您好,欢迎访问仪器信息网
注册
北京正通远恒科技有限公司

关注

已关注

银牌22年 银牌

已认证

粉丝量 0

400-860-5168转0338

仪器信息网认证电话,请放心拨打

当前位置: 北京正通远恒 > 解决方案 > 原子层沉积在微电子方面的应用

原子层沉积在微电子方面的应用

2023/07/12 14:46

阅读:84

分享:
应用领域:
电子/电气
发布时间:
2023/07/12
检测样品:
电子元器件产品
检测项目:
微电子器件
浏览次数:
84
下载次数:
参考标准:
/

方案摘要:

自摩尔定律问世以来,微电子器件的特征尺寸一直在不断缩小,以提高集成电路的集成度和性能。由于短沟道效应的限制,鳍式场效应晶体管和环栅场效应晶体管等非平面型器件已逐渐被半导体行业所采用。为了满足制造具有这些复杂结构的芯片的要求,ALD因其可以在三维结构上生长高度均匀的保形薄膜的特点,已被广泛用于集成电路先进制程中的关键步骤。 ALD技术在很大程度上依赖于所涉及的表面化学,它可以显著影响沉积膜的特性,如膜厚、形貌、组分和保形性。此外,ALD前驱体对薄膜沉积也起着至关重要的作用。ALD前驱体通常为金属有机化合物,前驱体的挥发性、热稳定性和自限制反应性会显著影响薄膜的ALD生长行为。因此,全面了解ALD的表面化学机制和前驱体化学结构设计是进一步开发和利用ALD技术的关键。在本文中,作者等人对原子层沉积的最新进展进行了详细介绍。

产品配置单:

前处理设备

等离子增强原子层沉积系统

型号: PEALD E200SP

产地: 广东

品牌: 原速科技

面议

参考报价

联系电话

方案详情:

      自摩尔定律问世以来,微电子器件的特征尺寸一直在不断缩小,以提高集成电路的集成度和性能。由于短沟道效应的限制,鳍式场效应晶体管和环栅场效应晶体管等非平面型器件已逐渐被半导体行业所采用。为了满足制造具有这些复杂结构的芯片的要求,ALD因其可以在三维结构上生长高度均匀的保形薄膜的特点,已被广泛用于集成电路先进制程中的关键步骤。

     ALD技术在很大程度上依赖于所涉及的表面化学,它可以显著影响沉积膜的特性,如膜厚、形貌、组分和保形性。此外,ALD前驱体对薄膜沉积也起着至关重要的作用。ALD前驱体通常为金属有机化合物,前驱体的挥发性、热稳定性和自限制反应性会显著影响薄膜的ALD生长行为。因此,全面了解ALD的表面化学机制和前驱体化学结构设计是进一步开发和利用ALD技术的关键。在本文中,作者等人对原子层沉积的最新进展进行了详细介绍。

a、ALD表面化学机制:ALD是化学气相沉积(CVD)的一类变种,其基本原理是将气相前驱体以脉冲的形式交替通入反应腔体中,气相前驱体在基底表面发生化学吸附并进行自限制的表面化学反应,从而实现薄膜的原子层级别的生长(图1 a)。由于表面反应的自限制性,当前驱体的暴露量足够使其完成与基底表面所有活性位点的化学反应后,多余的前驱体分子将不会化学吸附在反应表面,因此每个ALD循环只沿着整个基底表面的形貌均匀地生长单个原子层,即具有良好的保形性和厚度均匀性(图1 b)。此外,ALD的表面反应和沉积温度密切相关,在ALD温度窗口内,表面反应具有自限性,ALD在该温度范围内以几乎恒定的生长速率沉积薄膜;当沉积温度在ALD温度窗口外时,多种非理想因素可能出现并使其偏离理想生长,如前驱体的冷凝或分解、不完全的表面反应以及前驱体脱附(图1 c)。

1.jpg

图1 原子层沉积的基本特性。(a)表面化学反应示意图;(b)饱和生长特性;(c)温度窗口。

目前,许多材料的ALD制备已经实现,其中涉及表面化学机制可以归纳为四类:(1)配体交换;(2)解离吸附和非解离吸附;(3)氧化机制;(4)还原机制。这些机制并不是完全独立的,在很多情况下,ALD表面反应可能涉及到其中多种反应机制。

2.jpg

图2 化学吸附机制示意图。(a)配体交换;(b)解离吸附;(c)非解离吸附。

尽管ALD在沉积高质量薄膜方面有许多优点,但ALD工艺中仍存在非理想因素,深入研究非理想因素对于更好的薄膜质量控制至关重要。为此,作者详细阐述了ALD中一些典型的非理想因素,包括成核延迟、副产物吸附、配体分解、团聚、离子扩散和刻蚀效应(图3)。

3.jpg

图3 ALD非理想因素。(a)成核延迟;(b)副产物吸附;(c)配体分解;(d)团聚;(e)离子扩散;(f)刻蚀效应。


b、ALD前驱体化学:ALD前驱体对薄膜沉积也起着至关重要的作用。通常,ALD前驱体应具有足够的挥发性、热稳定性和自限制反应性。挥发性是所有气相薄膜沉积技术的先决条件;良好的热稳定性对于避免前驱体在加热时或在衬底表面分解十分重要;前驱体的自限制反应性是保证原子层级别生长的前提。因此多年来,研究者一直致力于前驱体分子结构设计,以实现ALD应用所需的特性。例如,为了提高前驱体的挥发性,其通常采用具有烷基末端的有机配体来减少分子间的相互作用;而螯合结构可以被引入以提高前驱体的热稳定性。在本文中,作者对目前常用的几类ALD前驱体进行了详细介绍,包括金属卤化物、金属烷基化合物、金属醇盐、β 金属酮盐化合物、金属茂基化合物、金属胺基化合物以及金属脒基化合物(图4)。此外,通过合理的结构设计,在分子中引入不同类型的配体,可以将这几类ALD前驱体各自的优势结合起来,为前驱体的发展带来新的可能。

4.png

图4 ALD前驱体。


c、ALD的微电子领域应用:自从在DRAM中采用高k氧化锆以及45nm CMOS技术节点中采用氧化铪栅介质以来,ALD已经在半导体行业中被广泛使用。作者在文中列举了微电子领域的一些极具前景的新兴应用,包括基于氧化物的薄膜晶体管、铁电介电层以及金属互连(图5)。

5.png

图5 ALD在微电子领域的应用:(a)氧化物薄膜晶体管;(b)铁电介电层;(c)金属互连。


       ALD作为一种可实现原子层级别的生长与调控的薄膜沉积技术,在微纳制造领域将发挥越来越重要的作用。尽管ALD技术在过去几十年得到了长足发展,但仍存在许多问题尚未解决:对于多元化合物的ALD制备,由于成核延迟在不同材料的切换生长中被显著放大,其组分通常难以调控;选择性ALD技术可以在不同材料的表面实现选择性生长,在降低集成电路制造中的光刻套刻误差方面有巨大的应用潜力,然而其工艺可靠性仍有待提高;空间ALD技术相比较传统的ALD技术,可以显著提升工业生产线的吞吐量,然而该技术更容易受表面化学反应动力学影响。为了进一步发展和利用ALD技术,解决上述难题,深入了解ALD表面化学机制和前驱体化学具有重要意义。随着ALD化学机制研究的不断深入,ALD技术的工业应用也将被大大促进。


下载本篇解决方案:

资料文件名:
资料大小
下载
原速ALD中文样本02.15.pdf
3373KB
相关仪器

更多

等离子增强原子层沉积系统

型号:PEALD E200SP

面议

热通道散热设备 ULTIMA

型号:ULTIMA

面议

热通道散热系统 AURORA

型号:AURORA

面议

热通道散热系统 SIRIUS

型号:SIRIUSSIRIUS

面议

相关方案

分子相互作用相互仪(MP-SPR)在t细胞的原位捕获和膜受体与生物功能化脂质传感器的亲和力分析的应用

表面等离子体共振(SPR)是一种成熟的技术,用于实时和无标记地测量结合亲和力和动力学。多参数表面等离子体共振(MP-SPR)仪器可以在宽角度范围(40-78度)和多个波长范围内进行测量,从而能够评估从小分子到活细胞的各种相互作用。该技术可用于各种创新应用,例如表征与活细胞的相互作用(在传感器上培养或在流动中捕获),以及确定生物层的厚度,包括脂质双层和生物材料的构象变化。 t细胞在人体免疫防御系统中发挥着重要作用,它们的激活引发了适应性免疫反应。t细胞在tcr与抗原肽相互作用时被激活,抗原肽由肿瘤细胞或抗原提呈细胞中的主要组织相容性复合体(MHC)呈现。肿瘤相关抗原特异性免疫细胞具有增强的抗肿瘤活性,为癌症个性化免疫治疗的发展奠定了基础。这种创新疗法旨在激活肿瘤特异性t细胞,帮助患者自身免疫系统攻击癌细胞。成功的免疫治疗需要可靠的TCR-pMHC结合参数来评估治疗的特异性和安全性。

生物产业

2024/06/17

分子相互作用相互仪(MP-SPR)在小分子药物与人血清白蛋白的相互作用方面的应用

人血清白蛋白(HSA)是血浆中最重要的蛋白质,其含量丰富。HSA的主要功能是携带脂肪酸和维持血液胶体渗透压,是许多激素和药物尤其是疏水药物的重要载体。药物与HSA结合增加了药物的半衰期,降低了血液中游离药物的浓度,对临床护理具有极其重要的意义。在药物发现早期,确定血浆蛋白结合是很重要的,因为它用于评估药物的剂量需求和从体内的清除。

其他

2024/06/05

分子相互作用仪(MP-SPR)在活细胞中小化合物对G蛋白偶联受体(GPCR)刺激分析中的应用

多参数表面等离子体共振(MP-SPR)是一种实时无标记检测方法,可以检测传感器表面的变化,如配体结合、分子重排和细胞粘附。由于其多参数方法,可以实时跟踪多个参数(图1)。例如,峰值角位置信号(PAP)检测GPCR激活期间细胞中发生的细微质量重分布。相反,峰值最小强度(PMI)受SPR耦合角反射回的光量的影响。通过这种方式,不同的MP-SPR反应单独或相互结合,可以在单步分析中研究不同的GPCR途径,而无需事先进行细胞处理,使用拮抗剂或途径调节化合物。

其他

2024/05/29

分子相互作用相互仪(MP-SPR)在奶粉细菌检测方面的应用

食品致病菌污染是严重威胁人类健康的问题,用于快速、准确控制食品质量的生物传感器得到了广泛的研究。 建立了基于多参数表面等离子体共振(MP-SPR)生物传感器检测乳制品中鼠伤寒沙门菌的方法。利用生物催化沉淀法进一步改进了利用捕获抗体直接检测细菌的方法。

食品/农产品

2024/05/20

推荐产品
供应产品

北京正通远恒科技有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 北京正通远恒科技有限公司

公司地址: 北京市朝阳区胜古中路2号院7号楼A座611室 联系人: 邮编: 100029 联系电话: 400-860-5168转0338

仪器信息网APP

展位手机站