测微表

仪器信息网测微表专题为您提供2024年最新测微表价格报价、厂家品牌的相关信息, 包括测微表参数、型号等,不管是国产,还是进口品牌的测微表您都可以在这里找到。 除此之外,仪器信息网还免费为您整合测微表相关的耗材配件、试剂标物,还有测微表相关的最新资讯、资料,以及测微表相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

测微表相关的厂商

  • 大连微肯微度仪表科技有限公司,坐落于辽宁省海滨城市大连,是一家专业生产流量计的厂家,公司主营仪器仪表研发、设计、销售及现场安装,主要产品电磁流量计、涡轮流量计、涡街流量计、超声波流量计等 ,我们为客户提供优质的产品和技术支持、健全的售后服务,如果您对我公司的产品服务感兴趣,期待您的咨询。
    留言咨询
  • 江苏微米仪表有限公司是一家通过改制转型而形成的专业仪器仪表、工业自动化全面解决方案制造商及服务商。是专门从事设计、生产、销售各种流量、压力、温度、物位等系列仪器仪表的专业公司。本公司经营产品种类包括:电磁流量计、涡街流量计、 金属管浮子流量计、玻璃转子流量计、压力表、压力变送器、压力校验仪、磁翻板液位计、热电偶、热电阻、双金属温度计、一体化温度变送器和中等精度标准计量仪表、控制系统等,是新型自动化仪表科研和生产型企业。 产品在电信、电力、石化、环保、造纸、冶金、食品、医疗、暖通K调等领域拥有广泛的应用前景,质量稳定可靠,深受广大用户好评。 公司始终坚持“质量第一,用户至上”的经营理念,我公司自创建以来,在严酷的竞争环境下,仍然一如既往地坚持选用高端器件,以精确可靠的产品,完善的售后服务体系和良好的信誉赢得众多用户的信赖。我们本着质量第一,服务第一,诚信第一的宗旨。愿与客户携手,以全新的营销策略,与各界朋友,新老客户诚信合作,共创辉煌。
    留言咨询
  • 深圳微科泰仪器仪表有限公司,为精密测试仪器代理商,服务对象为半导体生产行业,PCB 生产行业及一般电镀行业等,集经营销售、技术支持、售后服务于一体。主力经销美国 Thermo X射线镀层测厚仪、韩国Micro Pioneer X射线镀层测厚仪、日本精工SII X射线镀层测厚仪、美国禾威WALCHEM自动加药控制器、美国SCS离子污染测试仪等国外进口仪器。自公司成立以来,公司本着“诚信经营、客户至上”的宗旨,建立了完善的销售及优质技术服务体系,在行业中赢得了优良的口碑!欢迎您来电洽谈合作产品,我们将竭诚为您服务。期待着能与您携手并进,一起为中国的发展做出自己的努力,共创美好明天!欢迎惠顾~~~~以下是我司代理的部分产品:一、韩国micro pioneer XRF-2000 X射线镀层测厚仪(销售、维修保养服务)二、美国 Thermo XRF、ZXR、LXR、GXR系列X射线镀层测厚仪(销售、维修保养服务)三、日本精工SFT-3200/9100/9200射线镀层测厚仪(销售、维修保养服务)四、进口镀层膜厚标准片(Au、Ni、Ag、Sn、Zn、Cu、Cr)五、美国禾威WALCHEM自动加药控制器1、化学镀镍自动加药控制器 WNI-310/4102、化学镀铜自动加药控制器 WCU-310/4103、电导率检测自动加药控制器 WEC-310/4104、PH/ORP检测自动加药控制器 WPH(ORP)-310/410六、日本KYORITSU水质离子测试包可测定项目(离子浓度):氰化物 / 化学需氧量 / 铬 / 铜 / 镍 / 铁 / 甲醛 / 氟 / 硝酸 / 亚硝酸 / 臭氧 / 酸碱度 / 磷酸 / 硫 / 亚硝酸 / 银 / 铝 / 砷 / 硼 / 钙 / 氯 / 二氧化碳 / 二氧化矽 / 锌 / 镁 / 锰 / 氨 / 过氧化氢等。七、美国OMEGA 600SMD离子污染测试仪八、美国EXTEC研磨 / 抛光器材及消耗品九、台湾milum PCB表铜、孔铜测厚仪 1、mm610手持式PCB孔铜测厚仪2、mm125 手持式PCB铜箔检测仪3、mm805桌上型双功能孔面铜厚测厚仪
    留言咨询

测微表相关的仪器

  • 仪器简介:2111LL新一代微钠表,1811EL的升级产品! 近年来,火力发电厂中连续监测水和蒸汽流路系统中的钠离子含量越来越被人们所重视。有两个重要的原因:了解了钠离子对汽轮机的危害;机组正朝高压大容量方向发展。发生在汽轮机内的腐蚀过程被许多研究所证实,并且有相当数量的爆管,炉管变脆,汽轮机故障都是由于腐蚀造成的。腐蚀过程中有几种相关的化学成份,其中钠离子是造成这种问题最重要的原因之一。 超临界大容量机组对水质的要求更高,及时、准确地监测水、汽中极微量的钠离子含量是极其重要的,为此美国热电公司(Thermo)最新开发的新一代2111LL微钠分析仪将再次为电力行业做出卓越的贡献! 2111LL微钠表的其它特色及其优势: 人性化滚动式菜单操作界面,自动引导工作人员进行一一步的操作 可选择的校正周期和试剂的使用周期,极少的繁琐操作,无危险废弃物 弹性安装方式,整套仪表符合原1811EL钠表的安装定位孔,无需进行任何更改,即可方便替换原有的仪表 自动量程选择,仪表自动确定最佳的测量范围 大尺寸、带背景灯的LCD显示,即使在光线不足的测量现场或者也可清晰读数 自诊断功能,故障排除方便,维护简单服务热线: 8008105118(免费)/4006505118(支持手机用户)技术参数:钠离子选择性电极 测量范围 0.01 ppb &ndash 10 ppm 分辨率 1,2, 3 或4位有效数字 准确度 (DKA校正) +/-5% 或 0.01ppb,(大者为准) 准确度(DKA和离线校正) +/-2.5% 或0.01ppb, (大者为准)(以参考值作为"真值") 精度 标准偏差 +/-2.5% 或0.01ppb, 大者为准 响应时间 2分钟达到95%(新清洗过的电极) 显示的单位 ppb, ppm mV 测量 测量范围 +/-1999.9 分辨率 0.1 相对精度 +/-(0.5 mV + 0.1%) 温度测量 测量范围˚ C -10 至 120 ˚ C 分辨率˚ C 0.1 相对精度˚ C +/- 0.5 温度显示 有 手动温度补偿 有 温度连续读数 是 ATC电极 30K 热敏电阻 独特的离子标正方法 DKA 标正方法 是 DKA 标正点数 3 点 离线标定 有 离线标定点 1 点 预编程的标准值功能 有 传统标定方法 可编程方法输入浓度和体积值 LED状态指示 绿色 运行正常 黄色 报警 红色 失效 样品条件要求 温度 5 到 45˚ C 总碱度 低于50 ppm CaCO3 入口压力: 8 至 100 psig(0.6-6.9bar) 流速: 40 ml/分钟 通过压力调节阀来实现 水样入口: 1/4&rdquo NPTF内螺纹 水样排放口: 3/4&rdquo NPT 外螺纹 样水取样器 可选 试剂 纯二异丙胺 显示 显示类型 带背景光的传统LCD 显示大小 54 x 76 mm 显示背景光 有 图形显示 有 (上部) Marquee 温度, 用户提示,菜单/标定/诊断的滚动说明 中间 浓度, 错误代码 下部 mV (显示/关闭) 信号输出 输出通道 隔离的两路输出 输出方式 0-20mA 或 4-20 mA 线性或对数输出 数据记录 有 电源要求 85-132V 100mA 170-264V 200mA 50-60Hz AC 包装尺寸 65× 45× 27cm(L× W× D) 重量 22.7Kg主要特点:全新的专利ROSS Ultra® 电极  ROSS Ultra电极使用特殊的钠离子选择性玻璃成份,具有极高的钠离子选择性,在测量含有微钠的水样时能得到良好的线性曲线,从而获得最低的检测下限和精确可达0.01ppb的测量结果。  ROSS Ultra电极独特的内参比系统提供了快速的响应速度,更好的精度和重复性专利的无漂移参比系统受样品温度变化的影响最小:在0-100℃范围内,获得的测量结果比常规电极的精度高3-5倍。漂移量极小:0.1 ppb/月,避免了频繁的校正。  非银/氯化银的参比系统,避免了因银/氯化银电极离子析出造成的测量偏差。 独特的无泵试剂添加技术  2111LL微钠表使用独特的扩散技术,试剂以气态形式透过扩散管进入水样调节pH值,有效避免了因直接向水样中添加试剂而造成对水样的污染。  独特的扩散技术不再需要试剂泵向系统中添加试剂,从而简化流路系统,使得整个系统更加稳定、可靠。 DKA两点已经添加标定方法  DKA标定法仅需使用移液枪添加标准液,体积量取精度高,操作简单,标定结果可靠。  DKA标定法使用常规ppm级浓度的标准液,而无需准备极难精确配制的ppb级浓度的标准液。  DKA标定法可在含有痕量钠离子的被测水样中直接进行标定,并得到精确的标定结果。 专利的流通池设计 流通池将样品与参比溶液完全隔离,避免了参比溶液的干扰。  校正过程中循环流动,及时感测离子浓度的变化  快速、精密的混合样品,即使是微量的浓度变化也可以在数秒至数十秒内检测到  透明的流通池设计,可以快速、一目了然的观察到正在进行的操作  无电磁阀等运动机件,具有极高的可靠性 系统简单可靠,维护方便  流路系统结构简单,无复杂部件维护方便  电路系统集成设计,故障率低 极高的性价比 2111LL钠表融合了以上几种最优化的设计,而具有测量下限低,准确度高,使用操作简单,维护方便,运行费用低廉等优点。使得这款具有极高性价比的2111LL微钠表成为电力行业痕量钠离子测量的最佳选择。
    留言咨询
  • 2117LL 微氯表1. 5 ppb 检测下限—在宽范围内连续检测氯离子浓度2. 性能优异的氯离子选择性电极,及早侦测到被测水样中氯离子的浓度变化3. 操作极其简单,缩短仪表的停机时间,确保有效运行时间4. 快速的响应并达到稳定值,无需进行频繁的校正5. 仪表不含需要经常维护及成本昂贵的移动部件及试剂泵,保证最少的操作时间和维护量6. 使用动态校正器进行 1-3 点校正,操作简单,可快速返回测量状态7. 独特的水样 pH 调节设计,保证水样在所需的适当条件下测量,从而获得精确、可靠的测量结果市场/应用半导体、电力行业;造纸和纸浆;RO 反渗透监测;以海水作为冷却水的凝汽器渗漏检测;锅炉水监测订购信息
    留言咨询
  • 针对电力行业对测量痕量钠离子的需求,2111EL微钠表融和了如下的诸多特色:全新的专利 ROSS UItra电极1. ROSS Ultra 电极使用特殊的钠离子选择性玻璃成份,具有极高的钠离子选择性,在测量含有微钠的水样时能得到良好的线性曲线,从而获得最低的检测下限和精确可达0.001 ppb的测量结果2. ROSS Ultra电极独特的内参比系统提供了快速的响应速度,更好的精度和重复性,专利的无漂移参比系统受样品温度变化的影响最小:在0-100℃范围内,获得的测量结果比常规电极的精度高 3-5倍;漂移量极小:0.1 ppb /月,避免频繁的校正3. 非银/ 氯化银的参比系统,避免因银/ 氯化银电极离子析出造成的测量偏差独特的无泵试剂添加技术1. 2111EL 微钠表在 1811EL 钠表独特的试剂扩散技术基础上进行了进一步的优化,试剂碱化更纯净2. 独特的扩散技术不再需要试剂泵向系统中添加试剂,从而简化流路系统,使得整个系统更加稳定、可靠DKA 两点已知添加校准方法1. 仅需使用移液枪添加标准液,体积量取精度高,操作简单,标定结果可靠2. 使用常规 ppm 级浓度的标准液,而无需准备极难精确配制的 ppb级浓度的标准液3. 可在含有痕量钠离子的被测水样中直接进行标定,并得到精确的标定结果仪表具有灵活的扩展性1. 可选择增加第二通道为 pH 或电导率测量通道2. 可选择数字通讯模块,满足用户现场数字网络通讯的要求专利的流通池设计1. 流通池将样品与参比溶液完全隔离,避免了参比溶液的干扰2. 校正过程中循环流动,及时感测离子浓度的变化3. 快速、精密的混合样品,即使是微量的浓度变化也可以在数秒至数十秒内检测到4. 透明的流通池设计,可以快速、一目了然的观察到正在进行的操作5. 无电磁阀等运动机件,具有极高的可靠性系统简单可靠,维护方便1. 流路系统结构简单,无复杂部件,维护方便2. 电路系统集成设计,故障率低领域:电力、半导体、造纸、石化应用:纯水/超纯水、除盐水、蒸汽凝结水订货信息:
    留言咨询

测微表相关的资讯

  • 高分子表征技术专题——基于原子力显微镜的单分子力谱技术在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!基于原子力显微镜的单分子力谱技术在高分子表征中的应用Application of Atomic Force Microscopy (AFM)-based Single-molecule Force Spectroscopy (SMFS) in Polymer Characterization作者:张薇,侯矍,李楠,张文科作者机构:吉林大学超分子结构与材料国家重点实验室,长春,130012作者简介:张文科,男,1973年生. 分别于1997、2002年在吉林大学化学系(学院)获得学士、博士学位,导师为张希教授;2001~2002年于德国慕尼黑大学(LMU)博士联合培养,导师为Hermann E. Gaub教授;2003~2007年于英国诺丁汉大学从事博士后研究. 2007年6月至今,吉林大学超分子结构与材料国家重点实验室教授. 2011年入选教育部“新世纪优秀人才支持计划”;2015年获得国家杰出青年基金资助. 以原子力显微镜及磁镊等技术,从单个分子水平开展超分子作用力及大分子组装结构与组装过程研究,主要研究方向包括:单分子力谱与超分子组装、高分子结晶及力致熔融、核酸-蛋白相互作用、聚合物力化学等.摘要基于原子力显微镜(atomic force microscopy, AFM)的单分子力谱技术以其操作简便、适用面广等优势,成为了单分子领域应用最为广泛的技术之一. 本文阐述了该技术的基础原理与实验技巧,包括仪器构造、工作原理、探针与基底的选择、样品固定、实验操作、单分子信号的获得以及数据处理. 介绍了基于AFM的单分子力谱技术在合成高分子及生物大分子表征中的典型应用及前沿进展. AFM单分子力谱技术将有助于建立合成高分子的链结构、链组成与单链弹性以及链间相互作用与其宏观力学性能间的关联,帮助理解生物大分子的结构、相互作用与其生物功能之间的联系.AbstractAtomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) has been used widely in the investigation of molecular forces because of its friendly user interface (e.g., easy to operate and canwork in liquid, air and high vacuum phase) and worldwide commercialization. This review is aimed to introduce the principle and protocol of AFM-based SMFS including the setup, the working principle, typicalcurves, the choice of AFM tip and substrate, immobilization of samples, manipulation of the device, empirical criteria for single-molecule stretching and data analysis. Recent progresses on the application of AFM-based SMFS in the characterization of synthetic polymers and biopolymers were reviewed. For synthetic polymers, the effects of primary chemical compositions, side groups, tacticity and solvents on the single chain elasticities were discussed. The applications of AFM-SMFS in disclosing the structure of unknown molecule, polymer-interface interactions and polymer interactions in polymer assemblies (e.g., polymer single crystal) were introduced. In addition, the nature of mechanochemical reactions and characterization of supramolecular polymers were realizedvia this technic. For biopolymers, the effects of base-pair number, the force-loading mode (unzipping or shearing) on the stability of short double-stranded DNA (dsDNA) were reviewed. According to this knowledge, the single-molecule cut-and-paste based DNA assembly was then discussed. The typical force fingerprints of long dsDNA, proteins and polysaccharides as well as the force-fingerprint-based investigation of molecular interactions were illustrated. Finally, the application of AFM-SMFS in revealing the intermolecular interactions and the mechanism of virus disassembly as well as the antivirus mechanism of tannin in tobacco mosaic virus were reviewed.Therefore, AFM-based SMFS is essential for revealing the relationship between the conformation/composition of polymer chains and micro/macro-mechanical properties of polymer materials as well as correlating the molecular structure/interaction of biopolymers with their biofunctions. 关键词AFM单分子力谱  合成高分子  生物大分子KeywordsAtomic force microscopy-based single-molecule force spectroscopy  Synthetic polymers  Biopolymers 合成高分子材料自诞生以来,迅速地以其优良的物理、化学及力学性能等在军事、航空航天、医疗及其他民用领域得到了广泛应用. 其力学性能是最基本、最重要的性质之一,同时受到高分子的单链弹性及链间相互作用的影响[1,2]. 因此,建立高分子链一级结构、单链弹性及链间相互作用与材料宏观力学性能间的联系, 对高分子材料的理性设计至关重要. 然而,传统的材料学研究方法,如宏观拉伸实验、X射线晶体衍射、固体核磁及拉曼等技术无论从样品制备到检测均涉及大量分子,体现平均效应,表征宏观力学性能,无法获得单个链或键的性质及行为的相关信息. 此外,传统研究方法也无法连续、动态及精确地体现出单个事件的不同步骤(例如高分子在不良溶剂中的塌缩行为),导致很多重要信息无法获取. 因此,可在纳米尺度精确操纵与测量的单分子技术,例如基于AFM的单分子力谱,被广泛应用于单个分子的结构、功能及其动态行为的研究中[1~5]. 利用该技术,人们获得了溶剂、取代基以及立构规整度等因素对高分子单链弹性的影响,验证并改进了一些经典高分子理论模型[1,6~9]. 该技术还可以研究高分子的构象变化及其在界面的吸附行为,揭示外力诱导下高分子链中化学键类型的变化规律(力化学)[1,10~12]. 同时,该技术还被用于凝聚态(晶体、层层组装薄膜等)中高分子间相互作用的相关研究[13,14].生物大分子(核酸、蛋白质及多糖等)结构与功能的研究对于认识复杂生命过程的本质,了解疾病的发生发展机制以及开发新型药物与生物医用材料至关重要. 因此,AFM单分子力谱技术也被广泛用来研究生物大分子,例如DNA的解链及动态结构变化、蛋白质的折叠与解折叠、生物大分子间的相互作用(病毒的遗传物质与蛋白质外壳的相互作用)等[9,15~20]. 相关研究深化了人们对这些生物分子所参与的生命过程的认识,并为其功能调控奠定了坚实基础.本文将重点评述AFM单分子力谱技术的基础原理、实验技巧以及该技术在合成高分子及天然高分子领域的典型应用及前沿进展.1单分子力谱的基础原理1.1几种典型的单分子力谱技术迄今为止,诞生了许多单分子操纵技术,例如生物膜力学探测技术、玻璃纤维技术、光学镊子(光镊)、磁性珠技术(磁镊)以及AFM单分子力谱技术[9,21~25]. 后3种技术的应用较为广泛. 光镊利用聚焦激光束产生辐射压力形成的光学陷阱来捕获修饰有样品分子的小球,通过移动激光光束控制小球的移动,实现对样品分子的三维操纵,其时间分辨力能够达到10-4 s,被广泛应用于蛋白质折叠及解折叠等研究. 但光镊系统构造复杂,对环境要求极高,有效样品捕获率低以及激光束容易对样品造成光和热损伤等不足亟待解决. 磁镊技术将样品固定在基底与超顺磁性小球之间,利用外加磁场控制磁球,操纵样品分子,例如旋转等 [22]. 因此,磁镊被广泛用于DNA缠绕及解缠绕等研究中. 该技术可以检测低至10-3 pN的力值,也被应用于一些极微小力的测量. 该技术还能同时对多个磁球进行操纵,实现高通量测试. 由于需要通过成像观测磁珠,因而相机的拍摄速度决定了磁镊的时间分辨率,通常在10 -2 s以上. 在众多的单分子力谱技术中,AFM单分子力谱技术的应用最广,理论发展更为成熟 [1~5,9,26,27]. 该技术将样品分子固定在AFM探针与基底之间,通过控制AFM探针的位移来操纵样品分子. 该技术具有较高的时间和空间分辨率,较宽的力学测量范围,可以在真空、水相以及有机相等多种环境下工作,因此被广泛地应用于合成与天然高分子等众多体系中的分子内及分子间相互作用的研究. 综上所述,光镊及磁镊的力学精度稍高,适用于由弱相互作用及熵弹性所控制的力学性质的研究;AFM单分子力谱更适合较强相互作用或者由焓控制的弹性性质的研究. 为了更全面地认识聚合物的结构与力学性质,可以将上述3种单分子力谱技术联合使用.1.2AFM单分子力谱1.2.1仪器构造基于AFM的单分子力谱是AFM的工作模式之一. 因此,其基本构造与AFM相同,主要由位置控制系统(压电陶瓷管)、力学传感系统(AFM探针的微悬臂及其顶端针尖)以及光学检测系统(激光二极管、棱镜、反射镜与四象限光电检测器)三部分组成(图1)[9,21,28,29]. 对压电陶瓷管两端施加电压,可以控制其驱动样品台或AFM探针进行亚纳米精度的位移.z方向的移动用于调整探针与样品间的距离;x,y方向的移动用以调整探针在样品表面的探测位置及范围. 光学检测组件中的激光器将激光照射在微悬臂靠近针尖的一端,再反射到四象限光电检测器上. 当AFM探针受到样品分子的牵拉发生弯曲时,其反射的激光的位置也会随之变化. 据此,可以计算出微悬臂的偏转量,结合微悬臂的弹性系数,可以获得待测样品分子的相关力学信息[3~5].Fig. 1The schematic diagram of AFM-SMFS.1.2.2工作原理实验前,样品分子的一端通过物理吸附、特异性相互作用或化学偶联等方法被固定在基底. 随后,驱动压电陶瓷管使AFM探针逼近待测样品(图2(a)). 如果基底对探针没有长程的吸引或排斥作用,微悬臂将处于松弛状态. 探针与基底接触后,受力向微悬臂上表面方向弯曲,引起二极管的2个象限间的差分信号(pha-b)的变化(图2(a)与2(b),状态2→3). 在此过程中,样品分子会通过化学、物理或特异性作用吸附在探针上,在探针与基底之间形成桥联结构. 随后,探针远离基底并恢复松弛状态(图2(a),4),pha-b也恢复初始数值. 探针继续远离基底,桥联于探针与基底间的样品分子受到拉伸,导致微悬臂向针尖方向偏转(图2(a),5),引起pha-b的增加(图2(b),5). 最后,桥联结构中稳定性最薄弱的部分发生断裂,微悬臂迅速恢复为不受力的松弛状态(图2(a),6),表现为pha-b的突然回落(图2(b),6)[1,9,21,29]. 每个完整的逼近-回缩过程都会产生pha-b对应压电陶瓷管位移的原始曲线(图2(b))[29].Fig. 2(a) Schematic illustration of the basic working principle of AFM-SMFS (b) Original volt-piezo displacement curves (c) Typical force-extension curves.Fig. 3Electron microscopy images of a commercial Si3N4 AFM probe. Fig. 4Molecular immobilization based on (I) physical absorption, (‍Ⅱ) specific binding, (‍Ⅲ) gold-thiol chemistry, (‍Ⅳ) silanization and enzymatic biosynthesis.Fig. 5Immobilization of thiol-labeled DNA based on silanization and bifunctional PEG.Fig. 6Typical curves obtained in constant velocity (a) and force-clamp mode (b), respectively.原始曲线经过校正才能正成为最终的力-拉伸长度曲线(图2(c))[1,2,4,9,21,29]. 将具有弹性的微悬臂看成弹簧,根据胡克定律F=kcΔx(kc为微悬臂弹性系数,Δx为微悬臂偏转量)可以计算出微悬臂受到的作用力,即样品分子内或分子间的作用力.kc通过对微悬臂在远离基底时热振动所获得的能量谱的积分即可获得;Δx利用图2(b)中斜线部分(状态2→3)的斜率(s),即Δx=s-1pha-b就可以计算出. 样品分子的拉伸长度通过从原始数据横坐标记录的压电陶瓷管的位移中扣除Δx获得. 至此,pha-b对应压电陶瓷管位移的原始曲线被成功地转化为样品分子的力-拉伸长度曲线.1.2.3力曲线及其含义AFM针尖逼近和远离样品表面的一个循环中可以获得2条力曲线,称为逼近力曲线与回缩力曲线(图2(c))[1,2,4,9,21]. 逼近力曲线上B区域的形状可以给出样品模量等信息. 例如:当AFM探针接触较软的样品时,受到的排斥力随位移缓慢增加;而接触硬度较大的样品时,受到的排斥力快速增加,B区域的力信号与水平基线之间形成近90°的直角. 对于回缩力曲线,C-D区域可以给出单分子弹性性质、链结构信息以及分子内、分子间相互作用强度等定量信息.2AFM单分子力谱实验技巧2.1探针与基底的选择AFM探针直接影响力学探测的稳定性、精确度及测量范围[1,2,4,9,21,29]. 其材质通常是硅或氮化硅,由针尖、微悬臂及承载微悬臂的基片组成(图3). 针尖通常是四面体形状,最尖端的曲率半径(tip radius)为几个到几十纳米,高度(tip height)通长为3~28 µm. 微悬臂有矩形和三角形2种,长度为7~500 µm,厚度为0.5~7 µm. 其材质及几何尺寸均对共振频率和弹性系数有重要影响,需要根据实验体系来选择探针. 对于弱相互作用体系(例如双链DNA的解拉链)[30],应选择相对柔软,即弹性系数小的探针;而强相互作用体系(例如:共价键强度的测量)[31],则需选择相对坚硬,即弹性系数较大的探针. 值得注意的是,刚性较大的探针在应力松弛时其内部储存的能量释放速度更快,更适于研究多重键的连续打开与形成的动态过程,例如聚酰胺(PA66)单晶中聚合物链在受力熔融过程中的黏滑运动(stick-slip)[32]. 此外,一些公司也生产了许多功能化的AFM探针. 例如:满足基于巯基-金的化学分子偶联的镀金AFM探针;为了增加激光束在微悬臂上表面的反射率,只在上表面蒸镀金属涂层(铝或金等)的探针等. 然而,只存在于微悬臂上表面的镀层,往往导致其上下表面的膨胀系数产生差异,引起热漂移[33]. 为了减小该热漂移,有些探针只在其微悬臂的尖端进行有限的金属蒸镀(例如MLCT-BioDC型号探针). 如需增加时间分辨率,可以选用超短探针[34]. 但超短探针的弹性系数通常较大. 科研人员曾利用离子束刻蚀的方法将微悬臂做成镂空结构,同时保证了时间分辨率和弹性系数[35]. 然而,使用较小尺寸微悬臂时,激光容易“漏射”到样品表面,发生反射,与微悬臂表面的反射光产生干涉,导致力曲线出现大幅度波动. 为了减少这种干涉效应,通常可以采取以下几种策略:(1)减小汇聚到微悬臂表面的激光光点的大小,从而减小漏光;(2)选用横向尺寸较大的微悬臂,增大反射面积;(3)选择透明基片(例如玻璃片)固定样品,降低基片的反射率;(4)适当增加样品平面相对于微悬臂平面的角度,降低反射光的相干性.AFM探针需要被牢固地固定在夹具上,以减少系统漂移. 为了提高微悬臂检测的灵敏度,将激光光斑尽可能地照射在微悬臂的最前端. 仪器调试完毕,让整个系统平衡10~30 min,使微悬臂上下表面材质差异所引起的界面张力达到平衡,减小系统漂移. 如在同一个样品上进行力谱探测的时间较长,且实验前期及后期羧甲基化淀粉以及多聚蛋白质的力学指纹谱是被经常采用的单分子拉伸指示剂. 为此,可以将待测分子与已知指纹图谱的分子进行串联(图7)[49]. 需要注意的是待测体系的力学稳定性要大于内标分子产生力学指纹谱所需的力值.Fig. 7Basic strategy to isolate/identify single chain/molecule pair stretching.2.5力谱数据的分析处理单分子力谱数据可以给出的信息包括长度及力值的定量信息. 为了更精确地描述这些定量信息,通常需要对大量力学信号进行统计分析[1]. 常用的统计方法是将所得数据以柱状图形式呈现,进行高斯拟合,得出最可几值.此外,还可以利用自由连接链模型及蠕虫链模型对数据拟合,获得库恩长度、相关长度或者链段弹性系数等信息[1]. 近年来,这些经典模型不断被修正,应用范围逐渐被拓展[56]. 例如:FJC模型中了增加参数Ksegment,表征高分子链中每一个链段的弹性,被修正为可伸长的FJC模型(eFJC). 该模型中,每一个链段类似弹簧,受力过程中伸长,可以更加精确地描述高分子受力时的弹性行为. 为了更好地描述高分子主链的固有弹性,即本征弹性,由量子力学(QM)计算得到的非线性单链焓弹性模量被整合到WLC、FJC及FRC模型中,得到了QM-WLC、QM-FJC与QM-FRC模型[57]. 在特定情况下,如水环境或真空条件,侧基和环境的非共价相互作用会对高分子链弹性产生影响. 为了得到上述情况下高分子主链的弹性,基于两态(two-states)系统的非共价作用动力学被引入,创建了TSQM-WLC、TSQM-FJC及TSQM-FRC模型. 上述修正模型能够更加精确地定量高分子链的结构及性质[57].一些非平衡态体系,例如受体配体的解离、力诱导下的转变等,力加载速率会影响力-拉伸长度曲线的形状. 因此,可以在较大力加载速率范围内,观察上
  • 岛津原子力显微镜-从表面到界面
    人类认识真理的过程就像剥洋葱,由表及里一层层递进。 反映到对化学反应过程的认识,一开始,人们通过物质的形、色等外在表象认识化学反应。正如现代化学之父拉瓦锡重复的经典“氧化汞加热”实验一样,氧化汞由红色粉末变为液态的金属汞,这个显著的变化意味着反应的发生。即使到了近现代,仪器分析手段越来越多样,我们做常用的分析手段也是通过物质外在状态的变化进行观察,或者利用各类显微镜及X射线衍射仪观察物质的结构变化。 拉瓦锡之匙拉瓦锡对化学反应中物质的质量、颜色、状态变化的观察,犹如在重重黑暗中,找到了打卡化学之门的那把钥匙。 元素周期表 到19世纪,道尔顿和阿伏加德罗的原子、分子理论确立,门捷列夫编列了元素周期表。原子、分子、元素概念的建立令化学豁然开朗 自从用原子-分子论来研究化学,化学才真正被确立为一门科学。正是随着对不同元素的各种微粒组合变化的认识发展,化学的大门终于被打开。伴随金属键、共价键、离子键、氢键等各种“键”概念的提出,人们逐渐认识到各种反应的本质是原子或分子等微粒间的力学变化。于是,对反应的观测需要微观下的力学测量工作。 作为专门利用极近距离下极小颗粒间作用力工作的原子力显微镜,此事展现了自身巨大优势。无论是直接测试不同分子间的作用力,还是利用力的测量完成表面形貌的表征,原子力显微镜以高分辨率出色地完成了任务。 对于一些生物样品,例如脂质膜,因为其是由磷脂分子构成的单层或双层结构,极其柔软,因此其表面作用力极其微弱。从测试曲线上可以看出,脂质膜对探针的力只有约1pN,但是原子力显微镜的测试曲线上可以很清晰地捕捉到这个变化。 有趣的是,人们对真理的发掘,是由表及里的。但是利用原子力显微镜对化学反应本质的发现,却是由内而外的。 原子力显微镜基本是被作为一种表面分析工具使用的。这使其只能用来观察反应前后固相表面的结构变化,或者通过固相表面的各种属性,如机械性能、电磁学性能等侧面论证反应的发生。而要真正观察到反应的过程,是要对界面层进行观测的。因为几乎所有的反应,都是发生在两相界面处的,表面只是最终反应结果的呈现。 在界面处,反应发生时,原有的原子/分子间的作用力——也就是各种“键”,因为电子的状态变化(得失或者偏移)无法维持原有的稳定性,从而导致了原子/分子的重新排列,直到形成了新的力学稳定态——也就是新的“键”形成后,反应结束。这个过程的核心就是原子/分子间的“力的变化”。 反应的本质——微粒间力的分分合合 当化学科学的车轮推进到纳米时代,当探索的前锋触摸了两相界面,当理论的深度深入到动力学的研究。原子力显微镜是否能够当此重任呢? 能。但是需要一番蜕变。 界面处的力梯度有两个特点。一是更为集中,一般在0.3nm-1nm左右的范围内会有2-4个梯度变化;二是更为微弱,现在的原子力显微镜可以有效捕捉皮牛级的力变化,但是在表征界面时依然分辨率不足,需要的分辨率要提高1-2个数量级。 新的需求引导了新的技术蜕变。调频模式的成熟化,几乎完美应对了界面处的力梯度特点。一方面,只有几个埃的振幅可以有效对整个界面区进行表征,另一方面,检测噪音压低到20 fm/√Hz以内,保证了极高的分辨率。 岛津调频型原子力显微镜SPM-8100FM 例如对固液界面的观察。我们都知道,因为在固液界面处,因为液体分子和固体表面分子的距离不同,会形成不同的作用力,如氢键、偶极矩、色散力等。因此形成的液体分子的堆积密度会有不同。这种液体分子的分层模型,是润滑、浸润、表面张力等领域的底层原理。但是长期以来,这些理论只存在于数理模型和宏观现象解释之中,没有一个合适的直观观测工具。 界面观测之牛刀小试 岛津的SPM-8100FM的出现,将固液界面的高效表征变成了现实。上图右侧就是云母和水的界面处,水分子的分层结构,在约0.6nm的范围内,可以清楚看到3个分层。 具体到现实应用中,对表面润滑的研究很适合采用这种分析工具进行定性定量化测试。使用SPM-8100FM对润滑油中氧化铁表面上所形成的磷酸酯吸附膜进行分析。 图示为4组对照实验,分别是仅使用PAO(聚α-烯烃)和添加了不同浓度的C18AP(正磷酸油酸酯)的润滑油。 在未添加C18AP的PAO中,观察到层间距离0.66 nm的层状结构。通过这一层次可以看出,PAO分子在氧化铁膜表面上形成了平行于表面的平坦的覆层。随着C18AP浓度不断增加,从0.2 ppm到2 ppm后,层状结构开始消失,最后在20 ppm和200 ppm时完全观察不到。层状结构消失表明PAO分子定向结构被C18AP取代,在基片上形成了吸附膜。随着C18AP浓度不断增加,氧化铁基片表面逐渐被吸附膜覆盖。 对照使用摆锤式摩擦力测试仪测量获得的钢-润滑油-钢界面的摩擦系数。在添加C18AP浓度到达20 ppm后,PAO的摩擦系数大大降低。和微观界面表征的结果非常吻合。 由此可见,使用SPM-8100FM对润滑油-氧化铁界面实施滑动表面摩擦特性分析评估,可有效加快润滑油开发进度。 技术的发展推动了科学的进步,科学的发展也渴求更多的技术发展。原子力显微镜表征技术由表面向界面的延伸,一定会有力地推动对化学由表象向本质的探索。岛津将一如既往地尽其所能,提供帮助。 本文内容非商业广告,仅供专业人士参考。
  • 岛津原子力显微镜——表面之上(一)
    原子力显微镜是一种典型的表面分析工具。利用探针和表面的作用力,获取表面形貌、机械性能、电磁学性能等信息。但是,表面的状态往往是反应过程的最终表现,想要了解反应的动力学过程,只是着眼于“表面”明显就不够了。此外,对表面状态的诱发因素,也很难从表面的信息中获得。所以,表面的是最容易观察到的,但要究其根本,知其所以然,我们的视线要向“上”看,研究“界面”处的信息。表面之上,让表面不再肤浅。以原子力显微镜最基本的“力-距离”曲线为例。如下图所示,探针逐渐靠近样品表面直至接触,施加一定的作用力后再缓慢提起。在这个过程中,探针感受到的力和探针与样品表面间的距离标化曲线如下图。在逐步接近样品时,探针会受到一个吸引力,表现为曲线向负值方向有一个凹陷;然后逐步施加力至正值,停止;然后后撤探针,在脱离表面前会受到一个粘附力,形成第二个负值方向的凹陷。比较探针压入和提出的过程,探针的受力有一个明显的变化就是在提出过程中增加了探针表面与样品表面的粘附力作用。同时还要考虑样品表面的应力形变恢复带来的应力与吸附力作用距离延长。因此,从“力-距离”曲线中,我们可以获得压入-提出过程中,探针与样品保持接触阶段作用力的变化,由此分析得到杨氏模量;除此之外,在探针与样品表面脱离接触后,其范德华引力与粘弹性力在“界面层”仍然处于变化之中。分析这个阶段的粘附力力值和作用距离等数据,可以获得弹性形变恢复、粘性样品拉伸长度等信息。以上是针对一个点的分析,如果对一个面的每一个测试点都作如此分析,也就是通常所做的面力谱分析。如下图所示。一般而言,面力谱分析获得的是各类机械性能的面分布情况。如下图所示。但是,如果每一个测量点,我们都做如上的分析,还可以得到在垂直方向上,在探针针尖已经脱离了和样品表面的接触后的受力状态。从而获得了从表面向上一段距离内的力变化曲线。这样的数据用一个三维的图像表现出来呢,会给人更直观的认识。如下图所示。通过颜色变化表征垂直分布的力值变化,可以直观看到样品表面在受到压力后压缩和恢复程度,以及粘弹力的持续距离。前者可以反映样品的力学特征,后者可以反映表面化学成分,这个特征尤其在电化学和胶体科学领域非常重要。本文内容非商业广告,仅供专业人士参考。

测微表相关的方案

测微表相关的资料

测微表相关的论坛

  • 关于微孔的表征?

    请问:小于50微米的颗粒的孔隙率用什么仪器表征啊,还有就是油漆(清漆)膜表面的微孔用什么仪器表征啊,具体方法是什么啊,谢谢!!!!!!!!

  • 表面微生物的心得

    表面微生物,微生物检测(定性试验)的一些心得提到表面微生物检测,检测人可能会很头疼。今天我想借着这个机会,把我在国外的一些同行那里吸收到的经验分享给大家,也希望借此机会可以达到共勉。那么,我们为什么需要表面微生物采集检测?首先,说说什么是表面微生物擦拭试验?因为它对于监测处理食品的环境卫生对确保食品安全至关重要。以下文章解释了擦拭试验的目的和方法,该试验被推荐用于评估微生物对环境的污染,即微生物检验的卫生监测。一、什么是擦拭试验法? 以及它的目的是什么?导致食物中毒的微生物一般是由食物处理者带入食品厂和厨房的。然而,它们也以另外两种模式存在于食品处理环境中。第一个是空气中的细菌,它们存在于空气中。另一种是表面传播的细菌,它们粘附在各种表面上,如食品、餐具、设备、设施和食品处理人员的手和手指上。擦拭试验也是为了检测这些表面附着的细菌。 它是验证与食品有关的环境的生物卫生的测试之一。此外,在我们所在的国家里,各地方监管机关和法令指定城市制定的卫生管理和操作标准将擦拭检查描述为 "定期进行产品检查和擦拭检查以确认设施的卫生状况"。(在这里我们不再赘述。)二、擦拭试验法所揭示的内容环境中的微生物对人眼来说是看不见的。然而,通过擦拭测试的方法可用于检测和显示微生物的存在,如大肠杆菌、金黄色葡萄球菌和诺瓦克病毒。擦拭试验法还不仅显示了导致食物中毒的微生物是否存在于试验对象上,而且如果存在,并对于它们在多大程度上存在并污染了环境做出判定。(定量和定性实验)因此,擦拭试验可用于监测食品处理环境中存在的微生物。通过检测高污染区域,有可能确定问题区域,划定风控区域并制定解决方案。三、擦拭试验方法之样品收集可以通过用试管棉签套组或者采菌棉擦拭测试对象或用介质直接接触测试对象来收集标本。用采菌棉进行擦拭测试对象,用采菌棉擦拭物体表面的一定区域。下面就做详细图例和讲解。● 用采菌棉擦拭测试对象(印章式采菌方法)?100cm2(10×10cm)范围内进行曲线采菌①砧板擦拭试验方法实例?擦拭砧板的表面②刀擦拭检查法的例子?擦拭菜刀的表面③手工擦拭检查法的例子?擦掉处理食物的人的手掌?采集工作人员指尖这种方法的优点是可以有效地从各种测试对象的表面收集微生物。● 直接盖章法培养基与待测物的表面直接接触,物体表面的微生物被转移到培养基的表面。手部擦拭试验的例子?直接在手掌上盖章之后,对其进行培养,并测量在培养基上形成的细菌菌落的数量。这种方法使用起来很简单,可以很容易地收集样品,但缺点是很难从弯曲的表面收集样品。四、其他试验法通过直接收集的标本进行培养,并计算细菌菌落的数量。用棉签擦拭的标本的培养法或ATP法进行检测。● 培养方法在培养方法中,从拭子中提取的样品溶液被涂抹在培养基上并进行培养。经过一到两天的培养,包括大肠杆菌和葡萄球菌在内的活菌的菌落数量可以用来确定测试对象的污染状况。只有经过培养之后才能确定环境中生存的微生物。● ATP法ATP方法检测存在于生物体内的三磷酸腺苷,具有提供快速结果的优势。然而,ATP方法并不能检测微生物本身。 这些结果应仅作为一种指导。它一般用于有限的应用,例如对清洁后的环境进行评估。总结本文对擦拭试验进行了概述。处理食品的工厂和厨房的管理人员需要定期监测他们所控制的环境的卫生状况。来源:上新生物科技有限公司soukouei原创分享

  • 空分停开车时,微量分析仪表的处理

    A;空分停车时,为了: 1;保护传感器,如微量氧的,要保护电池; 2;使开车时很快投入运行。 请问您对空分中的微量氧,微量水,微量氮分析仪表采取措施了吗? B;空分开车时,为了: 使微量分析仪表很快投入运行,并迅速反映当前工艺参数值。 请问您对空分中的微量氧,微量水,微量氮分析仪表采取措施了吗? 如果有,请大家说出自己的措施。最好包括仪表型号。

测微表相关的耗材

  • 三维表面形貌仪配件
    三维表面形貌仪配件是德国进口的高精度多功能表面轮廓测量仪器,也是一款光学表面形貌仪,非常适合对表面几何形状和表面纹理分析。 三维表面形貌仪配件根据国际标准计算2D和3D参数,使用最新的ISO 25178 标准表面纹理分析,依靠最新的 ISO 16610 滤除技术进行计算,从而保证了国际公信力,以标准方案或定制性方案对二维形貌或三维形貌表面形貌和表面纹理,微米和纳米形状,圆盘,圆度,球度,台阶高度,距离,面积,角度和体积进行多范围测量,创造性地采用接触式和非接触式测量合并技术,一套表面形貌仪可同时具有接触式和非接触式测量的选择。 三维形貌仪配件参数: 定位台行程范围:X: 200 mm Y: 200 mm Z: 200 mm (电动) 接触式测量范围: 范围0.1mm, 分辨率2nm, 速度 3mm/s 范围2.5mm 分辨率40nm, 速度3mm/s 非接触式测量范围: 范围:300um, 分辨率2nm, 速度30mm/s 范围:480um, 分辨率2nm, 速度30mm/s 范围:1mm, 分辨率5nm, 速度30mm/s 范围:3.9mm , 分辨率15nm, 速度30mm/s 表面形貌仪配件应用:测量轮廓,台阶高度,表面形貌,距离,面积,体积 分析形态,粗糙度,波纹度,平整度,颗粒度 摩擦学研究,光谱分析 磨料磨具,航天,汽车,化妆品,能源,医疗,微机电系统,冶金,造纸和塑料等领域。
  • 三维表面轮廓仪配件
    三维表面轮廓仪配件是德国进口的高精度多功能表面轮廓测量仪器,也是一款光学轮廓仪,非常适合对表面几何形状和表面纹理分析。 三维表面轮廓仪配件根据国际标准计算2D和3D参数,使用最新的ISO 25178 标准表面纹理分析,依靠最新的 ISO 16610 滤除技术进行计算,从而保证了国际公信力,以标准方案或定制性方案对2D轮廓或三维轮廓表面形貌和表面纹理,微米和纳米形状,圆盘,圆度,球度,台阶高度,距离,面积,角度和体积进行多范围测量,创造性地采用接触式和非接触式测量合并技术,一套表面轮廓仪可同时具有接触式和非接触式测量的选择。 三维轮廓仪配件参数: 定位台行程范围:X: 200 mm Y: 200 mm Z: 200 mm (电动) 接触式测量范围: 范围0.1mm, 分辨率2nm, 速度 3mm/s 范围:2.5mm 分辨率40nm, 速度3mm/s 非接触式测量范围: 范围:300um, 分辨率2nm, 速度30mm/s 范围:480um, 分辨率2nm, 速度30mm/s 范围:1mm, 分辨率5nm, 速度30mm/s 范围:3.9mm , 分辨率15nm, 速度30mm/s 表面轮廓仪配件应用:测量轮廓,台阶高度,表面形貌,距离,面积,体积分析形态,粗糙度,波纹度,平整度,颗粒度 摩擦学研究,光谱分析磨料磨具,航天,汽车,化妆品,能源,医疗,微机电系统,冶金,造纸和塑料等领域。
  • EpiQuest 抗原表位预测软件
    抗原表位预测软件EpiQuest™ 目前,免疫研究者手头都有几个可用的表位预测软件。在某种程度上,一个人认为的表位仍是一个相当不清楚的定义,预测潜在的T细胞表位仍是一个艰巨的任务。EpiQuest™ 是一套独特的分析线性蛋白质序列的软件套件,用于分析B细胞、T细胞表位、区域复杂性(免疫学、功能性)。它是基于AptuumBio开发的新算法,到目前为止是其他软件所无法比拟的。欲了解更多信息,请联系我公司技术人员。关于该软件的使用请下载本文附有的PDF 文档。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制