热传导性能测试导热系数测试仪

仪器信息网热传导性能测试导热系数测试仪专题为您提供2024年最新热传导性能测试导热系数测试仪价格报价、厂家品牌的相关信息, 包括热传导性能测试导热系数测试仪参数、型号等,不管是国产,还是进口品牌的热传导性能测试导热系数测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合热传导性能测试导热系数测试仪相关的耗材配件、试剂标物,还有热传导性能测试导热系数测试仪相关的最新资讯、资料,以及热传导性能测试导热系数测试仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

热传导性能测试导热系数测试仪相关的厂商

  • 400-860-5168转5963
    留言咨询
  • HT ITALIA来自于美丽的欧洲小镇——意大利法恩莎,公司自1983年成立以来,产品年销售额超过4000万欧元。并在2009年在中国广州建立办事处,负责中国地区的产品销售和售后服务。 HT ITALIA公司设立专业的研发团队,在1992年研制生产出HT2038,1999年研制生产了世界上第一台带电能质量分析仪功能的便携式多功能电气安全测试仪——GENUIS 5080,在2001推出具有三相电能质量分析仪功能的多功能电气安全测试——GSC系列,刷新了便携式仪器的多功能之最。2007年HT公司开始涉及太阳能光伏系统测试,以提供太阳能光伏电站的现场测试仪表,HT可提供全面的太阳能光伏电站测试仪表:并网太阳能光伏电站性能验证测试SOLAR300N,太阳能电池I-V特性曲线分析测试仪I-V400,离网太阳能光伏电站性能验证测试SOLAR I-V等。近年来,HT公司又基于自身的设计现场测试理念,推出自主品牌的全新系列红外热像仪产品,以充分满足客户的个性化需求,HT品牌的红外热像仪家族包括:THT41/42/44的经济型系列,THT49的专业级红外热像仪和THT50专家型红外热像仪。现在HT公司拥有:红外热成像仪,电气安全测试仪(含:绝缘电阻测试仪,接地电阻测试仪,漏电保护开关-RCD测试仪,耐压测试仪和多功能电气安全测试仪)、电能质量分析仪、通用测试仪表(含:数字万用表,数字电流钳表,红外测温仪,数字测温仪,数字噪声计,激光测距仪等)、GEF专业绝缘工具(含:绝缘镙丝批,各种绝缘剪钳,各种型号的工具套包,工具箱等)等系列产品。
    留言咨询
  • 400-860-5168转0264
    环球分析测试仪器有限公司(UATIL)成立于1982年,总部设在香港,是国外多家知名的高新科技仪器生产制造商在中国的独家总代理。主要产品电化学仪器:电化学工作站、光电化学测试设备 化学合成仪器:全自动反应系统、反应量热仪、超声波结晶系统、平行合成仪、高温高压釜、流动化学系统 萃取及纯化仪器:超临界萃取仪、快速制备色谱、固相萃取、溶剂蒸发仪、气体纯化系统 生命科学仪器:生物反应器、发酵罐、冷冻干燥机、移液工作站、离心浓缩仪 乳品分析仪器:乳品成分分析仪、体细胞计数器、奶牛生产性能测试仪 材料测试仪器:网格应变测试仪、杯凸试验机 惰性环境仪器:手套箱 微流控仪器:单细胞测序、细胞包裹、微流控芯片、微流泵、液滴微流控系统、3D芯片打印机
    留言咨询

热传导性能测试导热系数测试仪相关的仪器

  • 热阻分析仪主要借助上下棒温度差计算得到通过的热流,再结合面积大小得到最终的接触热阻和热传导率等一系列参数。高端TIMA 5 热界面材料分析仪遵循ASTM D5470标准,具有集成化程度高、全自动分析测量、样品头切换简单、高精度厚度/温度/力值监控等特点,基于人体工学设计、用户体验好。可最终得到热阻抗、表观热导率和热界面阻抗等数据;除此之外,还可进行样品老化行为测试、生命周期评估、热机械稳定性、固化参数研究、界面状态研究、原位可靠性分析、极端条件下的测试等。样品种类包括液体化合物,如油脂、糊状物、相变材料;凝胶、软橡胶和硬橡胶和陶瓷、金属、塑料、复合物、胶粘剂固化、油脂和膏状样品、固化填充物和胶粘剂、各向异性复合物等。 技术参数:温度范围:RT-150°C(可提供更宽范围)力值范围:±300N(可提供更宽范围)温度准确度:±0.05K…欢迎联系我司,索要样本。
    留言咨询
  • ZBDR-10B界面材料热阻及热传导系数测量仪关键词:界面材料,热阻,热传导,K值一、产品简介:随着电池、电子封装等相关设备的普及,功率的增加,废热管理,如何降低热损变得越来越重要。如何管理好这些复杂的热系统并不容易,需要对界面材料有根本的认识。ZBDR-10A界面材料热阻及热传导系数测量仪一款在之前ZBDR-9A基础上推出的新款,热界面材料热阻导热系数测试仪可以测试材料的热阻和导热系数,材料包括各种电子封装和应用,设备符合ASTM D5470 美国材料实验协会标准。界面材料测试仪在材料的测试过程中自动测试样品的厚度从而样品的厚度测试更准确,测试更方便。可检测不同压力下热阻曲线,采用优化的数学模型,可测量材料导热系数和热阻以及界面处接触热阻等多个参数。热导电绝缘界面材料的主要功用,在于提升电子产品应用端之热传导能力,因此知道其热传导性质是很重要的。目前广泛应用在高等院校,科研单位,质检部门和生产厂的材料热阻及热传导系数分析检测。二、适应先进材料测试范围:1、导热膏、导热片、导热胶、界面材料,导热工程塑料,导热胶带2、导热胶带(样品很薄很黏,难以制作规则的单个样品,一边用透明塑料另外一边用纸固)3、基板、铝基板、覆铜基板、软板4、金属材料和不锈钢,界面材料,相变材料5、陶瓷、石英玻璃、复合陶瓷6、泡沫铜、石墨纸、石墨片等新型材料7、电气绝缘材料等三、符合标准1、符合ASTM D5470 美国材料实验协会标准2、MIL-I-49456A(绝缘片材、导热树脂、热导玻纤增强)3、ASTM-D5470-12(薄的热导性固体电绝缘材料传热性能的测试标准)4、GB/T 29313—2012 《电气绝缘材料热传导性能试验方法》5、GB 5598-2015(氧化铍瓷导热系数测定方法)三、主要技术参数:1、测试压力范围: 0-100kgf2、压力精度:±1N3、最大加热功率: 0.01-300W4、热阻测试范围:0.0001~0.00001Cm2*k/w4、最高加热温度: RT-100℃,RT-130℃多种可选5、测试接触面:0-Φ40mm6、冷却能力:0-100℃7、测试精度:0.018、恒温温度范围:室温+3℃~50℃ 9、操作方式:LABVIE自编软件多种功能10.数据处理:软件自动分析,自动输出报告11.测试方式:单组或多组测量方式可选12. 外型尺寸:1.2(W) × 0.67 (D) × 1.68 (H) m13.电源:AC220V
    留言咨询
  • 产品介绍:DZDR-S快速导热系数测试仪由南京大展仪器生产,采用的是瞬态热源法,配有专门测量固体的夹具,具备了测量速度快、操作简单等优势,软件实时采集图谱,在线计算导热系数,全新的外形设计,简约小巧轻便。测试范围:DZDR-S导热系数测试仪可测量块状固体、膏状固体、颗粒状固体、胶体、液体、粉末、涂层、薄膜、保温材料等不同材料。应用范围:DZDR-S导热仪被广泛用于评估材料的热传导性能。通过测量材料的热导率、导热系数等参数,可以评估材料的热隔离性能,以及在不同温度和压力条件下的热稳定性。还在建筑工程、电子和能源行业都有广泛的应用。测试方法:DZDR-S导热系数测试仪采用的是瞬态平面热源技术(TPS),可用于各种不同类型、不同形态材料的热传导性能的测试。瞬态平面热源法是研究热传导性能方法中新型的一种,它使测量技术达到了一个新的水平。性能优势:1.直接测量,测试时间5-160s左右可设置,能快速准确的测出导热系数,节约了大量的时间;2.不会和静态法一样受到接触热阻的影响;3.无须特别的样品制备,对样品形状并无特殊要求,块状固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可;4.对样品实行无损检测,意味着样品可以重复使用;5.探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算;6.样品台的结构设计巧妙,操作方便,适合放置不同厚度的样品,同时简洁美观;7.探头上的数据采集使用了数据采集芯片,该芯片的高分辨率,能使测试结果更加准确可靠;8.主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统的分析处理能力,计算结果更加准确。技术参数:测试范围0.0001—300W/(m*K)测量温度范围室温—130℃探头直径一号探头7.5mm;二号探头15mm;三号探头50mm精度±3%重复性误差≤3%测量时间5~160秒电源AC 220V整机功率<500w测试样品功率P 一号探头功率0;二号探头功率0样品规格一号探头所测样品(≥15*15*3.75mm)二号探头所测样品 (≥30*30*7.5mm)三号探头所测样品 (≥50*50*7.5mm)(选配,也可以定制其他规格)定制粉末测试容器一套
    留言咨询

热传导性能测试导热系数测试仪相关的资讯

  • 发布热阻测试、热流法导热系数测试仪新品
    DRL-III导热系数测试仪(热流法)一、产品概述 该导热系数仪采用热流法测量不同类型材料的热导率、热扩散率以及热熔。测量参照标准 MIL-I-49456A薄的热导性固体电绝缘材料传热性能的测试标准,D5470-06,ASTM E1530 ,ASTM C 518, ISO 8301, JIS A 1412, DIN EN 12939, DIN EN 13163 与 DIN EN 12667 等相关国际标准。 能够测量 Ф10~30mm 的样品,厚度范围可从0.02~20mm。全部测试功能自动完成;马达控制的平板移动;样品夹在两个热流传感器中间测试,温度梯度固定或可调。使用内嵌的控制器或外部电脑测得样品的导热系数与热阻。自动上板移动与样品厚度测量,所有测试参数与校正数据可存于电脑内。对校正测试与样品测试进行温度程序编制、数据查看与储存。该仪器用于测试高分子材料,陶瓷,绝缘材料,复合材料,非金属材料,玻璃,橡胶,及其它的具有低、中等导热系数的材料。仅需要比较小的样品。薄膜可以使用多层技术准确的得到测量。二、主要技术参数:1:热极温控: 室温~200℃, 测温分辨率0.01℃2:冷极温控:0~99.99℃,分辨率0.01℃3:样品直径:Ф30mm,厚度0.02-20mm;4:热阻范围:0.000005 ~ 0.05 m2K/W5:导热系数测试范围: 0.010-50W/mK, 6:精度 ≤±3%7:压力测量范围:0~1000N8: 位移测量范围:0~30.00mm9:实验方式:a、试样不同压力下热阻测试。b、材料导热系数测试。c、接触热阻测试。d、老化可靠性测试。10:配有完整的测试系统及软件平台。11:操作采用全自动热分析测试软件,快速准确对样品进行试验过程参数分析和报告打印输出。三、仪器配置:1.测试主机 1台, 2.恒温水槽 1台, 3.测试软件 1套,4.胶体粉体样品框1个,*4.计算机(打印机)用户自备典型测试材料:1、金属材料、不锈钢。2、导热硅脂。3、导热硅胶垫。4、导热工程塑料。5、导热胶带(样品很薄很黏,难以制作规则的单个样品,一边用透明塑料另外一边用纸固定)。 6、铝基板、覆铜板。 7、石英玻璃、复合陶瓷。8、泡沫铜、石墨纸、石墨片等新型材料。创新点:样品夹在两个热流传感器中间测试,温度梯度固定或可调。使用内嵌的控制器或外部电脑测得样品的导热系数与热阻。自动上板移动与样品厚度测量,所有测试参数与校正数据可存于电脑内。对校正测试与样品测试进行温度程序编制、数据查看与储存。
  • 国家热传导节能产品质检中心采购2606万元仪器设备
    广州市特种承压设备检测研究院国家热传导节能产品质量监督检验中心4月28日发布招标公告,采购一批仪器设备(采购编号:GZCQC1302HG04014),采购预算2617.54万元,项目内容如下:子包号序号设备名称数量合计(万元)011导热系数测定仪(激光法)1+1空心冲模机484.002保护法板法导热系测定仪1+1自动涂布机3稳态量热计法半球发射率测试仪14导热系数测定仪(热线法)15保护热板法导热系数测定仪16导热系数测试仪(热流计法)1027电感耦合等离子体质谱仪与离子色谱联用机1500.008气相色谱与质谱联用仪19高效液相色谱仪110气相色谱仪111原子吸收仪固体进样装置10312紫外可见近红外分光光度计1488.5013线膨胀系数测定仪114激光粒度测定仪115半球发射率测量仪1+1铣切机16电化学工作站117热变形软化温度试验仪118水蒸气透过率测定仪119含水率测定仪120透光率雾度测定仪121自动色度仪122恒温恒湿箱123开闭孔率测试仪/电子密度计124副像偏离测定装置125热荷重测试仪126渣球含量分析测定仪127吸水率测定仪128憎水性测定仪129落球粘度计10430烟密度测试仪1320.0031伏安极谱仪132平行定量浓缩仪133不燃性测试炉134多路控制阀爆破压力试验装置135落镖冲击仪136水平垂直燃烧测定仪137氧指数测定仪138卡氏样品加热处理器139多路控制阀流体静压和循环压力试验装置140多路控制阀无故障动作试验装置10541热综合分析仪1325.0542复合盐雾腐蚀试验箱143紫外光加速老化试验机144磨耗仪145涂层耐洗刷性测定仪146杯突测试仪147自动划痕仪148漆膜干燥时间试验器149旋转粘度计150遮盖力测定板151巴克霍兹压痕仪152涂层测厚仪153比重(密度)杯154橡胶国际硬度计155高速离心机156漆膜磨耗仪157高速分散机158润滑脂和石油脂锥入度测定仪159鼓风干燥箱160耐溶剂擦洗仪161漆膜铅笔划痕硬度仪162落砂耐磨试验仪163刮板细度计164漆膜耐码垛性试验仪165流挂试验仪166漆膜附着力测定仪167板式测厚仪168稠度测定仪169腻子柔韧性测定仪170针型测厚仪10671内置能谱仪台式扫描电子显微镜1274.9972万能材料试验机173邵氏硬度计174压片机175小型金相切割机176超声波清洗机(27L)177超声波清洗机(6L)178玻璃覆膜机10779保护法板法导热系测定仪(高温保护热板法)1225.00  广州程启招标代理有限公司(以下简称“采购代理机构)在2013年5月24日公布中标供应商名单:  子包1  中标供应商名称:建发(广州)有限公司  地址:广州市体育东路138号金利来大厦806室  中标金额:4,830,000.00元  子包2  中标供应商名称:广州无线电集团有限公司  地址:广州市天河区黄埔大道西平云路163号  中标金额:4,970,000.00元  子包3  中标供应商名称:广州市徕康科技有限公司  地址:广州市天河区黄埔大道西100号  中标金额:4,870,000.00元  子包4  中标供应商名称:广州市徕康科技有限公司  地址:广州市天河区黄埔大道西100号  中标金额:3,180,000.00元  子包5  中标供应商名称:广州市徕康科技有限公司  地址:广州市天河区黄埔大道西100号  中标金额:3,230,000.00元  子包6  中标供应商名称:广东省农垦集团进出口有限公司  地址:广州市粤垦路68号广垦商务大厦2座12楼  中标金额:2,730,000.00元  子包7  中标供应商名称:上海光晟化工科技有限公司  地址:上海市闵行区泸光路555弄18号504  中标金额:2,248,600.00元
  • 中国民用航空飞行学院选购我司快速导热系数测试仪
    中国民用航空飞行学院,简称“中飞院”,创建于1956年,是中国民用航空局直属的全日制普通高等学校,是中国民用航空局与四川省共建高校。学院作为中国民航培养高素质人才的主力高校,经过60多年的建设与发展,已成为全球民航职业飞行员培养规模在世界民航有着较高影响力的高等学府。中国民航70%以上的飞行员、80%以上的机长毕业于此,被称为“中国民航飞行员的摇篮”。中国民用航空飞行学院选购我司HS-DR-5快速导热系数测试仪,现已安装,调试完毕。HS-DR-5快速导热系数测试仪

热传导性能测试导热系数测试仪相关的方案

热传导性能测试导热系数测试仪相关的资料

热传导性能测试导热系数测试仪相关的试剂

热传导性能测试导热系数测试仪相关的论坛

  • 耐火隔热材料性能测试:有效导热系数与真导热系数的相互关系研究

    耐火隔热材料性能测试:有效导热系数与真导热系数的相互关系研究

    [table][tr][td][color=#ff0000]摘要:本文针对耐火隔热材料导热系数测试中的大温差和小温差这两类主流测试方法,明确了有效导热系数和真导热系数的定义,首次详细描述了这两个参数之间的关系、区别和详细转换方法,明确了这两类主流测试方法的适应范围,从而便于在耐火隔热材料性能评价中选择合适的测试方法,有利于对耐火隔热材料的隔热性能做出准确测试评价,从而保证对隔热材料及结构的正确选择和设计。[/color][/td][/tr][/table]关键词:耐火材料、隔热材料、有效导热系数、真导热系数、导热系数、大温差、测试方法[align=center][b][color=#3333ff]注:文中有大量公式,但不便在网页中进行完整显示。本文的PDF格式完整版本,已在本文的结尾处附上。[/color][/b][/align][b][color=#ff0000]1. 引言[/color][/b] 导热系数是评价和使用耐火隔热材料的关键参数,但在实际测试和应用中还存在许多困惑和误区。 耐火隔热材料在实际高温条件下使用时多为板材和管材,隔热材料大多处于一个受热面和背热面温度相差巨大的热环境中。而在材料样品导热系数具体测试中,有些是在模拟实际使用热环境的大温差条件下进行测量,而有些则是在很小温差、甚至没有温差的条件下进行测量,不同的测量导致所得到的结果相差很大,这给耐火隔热材料的性能评价和使用带来很大困扰。 由于技术上的局限性和测试及验证手段不足等原因,耐火隔热材料行业多年来一致对耐火隔热材料导热系数测试方法缺乏准确的理解,对哪种测试方法更能准确表征耐火隔热材料性能并不明确,由此造成测试方法混杂和乱用的现象,使得很多隔热结构设计人员在耐火隔热材料的性能评价和选材中不知该用哪种测试方法,经常会出现误导现象,甚至导致工程应用中出现漏热等重大事故。 为了满足耐火隔热材料在实际工程中的应用,加强对耐火隔热材料导热系数测试的准确了解,规范耐热隔热材料导热系数测试方法的选择,本文首次将耐火材料导热系数测试方法,按照测试过程中样品一维热流方向上的大温差和小温差进行分类,由此分别定义出有效导热系数和真导热系数。通过对这两种导热系数分析、计算和验证,展示出这两种导热系数的区别、相互关系以及可转化性,明确如何正确选择耐火隔热材料测试方法,明确如何正确描述和表达耐火隔热材料的隔热性能,由此实现耐火隔热材料测试评价和选材的规范性。[color=#ff0000][b]2. 耐火隔热材料导热系数主要测试方法和设备2.1. 测试方法[/b][/color] 材料导热系数测试方法主要分为稳态法和瞬态法,对于耐火隔热材料的导热系数测试而言也是如此。但由于耐火隔热材料一般都是在高温下使用,所以相应的测试方法也需要满足高温要求。由此,目前国内外也仅有限几种方法可用于耐火隔热材料高温条件下的导热系数测试,如图 2‑ 1所示。[align=center][img=,500,156]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142042533218_8908_3384_3.png!w690x216.jpg[/img][/align][align=center][color=#ff0000]图2‑ 1 耐火隔热材料高温导热系数测试方法分类[/color][/align] 采用以上测试方法进行耐火隔热材料的测试设备如下:[color=#ff0000][b]2.2. 测试设备2.2.1. 稳态热流计法高温导热系数测试仪器[/b][/color] 稳态热流计法高温导热系数测试仪器依据GB/ T 10295、ASTM C201和ASTM C518标准测试方法,是一种标准的稳态法导热系数测试设备。稳态热流计法高温导热系数测量原理如图 2‑ 2所示,当水平放置的被测平板状样品上下热面和冷面处在恒定温度时,在被测样品的中心区域和热流测量装置的中心区域会建立起类似于无限大平板中存在的一维稳态热流。通过测量热流密度、试样的热面和冷面温度以及试样厚度则可获得被测试样的导热系数。稳态热流计法高温导热系数测试仪器图 2‑ 3所示。[align=center][img=,690,389]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142044227159_7689_3384_3.png!w690x389.jpg[/img][/align][align=center][color=#ff0000]图2‑ 2 热流计法高温导热系数测量装置原理图[/color][/align][align=center][color=#ff0000][img=,690,535]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142044416555_2241_3384_3.jpg!w690x535.jpg[/img][/color][/align][align=center][color=#ff0000]图2‑ 3 上海依阳公司热流计法高温导热仪[/color][/align] 与其它测试方法相比,稳态热流计法高温导热系数测试方法及其仪器最显著特点就是测试条件可以模拟耐火隔热材料在各种实际工程中的应用环境,稳态热流计法是目前唯一能模拟出实际工程隔热环境的测试方法,在被测样品上能够建立起工程实际应用中的隔热大温差,即温度样品冷面可以控制在室温~50℃以下,而样品热面温度则可以达到1500℃以上的高温。[b][color=#ff0000]2.2.2. 稳态保护热板法中温导热系数测试仪器[/color][/b] 稳态保护热板法导热系数测试仪器依据GB/T 10294和ASTM C177标准测试方法,是一种标准的稳态法导热系数测试设备。稳态保护热板法导热系数测试原理如图 2‑ 4所示。保护热板法有单样品和双样品之分,样品置于加热板上,样品2/3尺寸大小的热板内布置用于量热的加热丝,其它尺寸外缘部分布置防护加热丝,并有隔离缝,下部是辅助防护加热,这样热板部分的发热量通过样品形成一维稳态热流,均作为热流密度的计算量,因此保护热板法是一种绝对方法。稳态保护热板法高温导热系数测试仪器如图 2‑ 5所示。[align=center][img=,516,301]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142045185716_9092_3384_3.jpg!w516x301.jpg[/img][/align][align=center][color=#ff0000]图2‑ 4 单样品防护热板法测量原理图[/color][/align][align=center][color=#ff0000][img=,441,486]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142045307632_8761_3384_3.jpg!w441x486.jpg[/img][/color][/align][color=#ff0000][/color][align=center]图2‑ 5 德国耐驰公司高温保护热板法分析仪[/align] 稳态保护热板法高温导热系数测试方法及其仪器最显著特点就是其测量精度最好,常用于计量和校准标准材料和其它测试仪器,被测样品冷热面温差小,最大不超过50℃,但保护热板法测试仪器用于耐火保温材料导热系数测试中的最大问题是测试温度不高,样品热面温度最高只能达到600℃。[b][color=#ff0000]2.2.3. 准稳态高温导热系数测试仪器[/color][/b] 准稳态导热系数测试技术是一种新型测试方法,准稳态高温导热系数测试仪器依据ASTM E2584标准测试方法。准稳态法是一种介于稳态法和瞬态法之间的一种测试方法,准稳态导热系数测试原理如图 2‑ 6所示。[align=center][img=,560,370]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142046135293_9233_3384_3.png!w690x457.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 6 准稳态法导热系数测量原理图[/color][/align] 准稳态法采用的是一维热流加热方式,被测平板状样品在被加热或冷却到一定阶段后,通过试样的热流速度将达到一个缓慢变化状态,也就是准稳态状态,由此可以测量样品在加热和冷却过程中热流随时间的变化速度,,通过得到的准稳态条件下的热流和温度变化测试数据,可以准确计算出被测材料的热扩散系数、热容、热焓和导热系数。准稳态法高温导热系数测试仪器如图 2‑ 7所示。[align=center][img=,500,578]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142047447306_5655_3384_3.png!w690x798.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 7 上海依阳公司准稳态法高温导热仪[/color][/align] 从原理上讲准稳态法是一种大温差形式的动态测试方法,在试验过程中的测量参数都是试样表面温度变化,不涉及到材料的内部变化,而是将材料的内部变化都看成为一个等效传热过程,因此这种方法可以用于材料在具有相变和化学反应过程中的有效热扩散系数、热容、热焓和有效导热系数测量。准稳态法的另外一个突出优点在于大大缩短了测试周期,基本可在36小时内测试得到一条有效导热系数随温度的变化曲线。[b][color=#ff0000]2.2.4. 瞬态热线法高温导热系数测试仪器[/color][/b] 瞬态热线法导热系数测试仪器依据GB/T 5990和ASTM C1133标准测试方法,是一种标准的瞬态法导热系数测试设备。瞬态热线法导热系数测试原理如图 2‑ 8所示。[align=center][img=,475,359]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142048251129_5443_3384_3.jpg!w475x359.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 8 热线法导热仪结构原理图[/color][/align] 热线法是在样品(通常为大的块状样品)中插入一根热线。测试时,在热线上施加一个恒定的加热功率,使其温度上升。测量热线本身或与热线相隔一定距离的平板的温度随时间上升的关系。热线法高温导热系数测试仪器如图 2‑ 9所示。[align=center][img=,690,555]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142048505870_3628_3384_3.jpg!w690x555.jpg[/img][/align][align=center][color=#ff0000]图2‑ 9 美国TA公司热线法高温导热仪[/color][/align] 瞬态热线法高温导热系数测试方法及其仪器最显著特点就是仪器结构简单和测试温度高,可以轻松实现1400℃下的高温测试,这也是过去常用的耐火隔热材料导热系数测试方法和仪器。 与上述稳态测试方法相比,瞬态热线法高温导热系数测试方法及其仪器在测试过程中要求被测样品整体温度达到均匀一致后再进行测量,所以瞬态热线法是一种无温差的测试方法。由于热线法中的热线很细,热线通电加热后热量向热线的径向方法传播,所以热线法测量的是样品整体导热系数而没有方向性,所以热线法要求被测样品由各向同性材质制成。[b][color=#ff0000]2.2.5. 瞬态闪光法高温导热系数测试仪器[/color][/b] 需要特别指出的是:传统意义上的瞬态闪光法并不适合对耐火隔热材料材料的导热系数进行测试, 这主要是因为耐火隔热材料的导热系数普遍偏低,脉冲光辐照到样品前表面后,脉冲形式的加热热量无法传递到样品背面,使得样品背面几乎没有任何温度变化,背温探测器基本检测不到任何温升信号。因此,Gembarovic和Taylor在闪光法基础上开发了一种步进加热三点测温的测试方法用于低导热材料的高温热扩散系数测量,测量原理如图 2‑ 10所示,整个测量装置的结构如图 2‑ 11所示。[align=center][img=,600,363]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142049373131_4398_3384_3.png!w690x418.jpg[/img][/align][align=center][color=#ff0000]图 2‑ 10 瞬态步进加热三点测温法高温热扩散系数测量原理图[/color][/align][align=center][b][img=,690,441]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142049522161_6872_3384_3.png!w690x441.jpg[/img][/b][/align][align=center][color=#ff0000]图2‑ 11 瞬态步进加热三点测温法高温热扩散系数测试系统结构示意图[/color][/align] 这种测试方法和设备可以对相对较小的样品()进行温度高达1500℃下的高温热扩散系数测量,测量原理与闪光法近似,只是将闪光加热的脉冲宽度加的很长,对样品表面进行长时间的加热,从而使得热量能传递到样品背面获得有效测量信号。但这种测试方法在取样过程中样品不能太厚,否则热量还是无法传递到样品背面,由此很容易造成取样没有代表性问题。[b][color=#ff0000]2.3. 各种测试方法测试能力比较[/color][/b] 通过上述耐火隔热材料导热系数各种测试方法和相应测试设备的描述,将各种测试方法和测试仪器的主要特点、能力和要求进行汇总比较,如图 2‑ 12所示,由此对各种测试方法有一个直观的了解。[align=center][color=#ff0000][img=,590,160]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142051019290_574_3384_3.png!w690x188.jpg[/img][/color][/align][align=center][color=#ff0000]图2‑ 12 耐火隔热材料导热系数测试方法和测试仪器比较[/color][/align] 从图 2‑ 12中的综合比较可以看出,综合能力排名前两位的是准稳态法和稳态热流计法,这也就是上海依阳实业有限公司选择生产这两种测试仪器的主要原因之一。[b][color=#ff0000]3. 真导热系数和有效导热系数的定义[/color][/b] 根据上述针对耐火隔热材料导热系数测试方法所进行的介绍,可以发现尽管测试方法和测试设备有不同形式,但这些测试方法都离不开温度场这个环境变量和测试条件,即无论测试方法怎么变化,都必须使得被测样品要么是大温差、要么是小温差(将无温差归到小温差范围内)。这样,我们就可以将耐火隔热材料的导热系数按照温差大小分别对应进行定义,即: (1)样品小温差下,或无温差下得到的导热系数定义为真导热系数; (2)样品大温差下测量得到的导热系数定义为有效导热系数。 以往有效导热系数的定义多根据被测样品的均质性和组分结构的多样性来定义,并没有明确的按照测试温差大小(或使用过程中的温差大小)来定义。现在明确采用温差大小来定义和区分有效导热系数和真导热系数的不同,一方面是便于今后对耐火隔热材料测试方法选择和耐火隔热材料热性能的准确描述,另一方面也是依据标准测试方法所做的规定。 在国内外所有稳态法导热系数标准测试方法中,都指出:“通过测量热流、温差及样品厚度尺寸,利用稳态傅立叶导热公式计算得到的材料传热性质(导热系数或有效导热系数),可能并不是材料自身固有特性,因为它很大程度上可能取决于具体测试条件,例如试验过程中样品上的冷热面温差大小”。这句话指出了两个基本事实,可以理解为有两个含义: (1)一个事实就是材料的固有特性,即材料的固有特性是不受测试条件影响而本身存在的。所以在测试过程中要明确了解到底测量的是不受测试条件影响的材料固有特性,还是测量与测试或使用环境有关的特定环境特性。 (2)材料的固有特性,很大程度取决于具体测试条件,即取决于样品上的冷热面温差大小。温差小时测量得到则是固有特性,温差大时测量得到的则不是固有特性。 根据标准测试方法中的这些规定,就可以很容易进一步明确耐火隔热材料导热系数的定义: (1)样品小温差下,或无温差下得到的导热系数定义为真导热系数,即样品材料的固有导热系数; (2)样品大温差下测量得到的导热系数定义为有效导热系数,即样品材料的环境导热系数。 由此可见,一旦材料制成,其真导热系数就会固定不变,真导热系数就是这材料的固有特性。而这种材料在不同使用温度环境下,则会有相应的有效导热系数,这主要是因为在大温差条件下,有效导热系数会包含除真导热系数之外,还包括与辐射和对流传热相对应的辐射导热系数和对流导热系数。 由此可见,在小温差条件下,假设不考虑辐射传热和对流传热形式,同时假设也忽略气体导热传热,那么所谓的真导热系数,基本就代表了材料的固相导热系数。因此,为了对样品材料的真导热系数进行准确测量,很多标准测试方法对导热系数测试中的小温差进行了规定:GJB 329规定测试温差应控制在10~50℃,GB/T 10295建议温差控制在5~10℃,ASTM相关标准规定该温差应不大于25℃。由此可见,在最大温差不超过50℃条件下,就可以忽略稳态法测量中辐射和对流传热的影响,稳态法测量得到的样品导热系数,就是真导热系数。需要注意的是:耐火隔热材料由于低密度和高孔隙率,材料内部有大量孔隙,由此这个真导热系数,包括了材料的固体导热系数和气体导热系数。 根据上述小温差的定义,温差小于50℃的导热系数测试都是真导热系数测试。那么对于样品温度均匀无温差的测试,所得到的导热系数更是真导热系数。完成了两种导热系数定义后,就可以很明确知道不同测试方法测量得到不同类型的导热系数,即: (1)真导热系数测试方法:保护热板法、瞬态热线法、瞬态闪光法。 (2)有效导热系数测试方法:热流计法、准稳态法。[color=#ff0000][b]4. 真导热系数与有效导热系数的关系及其转换4.1. 问题的提出[/b][/color] 对于耐火隔热材料的性能测试,国内外都处于非常混乱的局面,有些测试得到的有效导热系数,有些测试得到的则是真导热系数,这些不同导热系数往往会引起隔热材料选择和隔热结构设计的混乱,特别是在耐火隔热材料高温性能测试中,测试方法的混乱使用很容易造成对隔热性能的高估,从而造成隔热效果不佳,甚至出现漏热事故和爆炸。因此,针对耐火隔热材料,如何才能准确测试和描述导热系数才能准确和实用呢,下面将从理论分析方面来对这个问题进行求解。[b][color=#ff0000]4.2. 真导热系数与有效导热系数的关系[/color][/b] 按照上述小温差和大温差形式分别定义真导热系数和有效导热系数,我们选择小温差的保护热板法法和大温差的热流计法来研究真导热系数与有效导热系数的关系。对于大温差的热流计法导热系数测量,有效导热系数的测量公式为: 式中表示流经样品厚度方向上的热流密度,表示样品厚度,表示样品热面温度,表示样品冷面温度。在热流计法大温差测量过程中,样品冷面温度的变化一般较小,基本都控制在50℃以下,而热面温度则较大(1000℃)。大温差下得到的有效导热系数的描述,都需要明确热面温度和冷面温度,并可用平均温度来表达。对于小温差的保护热板法导热系数测量,真导热系数的测量公式为: 式中同样表示流经样品厚度方向上的热流密度,表示样品厚度,表示被测样品冷热面之间的温度差。在保护热板法小温差测量过程中,冷热面温差很小,基本都控制在50℃以下。小温差下得到的真导热系数的描述,由于温差小,则可以直接用平均温度来描述,而无需标明热面温度和冷面温度。 尽管大温差和小温差所对应的两种测试方法不同,但这两种方法都是基于稳态傅立叶传热定律,公式和中各个参量的物理意义是相同的。因此,大温差的热流计法导热系数测量,可以在测试模型和数学上假设是由多个相同厚度的小温差保护热板法多层叠加而成,即和。这个假设的前题是: (1)样品材料在测试温度范围内没有化学反应或相变。 (2)在小的温度和气压区间内,真导热系数或保持不变、或呈线性关系。 (3)耐火隔热材料中的热传递形式一般由固相介质导热、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]介质导热及辐射传热三部分构成,如果材料内部不存在通孔形式的孔隙,可忽略辐射传热对整体热传递的贡献。 这样,大温差的热流计法导热系数测试模型数学表达式,就可以用小温差的保护热板法导热系数测试模型数学表达式的积分形式来描述,由此得出有效导热系数与真导热系数关系式为: 式中的和代表温度和气压变量。通过公式所定义的真导热系数与有效导热系数的关系,就可以进行这两种导热系数之间的转换,即通过大温差的有效导热系数测量推导出相应的小温差时的真导热系数,或根据小温差真导热系数测量推导出大温差时的有效导热系数。[b][color=#ff0000]4.3. 由真导热系数推导有效导热系数[/color][/b] 由真导热系数测试结果推导出大温差条件下的有效导热系数,即据根真导热系数测试结果推算出在温度~范围内的大温差有效导热系数,具体实施方法就是在温度~范围内选择一系列温度点进行保护热板法或瞬态热线法导热系数测试,得到一系列不同温度下的真导热系数测试结果。这里的在保护热板法测试中代表样品的平均温度,在瞬态热线法和瞬态闪光法中代表样品温度。然后将测试结果(,)进行最小二乘法拟合得到一个多项式表达式: 式中的、、和是与样品材料自身特性有关的多项式常数。大多数耐火隔热材料的真导热系数与温度的非线性关系一般都可以用一元三次多项式描述。 将得到的真导热系数随温度变化多项式代入公式,然后进行积分求解就可以得到相应的有效导热系数。针对气压变量的真导热系数推导有效导热系数也是如此操作。[b][color=#ff0000]4.4. 由有效导热系数推导真导热系数[/color][/b] 同样,在有效导热系数推导真导热系数过程中,假设真导热系数随温度变化关系是一个三元一次多项式,即: 式中的、、和是与材料自身特性有关的待定常数。将式直接代入与式可得: 在式中只有、、和四个未知数,理论上可以通过4个式的联立方程就可求解出这四个未知数。即在理论上通过4次值调整,即进行4个不同热面温度下的稳态热流计法导热系数测试试验,同时保持样品冷面温度基本不变,由此得出4组相应的、值,就可建立这4个联立方程,从而求出4个待定常数、、和的值,最终得到真导热系数与温度的关系表达式。 从式中可以看出,式对温差大小没有任何限制。因此可以在容易实现的大温差测试条件下进行相应测试和测算。为了提高这种方法的推导计算准确性,在选取值时应尽可能接近所需要的温度值。例如需求1000℃的材料真导热系数,选取的4个值中至少应有一个值为1000℃或大于1000℃。如果需要某一特定温度段的真导热系数,比如需要500~1000℃之间的材料真导热系数,那么4个值建议选取为500℃、l 000℃以及介于500℃与1000℃之间的2个温度点数据。同时,需要说明的是本方法不是利用低温段真导热系数进行高温真导热系数简单外推,而是在掌握大温差测试条件下有效导热系数相关数据的基础上,通过确定所假设的函数待定常数来最终获取耐火隔热材料高温真导热系数,并且假设的函数形式是统计分析得出的结论以及ASTM相关标准认可的。[b][color=#ff0000]5. 结论[/color][/b] 通过以上的理论分析和计算,针对耐火隔热材料导热系数测试中常用的小温差和大温差两类测试方法,明确了有效导热系数和真导热系数的定义,首次详细描述了这两个参数之间的关系、区别和详细转换方法,明确了这两类主流测试方法的适应范围,,从而便于在耐火隔热材料性能评价中选择合适的测试方法,有利于对耐火隔热材料的隔热性能做出准确测试评价,从而保证对隔热材料及结构的正确的选择和设计。 下一部工作将针对各种耐火隔热材料的有效导热系数和真导热系数测试数据,对上述的真导热系数和有效导热系数之间的关系和转换方式进行试验验证,由此来对测试方法、测试设备和两种导热系数相互关系及其转换进行评价。[b][color=#ff0000]6. 参考资料[/color][/b] (1) Gembarovic, J., and Taylor, R. E., “A Method for Thermal DiffusivityDetermination of Thermal Insulators,” International Journal of Thermophysics,Vol. 28, No. 6, 2007, pp. 2164-2175.[align=center][img=上海依阳公司热流计法高温导热系数测试系统,690,499]http://ng1.17img.cn/bbsfiles/images/2018/02/201802142040536176_2249_3384_3.png!w690x499.jpg[/img][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

热传导性能测试导热系数测试仪相关的耗材

  • ThermalTray™ 热传导平台
    Corning ThermalTray热传导平台可以与Corning CoolRack® 模块和CoolSink® 模块配合,在液态温度控制环境下使用,如融冰,水浴,液氮等。ThermalTray与CoolRack和 CoolSink模块一样,采用高导热合金制造。ThermalTray平台将外界温度传导到CoolRack或CoolSink模块,后者将温度传导到样品。该平台稳定坚固,可以放入融冰或液氮中使用操作,十分适合处理对热敏感样本。ThermalTray模块可进行高温高压灭菌,使用漂白剂,酒精,或其他实验室消毒试剂消毒。货号描述配合使用432073ThermalTray SLP, slim, low profile9L ice pan with liquid nitrogen432074ThermalTray LP, low profile9L ice pan with crushed ice432075ThermalTray HP, high profileWater bath
  • APIEZON® N低温导热高真空脂
    APIEZON N脂是当今使用最广泛的低温导热真空脂之一,在低温下能明显提高热传导且不会出现裂纹。低温真空密封 Apiezon N脂室温下饱和蒸汽压极低,且温度越低,饱和蒸汽压越低。 该脂低温下不会开裂,即使经受反复热冲击仍能保持长期有效的密封,广泛应用于真空密封领域:如真空管线、冷阱、电子显微镜的光学接口、活塞、毛玻璃接头、低温阀门、Schlenk管线和液氦柔性管线的密封,将其涂在O圈表面可改善O圈低温下的密封效果。无蔓延硅类脂会在样品表面发生蔓延,造成样品污染或光学表面失去光泽;而Apiezon N脂是烃类脂不存在上述问题。低温热传导 Apiezon N低温导热脂能显著提高制冷系统的热传导能力,可将制冷系统的冷量快速传递给超导磁体、低温恒温器、温度传感器或其它需要快速获得低温的系统。Apiezon N低温导热脂脂可填充相邻表面的微孔,且低温下不会开裂或出现细纹,增大了总接触面积,提高了热传导能力。尽管Apiezon N低温导热脂的绝对热导率比铟低,但是经过NASA Ames研究中心证实,同铟相比,Apiezon N脂连接的金属接触面压紧后导热能力更强,且无蔓延等现象。该脂能经受-273°C到30°C范围内的反复热冲击,是低温变温实验的理想选择。该脂磁化率极低,非常适合超导磁体制造领域。Apiezon N脂使用简单、性价比高,液氦温度下可显著提高热传导,广泛应用于磁共振成像的超导磁体、低温恒温器等制造领域。固定传感器Apiezon N脂用来固定传感器非常理想,尤其适合于将传感器固定在洞里。而且在室温下操作简单,在低温下凝固,从而保证传感器容易去除而不会被损坏。固定样品Apiezon N 脂在半导体芯片、激光二极管和晶体等低温测试中非常重要,Apiezon N脂可显著提高样品和样品舟之间或样品舟与低温恒温器冷指间的热传导能力,使样品达到尽可能低的温度,提高了样品测试灵敏度。该脂紫外照射下会发射荧光,光学测试时可用样品盖住该脂或采用校准等办法来消除荧光的影响。
  • --请选择-- 热分析耗材 其他物性测试仪配件
    我公司专业生产DSC差示扫描量热仪,SDTA差热分析仪,TGA热重分析仪等各种热分析仪专用的铝制、氧化铝、不锈钢、金属镍、铂金和石英材质的样品盘/坩锅,且最小壁厚可达到0.1~0.3mm;适用于美国PE,美国TA(原杜邦),德国耐驰NETZSCH,瑞士梅特勒Mettler,法国塞塔拉姆SETARAM,日本岛津Shimadzu,日本Rigaku,日本精工SII,德国布鲁克AXS等,并提供来样来图加工定制,本公司是国内唯一一家引进进口工艺加工生产的坩埚生产厂家,专供出口,非国内其他厂商的不良产品。样品盘分类:为确保样品与传感器之间高效率的热交换,请选用优质的、适合温度范围的样品盘/坩锅做实验,从而达到最佳的实验效果。1.不锈钢样品盘/坩锅适用温度范围为室温到300℃2.金属铝样品盘/坩锅适用温度范围为室温到550℃3.金属镍样品盘/坩锅适用温度范围为室温到700℃4.氧化铝、铂铑合金样品盘/坩锅可以使用到1800℃5.石墨、钨样品盘/坩锅可以使用到2400℃主要特点:★铝样品盘和样品盖:适用于非挥发性固体样品,例如聚合物和药物,通常用于聚合物、热塑性材料和热固性材料的聚合物熔化、结晶及玻璃化转变的研究;样品皿为卡口式,但并未密封。★为了避免样品盘/坩锅和样品反应可以使用惰性样品盘/坩锅,如铂铑合金样品盘/坩锅。★铜制或铂铑样品盘/坩锅可以起到催化剂效应,也多用于大多数材料的TGA分析。★高压样品盘:整个实验样品在样品盘/坩锅的密封环境中进行,抑制了挥发性物质的挥发;密封防止溶剂蒸发或将挥发反应产物包含在内,从而消除汽化热的干扰。★高质量的样品盘/坩锅可以帮助扩大DSC的应用范围,使用大体积的样品盘/坩锅放入更多的样品可以测定微弱的热效应,想获得好得分辨率可以使用轻质、热传导性好的样品盘/坩锅。氧化铝坩埚介绍:我公司氧化铝坩埚采用高纯氧化铝粉为原料,结合现代先进的烧成工艺, 专业生产热分析用氧化铝氧化锆陶瓷小坩埚,确保产品使用中具有以下四大特点,很好地满足各类热分析实验的需要。1.热传导性高:样品和坩埚间热量传递速度快, 以保证两者间存在着极小的温差, 温度分布均匀。2.结构性能稳定:高纯度粉体配合精密控制的高温烧结工艺,形成致密,均匀的微观晶相结构,确保在使用过程中不出峰,与分析样品不易发生物理,化学反应。3.超高温稳定性 使用温度范围广,最高工作温度可达到1750度。4.重复利用率高:水洗或10%的盐酸洗涤,烘干,可反复多次加以利用,不影响实验结果。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制