野外移动式叶绿素荧光成像系统

仪器信息网野外移动式叶绿素荧光成像系统专题为您提供2024年最新野外移动式叶绿素荧光成像系统价格报价、厂家品牌的相关信息, 包括野外移动式叶绿素荧光成像系统参数、型号等,不管是国产,还是进口品牌的野外移动式叶绿素荧光成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合野外移动式叶绿素荧光成像系统相关的耗材配件、试剂标物,还有野外移动式叶绿素荧光成像系统相关的最新资讯、资料,以及野外移动式叶绿素荧光成像系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

野外移动式叶绿素荧光成像系统相关的厂商

  • 北京维佰特科技发展有限公司成立于2009年,专门致力于中国地质勘查与矿业开发行业之仪器装备的代理、销售、应用、以及售后服务等工作,以全方位向客户提供采购解决方案节约成本创造价值为己任。我们目前涉及到的仪器装备有:野外专用地勘工具,野外现场分析仪器,野外物探、测绘、遥感等仪器设备,实验室分析仪器,各类地质及储量计算软件,矿山采选设备等。公司自成立伊始,核心创始人就一直在思考:我们的核心价值在哪里?首先,我们的核心团队根植地勘行业多年,对地勘工作不同领域之特点以及仪器设备的应用有深刻的认识。因为我们更专业,所以我们能提供更适合您的仪器设备!其次,我们的经营理念非常前沿:扁平化经营理念,让利于客户!我们深知,随着信息化浪潮的到来,世界更加扁平化。唯有适应当今信息高度透明化,才能走得更远。第三,我们针对客户的使用及采购需求推出一整套解决方案,包含产品性能描述、技术参数对比、应用案例及售后服务承诺等,想客户所想,急客户所急,为客户创造价值即我们的终生目标。为客户创造价值,即北京维佰特科技发展有限公司生存的唯一价值!公司经营产品具体为:磁化率仪,野外手持矿石鉴别紫外灯,野外数据采集仪,加拿大磁性硬度笔,美国矿物特性测试工具包,多功能机械罗盘,钢笔型数码地质显微镜,LED光源放大镜,美国Estwing平头地质锤,多功能分体锻钢折叠铲,磁性硬度笔套装,单双槽地质取样刻槽机,电动岩心切割机,高强度塑料岩芯箱,便携式浅层取样钻机,地球科学矿物标本基础套装,德国工艺地质多功能背包;便携式矿石元素分析仪/手持式矿石元素分析仪/手持式X荧光分析仪,便携式近红外矿物分析仪,便携式拉曼矿物分析仪,便携式伽马能谱仪,便携式X射线衍射仪,移动式X射线荧光分析仪;地震仪系列,电法仪系列,磁法仪系列,重力仪系列,瞬变电磁仪,核磁共振分析仪,探地雷达系列,综合测井仪系列,放射性测量仪系列,全站仪,RTK测量系统,激光测距仪,三维激光扫描仪,经纬仪,水准仪,地物波谱仪,高光谱航空遥感成像光谱仪,航测无人机;全谱直读等离子体光谱仪(ICP-AES),电感耦合等离子体质谱仪(ICP-MS),波长/能量X射线荧光光谱仪(WDXRF/EDXRF),火焰/石墨炉原子吸收光谱仪(AAS),X射线衍射仪(XRD),原子荧光光谱仪(AFS),紫外/可见分光光度分析仪(UV/VIS),激光拉曼光谱仪,全液压钻机,颚式破碎机,圆锥破碎机,球磨机,E-MINE地质成图与储量计算软件,物探数据解析软件,遥感图像处理软件,数字化矿山软件等。
    留言咨询
  • 无锡望尔移动冷暖设备有限公司作为冬夏,master等的地区总代,誓将服务于广大客户,以“优质,高效,迅速,真诚,专业”建立完整的售后服务体系,让广大客户在望尔移动冷暖得到放心,安心,舒心的服务。
    留言咨询
  • 400-860-5168转1895
    北京易科泰生态技术有限公司成立于2002年,为中关村高新技术企业,致力于生态-农业-健康研究监测技术推广、研发与服务,特别是在光谱成像技术(高光谱成像技术、叶绿素荧光成像技术、红外热成像技术、无人机遥感等)、植物表型分析技术、呼吸与能量代谢测量技术等方面,与国际领先企业PSI、Specim、Sable等合作,致力于植物科学、土壤与地球科学、动物能量代谢、水体与藻类及生态环境领域先进仪器技术的引进推广和技术研发集成,为植物/作物表型分析、生态修复及生态保护、能量代谢测量等提供规划设计、技术方案与系统集成、技术咨询与科技服务。公司技术团队80%以上具备硕士或硕士以上学位,并与中国科学院研究生院、中科院植物研究所、中科院动物所、中科院地理科学与资源研究所、中国农科院、中国林科院、中国环科院、中国水科院、清华大学、中国农业大学、北京林业大学、北京大学、中国海洋大学、陕西师范大学、内蒙古大学等建立了长期的技术合作交流关系。 公司下设有叶绿素荧光技术与植物表型业务部、EcoTech实验室、光谱成像与无人机遥感事业部及无人机遥感研究中心(与陕西师范大学合作建立)、动物能量代谢实验室、内蒙古阿拉善蒙古牛生态牧业研究院及青岛分公司。实验室拥有叶绿素荧光成像、叶绿素荧光仪、水体藻类荧光仪、SPECIM高光谱仪、WORKSWELL红外热成像仪、EasyChem全自动化学分析仪、MicroMac1000水质在线监测系统、ACE土壤呼吸自动监测系统、SoilBox便携式土壤气体通量测量系统、动物呼吸测量系统、LCpro+光合作用测量仪、Hood土壤入渗仪、年轮分析仪等各种仪器设备,可以进行实验研究分析、实验培训等,欢迎与易科泰生态研究室开展合作研究。 易科泰公司与欧洲PSI公司(叶绿素荧光技术与表型分析技术)、美国SABLE公司(动物能量代谢技术)、欧洲SPECIM公司(高光谱成像技术)、欧洲WORKSWELL公司(红外热成像技术)、欧洲ATOMTRACE公司(LIBS元素分析技术)、欧洲BCN无人机遥感中心、欧洲ITRAX公司(样芯密度扫描与元素分析)、美国VERIS公司、英国ADC公司、德国UGT公司、欧洲SYSTEA公司等国际著名生态仪器技术领域的研发机构和厂商建立了密切的合作关系,在FluorCam叶绿素荧光成像与荧光测量技术、PlantScreen植物表型分析技术、高光谱成像技术、红外热成像技术、光合作用与植物生理生态研究监测、土壤呼吸与碳通量研究监测、动物呼吸代谢测量、水质分析与藻类研究监测、CoreScanner样芯密度CT与元素分析技术、LIBS元素分析技术、无人机生态遥感技术等生态仪器技术及其系统方案集成有着丰富的经验,成为我国农业、林业、地球科学、生态环境研究等领域科技进步的重要研究技术支持力量。由公司研制生产的EcoDrone无人机遥感平台、SoilTron多功能小型蒸渗仪技术、SoilBox土壤呼吸测量技术、PhenoPlot轻便型作物表型分析系统、SCG-N土壤剖面CO2/O2梯度监测系统、植物生理生态监测技术、动物能量代谢测量技术等,在中科院修购项目、农业部学科群项目、CERN网络(生态系统监测网络)等项目中发挥重要作用。 “工欲善其事,必先利其器”,易科泰公司将秉承“利其器,善其事”的经营理念,为国内生态-农业-健康研究与发展提供最优的技术方案和服务。欢迎关注易科泰公众号:
    留言咨询

野外移动式叶绿素荧光成像系统相关的仪器

  • FluorCam野外移动式大型叶绿素荧光成像系统 FluorCam野外移动式大型叶绿素荧光成像系统专为原位植物表型成像分析及生理生态研究而设计,成像面积可达35×35cm,系统装配在一个可以自由移动的支架上,高度可调,适用于温室乃至野外植物的光合生理研究、植物Phenotyping、植物胁迫生理及抗性筛选、植物优良品种选育、植物生态毒理学研究等。 FluorCam野外移动式大型叶绿素荧光成像系统功能特点:§ 是世界上单幅成像面积最大的叶绿素荧光成像系统,达35×35cm,可对整株植物及多株植物同时进行叶绿素荧光成像分析§ 整套系统装配在具备4个轮子的支架上,可在野外自由移动,非损伤原位对植物进行叶绿素荧光成像研究§ 可进行自动重复成像测量,可设置两个实验程序(Protocols)自动循环成像测量,成像测量数据自动按时间日期存入计算机(带时间戳),从而实现无人职守自动监测功能§ 可选配RGB成像分析模块,用于植物形态测量分析等§ 在没有交流电的情况下,可选配直流供电单元供电 FluorCam野外移动式大型叶绿素荧光成像系统技术指标:§ 移动式大型植物荧光成像,成像面积可达35×35cm,具移动轮和暗适应屏幕§ 镜头及光源高度20cm–150cm可调,从而适于不同生长类型不同高度植物的原位非损伤荧光成像测量§ 测量参数包括F0,F0’,Fs,Fm,Fm’,Fp,FtDn,FtLn,Fv,NPQ_Dn,NPQ_Ln,Qp_Dn,Qp_Ln,qN,QY,QY_Ln,Rfd等50多个叶绿素荧光参数§ 高分辨率、高灵敏度2/3”CCD,10.2x8.3mm阵列,最高可达1392x1040像素(15fps),像素大小6.45微米;可2x2、3x3、4x4像素叠加以提高灵敏度和时间分辨率;高速USB2.0图像传输, 480Mbits/秒§ 自动测量分析功能:可预设1个试验程序,系统可自动测量储存,数据文件自动按时间命名§ 配置有通用叶绿素荧光成像测量实验程序(protocols),包括Fv/Fm Protocol,Kautsky诱导效应Protocol,荧光淬灭分析Protocol,客户定制光响应曲线等§ 橙色、白色和红外三色激发光,LED光源板72×72 cm,3x64 LEDs § 双色光化学光,标配光化学光1强度达350μmol(photons)/m2.s、光化学光2强度达550μmol(photons)/m2.s,饱和光脉冲可达3500μmol(photons)/m2.s § 防水设计(选配),用于野外实验测量§ FluorCam叶绿素荧光成像分析软件,具Live(实况测试)、Protocol(实验程序选择)、Pre–processing(成像预处理)、Result(成像分析结果)等菜单§ Protocol实验程序可自由编辑,用户也可利用Protocol菜单中的向导程序模版自由创建新的实验程序§ 成像预处理可以自动选区或手动选择不同形状、不同数量、不同位置的区域(Region of interest,ROI),成像分析结果包括高时间解析度荧光动态图、直方图、不同参数成像图、不同ROI的荧光参数列表等§ 数据分析具备“信号计算再平均”模式(算数平均值)和“信号平均再计算模式”,在高信噪比的情况下选用“信号计算再平均”模式,在低信噪比的情况下选择“信号平均再计算”模式以过滤掉噪音带来的误差§ 具触摸屏,可通过触摸屏操作和数据浏览§ 规格大小:192cm(高)x 125cm x 100cm§ 供电电压:380V三相交流电,另具备野外发电机供电单元 更多信息请参考产地:欧洲PSI
    留言咨询
  • FC 00-C/1010GFP封闭式多光谱植物荧光成像系统是一个高度创新的,世界范围内广泛应用的多光谱动力学荧光成像系统。这个系统高度紧凑且可以实现测量样品的暗适应。它由一个CCD相机,4个固定的LED发光板,高性能PC和兼容软件包组成。仪器可选配一个8位滤波轮实现多波段成像。LED发光板的均一性照明面积为13× 13 cm。适用对象为小植物,离体叶片,海藻稀释物等。系统结构紧凑且易于实现样品的暗适应,功能强大的软件可以控制整个系统,获取数据和处理图像。应用领域植物光合特性和代谢紊乱筛选生物与非生物胁迫检测植物抗胁迫能力或者易感性研究气孔非均一性研究代谢混乱研究长势与产量评估植物&mdash &mdash 微生物交互作用研究植物&mdash &mdash 原生动物交互作用研究基因标记检测转基因表达研究功能特点:实验过程和测量参数荧光诱导过程(Kausky效应)分析叶绿素荧光淬灭过程(NPQ过程)分析PAR吸收系数测定QA再氧化过程分析OJIP曲线测定高达1µ s时间分辨率的快速荧光诱导分析可测量与计算多达50个参数: F0, FM, FV, F0' , FM' , FV' , QY(II),NPQ, &Phi PSII, FV/FM, FV' /FM' , RFd, qN, qP, PAR-吸光系数, 电子传递速率(ETR), 及其它.实验过程和测量参数稳态荧光测定GFP,EGFP、wtGFP、BFP、YFP或者其它荧光蛋白及荧光素荧光诱导过程(Kausky效应)分析叶绿素荧光淬灭过程(NPQ过程)分析PAR吸收系数测定QA再氧化过程分析OJIP曲线测定高达1µ s时间分辨率的快速荧光诱导分析可测量与计算多达50个参数: F0, FM, FV, F0' , FM' , FV' , QY(II),NPQ, &Phi PSII, FV/FM, FV' /FM' , RFd, qN, qP, PAR-吸光系数, 电子传递速率(ETR), 及其它典型样品叶片,整株植物,小树苗,果实,蔬菜,苔藓,地衣,藻青菌,绿藻,各种转基因植物,适用于不同植物样品的支架,培养皿与多孔板蒙版 操作软件与实验结果内置常用测量程序用户可自定义实验程序,界面友好可自动重复测量视野内单个植物或样品的自动识别与标记视野内所有样品数据的动力学分析多图像处理工具条形码读卡器支持,便于批量处理样品数据可导出为excelWindows 2000, XP, Vista,Win7兼容稳态荧光测定荧光蛋白和荧光素家族具有巨大的光谱多样性,它们通常具有不同的激发光谱和释放光谱。封闭式荧光成像系统上安装了完全由软件控制和电动驱动的滤波轮,以及一系列的滤光片组,可以来对GFP,EGFP、wtGFP、BFP、YFP或者其它波段荧光蛋白进行检测和成像。高分辨率相机1392 x 1040 像素 可选 640 x 480 像素或512 x 512 像素;低像素模式适用于快速荧光过程的捕获;高像素模式适用于叶绿素荧光和需要长时间曝光的弱稳态荧光测量或者需要高空间分辨率的情景(显微视野)7位滤波轮多色激发光源wtGFP 主激发峰 395 - 397 nm,发射峰 504 nm. 滤波器建议设置: 激发光420 nm短通,532/28 或 530/25 nm检测.EGFP 主激发峰中心波长488 nm,发射峰 507 - 509 nm. 滤波器建议设置:激发光480 nm短通,532/28 或 530/25 nm检测.BFP 主激发峰 384 nm,发射峰近 448 nm.滤波器建议设置: 激发光400 nm短通,469/35 nm检测. 配置型号指南:标准版1&mdash &mdash 超高速成像版:512 x 512 像素,50幅/秒超快CCD,适用于荧光参数的精细再现标准版2&mdash &mdash 超高分辨率版:1392 x 1040 像素分辨率,适用于高空间分辨率的应用,如气孔动态标准版3&mdash &mdash PAR吸收修正版:可测植物真实F0&rsquo 与PAR吸收系数,用于修正荧光参数和ETR 标准版4&mdash &mdash 功能增强版:超强STF,强度可达120,000 µ mol(photons)/m² .s,可实现100µ s脉冲,用于QA瞬间饱和与再氧化研究;可同时进行荧光蛋白与荧光素成像,包括GFP、wGFP、eGFP、YFP、BFP、CY3, CY5等,用于转基因研究。 1.FC 1000-H便携式叶绿素荧光成像系统 FC 1000-H便携式叶绿素荧光成像系统被设计用来在田间和实验室内对叶片和小植物的荧光参数成像进行动力学解析,典型的研究区域为3.5× 3.5 cm。在所有应用中,系统可以对光化光和饱和光诱导的荧光瞬变过程进行成像,光化光照射的时间和强度可以由用户自定义的程序来决定。软件包中包含了最常用的实验程序和简单实用且功能强大的程序设计语言,熟练的研究人员可以设计自己的闪光序列和测量过程。 FC 1000-H便携式叶绿素荧光成像系统是一个轻巧的便携系统,尤其适用于野外实验。系统可以通过肩背便携包中的密封铅酸电池在野外进行供电,稳固轻巧的三脚架使得野外测量变得简单易行。 2.FC 1000-LC便携式光合联用型叶绿素荧光成像系统FC 1000-LC便携式光合联用型叶绿素荧光成像系统专门设计来与光合仪的气体交换叶室安装在一起使用,是一个高度创新的,世界范围内广泛应用的多广谱动力学荧光成像系统。它具备其他荧光成像系统的所有特征。这个系统高度紧凑,且可以实现测量样品的暗适应。叶绿素荧光测量与成像可以与气体交换测量同步进行,获取更丰富准确的信息。而且精确的样品所处环境控制功能,例如影响光合和蒸腾速率的温度、相对湿度和氧气和CO2的分压,远优于普通叶绿素荧光成像系统。系统可与目前市场上绝大多数厂家的光合仪联用,如Licor,ADC,PPS等。3. FC800-O开放式植物荧光成像系统 FC 800-O开放式荧光成像系统是一款高度模块化的设备,具体配置可以定制。其LED发光板和饱和光源可以任意角度和到样品的距离排列,也可以通过调整CCD的位置来增加精度。标准配置的最大成像面积为13× 13 cm ,通过选择光源的尺寸,可调整最大成像面积为20× 20 cm 。测量参数与技术指标请参考FC-800-C封闭式植物荧光成像系统。4. FC 900-TR开放式植物样带叶绿素荧光扫描成像系统FC 900-TR开放式植物样带叶绿素荧光扫描成像系统高度紧凑,主要由一个扫描控制系统,CCD相机,4个固定的LED发光板,高性能PC和兼容软件包组成。仪器可选配一个8位滤波轮实现多波段成像。测量区域为200× 100 cm。该系统适用于实验室或样地中样带植株的原位快速测量,尤其适用于监测多因子实验中植物对各种处理的响应。测量参数与技术指标请参考FC-800-C封闭式植物荧光成像系统。尤其适用于高通量筛查和监测胁迫梯度对植物影响;适合户外与温室使用;结构坚固耐用,光源与相机位置可移动;无需取下或者移动样品;标准成像尺寸为20× 200 cm,其它尺寸可调整。5. FC 900-R野外移动式植物叶绿素荧光成像系统 FC 900-R野外移动式植物荧光成像系统主要由一个可移动支架,CCD相机,4个固定的LED发光板,高性能PC和兼容软件包组成。仪器可选配一个8位滤波轮实现多波段成像。LED发光板的均一性照明面积为20× 20 cm,适用于野外较大植物(如大豆、小麦)的原位无损测量。成像高度20 到 150 cm可调,可配真彩镜头。测量参数与技术指标请参考FC-800-C封闭式植物荧光成像系统。适用于野外大尺寸扫描测量面积20× 20 cm.移动系统极其坚固稳定可在粗糙地表轻松移动配置样品暗适应箱从 20 to 150 cm高度可调无需样品分离与破坏6. FC 900-A拱形三维立体植物叶绿素荧光扫描成像系统 FC 900-A拱形三维立体植物叶绿素荧光扫描成像系统是一个高度创新的多广谱动力学荧光成像系统。这个系统高度紧凑且可以实现对测量样品的3D成像,它由一个CCD相机,LED发光板,拱形支架,高性能PC和兼容软件包组成。FC 900-A拱形三维立体植物叶绿素荧光扫描成像系统通过自动程序获取样品台上整株植物的3D图像,适用于对植物进行3D空间异质性研究以及荧光蛋白与荧光素等荧光标记在植株上表达的空间异质性。专用于三维荧光成像独特耐用的结构支架光源位置可自动调整可移动的相机使得可以从任意角度测量无需分离与移动样品软件可生成3D图像7. XY-Plane多广谱大型植物叶绿素荧光扫描成像系统XY-Plane多广谱大型植物叶绿素荧光扫描成像系统是一个高度创新的多广谱动力学荧光成像系统。该系统可以实现测量样品的暗适应,它由一个CCD相机,4个固定的LED发光板,高性能PC和兼容软件包组成。仪器可选配一个8位滤波轮实现多波段成像,成像面积为80× 40 cm。适用对象为整株植物,离体叶片,海藻稀释物等。XY-Plane系统用于自动进行大型植物生长室中植物样品的大量筛选,FC 900-XY/8040植物荧光成像系统安装在一个坚固耐用的柜式结构中,所有部件可被安全存放,人性化的设计使得放置样品非常便捷。柜式结构内是一个光源和成像CCD位置可自由移动的自动控制框架。测量面积80× 40 cm.适用于高通量筛选尤其适合大培养盘中样品的多谱段分析适用于生物和非生物胁迫研究和转基因植物筛查光源与相机的高度和位置可调整无需分离与破坏样品8. FC 2000显微叶绿素荧光成像系统1. Micro-FluorCam FC 2000-ST内含: CCD 相机 简单显微镜架 光学组件 控制单元 高性能PC 激发光源 软件包 使用手册.2. Micro-FluorCam FC 2000-EN内含: CCD 相机 带可更换可扩展组件的机械强化显微镜架(Olympus BX40) 机械强化光学组件 控制单元 高性能PC 激发光源 软件包 使用手册.3. Micro-FluorCam FC 2000-MFW内含: 6位滤波轮 CCD相机 带可更换可扩展组件的机械强化显微镜架(Olympus BX40) 机械强化光学组件 控制单元 PC高性能PC 激发光源 软件包 使用手册.4. Micro-FluorCam FC 2000-EFW内含:6位完全软件控制的滤波轮 CCD相机 带可更换可扩展组件的机械强化显微镜架(Olympus BX40) 机械强化光学组件 控制单元 高性能PC 激发光源 软件包 使用手册.Micro-FluorCam FC2000-EFW: 6-位滤波器 (插入式)5. Kinetic Fluorescence Microscope FC 2000-Z 详见FKM多功能荧光动态显微监测系统 产地:欧洲 典型应用:1. CLAIRE M. M. GACHON etc. Single-cell chlorophyll fluorescence kinetic microscopy of Pylaiella littoralis (Phaeophyceae) infected by Chytridium polysiphoniae (Chytridiomycota). Eur. J. Phycol., (2006), 41(4): 395&ndash 403Fig. 2. UV激发荧光(壶菌属感染的褐藻过程)。A、C为亮视野图片;B、D为UV激发荧光情况;A、B为单细胞感染对照;C、D为严重感染对照。 Fig. 1.叶绿素荧光动力学(壶菌属感染的褐藻).A为典型Kautsky诱导曲线(实线)与实测曲线比较;B为亮视野图片;C为 Fm值假彩图片;D为NPQ值假彩图片 请致电索取参考文献列表
    留言咨询
  • PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士等首次将PAM叶绿素荧光技术与CCD技术结合在一起,于1996年在世界上成功研制生产出FluorCam叶绿素荧光成像系统(Heck等,1999;Nedbal等,2000;Govindjee and Nedbal, 2000)。FluorCam叶绿素荧光成像技术成为上世纪90年代叶绿素荧光技术的重要突破,使科学家们对光合作用与叶绿素荧光的研究一下子进入二维世界和显微世界。目前PSI公司已成为世界上最权威、使用最广、种类最全面、发表论文最多的叶绿素荧光成像专业生产厂商。 FluorCam封闭式叶绿素荧光成像系统是一款高度集成、高度创新、使用方便、应用广泛的高端叶绿素荧光技术设备,高分辨度CCD镜头、4个固定的LED光源板及控制系统等集成于一个暗适应操作箱内,植物样品放置在暗适应操作箱内的隔板上,隔板7级高度可调;光源由高稳定性供电单元提供电源,4个高能、高稳定性LED光源板均一性照在植物样品上,成像面积可达13×13 cm;控制系统通过千兆以太网与计算机相联,并通过FluorCam软件程序控制和采集分析数据。适用于植物叶片及果实等其它植物组织、整株植物或培养的多株植物、苔藓地衣等低等植物、藻类等,广泛应用于植物包括藻类光合生理生态、植物逆境胁迫生理与易感性、气孔功能、植物环境如土壤重金属污染响应与生物检测、植物抗性检测与筛选、作物育种、Phenotyping等研究。 主要功能特点:1.系统集成于暗适应操作箱内,操作简便、便于移动,既可在实验室内也可在室外进行暗适应成像测量分析2.是世界上唯一可进行OJIP快速荧光动力学成像分析的高端叶绿素荧光技术设备,可得到OJIP快速叶绿素荧光动态曲线及Mo(OJIP曲线初始斜率)、OJIP固定面积、Sm(对关闭所有光反应中心所需能量的量度)、QY、PI(Performance Index)等26个参数3.是世界上唯一可进行QA再氧化动力学成像分析的高端叶绿素荧光技术设备,可运行单周转饱和光闪(STF)叶绿素荧光诱导动态,光强在100µ s内可达到120,000 µ mol(photons)/m² .s4.备功能最全的、可编辑的叶绿素荧光实验程序(Protocols),包括快照模式、Fv/Fm、Kautsky诱导效应、叶绿素荧光淬灭分析(quenching)protocols、LC光响应曲线、PAR吸收与NDVI成像分析、QA再氧化动力学分析、OJIP快速荧光动力学分析及GFP绿色荧光蛋白成像等5.可进行自动重复成像测量分析,预设一个实验程序(Protocols)、测量次数及间隔,系统将自动循环运行成像测量,并自动将数据按时间日期存入计算机(带时间戳)6.具备双色光化学光激发光源,标准配置为红色和白色,可选配红色与蓝色等双波段光化学光,双色光化学光可按不同比例搭配使用,以便实验不同光质对作物/植物的光合效益 7.可选配TetraCam彩色成像模块,最大成像面积20×25cm,用于叶片或植物形态成像分析和叶绿素荧光成像对比分析 技术参数: 1.测量光为617nm可调制红光,持续时间10µ s–100µ s可调; 2.双色光化光,标配为2红光+2白光,可选配2红光+2蓝光或其它波长光源组合, Actinic1光强300µ mol(photons)/m² .s,Actinic2光强2000µ mol(photons)/m² .s;最大光化学光可升级至3000µ mol(photons)/m² .s。双色光化学光可按不同比例搭配使用,以便实验不同光质对作物/植物的光合效益3.饱和光光强可达4000µ mol(photons)/m² .s,可升级至6000 µ mol(photons)/m² .s,QA再氧化分析单周转饱和光闪STF可达120000µ mol(photons)/m² .s4.光源板:4块大型高强度封装LED光源板,每个光源板由36颗LED阵列组成,光源板有效面积与成像面积相同13×13cm,另外还具备一个顶部双色光源(735nm红外光源和650nm红色光源)用于PAR吸收和NDVI成像测量;高强度高稳定性LED提供持续、稳定、均一的光源,不会因为用大量光强弱的LEDs(比如几百个)造成光源不稳定、寿命短等问题(使用大量弱光LED用于弥补每个LED的不足,会造成系统出错率的提高,任何一个LED出现问题都会造成系统的不稳定甚至不能使用)5.测量参数:Fo, Fo’, Fs, Fm, Fm’, Fp, FtDn, FtLn, Fv, Fv'/ Fm',Fv/ Fm ,Fv',Ft,ΦPSII, NPQ_Dn, NPQ_Ln, Qp_Dn, Qp_Ln, qN, qP,QY, QY_Ln, Rfd, ETR等50多个叶绿素荧光参数及PAR吸收和NDVI植物光谱反射指数(选配),每个参数均可显示2维荧光彩色图像6.具备完备的自动测量程序(protocol),可自由对自动测量程序进行编辑a) Fv/Fm:测量参数包括Fo,Fm,Fv,QY等b) Kautsky诱导效应:Fo,Fp,Fv,Ft_Lss,QY,Rfd等荧光参数c) 荧光淬灭分析:Fo,Fm,Fp,Fs,Fv,QY,ΦII,NPQ,Qp,Rfd,qL等50多个参数d) 光响应曲线LC:Fo,Fm,QY,QY_Ln,ETR等荧光参数e) PAR吸收与NDVI(选配)f) QA再氧化动力学(选配)g) GFP等静态荧光成像测量(选配)h) OJIP快速荧光动力学分析(选配):Mo(OJIP曲线初始斜率)、OJIP固定面积、Sm(对关闭所有光反应中心所需能量的量度)、QY、PI等26个参数7.高分辨率TOMI-2 CCD传感器a) 逐行扫描CCDb) 最高图像分辨率:1360×1024像素c) 时间分辨率:在最高图像分辨率下可达每秒20帧d) A/D 转换分辨率:16位(65536灰度色阶)e) 像元尺寸:6.45µ m×6.45µ mf) 运行模式:1)动态视频模式,用于叶绿素荧光参数测量;2)快照模式,用于GFP等荧光蛋白和荧光染料测量g) 通讯模式:千兆以太网8.成像面积:13×13cm,可对植物叶片、植物组织、藻类、苔藓、地衣、整株植物或多株植物、96孔板、384孔板等进行成像分析9.7位滤波轮及叶绿素荧光滤波器、PAR吸收与NDVI成像测量滤波器(选配),可根据需要选配其它滤波器(选配)10.QA再氧化动力学成像分析(选配):可进行STF荧光动力学分析测量,单周转光闪(STF)光强达120000 µ mol(photons)/m² .s in 100µ s11.OJIP快速荧光动力学模块(选配):时间分辨率达1µ s,可测定分析OJIP曲线与二十几项相关参数包括:Fo、Fj、Fi、P或Fm、Vj、Vi、Mo、Area 、Fix Area、Sm 、Ss 、N(QA还原周转数量)、Phi   _Po 、Psi_o 、Phi_Eo、Phi_Do、Phi_pav、ABS/RC(单位反应中心的吸收光量子通量)、TRo/RC(单位反应中心初始捕获光量子通量)、ETo/RC(单位反应中心初始电子传递光量子通量)、DIo/RC(单位反应中心能量散失)、ABS/CS(单位样品截面的吸收光量子通量)、TRo/CSo、RC/CSx(反应中心密度)、PIABS(基于吸收光量子通量的“性能”指数或称生存指数)、PIcs(基于截面的“性能”指数或称生存指数)12.FluorCam叶绿素荧光成像分析软件功能:具Live(实况测试)、Protocols(实验程序选择定制)、Pre–processing(成像预处理)、Result(成像分析结果)等功能菜单13.客户定制实验程序协议(protocols):可设定时间(如测量光持续时间、光化学光持续时间、测量时间等)、光强(如不同光质光化学光强度、饱和光闪强度、调制测量光等),具备专用实验程序语言和脚本,用户也可利用Protocol菜单中的向导程序模版自由创建新的实验程序14.自动测量分析功能:可设置一个实验程序(Protocol)自动无人值守循环成像测量,重复次数及间隔时间客户自定义,成像测量数据自动按时间日期存入计算机(带时间戳)15.快照(snapshot)模式:通过快照成像模式,可以自由调节光强、快门时间及灵敏度得到清晰突出的植物样本稳态荧光和瞬时荧光图片16.成像预处理:程序软件可自动识别多个植物样品或多个区域,也可手动选择区域(Region of interest,ROI)。手动选区的形状可以是方形、圆形、任意多边形或扇形。软件可自动测量分析每个样品和选定区域的荧光动力学曲线及相应参数,样品或区域数量不受限制(1000)17.数据分析模式:具备“信号计算再平均”模式(算数平均值)和“信号平均再计算”模式,在高信噪比的情况下选用“信号计算再平均”模式,在低信噪比的情况下选择“信号平均再计算”模式以过滤掉噪音带来的误差18.输出结果:高时间解析度荧光动态图、荧光动态变化视频、荧光参数Excel文件、直方图、不同参数成像图、不同ROI的荧光参数列表等19.暗适应操作箱,内置光源、CCD镜头、滤波轮及滤波器、控制单元、散热装置等,方便暗适应操作,样品平台36x30cm,高度7级可调,样品(整株植物)最大高度可达12cm 20.给光制式:静态或动态21.Bios:固件可升级22.尺寸:471 mm(W)×473 mm (D)×512 mm (H) 23.重量:Appr. 40 kg 24.电源输入:Appr. 1100 W 25.供电电压:90–240 V 配置组成:1.主机系统,包括暗适应操作箱,内置LEDs光源、滤波轮及滤波器、CCD镜头、控制单元、高度可调样品隔板、散热装置等2.高稳定性电源转换器3.FluorCam系统控制与数据分析软件4.笔记本电脑 产地:欧洲 附:其它FluorCam叶绿素荧光成像系统1.FluorCam便携式光合联用叶绿素荧光成像系统:可与LCProSD光合仪、Licor光合仪等联用2.FluorCam便携式叶绿素荧光成像系统:成像面积3.5x3.5cm,具暗适应叶夹及多功能轻便三脚架,可用于实验室或野外测量和监测3.FluorCam便携式Chl/GFP荧光成像系统:为便携式荧光成像系统的扩展版,可同时进行叶绿素荧光成像分析和GFP绿色荧光蛋白成像分析4.FluorCam封闭式叶绿素荧光成像系统:LED光源、CCD荧光监测镜头、控制单元等集成于暗适应操作箱内形成一个完整的主机系统,是世界上唯一可进行QA再氧化动力学和OJIP测量分析的叶绿素荧光成像系统,成像面积13x13cm5.FluorCam封闭式Chl/GFP荧光成像系统:为封闭式叶绿素荧光成像系统的扩展版,可同时进行叶绿素荧光成像分析和GFP绿色荧光蛋白成像分析6.FluorCam开放式叶绿素荧光成像系统:模块式,具备高度可扩展性,可自由选配不同的激发光源及相应滤波器以对叶绿素荧光动态及稳态荧光等进行成像分析,镜头高度可调,成像面积13x13cm7.FluorCam开放式大型版叶绿素荧光成像系统:成像面积可达20x20cm8.FKM多光谱荧光动态显微成像与光谱分析系统:多激发光、多光谱荧光成像与光谱分析,可对叶绿素荧光动态、QA再氧化、OJIP快速荧光动力学进行显微成像分析和光谱分析,还可对GFP荧光、细胞荧光染色等进行显微成像分析9.Fluorcam移动式大型叶绿素荧光成像系统:大型叶绿素荧光成像平台安装在具轮子的支架上,方便移动,成像平台可上下移动,成像面积达35x35cm10.FluorCam样带扫瞄式叶绿素荧光成像系统:大型成像平台可在100-500cm的支架上对样带进行扫瞄成像,标配扫瞄区域长度为400cm,成像平台可沿样带精确定位自动扫瞄,可选配RGB真彩扫瞄成像,从而实现叶绿素荧光成像和真彩成像分析11.FluorCam多光谱荧光成像系统:属多激发光、多光谱荧光成像系统,不仅可对叶绿素荧光进行成像分析,还可对UV紫外光激发F440(蓝色荧光)、F520(绿色荧光)、F690(红色荧光)和F740(红外荧光)进行成像分析用于全方位研究检测植物胁迫与抗性,有标准配置、扩展配置和大型配置3种型号12.PlantScreen叶绿素荧光与RGB真彩自动扫描成像系统:是PlantScreen系列高通量植物表型成像分析系统的基础版,可对叶绿素荧光和植物RGB真彩进行成像分析,以分析检测植物的功能表型和形态表型,自动扫瞄范围为60x129cm,定位定时并得到4维(XYZ三维位置信息和时间信息)测量数据
    留言咨询

野外移动式叶绿素荧光成像系统相关的资讯

  • 农业部学科群项目—— 中国农科院移动式大型叶绿素荧光成像系统安装运行
    易科泰生态技术公司工程师为中国农科院学科群建设项目——FluorCam移动式大型叶绿素荧光成像系统进行了安装调试并顺利通过验收。该系统是农业部一期学科群建设项目购置的大型仪器设备,将用于温室乃至野外植物的光合生理研究、植物表型成像分析(Phenotyping)、植物胁迫生理及抗性筛选、植物优良品种选育、植物生态毒理学研究等。FluorCam移动式大型叶绿素荧光成像系统系国内首次引进,其成像面积达35×875px,是世界上单幅成像面积最大的叶绿素荧光成像系统,可对整株植物及多株植物进行原位实验和叶绿素荧光成像分析。整套系统装配在具备4个轮子的支架上,可在野外自由移动,甚至可以通过自动重复程序实现无人职守自动成像分析测量和监测,成像测量数据自动按时间日期存入计算机(带时间戳),通过触摸屏进行实验操作和数据浏览。镜头及激发光源高度500px–3750px可调,从而适于不同生长类型不同高度植物的原位非损伤荧光成像测量。带有Kautsky诱导效应、荧光淬灭分析等各种通用实验程序(protocols),测量分析参数达50多个,测量样品包括作物、灌木、整株茎叶与果实、地衣及藻类等。同期购置的还有Monitoring FluorPen叶绿素荧光自动监测仪,激发光源、控制单元、检测器、数据采集器等高度集成在一个具防水设计的不锈钢外壳内,可在野外恶劣环境下进行长期无人值守的叶绿素荧光监测,既可以电池供电也使用太阳能板供电,是目前世界上集成度与精密度最高、功能最强大的叶绿素荧光监测模块,内置包括Ft、QY、OJIP、NPQ、光响应曲线等功能最全面的Protocols。可以用于光合活性监测、植物胁迫生理研究与抗性检测、除草剂测试、人工或野外条件下的植物生长情况监测等。
  • FluorCam 叶绿素荧光成像技术讲座及操作培训班邀请函
    为了进一步促进FluorCam叶绿素荧光成像技术在光合作用、植物发育生物学、植物抗逆生物学以及作物育种研究领域的应用,北京易科泰生态技术有限公司ECOLAB实验室与中国科学院植物研究所光生物学重点实验室,将于2017年4月中旬在植物所举办FluorCam叶绿素荧光成像技术专题讲座与仪器操作培训,将由相关领域的专家重点介绍FluorCam技术及其操作,详细讲解FluorCam技术在植物相关研究领域的应用。诚邀从事植物表型、光合作用、植物胁迫与抗性以及作物育种等领域的科研工作者参加本次培训班。一、会议组织 主办单位:北京易科泰生态技术有限公司ECOLAB实验室,中国科学院光生物学重点实验室 会议地点:北京市海淀区香山南辛村20号 中国科学院植物研究所 会议时间:2017年4月(具体时间请见后续通知) 二、会议主题 FluorCam叶绿素荧光技术介绍 FluorCam叶绿素荧光技术在植物相关研究领域中的应用 FluorCam叶绿素荧光技术操作与示范 三、报告人(持续更新中) 卢从明研究员(中国科学院植物研究所,中国科学院光生物学重点实验室主任) 彭连伟教授(上海师范大学生命与环境学院) 李川技术总监(易科泰生态技术有限公司ECOLAB实验室)四、仪器操作培训与会者将在植物所光生物学重点实验室和ECOLAB实验室实地参观并操作FluorCam仪器设备。16年培训班-FluorCam野外移动式叶绿素荧光成像系统16年培训班-FluorCam封闭式荧光成像系统农科院购置FluorCam大型叶绿素荧光成像平台FluorCam开放式叶绿素荧光成像系统有意参加者可直接回复联系人邮件,后续会有专人跟您联系联系人:曹洋 邮箱:info@eco-tech.com.cn 电话:010-82611269/1572
  • FluorCam叶绿素荧光成像技术应用案例——上海生命科学研究院
    近日,易科泰生态技术有限公司为上海生命科学研究院调试安装一套FluorCam封闭式GFP/Chl.荧光成像系统,该系统具备叶绿素荧光成像分析、GFP绿色荧光蛋白成像分析、PAR吸收与NDVI成像测量分析、实验程序自动运行监测等多项功能模块。上海生命科学研究院青年研究组长、博士生导师Chanhong Kim在苏黎世联邦理工学院(ETH-Zurich)、康奈尔大学博伊斯汤普森研究所(Boyce Thompson Institute at Cornell University)工作期间就已经使用FluorCam叶绿素荧光成像技术进行了大量的研究工作,并先后发表了“1O2-mediated retrograde signaling during late embryogenesis predetermines plastid differentiation in seedlings by recruiting abscisic acid”(PNAS(美国科学院院报),2009)、“Chloroplasts of Arabidopsis are the source and a primary target of a plant-speci?c programmed cell death signaling pathway”(The Plant Cell,2012)等学术论文。2014年,Chanhong Kim博士到上海生命科学研究院工作后,立刻就联系我公司购买了FluorCam封闭式GFP/Chl.荧光成像系统,计划率领他的青年科学家团队运用FluorCam叶绿素荧光成像技术结合特定胁迫因子来筛选拟南芥突变体,并通过Quenching实验程序进一步研究这些突变体光系统中的具体表型变化(Phenotyping)和生理机制,对植物光合作用和抗逆机理进行深入的探索;同时利用该系统绿色荧光蛋白成像分析功能,来定量鉴别检测分析转基因表达。图1. FluorCam封闭式叶绿素荧光成像系统在实验室的工作状态图2. 拟南芥叶绿素荧光Fm(左图)、Fv/Fm(右图)成像分析,图中上半部分为拟南芥野生型,下半部分为突变株,上部选择了3个植株Area 1、2、3,下部选择了3个植株Area 4、5、6,野生型的Fv/Fm远高于突变株图3. GFP成像图,图中发出明亮颜色的植株即为表达了GFP的植株,其颜色越偏向红色,则表明其表达的GFP更多图4:PAR absorptivity/NDVI成像分析(由Ecolab实验室提供)FluorCam叶绿素荧光成像技术由全球知名叶绿素荧光技术专业公司PSI生产,PSI公司最先研制成功并生产叶绿素荧光成像仪器。PSI公司首席科学家Nedbal教授与公司总裁Trtilek博士首次将PAM叶绿素荧光技术与CCD技术结合在一起,研制成功了叶绿素荧光成像技术(Nedbal等,2000),并于1997年为美国华盛顿大学提供了第一台商业FluorCam系统。Nedbal教授也是权威著作《Chlorophyll a Fluorescence, a Signature of Photosynthesis》(Springer, 2009)叶绿素荧光成像技术的作者。Fluorcam叶绿素荧光成像系统是世界上最权威、使用最广、种类最全面、发表论文最多的叶绿素荧光成像仪器,目前易科泰生态技术公司Ecolab实验室有近400篇参考文献供参考查阅。易科泰生态技术公司作为PSI在中国区域的独家代理和技术咨询服务中心,致力于FluorCam叶绿素荧光成像技术的引进推广,以助力于我国植物生理生态与胁迫生理生态研究、植物育种与优良品种筛选、植物表型分析(Phenotyping)、藻类生理生态学研究、污染生态学及生态毒理学研究等,先后引进了FluorCam便携式荧光成像、封闭式荧光成像、开放式荧光成像、移动式大型叶绿素荧光成像系统、FKM多光谱荧光动态显微成像与光谱分析系统、多光谱荧光成像技术、PlantScreen高通量植物表型成像分析系统等;Ecolab生态实验室配备了便携式叶绿素荧光成像系统、FL3500多功能叶绿素荧光仪、FluorPen手持式叶绿素荧光仪、AquaPen手持式水体藻类荧光仪等,并与中科院植物所、中科院海洋所、中科院微生物所、中国农业大学、中国林科院林木遗传育种国家重点实验室等科研单位进行了一系列合作研究实验。欢迎合作研究或来我公司Ecolab实验室做实验。Ecolab实验室联系方式:电话:62615899;邮箱:info@eco-lab.cn, eco-lab@eco-tech.com.cn.

野外移动式叶绿素荧光成像系统相关的方案

野外移动式叶绿素荧光成像系统相关的资料

野外移动式叶绿素荧光成像系统相关的论坛

  • 叶绿素荧光显微成像技术在光合作用研究中的应用

    [align=center][size=16px][/size][/align][size=16px] 光合作用是地球上最重要的化学反应,植物、藻类及光合细菌等吸收光能、将[/size][size=16px]CO[/size][font='calibri'][sub][size=16px]2[/size][/sub][/font][size=16px]和水转化为有机物并释放[/size][size=16px]O[/size][font='calibri'][sub][size=16px]2[/size][/sub][/font][size=16px]。获得光能的叶绿素分子从基态跃迁到激发态,激发态的叶绿素分子可通过三种途径释放能量回到基态:推动光化学反应、以热的形式耗散、释放光子产生荧光。这三种途径的总和是一定的,因此叶绿素荧光的变化反映了光化学效率和热耗散能力的变化。叶绿素荧光成像是[/size][size=16px]广泛应用[/size][size=16px]的[/size][size=16px]光合生理研究的重要探针[/size][size=16px],[/size][size=16px]叶绿素荧光显微成像又将研究尺度进一步拓展到细胞、亚细胞水平。叶绿素荧光技术发展出了很多不同的测量程序,以慢诱导荧光动力学曲线为例,通过测量光([/size][size=16px]ML[/size][size=16px])、作用光([/size][size=16px]AL[/size][size=16px])、饱和脉冲光([/size][size=16px]SP[/size][size=16px])激发样品,记录动力学曲线并计算叶绿素荧光参数[/size][size=16px],[/size][size=16px]可以用于反映植物光合作用机理和光合生理状况([/size][size=16px]朱新广[/size][size=16px],[/size][size=16px]2021[/size][size=16px])。[/size][size=16px][/size][size=16px] 叶绿素荧光成像技术能记录整个叶片、植株等样品不同区域的荧光动力学分布变化,实现从宏观到微观的光合机理研究。叶绿素荧光成像由于其无损、高通量的技术特征,在光合作用相关突变体筛选领域成为了广泛应用的重要技术,为光合作用机理及抗[/size][size=16px]逆研究[/size][size=16px]提供了强大的技术支持。叶绿素荧光显微成像技术最早出现于[/size][size=16px]2000[/size][size=16px]年,[/size][size=16px]K[/size][size=16px]ü[/size][size=16px]pper[/size][size=16px]等人将叶绿素荧光脉冲调制式激发光源与显微镜结合,首次获得了显微尺度的叶绿素荧光图像([/size][size=16px]K[/size][size=16px]ü[/size][size=16px]pper[/size][size=16px] [/size][size=16px]et al.[/size][size=16px], 2000[/size][size=16px])。叶绿素荧光显微成像技术在国外已经展开多方面研究应用,[/size][size=16px]目前国内的叶绿素荧光成像显微研究尚处于起步阶段,多个课题组都[/size][size=16px]正[/size][size=16px]在[/size][size=16px]探索[/size][size=16px]这项技术[/size][size=16px]在[/size][size=16px]不同研究领域中[/size][size=16px]的[/size][size=16px]应用。[/size][size=16px][/size][size=16px] 叶绿素荧光技术[/size][size=16px]适用研究样品微观结构上光[/size][size=16px]合功能[/size][size=16px]的空间差异,例如叶片横截面栅栏组织与海绵组织的差异,[/size][size=16px]C[/size][size=16px]4[/size][size=16px]植物花环结构[/size][size=16px]中维管束鞘细胞与叶肉细胞的差异[/size][size=16px],藻类中有差异的单个细胞、异形胞[/size][size=16px]等。我们多年来与[/size][size=16px]吉林师范大学、四川省农业科学研究院[/size][size=16px]等[/size][size=16px]单位[/size][size=16px]合作[/size][size=16px],[/size][size=16px]目前已合作发表的[/size][size=16px]3[/size][size=16px]篇相关论文是国内该领域[/size][size=16px]开创性[/size][size=16px]的应用成果,[/size][size=16px]以叶绿素荧光显微成像的特色优势技术[/size][size=16px]为光合作用的微观[/size][size=16px]探究提供有力支撑[/size][size=16px]。[/size][size=16px][/size][size=16px] Yu[/size][size=16px]等[/size][size=16px]发现[/size][size=16px]狗枣猕猴桃[/size][size=16px]([/size][size=16px]A[/size][size=16px]ctinidia [/size][size=16px]kolomikta[/size][size=16px])[/size][size=16px]的白化[/size][size=16px]叶片[/size][size=16px]通过调整叶片结构及基因表达调控,仍然保持了相对较高的光合能力[/size][size=16px]。[/size][size=16px]应用[/size][size=16px]叶绿素荧光显微成像技术[/size][size=16px]比较了[/size][size=16px]白化和绿色叶片栅栏组织、海绵组织的叶绿素荧光参数,[/size][size=16px]揭示了白化叶片海绵组织光[/size][size=16px]合能力[/size][size=16px]增强的机理[/size][size=16px]。[/size][size=16px]绿叶中栅栏组织[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]v[/size][/sub][/size][/font][size=16px]/[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]m[/size][/sub][/size][/font][size=16px](最大光化学效率)[/size][size=16px]更高,而白叶中海绵组织[/size][size=16px]显著增厚,[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]v[/size][/sub][/size][/font][size=16px]/[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]m[/size][/sub][/size][/font][size=16px]更高[/size][size=16px],[/size][size=16px]光[/size][size=16px]合能力[/size][size=16px]增强,补偿[/size][size=16px]了[/size][size=16px]白化的影响,成为叶片光合作用主力组织[/size][size=16px]([/size][size=16px]Yu [/size][size=16px]et al.[/size][size=16px], 2022[/size][size=16px])[/size][size=16px]。[/size][size=16px]接下来[/size][size=16px]Chen[/size][size=16px]等又比较了两种猕猴桃白化叶片的光保护策略差异[/size][size=16px],狗枣猕猴桃的白叶[/size][size=16px]主要通过反射实现光保护,强光下花青素[/size][size=16px]积累,叶片[/size][size=16px]转变为粉色[/size][size=16px],更有效地保护叶片[/size][size=16px];[/size][size=16px]而[/size][size=16px]葛[/size][size=16px]枣猕猴桃([/size][size=16px]A[/size][size=16px]ctinidia[/size][size=16px] [/size][size=16px]polygama[/size][size=16px])[/size][size=16px]强光下[/size][size=16px]仍为白色[/size][size=16px],[/size][size=16px]具[/size][size=16px]有更[/size][size=16px]强[/size][size=16px]的叶绿[/size][size=16px]素荧光参数,说明[/size][size=16px]它[/size][size=16px]具有更高的强光适应能力[/size][size=16px]([/size][size=16px]Chen[/size][size=16px] [/size][size=16px]et al.[/size][size=16px], 202[/size][size=16px]3[/size][size=16px])。[/size][size=16px]Liu[/size][size=16px]等比较了干旱处理下的玉米叶肉细胞和维管束鞘细胞,发现这两种细胞具有不同的不同光保护策略[/size][size=16px]。对玉米[/size][size=16px]完整叶片的分析显示,[/size][size=16px]随着干旱处理程度增强,[/size][size=16px] [/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]v[/size][/sub][/size][/font][size=16px]/[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]m[/size][/sub][/size][/font][size=16px]、[/size][size=16px]Φ[/size][font='calibri'][size=14px][sub][size=16px]PSII[/size][/sub][/size][/font][size=16px](实际光化学效率)[/size][size=16px]降低,[/size][size=16px]NPQ[/size][size=16px](非光化学猝灭[/size][size=16px]系数[/size][size=16px])[/size][size=16px]显著升高[/size][size=16px]。进一步应用[/size][size=16px]叶绿素荧光显微成像[/size][size=16px]的分析结果[/size][size=16px]与完整叶片[/size][size=16px]相符合,并且发现[/size][size=16px]与叶肉细胞相比,维管束鞘细胞[/size][size=16px] [/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]v[/size][/sub][/size][/font][size=16px]/[/size][size=16px]F[/size][font='calibri'][size=14px][sub][size=16px]m[/size][/sub][/size][/font][size=16px]、[/size][size=16px]Φ[/size][font='calibri'][size=14px][sub][size=16px]PSII[/size][/sub][/size][/font][size=16px]更低,干旱胁迫后[/size][size=16px]NPQ[/size][size=16px]升高更显著[/size][size=16px],[/size][size=16px]不同细胞的变化趋势[/size][size=16px]差异[/size][size=16px]表明它们[/size][size=16px]具有不同的光保护策略[/size][size=16px],[/size][size=16px]维管束鞘细胞中可能具有更强的热耗散能力[/size][size=16px]([/size][size=16px]Liu [/size][size=16px]et al.[/size][size=16px], 2022[/size][size=16px])。[/size][size=16px][/size][size=16px] 叶绿[/size][size=16px]素[/size][size=16px]荧光显微成像技术在光合作用的微观研究领域具有独特的技术优势,在[/size][size=16px]光合作用机理研究、环境及毒理胁迫与抗性筛选、优良品系选育等领域[/size][size=16px]具[/size][size=16px]有广阔的应用前景。目前多家单位的科研人员[/size][size=16px]都[/size][size=16px]在[/size][size=16px]探索该技术[/size][size=14px][size=16px]的新应用,我们也正在[/size][size=16px]将该技术拓展到[/size][size=16px]多个新的领域,例如对[/size][size=16px]原生质体[/size][size=16px]以及[/size][size=16px]种子、茎秆等非叶片器官的[/size][size=16px]研究[/size][size=16px]。[/size][/size][font='黑体']参考文献:[/font][font='calibri'][size=13px][1] [/size][/font][font='calibri'][size=13px]朱新广[/size][/font][font='calibri'][size=13px], [/size][/font][font='calibri'][size=13px]许大全主编[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]光合作用研究技术[/size][/font][font='calibri'][size=13px], [/size][/font][font='calibri'][size=13px]上海科学技术出版社[/size][/font][font='calibri'][size=13px], 2021[/size][/font][font='calibri'][size=13px][2] [/size][/font][font='calibri'][size=13px]H[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]Küpper[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]I[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]?etlík[/size][/font][font='calibri'][size=13px], [/size][/font][font='calibri'][size=13px]M[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Trtílek[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] et al. [/size][/font][font='calibri'][size=13px]Photosynthetica[/size][/font][font='calibri'][size=13px], 2000, 38, s553-570 [/size][/font][font='calibri'][size=13px][3] [/size][/font][font='calibri'][size=13px]M[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Yu, [/size][/font][font='calibri'][size=13px]L[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]Chen, [/size][/font][font='calibri'][size=13px]D[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] H[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]Liu[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] et al. [/size][/font][font='calibri'][size=13px]Front. Plant Sci.[/size][/font][font='calibri'][size=13px], 2022, 13: 856732 [/size][/font][font='calibri'][size=13px][4] [/size][/font][font='calibri'][size=13px]L[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] Chen[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] D[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]Q[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] Wen[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] G[/size][/font][font='calibri'][size=13px]. [/size][/font][font='calibri'][size=13px]L[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] Shi[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]et al.[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Physiol. Plant.[/size][/font][font='calibri'][size=13px], 2023, [/size][/font][font='calibri'][size=13px]175:[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]e13880[/size][/font][font='calibri'][size=13px][5] [/size][/font][font='calibri'][size=13px]W[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] J[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Liu, [/size][/font][font='calibri'][size=13px]H[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Liu, [/size][/font][font='calibri'][size=13px]Y[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] E[/size][/font][font='calibri'][size=13px].[/size][/font][font='calibri'][size=13px] [/size][/font][font='calibri'][size=13px]Chen[/size][/font][font='calibri'][size=13px],[/size][/font][font='calibri'][size=13px] et al. [/size][/font][font='calibri'][size=13px]Front. Plant Sci.[/size][/font][font='calibri'][size=13px], 2022, 13: 885781[/size][/font]

  • 移动式直读光谱仪介绍

    移动式直读光谱仪介绍

    1979年德国斯派克分析仪器公司生产出世界上第一台移动式光谱仪,首次在现场成功实现了金属材料的成分分析和材料分选,开创了光谱仪广阔的应用前景。便携式光谱仪目前已广泛应用于钢铁、有色金属加工、航空航天、机械、电力、石化、造船、压力容器等众多领域。SPECTROTEST 是在斯派克公司多年的光谱制造传统以及遍布世界的近两万个用户的使用经验的基础上制造出来的。在斯派克公司不断创新的理念的推动 下,SPECTROTEST 集中了ICAL智能标准化系统,APF自动程序识别系统以及特殊设计的光学系统等新技术,使其成为光谱技术的一个里程碑。与CCD技术等先进技术一起,使 SPECTROTEST成为同类光谱仪中的领先者。该仪器具有分析精度高、稳定性好、操作方便、应用灵活、体积小、重量轻的特点。1.光学系统:SPECTORTEST CCD采用了以往只在实验室仪器上才使用的光学系统,经过特殊改进以适应便携式光谱仪的需要。它可以接收分析波长范围(170nm-670nm)的全部元素谱线,具有前所未有的精度和稳定性。光学系统中的各个器件,如光栅光栅(焦距400mm)或高精度CCD检测器(16块),都被很好地固定和保护,使仪器防尘、抗震,坚固耐用。• 实验室级的火花激发频率600Hz2.激发枪:标准的激发枪即可以应用火花光源,用于包括C元素在内合金的精确成分分析,也可以使用电弧光源用于材料分选和牌号鉴别。选用特殊设计的小光学系统可分析钢中的P,S,B,Sn 和As。拔插式的接口使光源的转换变得非常简便和快速。3.电极和夹具: 电极和夹具的更换无须使用工具,简便而快捷。由火花光源到电弧光源的转换只须几秒钟的时间。配备了多种夹具适应不同形状和尺寸的样品,可以很方便地检测管材、线材、小样品以及其他特殊形状的表面4.接口:SPECTROTEST CCD提供USB,打印机,显示器以及网络接口。5.电池包:具有节电功能的高效光源保证SPECTROTEST CCD可以选用电池包供电。充电一次可以激发几百次。电池可以放在小车中或背包里,并可以很方便地通过插座与仪器相联。这使得仪器可以在几乎所有场合使用。6.小车:小车可与仪器合为一体,保证仪器在工作的安全性和移动的灵活性,人体工程学的设计可使仪器在方便的位置和高度进行操作。如果有必要,小车可分为三部分以方便运输。7.ICALICAL(智能校准功能)逻辑系统,可显示和控制仪器的状态,使仪器不受外部环境变化的影响,这可以免除因地点和温度变化而需要进行的再校准。8.APF扩展软件: APF扩展软件可以自动识别被测样品的基体,并自动选择适用的分析程序。这一功能可在检测未知金属时,节省用户大量时间。9.WINDOWS软件:SparkAnalyzer ME 提供多种支持功能和选择,且操作十分简单。由硬件和软件支持的一个具有诊断功能的控制系统保证仪器操作者的操作正确。10.可扩展性:改变和更新SPECTROTEST CCD的分析程序比任何其他光谱仪都要容易。ICAL 逻辑系统和先进的CCD技术使仪器更方便容易地适应变化了的分析要求,增加基体及元素只需添加软件,无需更改硬件。SPECTROTEST移动式光谱仪可完成工厂来料与产品质量控制过程中的合金材料鉴别分选及成分分析,石化设备的基础结构材料分析、废旧金属回收过程中的成份分析等。 SPECTROTEST 移动式光谱仪是采用CCD光学技术和现代微电子元件相结合的现场金属分析仪,对于需要检测C,P,S,B,Sn,As和N等非金属元素又不方便切割的大型金属构件,SPECTROTEST 移动式光谱仪更是你的不二之选。它可以分析各种形式的金属材料,如:管材、棒材、阀门、焊缝、油罐、铸件等。无论是在工厂厂区内或厂区外,在废料厂、水下潜水艇舱内、或化工厂的高空梯架上,斯派克公司的现场金属分析仪均能满足您的分析要求。http://ng1.17img.cn/bbsfiles/images/2016/01/201601111516_581525_3057315_3.jpg

野外移动式叶绿素荧光成像系统相关的耗材

  • 移动式家用除湿机
    移动式家用除湿机 除湿机企业新闻资讯报道:持续的阴雨天气 ,潮湿是在所难免的;无孔不入的潮湿空气大量进入室内,出现严重的返潮现象,给我们的家居生活、工作办公及工厂企业生产都带来了许多的不便 和麻烦;那么,室内家居环境该如何应对这种潮湿的天气?又该如何去除室内的湿气呢?正岛电器建议,除了关紧门窗外,最好是使用正岛电器生产的ZD-558LB移动式家用除湿机及ZD系列空气除湿机来降低室内家居环境的湿度,采用这种方法应对回南天或梅雨天等天气所存在的各种潮湿问题,要比使用放置生石灰,干燥剂,吸湿盒以及开启空调等方法来的更有效和更安全。 正岛电器生产的ZD-558LB移动式家用除湿机及ZD系列空气除湿机的设计采用智能微电脑控制、全电脑液晶显示、故障代码显示、湿度自由设定,自动控制、自动除霜,移动方便等产品特点。并且还采用了国际品牌高效旋转式压缩机,具有省电、高效、静音等性能优势。正岛ZD-558LB空气除湿机适用面积30-60平方米左右,除湿量为58公斤/天,广泛适用于商务展厅,商场超市,酒楼餐厅,大厅,银行营业厅,大型会议室,商务办公大楼,厂房车间等场所。点击此处查看移动式家用除湿机全部新闻图片备注:该系列产品可与环境试验设备以及环境监测仪器等温湿度相关仪器设备配套使用,也可作为其中的一个核心配件!欢迎您来电咨询移动式家用除湿机的详细信息!空气除湿机的种类有很多,不同品牌的空气除湿机价格及应用范围也会有细微的差别,而我们将会为您提供优质的产品和全方位的售后服务。正岛ZD-558LB移动式家用除湿机及ZD系列空气除湿机属冷冻式除湿机,适合小面积厂房仓库,家庭,办公场所,实验室,微机房使用。机组配置了高低压保护,防冻结保护,电流过载保护等重要保护装置,并设有多项运行和故障显示功能,运行安全稳定,噪音低,除湿量大,故障率低,使用寿命长。正岛ZD-558LB移动式家用除湿机技术参数:型 号ZD-558LB控制方式湿度智能设定除 湿 量58升/天自动检测有无故障 一目了然适用面积40 ~ 60(2.8m / 层高)排水方式水箱容量(6 / L)或软管连续排水电 源220V~50Hz智能保护三分钟延时 压缩机启动输入功率670w过滤网活性碳滤网循环风量850 m 3适用温度0~38℃体积(宽深高)350X455X603mm设备重量25kg查看更多移动式家用除湿机的详细信息尽在:正岛电器正岛ZD-558LB移动式家用除湿机及ZD系列空气除湿机产品六大核心配置优势:优势一:【整机内结构精巧】优势二:【高效节能压缩机】优势三:【配套内螺纹铜管】优势四:【大风量高效风机】优势五:【微电脑自动控制】优势六:【配多重安全保护】空气除湿机厂家记者核心提示:正岛ZD-558LB移动式家用除湿机及ZD系列空气除湿机是一种专门针对潮湿环境进行除湿的电器产品,具有智能全自动湿度控制功能,湿度可以根据自己需求进行自动控制,可以无人管理,而且无需安装即插即用,移动方便,是目前很多家庭所采取的最好防潮措施。我们只需要将正岛ZD-558LB移动式家用除湿机及ZD系列空气除湿机放到需要防潮的房间与空间内,将湿度设定在你所需的范围之内,即可达到彻底解决潮湿的目的。一般的家庭就购买一台移动式家用除湿机就行的,如果在商场,超市等场所购买的话,价格相对较高,一般在3500元左右,而在网上直接向我们厂家购买就相对便宜了,欢迎广大的新老客户来电咨询。以上关于移动式家用除湿机的最新相关新闻资讯是正岛电器为大家提供的!您可以在这里更详细地了解移动式家用除湿机的最新相关信息:家用除湿机这种以前我们感到十分陌生的家用电器,现在也开始走人寻常百姓家了。那我们就要了解一下关于家用除湿机的一些常识性的知识。我们先来说说关于安装家用除湿机的问题。我们家庭用的家用除湿机一般要安装在空气比较流通的地方,千万注意,不能安装在死角,那样就好造成气流的短路,除湿的效果要大打折扣了。家用除湿机要放置在平坦的地上,地面要坚实,不然的话,家用除湿机就会产生振动,噪音也会很大,同时还要注意不能让太阳光直接照射,接近发热器具也是不行的。家用除湿机在使用时要注意,我们要先把窗户和门关好,不能让房间外面的潮湿的空气进入到房间里面,否则会影响到家用除湿机的效果,我们在使用家用除湿机的过程中,避免频繁的关闭打开窗户和门,做到尽量减少开关次数。家用除湿机最好不要经常搬动,如果搬动的次数多了,冷媒就很容易泄露,如果我们在使用时发现压缩机虽然还在运转,但是出风和回风的温度相同了,就要立即停止使用,找到专业人员进行维修,避免浪费能源,这就需要我们平时多关注一下,及时发现问题及时解决。我们的家用除湿机使用寿命的长短和我们平时的保养也是分不开的。家用除湿机的过滤网要做到两个星期就清洗一次,还要对家用除湿机定期检查,一般十个月左右就检查一下,及时维修,更换老化的零部件。如果长时间的不用,就要把集水箱里面的水都倒掉,彻底清除家用除湿机里面的灰尘,把家用除湿机放到太阳照不到的地方,而且通风的地方,放置的时候注意不要倒放,不要侧放,不然压缩机会损坏。平时我们多注意些,我们的家用除湿机的寿命就会长很多。
  • 工厂用移动式除湿机
    工厂用移动式除湿机 新闻资讯报道:在工业生产中,车间湿度超标、仓库潮湿等问题可以说是普遍存在的,对产品的品质和储存安全的影响都是非常大的;看不见摸不着的潮湿空气往往让人防不胜防,不知道什么时候,正在运转的机器设备就开始罢工,产品的品质也是大受影响,导致其残次品,甚至是报废品增多;那么,企业的经济效益会因此而下降。现在的工厂企业或工业区一般都会建在偏僻的效区,潮湿问题是比较难以避免;尤其是在下雨天,到处弥漫着潮湿的空气,车间,仓库等环境的地面,墙壁都是湿漉漉的,在这样高湿的环境下,产品的品质和储存安全都无法得到保证。不过现在有了正岛ZD-8168C工厂用移动式除湿机及ZD系列工业除湿机,可以将环境湿度控制在最适宜的范围之内,就不用再担心车间湿度超标、仓库潮湿等问题了,保证生产的顺利进行的同时,产品的品质和储存安全都有了可靠的保障,是工厂企业生产储存环境防潮除湿的最佳选择。正岛ZD-8168C工厂用移动式除湿机技术参数,产品图片:型 号ZD-8168C点击此处查看工厂用移动式除湿机全部新闻图片除 湿 量168升/天 适用面积150~200m 2(H:2.8m )电 源380V~50Hz输入功率2800w循环风量2100 m3适用温度5-38℃设备重量126kg体积(宽深高)605X410X1650mm控制方式全自动湿度控制正岛ZD-8168C工厂用移动式除湿机适用面积150-200m 2左右,除湿量为168升/天,广泛的适用于精密电子、光学仪器、生物工程、医药、包装、食品、氯化锂电池、印刷业、地下工程及国防等所有场所。备注:该系列产品可与环境试验设备以及环境监测仪器等温湿度相关仪器设备配套使用,也可作为其中的一个核心配件!查看更多工厂用移动式除湿机的详细信息尽在:正岛电器欢迎您来电咨询工厂用移动式除湿机的详细信息!工业用除湿机的种类有很多,不同品牌的工业用除湿机价格及应用范围也会有细微的差别,而我们将会为您提供优质的产品和全方位的售后服务。正岛ZD-8168C工厂用移动式除湿机及ZD系列工业除湿机产品六大核心配置优势:优势一:【整机内结构精巧】优势二:【高效节能压缩机】优势三:【配套内螺纹铜管】优势四:【大风量高效风机】优势五:【微电脑自动控制】优势六:【配多重安全保护】工业用除湿机厂家记者核心提示:在工业生产中,影响产品品质的因素有很多,比如机器设备、加工工艺、人员技术以及环境条件等;其中环境的空气湿度往往会被很多工厂企业所忽视,但因此所遭受到的危害和损失却不容小视的;只要稍有控制不当,潮湿的空气就会对其产品的品质、还有机器设备等造成诸多不利影响和危害。在每年的梅雨季节,面对潮湿多雨的天气,很多工厂企业的都不敢开窗通风,因为一开窗通风,潮湿的空气会源源不断的进入到车间或仓库中,所过之处不管是车间的正常生产,机械设备的高速运转以及产品的品质都是深受其害。那么,在此时你就需要使用正岛ZD-8168C工厂用移动式除湿机及ZD系列工业除湿机来进行合理的除湿,达到预防和清除潮湿的目的。以上关于工厂用移动式除湿机的最新相关新闻资讯是正岛电器为大家提供的!
  • 涂装车间移动式除湿机
    涂装车间移动式除湿机 新闻资讯报道:在汽车车身涂装车间的生产加工过程中,其质量的优劣与喷涂设备,涂料,工艺以及人员的技术等许多因素都是有着直接关系的;除此之外,还有一个最主要的因素--环境湿度,在很大程度上也会影响涂装质量;车间环境的湿度的高低直接影响溶剂或涂料的挥发速度,进而影响涂层流平和流挂性能!如果在高湿环境下进行涂装作业,涂装质量会变得比较差,容易引起泛白、裂纹、附着力下降、涂层剥落等问题,这就需要进行返工,无疑会大大增加涂装生产成本;针对这一情况,正岛电器建议可在涂装车间配置相应的正岛ZD-8240C涂装车间移动式除湿机及ZD系列车间除湿机,快速有效的降低涂装车间的湿度,并将其控制在(55±5%)RH之间是最为适宜的!正岛ZD-8240C涂装车间移动式除湿机技术参数,产品图片:型 号ZD-8240C点击此处查看涂装车间移动式除湿机全部新闻图片除 湿 量240升/天 适用面积200~300m 2(H:2.8m )电 源380V~50Hz输入功率4900w循环风量3000 m3适用温度5-38℃设备重量160kg体积(宽深高)770X470X1650mm控制方式全自动湿度控制正岛ZD-8240C涂装车间移动式除湿机适用面积200-300m 2左右,除湿量为240升/天,广泛应用于食品厂、超市、档案室、资料室、图书馆、电脑房、精密仪器室、医院及贵重物品仓库等场所,使电子产品、光学仪器、精密设备、档案资料等避免了潮湿、霉变的噩运。备注:该系列产品可与环境试验设备以及环境监测仪器等温湿度相关仪器设备配套使用,也可作为其中的一个核心配件!查看更多涂装车间移动式除湿机的详细信息尽在:正岛电器欢迎您来电咨询涂装车间移动式除湿机的详细信息!工业用除湿机的种类有很多,不同品牌的工业用除湿机价格及应用范围也会有细微的差别,而我们将会为您提供优质的产品和全方位的售后服务。正岛ZD-8240C涂装车间移动式除湿机及ZD系列车间除湿机产品六大核心配置优势:优势一:【整机内结构精巧】优势二:【高效节能压缩机】优势三:【配套内螺纹铜管】优势四:【大风量高效风机】优势五:【微电脑自动控制】优势六:【配多重安全保护】工业用除湿机厂家记者核心提示:一般来说,当车间环境相对湿度大于85%RH时,如没有采取相应的措施来降低其湿度,是不建议进行涂装作业的;可在潮湿多雨的梅雨天或高温高湿的夏季,湿度往往会大于85%RH,为了能够将涂装车间环境湿度控制在最适宜的范围之内,根据其实际需求配置相应的正岛ZD-8240C涂装车间移动式除湿机及ZD系列车间除湿机是必不可少的!以上关于涂装车间移动式除湿机的最新相关新闻资讯是正岛电器为大家提供的!您可以在这里更详细地了解涂装车间移动式除湿机的最新相关信息:涂装工作质量的好坏与许多因素有关,在很大程度上取决于施工期间的空气湿度。在施工时相对湿度过高可能引起涂漆表面结露,在有露水的表面涂装,会引起材质的锈蚀及降低涂层的结合力。如果涂层干燥期间湿度较高也可能损害涂层的性能,例如干燥时间延长、面漆失光发白、双组分涂料的化学反应推迟。  空气中的湿度通常用"相对湿度"(R.H)来表示,这是在某一温度时空气中水蒸气的含量,相对湿度的比率通常用百分数表示,当相对湿度为100%时,说明空气中水分饱和,通常空气中的相对湿度都在50%~90%之间。按照常规,相对湿度超过85%时,不进行涂装工作。在相对湿度大于85%时,进行涂装的涂层,一般施工质量较差,容易引起泛白、裂纹、附着力下降、涂层剥落等弊病。当然个别特殊涂料可以例外,例如大漆在相对湿度75%~80%的条件下,漆酶的催化活性较强,仅12~24小时即可干燥,漆膜光亮饱满。某些潮气固化型涂料,如聚硅酸盐无要富锌底漆和湿固化聚氨酯涂料,利用大气中的水分而进行固化,其所需的最低相对湿度按厂家的规定来确定,在干燥气候下,还要喷细水雾来增加湿度,使反应正常进行。  在湿度未饱和时,空气变冷,相对湿度上升,温度下降到空气湿度饱和时(即RH=100%),水分开始结露的温度叫"露点"。此时空气中冷凝水分开始沉积于一切物体,包括刚涂过漆的表在及将要涂漆的表面。结露最有可能发生在傍晚和清晨,当空气温度大幅度下降时,结露可以持续较长的时间,根据季节和天气条件有时可以延续到第二天上午。相对湿度较高的热空气所包围的较冷钢材,也容易引起结露。  一般来说在下雨、下雪、大雾无涂装工作都应停止。在冬季,涂装工作经常不能顺利进行,尤其在冰雪融化期间结露现象更严重。为了避免结露,涂装只能在被涂物表面温度高于"露点"3℃时,才能进行涂装。钢材等表面温度可以用接触型表面温度器测得,"露点"可以根据空气的相对湿度和温度来确定。空气温度的测量与一般测量方法相同,湿度可以用湿度仪测量,"露点"可以查表,也可用露点计算尺查到。   除了选择气候条件和增加除湿设施以外,随着科学技术的进步,某些科研院所和生产厂家为了适应市场的需要,已经开发了可带湿带水涂装的涂产。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制