段的快速应用,为黄曲霉毒素的检测提供了更广泛的选择余地,适应了不同的检测目的和要求。  薄层分析法(TLC)  TLC法是检测黄曲霉素最为经典的方法,也是以前最为常用的方法,至今仍为一些检测机构所用,也是一种国标方法。其原理是针对不同的试样,用适宜的萃取溶剂将黄曲霉素从试样中萃取出来,经柱层析净化后,再在薄板上展开后分离。利用黄曲霉素的荧光特性,根据荧光斑点的强弱与标准比较确定其含量,对于一些组分很复杂的试样要双向展开,才能获得较高的灵敏度。  TLC法设备简单,检测费用低,但操作繁琐、费时,萃取和净化效果不理想,灵敏度差,对操作人员的身体健康存在较大程度的危害。  液相色谱法(HPLC)  液相色谱法是20世纪80年代发展起来的检测黄曲霉毒素的方法,主要是用荧光检测器检测,这一检测方法将化学分析与计算机技术相结合,使自动化程度得到极大提高,在实验空间、人力和仪器都保持不变的情况下,能检测更多的样品。其原理是根据衍生后的黄曲霉毒素在固定相和流动相之间的分配量不同,从而达到分离的目的,分离后的黄曲霉毒素能发射特征性荧光,被荧光检测器捕获后得到检测。该方法既可采用正相色谱也可采用反相色谱。正相色谱中固定相一般使用硅胶柱,流动相使用以50%水饱和的三氯甲烷:环己烷:乙腈:乙醇。反相色谱固定相为C18,流动相为乙酸:乙腈:异丙醇:水(1∶5∶5∶39)。  该法能准确地分离不同种类的黄曲霉素(例如:AFB1、AFB2、AFG1和AFM1等),检测速度快且定性与定量准确,检测限低,可作为仲裁法使用,但仪器设备价格昂贵,前处理方法相对繁琐,若用到免疫亲和柱则会使试样检测费用增加,对操作人员的身体健康仍存在一定的危害。  酶联免疫法(ELISA)  ELISA法也是近年来研究开发出来的一种较为新颖的方法。ELISA 法测定黄曲霉毒素时主要采用间接竞争酶联免疫吸附法,原理是将黄曲霉毒素的特异性抗体包被于聚苯乙烯微量反应板的孔穴中,再加入待测样品及酶标已知抗原,两者与特异性抗体进行免疫竞争反应,然后加入酶底物显色,利用酶标仪根据显色反应颜色的深浅进行定量。  该方法测定结果准确可靠,操作简便,所涉及仪器及试剂比较少,回收率高,实验步骤也比较简单,是目前国内外较为先进的黄曲霉毒素检测方法。但抗体寿命短且需要低温保存,测定时假阳性率比较高,适合于大量样品的筛查。  微柱筛选法  微柱筛选法是将样品提取液通过由氧化镁和硅镁吸附剂组成的微柱层析管,杂质被氧化铝吸附,黄曲霉素被硅镁吸附剂吸附,在365紫外线下呈蓝紫色荧光,其荧光强度在一定范围内与黄曲霉素的含量成正比,由于微柱不能分离AFB1、AFB2、AFG1、AFG2,故检测结果为黄曲霉素总量。  微柱法筛选黄曲霉素主要是用来检验黄曲霉素是否存在以及快速筛选出超样品。因此,微柱筛选法不能完成黄曲霉素筛选的整个过程,仅仅用于定性检验。  金标试纸法  金标试纸法,实际就是一种固相免疫分析法。其原理是利用抗体与抗原的特异性结合反应,可一步检测黄曲霉素。  该法可在5~10 min内完成对试样中黄曲霉素的定性测定,具有简单、快速的特点,且无须其他仪器设备的配合,既可在实验室中进行检测,也可在现场进行实地测定,但是其检测的准确度、精度有待进一步的研究。  生物传感器法  生物传感器是使用固定化技术将具有分子识别能力的生物活性物质与物理化学换能器结合,可以用来探测生物体内外的环境化学物质或与之起特异性交互作用后产生响应的一种装置。其中利用分子间特异亲和性制备的亲和型生物传感器为免疫传感器口。根据能量转换器所传导的物理或化学信号的不同,免疫传感器又可分为电化学免疫传感器、光学免疫传感器、压电晶体免疫传感器等。  由于生物传感器具有选择性高、响应快、操作简单、携带方便和适合于现场检测等优点,因此各国科研工作者正积极探索研制新型生物传感器用于检测黄曲霉素。

厂商

2019.01.29

关于内标和替代物,你想知道的都在这了

  环境样品分析结果的准确与否关系到环境质量分析的准确度,没有可靠的数据质量控制方法。数据的可靠性就无从得到保证。现在环境样品中有机污染物分析的数据质量控制方法,其关键部分是替代物和内标物的使用。那么,什么是替代物?替代物如何选择?替代物和内标又有什么区别呢?  环境样品基底复杂,目标物的含量低,需要通过预处理去除干扰和富集浓缩。预处理操作繁琐,失误也多,引进的分析误差也较多。如果没有数据质量控制方法,分析者难以得知和验证样品分析是否准确。替代物和内标物的使用保证了实验数据的可靠性与准确性。  替代物定义  替代物:是一种在任何样品中都不可能被发现的纯物质,其在样品提取和进行其它处理前被加入的等分和量是已知的。它的量是同样品中其它组分一样被测定,它的作用是监控每个样品的方法性能。  它是一种与目标物性质相近的物质,一般在前处理之前加,用来表征整个前处理过程的损失或回收率。只是用来监测萃取效率,一般认为其回收率在某一范围(不同标准要求不同)内即认为萃取结果可以定量作为检查结果。  替代物的特点  1.样品中不应含替代物,替代物也不应是目标物  2.替代物的物理化学性质应该和目标物相似  3.在检测上能够被检测得到  替代物的作用  替代物监控样品预处理过程中标物的损失或玷污,样品中不应含替代物,替代物也不应是目标物,但应是和目标物的物理化学性质相似的化合物,且能够被定量测定。替代物在样品预处理前定量加入样品中,随样品走完预处理和仪器分析的全过程。  由于替代物不断存在于样品中,可以认为替代物的损失或者玷污的程度,即回收率,能够准确测量。又由于替代物和目标物的物理化学性质相似,在预处理过程中两者的损失或玷污的程度是一致的。因此,未知目标物在预处理过程中的回收率,可由已知的替代物的回收率来衡量。这就是替代物在环境样品的分析中的作用。  鉴于对替代物的要求,样品的替代物通常是目标物的同位素化合物。例如,测定多环芳烃时,可选用萘、二氢苊、菲、屈等的氘代化合物。它们的物理化学性质与待测的目标物极其相似,萃取过程中的损失或玷污是一致的。经过气相色谱柱的分离后,氘代多环芳烃可以与待测的多环芳烃部分分离。接在色谱后的质谱检测器,可把这些质量数不同的氘代物检出。由于氘代物在天然环境样品中含量极微,替代物的回收率可视为目标物的回收率。  替代物与回收率的关系  目标物回收率的计算依靠内标物,内标物与替代物一样,不应在样品中出现,也不应是目标物。但对其的物理化学性质的要求不像替代物那么严,只要与目标物相近,在检测器上能被定量检测就行。例如,在分析多环芳烃时,内标物可以是氘代物,也可以是甲基或硝基苯类化合物。内标物在每个样品预处理后,仪器分析前加入样品中,同处理过的试样一起走完仪器分析的全过程。内标物的作用是计算替代物的回收率,美国EPA标准方法中也用来作定量分析的依据。  回收率过高或过低说明操作过程有误差,应该避免。替代物的回收率在40%至120%间,  分析误差在要求的范围内。这与传统的加标回收率必须达到近百分百的要求有很大差别。  传统的定量分析一般是利用工作曲线来进行的, 其间的内标物可校正仪器分析的误差,对  于预处理过程 中误差的校正无能为力,因此希望回收率接近百分百。而采用替代物后,定量分析依靠替代物进行,利用回收率对数据进行校正 。  内标和替代物的区别  在使用内标物和替代物的时候,经常会有实验人员搞不清楚两者的区别,两者区别可以从以下几点区分  1.定义  替代物:是一种在任何样品中都不可能被发现的纯物质,其在样品提取和进行其它处理前被加入的等分和量是已知的。它的量是同样品中其它组分一样被测定,它的作用是监控每个样品的方法性能。  内标物:是加到样品、提取物或标准溶液中已知量的纯物质,是用来测定同一溶液中其它分析物质和替代物的相对响应值。内标物质必须是分析的样品组分中所不含有的,一般是目标物的氘代物,用来体现目标物的基底效应。  2.作用:  内标物是用来定量的;而替代物是监控整个分析过程的。  3.加入时间:  所以替代物(surrogate)必定是在测试初始就加入;而内标物(internal standard)加入时间一般在定容时。

厂商

2019.01.24

超高效液质串联—检测鸡蛋过敏原

  鸡蛋过敏的人群最为广泛,国外已经出台了强制性标识食品过敏原的法规,而国内只有针对出口食品过敏源成分的标准,以实时荧光定量聚合酶链式反应(PCR)法和环介导等温扩增检测方法为主,需要开发制定高灵敏度的直接对常见致敏蛋白的定性定量方法,并制定相应的标识法规。  目前用于过敏原检测的手段主要有酶联免疫(ELISA)法、PCR法和液相色谱-质谱联用技术。ELISA法是基于蛋白质的检测技术,是现在最为成熟的方法,但是由于各种加工手段使蛋白质存在不同程度的变性,导致无法与抗体准确结合,而且ELISA法不可避免存在交叉反应且通量低,因此不适于对鸡蛋过敏原的准确定量。PCR法是基于DNA水平的检测手段,而非直接对致敏蛋白进行定量,但鸡蛋含有极少量的DNA,并且鸡蛋和鸡肉中的DNA没有差异性。近年来,液相色谱-串联质谱法广受关注,其基于特征肽段有效地解决了变性蛋白的定量检测问题,而且可以直接对蛋清致敏蛋白进行高灵敏度、特异性和准确度的检测。  质谱检测方法具有高灵敏度与特异性的优势,可通过超高效液相色谱-串联质谱(UPLC-MS/MS)技术建立鸡蛋过敏原卵白蛋白的定量检测方法,并进行线性关系、检出限、加标回收等方法学验证,将所建方法应用于实际商品中卵白蛋白的定量检测,以期对食品中鸡蛋过敏原的准确定量提供技术支持。  1、特征肽段的筛选  首先筛选卵白蛋白中的特征肽段。将前处理后的样品直接注入Easy-nLC 1000纳升液相色谱-四极杆-静电场轨道阱高分辨质谱进行分离分析,将所得的肽段信息利用ProteinPilot软件和Uniprot数据库分析处理。与Uniprot数据库结果比对后,得到多条肽段。然后根据如下特征肽段的筛选原则进行特征肽段的筛选:以7~20 个氨基酸为宜;不含错切或漏切的酶切位点;zui好不含甲硫氨酸;具有稳定的物理化学性质;进行定性定量分析时,具有较好的灵敏度和峰形。最终筛选到3 段响应值较好、灵敏度较高的特征肽段,分别为LTEWTSSNVMEER(LR-13)、GGLEPINFQTAADQAR(GR-16)、ELINSWVESQTNGIIR(ER-16)。所选择的3 条肽段通过Uniprot数据库进行BLAST搜索,确定肽段的唯yi性。  2、流动相及多反应监测参数优化  实验比较了乙腈-水,乙腈-0.1%甲酸溶液2 种流动相体系在相同的洗脱程序条件下特征肽段的响应和出峰情况。结果表明,使用乙腈-0.1%甲酸溶液作为流动相,特征肽段的响应和峰形都要优于前者,拖尾现象明显改善,稳定性也有所提高。在电喷雾离子源正离子模式下,加入甲酸有助于肽类物质离子化进而提高分离效率和质谱信号的强度,故选择乙腈-0.1%甲酸溶液作为流动相。  3、方法的线性关系、LOD和LOQ结果  分别精密移取混标储备液,用水稀释配制成1、2、5、10、20、50、100、200、500、1 000、2 000、5 000 ng/mL的标准溶液,分别以3 条特征肽段的色谱峰面积为纵坐标(Y),以各组分的质量浓度为横坐标(X)做线性回归方程,并计算该方法的线性范围。  4、基质效应的评价  基质效应大于百分百时,表明基质对目标物离子化有增益作用;基质效应小于百分百时,表明基质对目标物离子化有抑制作用。结果表明,饼干(95.05%)、面包(90.68%) 、挂面(88.53%) 对特征肽段GGLEPINFQTAADQAR(GR-16)有不同程度的减弱作用,其中挂面的离子化抑制程度zui大;而蛋糕基质(112.60%)对特征肽段GGLEPINFQTAADQAR(GR-16)有增益作用。  5、加标回收率测定结果  卵白蛋白中定量肽段GGLEPINFQTAADQAR(GR-16)在基质饼干1中回收率在83.32%~95.66%之间,相对标准偏差(RSD)不大于9.97%;在基质饼干2中回收率在80.76%~98.55%之间,RSD不大于8.59%; 在基质挂面中回收率在77.22%~92.68%之间,RSD不大于5.13%;在基质蛋糕1中回收率在82.47%~86.56%之间,RSD不大于4.88%;在基质蛋糕2中回收率在79.41%~82.58%之间,RSD不大于8.31%;在基质面包中回收率在85.13%~91.36%之间,RSD不大于6.30%。  结论  通过蛋白质组学方法成功筛选到高特异性卵白蛋白肽段,并采用电喷雾质谱多反应监测模式实现了高灵敏度、快速定量。该方法的建立为食品中鸡蛋过敏原的检测提供了技术支持,为推动我国食品过敏原标识的监督与立法提供理论支持。

厂商

2019.01.22

实验分析定量计算问题

  色谱定量分析,顾名思义就是色谱分析方法来测定组分的含量,主要分为面积百分比法、归一化法、外标法、内标法和标准加入法,色谱定量分析首先需要明确的概念是响应因子,不同的化合物在检测器的响应是不一样的,简单地举个例子说,相同浓度的化合物A和B,相同的进样量,得到的峰高和峰面积不一定一样的,响应因子的计算式如下:  式中,w为化合物的含量,A为响应值,一般为峰面积或峰高,以峰面积为例。由于不同的化合物在同一个检测器的响应因子不同,甚至同一个化合物不同浓度在同一检测器的响应因子不同,简单地说就是化合物在检测器的响应不呈线性,或者线性范围比较窄。选择合适的定量方法时,除需要考虑是相对定量还是jue对定量外,同时需要考察化合物的线性响应范围、是否有合适内标、是否有标准品等。接下来小析姐就主要介绍下色谱分析中常用的三种定量方法:面积归一化法、外标法和内标法。  归一化法  由于组分的量与其峰面积成正比,如果样品中所有组分都能产生信号,得到相应的色谱峰,那么可以用如下归一化公式计算各组分的含量。  若样品中各组分的校正因子相近,可将校正因子消去,直接用峰面积归一化进行计算。中国药典用不加校正因子的面积归一化法测定药物中各杂质及杂质的总量限度。  优点:简便、准确、定量结果与进样量重复性无关(在色谱柱不超载的范围内)、操作条件略有变化时对结果影响较小。  缺点:必须所有组分在一个分析周期内都流出色谱柱,而且检测器对它们都产生信号。不适于微量杂质的含量测定。  外标法  用待测组分的纯品作对照物质,以对照物质和样品中待测组分的响应信号相比较进行定量的方法称为外标法。此法可分为工作曲线法及外标一点法等。  工作曲线法是用对照物质配制一系列浓度的对照品溶液确定工作曲线,求出斜率、截距。在完全相同的条件下,准确进样与对照品溶液相同体积的样品溶液,根据待测组分的信号,从标准曲线上查出其浓度,或用回归方程计算,工作曲线法也可以用外标二点法代替。通常截距应为零,若不等于零说明存在系统误差。工作曲线的截距为零时,可用外标一点法(直接比较法)定量。  外标一点法是用一种浓度的对照品溶液对比测定样品溶液中i组分的含量。将对照品溶液与样品溶液在相同条件下多次进样,测得峰面积的平均值,用下式计算样品中i组分的量:  Wi=AiWs/As  式中Wi与Ai分别代表在样品溶液进样体积中所含i组分的重量及相应的峰面积。Ws及As分别代表在对照品溶液进样体积中含纯品i组分的重量及相应峰面积。  优点:简便,不需用校正因子,不论样品中其他组分是否出峰,均可对待测组分定量。  缺点:此法的准确性受进样重复性和实验条件稳定性的影响。  此外,为了降低外标一点法的实验误差,应尽量使配制的对照品溶液的浓度与样品中组分的浓度相近。  内标法  选择样品中不含有的纯物质作为对照物质加入待测样品溶液中,以待测组分和对照物质的响应信号对比,测定待测组分含量的方法称为内标法。“内标”的由来是因为标准(对照)物质加入到样品中,有别于外标法。该对照物质称为内标物。  在一个分析周期内不是所有组分都能流出色谱柱(如有难气化组分),或检测器不能对每个组分都产生信号,或只需测定混合物中某几个组分的含量时,可采用内标法。  准确称量W克样品,再准确称量Ws克内标物,加入至样品中,混匀,进样。测量待测组分i的峰面积Ai及内标物的峰面积As,则i组分在W克样品中所含的重量Wi,与内标物的重量Wi,有下述关系:  待测组分i在样品中的百分含量Ci%为:  对内标物的要求;①内标物是原样品中不含有的组分,否则会使峰重叠而无法准确测量内标物的峰面积;②内标物的保留时间应与待测组分相近,但彼此能完全分离(R≥1.5);③内标物必须是纯度合乎要求的纯物质。  优点:①在进样量不超限(色谱柱不超载)的范围内,定量结果与进样量的重复性无关。②只要被测组分及内标物出峰,且分离度合乎要求,就可定量,与其他组分是否出峰无关。③很适用于测定药物中微量有效成分或杂质的含量。由于杂质(或微量组分)与主要成分含量相差悬殊,无法用归一化法测定含量,用内标法则很方便。  缺点:加一个与杂质量相当的内标物。加大进样量突出杂质峰,测定杂质峰与内标峰面积之比,即可求出杂质含量。但样品配制比较麻烦和内标物不易找寻。  峰面积百分比法  峰面积百分比法也是相对定量,忽略各个组分的响应因子或者默认为每个组分的响应因子相同,计算如下式:  峰面积百分比法适合于不需要准确定量,同时难以得到响应因子的情况。  标准加入法:  标准加入法实质上是一种特殊的内标法,是以待测组分的纯物质作为内标,加入到待测样品中,然后在相同的色谱条件下,测定加入前后待测组分的峰面积(或峰高),从而计算出样品中待测组分的含量。以峰面积计算方法为例,标准加入法的计算如下:  式中,Δwi为加入的标准品的量,Ai为待测组分的峰面积,ΔAi为加入标准品后待测组分峰面积的增加量,wi为原样品中待测组分的含量。  无论是何种定量计算方法都各有优缺点,没有一种方法是一劳永逸,还应该根据样品情况,具体情况具体选择。

厂商

2019.01.22

< 1 ••• 4 5 6 7 8 ••• 27 > 前往 GO

北京诚驿恒仪科技有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 北京诚驿恒仪科技有限公司

公司地址: 北京市海淀区中关村东路18号财智国际大厦A座1102室 联系人: 廖经理 邮编: 100083 联系电话: 400-860-5168转1029

仪器信息网APP

展位手机站