您好,欢迎访问仪器信息网
注册
北京正通远恒科技有限公司

关注

已关注

银牌22年 银牌

已认证

粉丝量 0

400-860-5168转0338

仪器信息网认证电话,请放心拨打

当前位置: 北京正通远恒 > 解决方案 > ALD在锂电池方面的应用

ALD在锂电池方面的应用

2023/06/05 14:02

阅读:91

分享:
应用领域:
能源/新能源
发布时间:
2023/06/05
检测样品:
锂电池
检测项目:
锂电池电极材料
浏览次数:
91
下载次数:
参考标准:
/

方案摘要:

锂离子电池在充放电过程中,锂离子在正负极之间穿梭。在充电过程中,锂离子从正极脱出经过电解液和隔膜到达负极发生反应。在放电过程中锂离子从负极返回正极嵌入正极材料。在循环过程中,正极材料面临许多的问题如自身体积的变化,晶体结构的改变,界面结构的退化等导致的容量衰减。同样的,负极材料也面临着体积膨胀,枝晶的生长导致的负极材料的粉碎溶解、从集流体表面剥离脱离、电接触变差,短路等一系列问题,这些问题导致材料的容量和循环性能严重下降,甚至电池的起火爆炸。 原子层沉积(ALD)薄膜沉积可以合成具有原子级精度的材料,基于自限的膜纳米级的控制,可以实现多组分膜的化学成分控制、大面积的薄膜/工艺的可重复性,具备低温处理以及原位实时监控等技术特征。该技术在锂离子电池,太阳能电池,燃料电池以及超级电容器中都具有广泛的应用。

产品配置单:

前处理设备

等离子增强原子层沉积系统

型号: PEALD E200SP

产地: 广东

品牌: 原速科技

面议

参考报价

联系电话

方案详情:

      锂离子电池在充放电过程中,锂离子在正负极之间穿梭。在充电过程中,锂离子从正极脱出经过电解液和隔膜到达负极发生反应。在放电过程中锂离子从负极返回正极嵌入正极材料。在循环过程中,正极材料面临许多的问题如自身体积的变化,晶体结构的改变,界面结构的退化等导致的容量衰减。同样的,负极材料也面临着体积膨胀,枝晶的生长导致的负极材料的粉碎溶解、从集流体表面剥离脱离、电接触变差,短路等一系列问题,这些问题导致材料的容量和循环性能严重下降,甚至电池的起火爆炸。

       原子层沉积(ALD)薄膜沉积可以合成具有原子级精度的材料,基于自限的膜纳米级的控制,可以实现多组分膜的化学成分控制、大面积的薄膜/工艺的可重复性,具备低温处理以及原位实时监控等技术特征。该技术在锂离子电池,太阳能电池,燃料电池以及超级电容器中都具有广泛的应用。

       ALD已经被公认是一种非常有前途的工具可以用来解决锂离子电池以及其他电能储存设备所面临的问题。ALD在锂离子电池中的应用主要分为两个方面:(1)高性能电池电极,隔膜,集流体材料等的制备;(2)表面修饰。其应用主要总结在下图:

1.png

1、ALD在电极材料及电解质制备中的应用

a、ALD 用于负极材料的制备

采用ALD技术制备的负极材料主要集中在过渡金属氧化物(TMOs), 如RuO2, SnO2, TiO2和ZnO. 其能量密度比传统的石墨电极高。同时,为了解决TMOs负极材料所面临的挑战,如SnO2在循环过程中较大的体积变化,TiO2低的电子跟离子电导率,由超高电导率的碳基材料如石墨烯,碳纳米管以及Mxenes与TOMs组成的复合负极材料可以很好的融合两者的优势。

如:ALD制备的TiO2/CNF-CFP(carbon fiber paper)负极,具有高可逆容量,超高倍率性能 以及超长循环稳定性。

2.png

b、用于正极材料的制备

通过ALD技术制备的正极材料有非锂化正极如V2O5, FePO4; 锂化正极如LiFePO4, LiCoO2以及LixMn2O4

如TiO2/V2O5/@CNT paper正极在100 mA g-1的电流密度下的放电比容量为400 mAh g-1,达到了理论放电比容量[3]。 同时,正极材料V2O5的溶解问题可以通过TiO2层得到有效抑制,同时不损失容量跟倍率性能。

3.png

c、SSEs固态电解质的制备

归功于其安全性及循环稳定性,全固态锂离子电池近来成为了研究的热点。ALD可以解决全固态锂离子电池所面临的两大关键性挑战:a.高界面阻抗,b.低离子电导率。 最近采用ALD制备的固态电解质有LiPON, Li7La3Zr2O12, LixAlySizO, LixTayOz, LixAlyS and Li2O-SiO2.这些含锂SSEs提供了一个关键的技术平台来制备高能量密度,长寿命以及安全的可充放电池。如下图所示,ALD制备的LLZO为制备3D全固态锂离子微电池提供了一条技术路线

4.png


1.png            2.png


2、ALD在电池电极,隔膜,集流体等表面修饰领域的应用

a、ALD对负极表面修饰的应用

在负极材料中,ALD表面/界面修饰技术主要为了解决从SEI膜引发的系列问题。在循环过程中,SEI膜的大量形成以及体积变化会引起电极的破坏,从而引发新的暴露面导致容量的衰减。如在石墨负极表面沉积Al2O3可以在电池循环了200圈之后有效地保持98%的首圈容量。

锂金属作为负极材料的未来之星,在锂金属的沉积跟剥离过程中,锂枝晶的生长导致电池短路的问题亟待解决。采用ALD技术在锂金属表面构建例如有机/无机复合人工SEI膜,可以有效地抑制锂枝晶的生长。

5.png6.png

b、ALD对正极表面的修饰作用

为了解决正极材料表面所面临的电解液分解,相变,析氧以及过渡金属溶解等问题,采用ALD技术在正极材料表面沉积保护层可以作为物理阻挡层或者HF清除层,从而有效地提高电池的循环稳定性跟倍率性能。在正极材料(层状结构:LiCoO2LiNixMnyCozO2,富锂(Li-rich)xLi2MnO3·(1 − x)LiMO2(M = Mn, Ni, Co),尖晶石结构LiMn2O4)表面沉积的ALD镀层主要可以分为四类:a金属氧化物:Al2O3, TiO2, ZrO2, MgO, CeO2, Ga2O3; b氟化物:AlF3, AlWxFy; c磷化物:AlPO4,FePO4; d含锂化合物:LiAlO2, LiTaO3, LiAlF4

8.png

9.jpg

下载本篇解决方案:

资料文件名:
资料大小
下载
原速ALD样本_正通远恒2022.pdf
1212KB
相关仪器

更多

等离子增强原子层沉积系统

型号:PEALD E200SP

面议

热通道散热设备 ULTIMA

型号:ULTIMA

面议

热通道散热系统 AURORA

型号:AURORA

面议

热通道散热系统 SIRIUS

型号:SIRIUSSIRIUS

面议

相关方案

分子相互作用相互仪(MP-SPR)在t细胞的原位捕获和膜受体与生物功能化脂质传感器的亲和力分析的应用

表面等离子体共振(SPR)是一种成熟的技术,用于实时和无标记地测量结合亲和力和动力学。多参数表面等离子体共振(MP-SPR)仪器可以在宽角度范围(40-78度)和多个波长范围内进行测量,从而能够评估从小分子到活细胞的各种相互作用。该技术可用于各种创新应用,例如表征与活细胞的相互作用(在传感器上培养或在流动中捕获),以及确定生物层的厚度,包括脂质双层和生物材料的构象变化。 t细胞在人体免疫防御系统中发挥着重要作用,它们的激活引发了适应性免疫反应。t细胞在tcr与抗原肽相互作用时被激活,抗原肽由肿瘤细胞或抗原提呈细胞中的主要组织相容性复合体(MHC)呈现。肿瘤相关抗原特异性免疫细胞具有增强的抗肿瘤活性,为癌症个性化免疫治疗的发展奠定了基础。这种创新疗法旨在激活肿瘤特异性t细胞,帮助患者自身免疫系统攻击癌细胞。成功的免疫治疗需要可靠的TCR-pMHC结合参数来评估治疗的特异性和安全性。

生物产业

2024/06/17

分子相互作用相互仪(MP-SPR)在小分子药物与人血清白蛋白的相互作用方面的应用

人血清白蛋白(HSA)是血浆中最重要的蛋白质,其含量丰富。HSA的主要功能是携带脂肪酸和维持血液胶体渗透压,是许多激素和药物尤其是疏水药物的重要载体。药物与HSA结合增加了药物的半衰期,降低了血液中游离药物的浓度,对临床护理具有极其重要的意义。在药物发现早期,确定血浆蛋白结合是很重要的,因为它用于评估药物的剂量需求和从体内的清除。

其他

2024/06/05

分子相互作用仪(MP-SPR)在活细胞中小化合物对G蛋白偶联受体(GPCR)刺激分析中的应用

多参数表面等离子体共振(MP-SPR)是一种实时无标记检测方法,可以检测传感器表面的变化,如配体结合、分子重排和细胞粘附。由于其多参数方法,可以实时跟踪多个参数(图1)。例如,峰值角位置信号(PAP)检测GPCR激活期间细胞中发生的细微质量重分布。相反,峰值最小强度(PMI)受SPR耦合角反射回的光量的影响。通过这种方式,不同的MP-SPR反应单独或相互结合,可以在单步分析中研究不同的GPCR途径,而无需事先进行细胞处理,使用拮抗剂或途径调节化合物。

其他

2024/05/29

分子相互作用相互仪(MP-SPR)在奶粉细菌检测方面的应用

食品致病菌污染是严重威胁人类健康的问题,用于快速、准确控制食品质量的生物传感器得到了广泛的研究。 建立了基于多参数表面等离子体共振(MP-SPR)生物传感器检测乳制品中鼠伤寒沙门菌的方法。利用生物催化沉淀法进一步改进了利用捕获抗体直接检测细菌的方法。

食品/农产品

2024/05/20

推荐产品
供应产品

北京正通远恒科技有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 北京正通远恒科技有限公司

公司地址: 北京市朝阳区胜古中路2号院7号楼A座611室 联系人: 邮编: 100029 联系电话: 400-860-5168转0338

仪器信息网APP

展位手机站