质子交换膜燃料电池测试系统

仪器信息网质子交换膜燃料电池测试系统专题为您提供2024年最新质子交换膜燃料电池测试系统价格报价、厂家品牌的相关信息, 包括质子交换膜燃料电池测试系统参数、型号等,不管是国产,还是进口品牌的质子交换膜燃料电池测试系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质子交换膜燃料电池测试系统相关的耗材配件、试剂标物,还有质子交换膜燃料电池测试系统相关的最新资讯、资料,以及质子交换膜燃料电池测试系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

质子交换膜燃料电池测试系统相关的厂商

  • 公司简介浙江高成绿能科技有限公司由浙江中山化工集团股份有限公司于2006年创立,创立资金约2105万元,是浙江省一家集新能源产品的研发、生产、销售和服务于一体,专业从事便携式质子交换膜燃料电池研发的军民融合型企业。公司位于浙江省湖州市长兴县国家经济技术开发区,拥有一支高学历、高素质、专业化、年轻化的企业团队,具有较强的产品开发能力。公司于2009年5月成立了浙江高成绿能科技有限公司燃料电池研发中心,并制定了研究开发的组织管理制度,建立研发投入核算体系。研发中心拥有充实的技术力量,现有专职的科技人员60余人,拥有齐全的检验测试设备。公司分别与清华大学、上海大学、同济大学建立了合作科研关系,合作开发了很多产品,取得了良好的效果。公司于2011年4月按照GB/T19001-2008质量管理体系要求建立了质量管理体系,于2011年9月获得体系认证证书。2015年3月,获得国家国防科技工业局颁发的武器装备科研生产许可证。2016年12月,通过浙江省军工保密资格认证委组织的保密审查,获得国家二级保密资格单位证书。2018年5月,通过国军标质量管理体系和武器装备承制资格“两证合一”审查。
    留言咨询
  • 400-860-5168转6092
    武汉电弛新能源有限公司是一家在锂电池、氢燃料电池领域专注于前沿检测技术与仪器开发,制造,以及销售服务的科技创新型企业。我们不断发掘客户的前沿需求,坚持自主创新,追求产品的智能化、数字化和人性化,并立志成为全球一流的测试技术提供商。领先的产品开发技术、多场景需求导向、配套的测试技术服务、高质量人才基础上的广泛合作是我公司的四大优势。公司设立了2个事业部,锂电池事业部与氢能事业部。锂电池事业部的产品覆盖了锂电池生产的全生命周期,为锂电池的研发、测试、验证等环节提供了系统、专业的解决方案和服务,能够满足电池新材料的开发、工艺优化以及电池安全评估等多场景的需求。我们致力于让我们的测试仪器能够实现从实验室研究到生产线检测的快速转换,提高测试效率,降低测试成本。氢能事业部的产品,则包括了催化剂研究,膜电极(MEA)研究,电解水制氢测试等。DSR 数字型旋转圆盘电极装置,可以评价氧还原(ORR)、二氧化碳还原(CO2RR)等催化剂。980系列PEM燃料电池膜电极测试装置,780系列电解水制氢测试装置都可以方便相关科研领域的研究。公司秉承“创新,匠心”的理念,依托国内211/985高校的技术支持和人才基础,与国内主流厂商建立深度应用孵化的合作关系,服务于中国新能源研究领域和制造业,提供卓越的测试设备、直接有效的解决方案以及高效周到的技术服务。专于电池,精于测试。武汉电弛新能源有限公司竭诚为您!
    留言咨询
  • 400-860-5168转2194
    东扬精测系统(上海)有限公司,为母公司TOYO Corporation(中译:东阳特克尼卡)100%全资的中国子公司,成立于2010年9月,注册资金400万美元。随着业务的迅速扩大,2014 年11 月增设了北京分公司、2022年10月增设了广州事务所。母公司TOYO Corporation成立于1953年,长期以来,致力于为产业界提供世界尖端的测量仪器,同时以公司长年积累的经验为基础,结合用户需求,积极开展测量领域的技术研发,为客户提供各种测量技术解决方案,支持产业界和科学技术的进步与发展。凭借多年积累的专业知识经验和技术,本公司向中国的广大用户提供自主研发或代理的电磁兼容(EMC)、无线通信性能测试系统(OTA)、新能源(动力电池、燃料电池、固态电池等)、汽车电子(视线跟踪系统、激光雷达路面测量系统等)、显示材料、信息通信等各行业的测试解决方案。我司为法国Bio-Logic(比奥罗杰)、瑞典Smarteye、日本Lasertec、法国OROS、加拿大Novonix、日本Shintec等进口仪器仪表的中国官方代理商,详见我司官网:www.toyochina.com.cn。
    留言咨询

质子交换膜燃料电池测试系统相关的仪器

  • 质子交换膜燃料电池测试系统 美国Fideris 燃料电池测试系统是业界从事燃料电池测试系统研究的单位,从1992年开始至今已有20余年。 系统的特点是真正意义上的模块化设置。即可根据客户的具体需求,客制化不同的系统。系统可测试的燃料电池种类包括: 直接甲醇燃料电池测试系统、固态氧化物燃料电池测试系统、质子交换膜燃料电池测试系统、熔融磷酸燃料电池测试系统… … 测试燃料电池功率可从1W~100KW。 产品优势+燃料电池研发、质量控制、持久性测试的理想选择 +对四种气体的流量控制 +对尾气的背压控制可选 +对燃料气体故障安全保护吹扫系统 +负载与交流阻抗测量相兼容 +低阻性负载使测试单个电池的时候不会造成电源供电的提升 +燃料电池加热器控制 +辅助设备输入输出 +完整的转键系统,包含所有必需的接口,连线,硬件以及软件 技术参数气体控制 反应气体控制:流量控制器多数目反应气体反应气体流速:按照说明,共四个气体通道由燃料和氧化剂通道分用每个反应气体通道每分钟10升标准 输入反应气体压强范围:100-170 psi净化吹气系统压强范围:100-130 psi吹气系统阀:常开的,电脑控制的阀门尾气分相器:可选尾气回压控制:可选择,手动或者电脑控制都可选电子负载 类型:MOSFET 可变电阻负载箱电流测量:面板分流电流等级:5 Amp 或者 50 Amp电压等级:5, 10, 或者 20 Volts (其他电压可选)功率消耗:250 Watts名义短路电阻: 1.25 毫欧姆腐蚀防护:所有关键部件镀金保护供电要求电压:85-250 VAC频率:47-440 Hz功率消耗:350 Watts 外加燃料电池加热器交换插头 单元加热器交换插头电压/频率:跟主电源单位相同电流:3.5 Amps控制器输入:K型热电偶 安装要求操作空间:背部: 6", 右侧: 6", 左侧: 6", 顶部: 0" 实体特征尺寸:29"深 21.5"高 12"宽系统重量:65-80 磅(取决于配置)操作环境40-100华式摄氏度, 85%相对湿度构架放置等级室内前面板控制和显示/EM燃料电池电压3-1/2 位背光LCD显示屏燃料电池电流3-1/2 位背光LCD显示屏回压目标压强(可选):0-100 psi 模拟式仪表实际回压压强(可选):3-1/2 位背光LCD显示屏紧急停止状态闪烁红色LED气体压强状态显示绿色 LEDs吹气系统压强状态绿色 LED前面板接口 (所有所需接口线已提供)燃料电池供给燃料接口:1/4" Swagelok 快速接口燃料电池燃料回归接口:1/4" Swagelok 快速接口燃料电池氧化剂供给接口:1/4" Swagelok 快速接口燃料电池氧化剂回归接口:1/4" Swagelok 快速接口负荷接口:香蕉接口, scre, 或者螺栓紧固燃料电池电压:LEMO (3' 配搭线已提供)燃料电池温度输入微型K (热电偶已提供)辅助输入输出:LEMO (3' 配搭线已提供)辅助温度输入(配搭接口已提供):2个微型K 热电偶交换插座输出:IEC-320 输出 (配搭线已提供)背压强检测端口(可选):1/8" Swagelok 背面板接口反应气体输入:1/4" Swagelok尾气排放:3/8" Swagelok水排放(可选):1/8" Swagelok控制空气输入(如果配置必需):1/4" FNPTRS-485 通信输入输出:DB-9硬线连接的紧急停止输入:4针接口(跳线的配搭,配搭管和插座已提供) 硬线连接的紧急停止输出:4针接口(配搭管和针已提供)安全状态遥控输入输出:7针接口(跳线搭配已提供)电源输入:IEC-320 (配搭线已提供)软件Fideris FCPower TM 软件
    留言咨询
  • 把您的时间投入到科研中而不是仪器开发中 氢测试系统套件 技术参数气体控制 反应气体控制:流量控制器最多数目反应气体最大反应气体流速:按照说明,共四个气体通道由燃料和氧化剂通道分用每个反应气体通道每分钟10升标准 输入反应气体压强范围:100-170 psi净化吹气系统压强范围:100-130 psi吹气系统阀:常开的,电脑控制的阀门尾气分相器:可选尾气回压控制:可选择,手动或者电脑控制都可选电子负载 类型:MOSFET 可变电阻负载箱电流测量:面板分流最大电流等级:5 Amp 或者 50 Amp最大电压等级:5, 10, 或者 20 Volts (其他电压可选)最大功率消耗:250 Watts名义短路电阻: 1.25 毫欧姆腐蚀防护:所有关键部件镀金保护供电要求电压:85-250 VAC频率:47-440 Hz功率消耗:350 Watts 外加燃料电池加热器交换插头 单元加热器交换插头电压/频率:跟主电源单位相同最大电流:3.5 Amps控制器输入:K型热电偶安装要求操作空间:背部: 6", 右侧: 6", 左侧: 6", 顶部: 0"实体特征尺寸:29"深 21.5"高 12"宽系统重量:65-80 磅(取决于配置)操作环境40-100华式摄氏度, 85%相对湿度构架放置等级室内前面板控制和显示/EM燃料电池电压3-1/2 位背光LCD显示屏燃料电池电流3-1/2 位背光LCD显示屏回压目标压强(可选):0-100 psi 模拟式仪表实际回压压强(可选):3-1/2 位背光LCD显示屏紧急停止状态闪烁红色LED气体压强状态显示绿色 LEDs吹气系统压强状态绿色 LED前面板接口 (所有所需接口线已提供)燃料电池供给燃料接口:1/4" Swagelok 快速接口燃料电池燃料回归接口:1/4" Swagelok 快速接口燃料电池氧化剂供给接口:1/4" Swagelok 快速接口燃料电池氧化剂回归接口:1/4" Swagelok 快速接口负荷接口:香蕉接口, scre, 或者螺栓紧固燃料电池电压:LEMO (3' 配搭线已提供)燃料电池温度输入微型K (热电偶已提供)辅助输入输出:LEMO (3' 配搭线已提供)辅助温度输入(配搭接口已提供):2个微型K 热电偶交换插座输出:IEC-320 输出 (配搭线已提供)背压强检测端口(可选):1/8" Swagelok背面板接口反应气体输入:1/4" Swagelok尾气排放:3/8" Swagelok水排放(可选):1/8" Swagelok控制空气输入(如果配置必需):1/4" FNPTRS-485 通信输入输出:DB-9硬线连接的紧急停止输入:4针接口(跳线的配搭,配搭管和插座已提供) 硬线连接的紧急停止输出:4针接口(配搭管和针已提供)安全状态遥控输入输出:7针接口(跳线搭配已提供)电源输入:IEC-320 (配搭线已提供)软件Fideris FCPower TM 软件
    留言咨询
  • 质子交换膜燃料电池检测仪器应用范围适用于各种塑料薄膜、复合膜、分离膜、交换膜、橡胶、聚合物材料等产品在各种温度条件下气体透过率、扩散系数、溶解度系数、渗透系数的测定。主要特点1. 真空压差法测试原理2. 三腔独立测试3. 三腔循环介质控温,各自独立温度传感器实时监控4. 智能模式,试验过程全自动,一键式操作5. 真空泵自动启停,无需人工开关6. 气体透过率、扩散系数、溶解度系数、渗透系数测试7. 多种试验模式可选择,可满足各种标准、非标试验8. 数据审计追踪、溯源;系统日志记录9. 5 级用户权限管理10. 温度曲线、湿度曲线、压差曲线、曲线独立显示、曲线叠加11. 可支持 DSM 实验室数据管理系统,能实现生产监控、数据统一管理 (另购)技术指标测试范围:0.01~180,000 cm3/m224h0.1MPa(标准配置)分 辨 率:0.001 cm3/m224h0.1MPa试样件数:3 件,各自独立真空分辨率:0.1 Pa控温范围:5℃~95℃(循环介质控温)控温精度:±0.1℃控湿范围:0%RH,2%RH~98.5%RH(湿度发生装置另购)控湿精度:±1%RH试样厚度:≤3mm试样尺寸:≥150 mm × 94mm 或圆形试样试样面积:48cm 2试验气体:氧气、氮气、二氧化碳、空气、氦气等气体(气源用户自备)试验压力:-0.1 MPa~+0.1 MPa(标准)气源压力:0.3 MPa~1.0 MPa气源尺寸:Ф8 mm外形尺寸:730 mm(L)×510mm(B)×350 mm(H)电源:AC 220V 50Hz净重:63 kg执行标准GB/T 1038-2000、ISO 15105-1、ISO 2556、ASTM D1434、JIS 7126-1、YBB 00082003产品配置标准配置:主机、计算机、专业软件、数据扩展卡、通信电缆、恒温控制器、氧气减压阀、取样器、取样刀、真空密封脂、真空泵、快速定量滤纸选 购 件:湿度发生装置、标准膜、真空脂、快速定量滤纸、取样刀、DSM 实验室数据管理系统。
    留言咨询

质子交换膜燃料电池测试系统相关的资讯

  • 如何做燃料电池表征?——岛津质子交换膜燃料电池研究解决方案
    燃料电池是一种洁净、环境友好的发电方式,被认为是21世纪首选的清洁、高效的发电技术。质子交换膜燃料电池随着研究的深入,其性能、寿命及成本等方面得到了长足的发展,在交通、便携式电源以及分布式发电等领域得到了广泛的应用。质子交换膜燃料电池的研究主要集中在催化剂、质子交换膜、电极、极板等的研究,各部分的研究表征技术对于电池的研究是必不可少的。岛津可以提供质子交换膜燃料电池研究中涉及的各种表征分析仪器及解决方案。01电催化剂表征02质子交换膜表征03膜电极表征(整体、气体扩散层)04双极板研究表征对于质子交换膜燃料电池各部分的研究表征,岛津为您提供完整解决方案。本文内容非商业广告,仅供专业人士参考。
  • 赛默飞电镜Apreo2在质子交换膜燃料电池中的应用
    燃料电池作为一种利用氢气或醇类的发电设备,通过电化学反应将氢气或醇类的化学能直接转化为电能,不受卡诺循环(Carnot cycle)的限制,具有高效和清洁的特点,在新能源领域受到广泛的关注,并在航空航天、运载交通和便携移动设备中具有良好的应用前景。 燃料电池按照电解质和工作温度的不同,可以分为:质子交换膜燃料电池(Proton exchange membrane fuel cells,PEMFC)、固体氧化物燃料电池(Solid oxide fuel cell,SOFC)、熔融碳酸盐燃料电池(Molten carbonate fuel cell,MCFC)、磷酸盐燃料电池(Phosphoric fuel cell,PAFC)和碱性燃料电池(Alkaline fuel cell,AFC)等。其中,PEMFC被看作是新能源车辆领域中具有发展前景的动力源。图1 燃料电池的分类及技术状态 PEMFC的发展可以追溯到20世纪60年代,美国国家航空航天局(NASA)委托美国通用电器公司(GE)研制载人航天器的电池系统。但受当时技术的限制,PEMFC采用的聚苯乙烯磺酸膜在服役时易于降解,导致电池寿命很短。GE随后将电池的电解质膜更换为杜邦公司(Du Pont)的全氟磺酸膜(Nafion)部分解决了上述问题,但是阿波罗(Appollo)登月飞船却搭载了另一类燃料电池——AFC。受此挫折之后,PEMFC技术的研发一直处于停滞状态。 直到 1983年,加拿大巴拉德动力公司(Ballard Power System)在加拿大国防部资助下重启 PEMFC的研发。随着材料科学和催化技术的发展,PEMFC技术取得了重大突破。铂/碳催化剂取代纯铂黑,并且实现了电极的立体化,即阴极、阳极和膜三合一组成膜电极组件(Membrane electrode assembly,MEA),降低了电极电阻,增加了铂的利用率。20世纪90年代以后,电化学催化还原法和溅射法等薄膜电极的制备技术进一步发展,使膜电极铂载量大幅降低。性能的提升和成本的下降也促使 PEMFC逐渐从军用转为民用图2 燃料电池汽车历史 质子交换膜燃料电池(PEMFC)由阳极、质子交换膜、阴极组成,利用水电解的逆反应,连续地将氢气和氧气通过化学反应直接转化为电力,并且可以通过多个串联来满足电压需求。 PEMFC发电的基本原理:氢气进入燃料电池的阳极流道,氢分子在阳极催化剂的作用下达到 60℃左右后开始被离解成为氢质子和电子,氢质子穿过燃料电池的质子交换膜向阴极方向运动,因电子无法穿过质子交换膜,所以通过另一种电导体流向阴极;在燃料电池的阴极流道中通入氧气(空气),氧气在阴极催化剂作用下离解成氧原子,与通过外部电导体流向阴极的电子和穿过质子交换膜的氢质子结合生成纯净水,完成电化学反应。图3 质子交换膜燃料电池(PEMFC)工作原理 膜电极(Membrane Electrode Assembly, MEA)是燃料电池发电的关键核心部件。膜电极由质子交换膜(PEM)、膜两侧的催化层(CL)和气体扩散层(GDL)组成,燃料电池的电化学反应发生在膜电极中。质子交换膜的功能是传递质子,同时隔离燃料与氧化剂。目前常见的膜材料是全氟磺酸质子交换膜,代表厂家Gore公司的Gore Select增强型质子交换膜、杜邦公司的Nafion系列。 催化剂主要控制电极上氢和氧的反应过程,是影响电池活化极化的主要因素。目前氢燃料电池的催化剂主要为三个大类:铂(Pt)催化剂、低铂催化剂和非铂催化剂。Pt作为催化剂可以吸附氢气分子促成离解,是目前需要商用的;但Pt稀缺性强,我国储量也不丰富,减少铂基催化剂用量是降低燃料电池系统商用成本的重要途径。 气体扩散层的主要作用是支撑催化层,传递反应气体与产物,并传导电流。基材通常为多孔导电的材质,如炭纸、炭布,且用PTFE等进行憎水处理构成气体通道。目前市场上商业化的气体扩散层基材供应商主要包括日本Toray、德国SGL与Freudenberg、加拿大Ballard等。 三位一体检测系统是 Apreo 2 扫描电镜独特的镜筒内检测系统。它由三个探测器组成:两个极靴内探测器(T1、T2)和一个 镜筒内探测器(T3)。这一独特的系统可提供燃料电池膜电极MEA成分、形貌和表面特征等不同层次的详细信息。 图4 赛默飞电镜及三位一体检测系统示意图图5 膜电极MEA示意图对其对应的显微结构 MEA的结构设计和制备工艺技术是燃料电池研究的关键技术,它决定了燃料电池的工作性能。 另外,质子交换膜PEM是燃料电池的核心部件。它的性能高度依赖于燃料电池电堆的堆叠和系统设计,尤其是PEM所经受的工作条件。这项看似微小的技术却是关键所在。燃料电池在实际应用环境中的耐久性是另一个关键性能因素。根据美国能源部的规定,在实际环境中行驶的条件下,燃料电池使用寿命应达到约5,000小时。为了达到这些目标,PEM设计必须考虑两种类型的耐久性,机械耐久性和化学耐久性。 机械耐久性:工作过程中的相对湿度循环会导致PEM的机械性能衰减。相对湿度的升高和降低会引起PEM膨胀和收缩,从而导致MEA中出现裂纹和孔洞。久而久之,这会造成气体渗透增加以及效率损失,并导致燃料电池电堆发生灾难性故障。通常,未经增强的PEM会通过增加厚度来提升耐久性,导致电导率降低,因此功率密度也更低。业内已广泛认可,化学稳定性优异的ePTFE增强型质子交换膜(全氟磺酸树脂/聚四氟乙烯/全氟磺酸树脂,三明治结构)可显著减少这种面内膨胀,提高RH循环耐久性,并延长电池电堆的使用寿命。图6 膜电极的横截面显微结构图,ePTFE增强型质子交换膜(全氟磺酸树脂/聚四氟乙烯/全氟磺酸树脂) 化学耐久性: 燃料电池需要在恶劣的化学环境中工作。燃料电池工作过程中产生的有害自由基会与离子聚合物 (全氟磺酸树脂是一种离子聚合物)发生反应,造成离子聚合物性能下降,这种性能衰减会造成燃料电池性能的持续下降,增加气体渗透,并导致PEM和燃料电池失效。PEM的化学耐久性不仅受PEM的自身属性影响,还受PEM的工作环境影响。减少PEM厚度有助于改善高温下的性能。因此,对不同结构层厚度的准确测量,就非常重要。 催化层中的催化组分为催化剂,目前Pt/C载体型催化剂是PEMFC常用的催化剂,由纳米级的Pt颗粒(3-5nm)和支撑这些Pt 颗粒的大比表面积活性炭(20-30nm)构成。质子交换膜燃料电池商业化进程中的主要阻碍之一是价格高昂的贵金属催化剂,从而大量的研究工作集中于开发新型催化剂以降低铂载量和增强催化剂的耐久性。催化剂的合成方法决定催化剂的结构、表面形貌和粒径分布等,这也将直接影响催化剂的性能。图7 膜电极组催化层的纳米pt催化剂,3-5nm:(左图)T1探测器检测,(右图)T3探测器检测图8 膜电极组催化层的纳米pt催化剂,3-5nm:VeriosTLD 探测器检测 50万倍和150万倍(底片显示) PEMFC的催化层是由各种不同尺度的颗粒和孔组成的,其内部的物理化学过程十分复杂,包括电化学反应、电子的迁移、氢气和氧气的扩散、质子的迁移和扩散,还有水的迁移、扩散、渗透、蒸发和液化,这一切的实现都离不开催化层的微孔结构。 催化层是由黏结剂( 如Nafion 或PTFE) 黏结起来的 Pt /C 颗粒的团聚体组成的,各颗粒之间有许多的微孔。Watanabe 等将催化层内的孔分为两大类: 一类是颗粒团聚体内部各颗粒之间较小的空隙,被称为主孔(孔径小于100nm的孔属于主孔) 另一类则是各颗粒团聚体之间的空隙,被称为次孔(大于100nm 的孔属于次孔)1。催化层内的电催化反应主要发生在主孔内,而作为黏结剂的PTFE更容易进入次孔,次孔是气体和水传输的主要通道。 备注1:Shin 等实验发现,催化层中只有孔径在70nm 以下的孔才不会被聚合物阻塞住,表明其主、次孔的分界为 70nm;Uchida 等认为主、次孔孔径分界为 40nm,由于全氟磺酸树脂和PTFE-C只会存在于次孔中。 催化层的结构,主要指的就是其微孔结构,由于主孔和次孔的不同作用,不同的微孔总容量和主、次孔容量比将导致迥异的电池性能。根据主、次孔理论,主孔较多时,可增加活化反应位,有利于减少催化层内的活化损失 次孔较多时,有利于质量传输,可减少质量传输损失。因此,维持足够数量的孔隙率和较好的主、次孔比例成为了研究催化层结构优化所要关注的重点。赛默飞电镜的孔径分布软件可满足此需求。图9 催化层结构孔隙率检测 目前,大多数 MEA 的催化层都是由一定比例的电催化剂( 如 Pt /C) 和 Nafion 组成。在常用 MEA中Nafion 在催化层中的作用有以下 3点: ( 1) 将电化学反应活性区扩大延伸至催化层内部,并有效传导质子 ( 2)黏结作用,保持催化层的机械稳定性 ( 3) Nafion上的亲水基团有保湿作用,防止膜脱水。 尽管在催化层中加入一定量的 Nafion 能有效提高催化剂的利用率,但是催化层中 Nafion含量若过多,不仅会大量覆盖 Pt /C 颗粒,阻碍电子传导,还可能阻塞催化层内部的微型孔,导致内部水和反应气体的传输通道受阻,这样会大大减弱电池的性能,尤其是在高电流密度时的性能。因此关于催化层中 Nafion 与催化剂的比例问题,以及如何识别三相1,一直受到研究者们的广泛关注。 备注1:在PEMFC中,位于三相区(3-phase region)的Pt颗粒会参与反应,通常三相区表示载体C、催化剂Pt、离聚物(Ionomer,如全氟磺酸)图10 催化层离聚物与三相反应区。 Apreo 2可以快速识别离聚物/C、Pt/C及三相区 PEMFC的普及和商业化目前还受电池性能和价格的影响,MEA催化层结构的不断改善也是PEMFC 实现商业化的有效途径之一。参考资料1.Warshay M, Prokopius PR. The fuel cell in space: yesterday, today and tomorrow [J]. Journal of Power Sources, 1990, 29: 193-200.2.Steele BCH, Heinzel A. Materials for fuel-cell technologies [J]. Nature, 2001, 414(6861):3.Sharaf OZ, Orhan MF. An overview of fuel cell technology: fundamentals and applications [J]. Renewable and Sustainable Energy Reviews, 2014, 32: 810-853.4.苏凯华. 新型质子交换膜燃料电池催化层结构及其性能研究 [D]. 上海: 上海交通大学, 2015.5. 王诚, 王树博, 张剑波, 等. 车用质子交换膜燃料电池材料部件 [J]. 化学进展, 20156. 汪嘉澍, 潘国顺, 郭丹. 质子交换膜燃料电池膜电极组催化层结构 [J]. 化学进展, 2012, 24(10): 1906-19137. Kim K H, Lee K Y, Kim H J, et al. The effects of Nafion ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method[J]. International Journal of Hydrogen Energy, 2010, 35(5): 2119-2126.8. Uchida M, Aoyama Y, Eda N, et al. Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE‐loaded carbon on the catalyst layer of polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 1995, 142(12): 4143.9. Curtin D E, Lousenberg R D, Henry T J, et al. Advanced materials for improved PEMFC performance and life[J]. Journal of power Sources, 2004, 131(1-2): 41-48.10. Sharma S, Pollet B G. Support materials for PEMFC and DMFC electrocatalysts—A review[J]. Journal of Power Sources, 2012, 208: 96-119.11. Proton exchange membrane fuel cells: materials properties and performance[M]. CRC press, 2009.
  • 【热点应用】质子交换膜燃料电池生产中催化剂浆料的颗粒特性表征
    燃料电池(Fuel Cell)市场前景 为缓解世界性能源危机的加剧,减少传统能源对环境造成的污染;有序推进碳中和的各项任务目标,不断深化能源结构优化,提高能源开发整体效益成为摆在我国科研工作人员及新能源产业开发从业者面前的重要课题。 燃料电池(Fuel Cell)是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。 燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术[1]。 作为一种新的高能量密度、高能量转化率、环保型的电源装置受到全世界的广泛关注,并具有广阔的应用前景。 一、质子交换膜燃料电池目前,燃料电池主要被分为六类[2]。碱性燃料电池(AFC,Alkaline Fuel Cell)、磷酸盐燃料电池(PAFC,Phosphorous Acid Fuel)、熔融碳酸盐燃料电池(MCFC,Molten Carbonate Fuel Cell)、固体氧化物燃料电池(SOFC,Solid Oxide Fuel Cell)、质子交换膜燃料电池(PEMFC,Proton Exchange Membrane Fuel Cell)和直接甲醇燃料电池(DMFC,Direct Methanol Fuel Cell)。采用聚合物质子交换膜作电解质的PEMFC,与其它几种类型燃料电池相比,具有工作温度低、启动速度快、模块式安装和操作方便等优点,被认为是电动车、潜艇、各种可移动电源、供电电网和固定电源等的最佳替代电源[3]。如图1所示,膜电极(membrance-electrode assembly, MEA)是由质子交换膜、催化层与扩散层 3 个部分组成,是质子交换膜燃料电池 (PEMFC)电化学反应的主要场所,也是决定质子交换膜燃料电池 (PEMFC) 的成本、性能和耐久性的核心关键部件。 二、质子交换膜燃料电池的催化剂浆料分析 催化剂浆料涂布是膜电极生产的关键步骤之一,要求催化层涂敷均匀,同时尽量减少铂含量以降低成本,因此必须对浆料进行严格的质量控制。 催化剂浆料的颗粒粒度和分散性能会影响浆料粘度、聚合物电解质的分布和形态、催化剂的利用率、催化剂和聚合物电解质的相互作用以及催化层的均匀性和连续性等重要参数,最终影响膜电极的电化学性能[4]。 如图 2 所示,常见的活性催化剂为铂基纳米颗粒,最佳粒度范围为 2~5nm,但这些纳米颗粒不是独立存在的,而是分散在碳载体颗粒上。单个碳载体颗粒的粒度范围为 20~40nm,在浆料中碳载体通常以团聚体的形式存在,粒度在亚微米至微米范围。聚合物电解质分散成不同形态(棒状或线团)、粒度在 70 nm~2.5 µm 之间的团聚体,与碳载催化剂混合形成催化剂浆料。催化剂和聚合物电解质分散在特定的溶剂中,需要控制团聚物的粒度,优化催化剂和电解质导体团聚物的相互作用。 对于聚合物电解质团聚体,粒度在200~400 nm范围有利于提高氢气/空气的反应性能。碳载体催化剂会出现未充分分散或过度分散的情况[5]。 在未充分分散时,碳载体是高度团聚的;离子交联聚合物只覆盖在团聚物外部,内部的铂催化剂无法与电解质充分接触,因此利用率不高。 过度分散时,团聚物破裂,铂催化剂颗粒与碳载体分离,影响其在氧化还原反应中的活性。 理想的分散状态是形成由碳载体催化剂组成的小团聚体,电解质聚合物在这些团聚体上均匀分布,能够提高催化剂的利用率[6]。 粒度是催化剂浆料的关键性指标,但浆料由不同尺度的颗粒混合物组成,要准确测量浆料的粒度有一定的难度,目前还没有一种技术可以全面表征所有颗粒的粒度。 X 射线衍射 (XRD)、激光衍射 (LD) 和动态光散射 (DLS) 是三种常用的材料表征技术,用于表征不同尺度的颗粒,结合三种技术能够全面表征催化剂浆料中的颗粒特性。 三、马尔文帕纳科解决方案 —— X 射线衍射技术X 射线衍射 (XRD) 通常用于确定小于 100 nm 的纳米晶粒尺寸。快速测量单个衍射峰(1~3 分钟),足以利用峰宽的 Scherrer 分析来计算晶粒尺寸。另外,如果测量多个衍射峰(20 分钟以上),则可采用全谱拟合技术,更精确地计算晶粒尺寸和点阵参数。图 3 显示了使用 Aeris 台式 X 射线衍射仪收集的 X 射线衍射数据,样品是分散在三种不同碳载体颗粒上的催化 Pt 粉末。 如表 1 所示,分散在 Ketjenblack EC-300J 碳黑上的 Pt 的平均晶粒尺寸比分散在 Vulcan XC72 碳或 Vulcan XC72R 碳上的 Pt 略小。晶粒尺寸的变化会改变催化活性和耐用性。全谱拟合分析还表明,EC-300J 上分散的 Pt 比 Vulcan XC72 或 Vulcan XC72R 上的 Pt 的点阵参数更大。该点阵参数也大于已公布的 Pt 的参考值 3.9231 Å。[6]较大的点阵参7数可能表明表面引起了点阵应变或合金杂质可能改变催化活性。 XRD 可以分析分散体、固体碎片以及粉末。例如,碳载体 Pt 催化剂纳米颗粒可以在粉末分散到浆料中后和浆料印刷并固化在膜片或气体扩散层上后进行测量。图 4 显示了 40% Pt 在 Vulcan XC72 碳上的 XRD 数据,这些碳可作为粉末、浆料和催化剂涂覆膜 (CCM) 上的固化电极层。在所有情况下,Pt 衍射峰均可通过其他成分中解析出纳米粒尺寸计算,如表 2 所总结。 如图4所示,浆料和催化剂涂覆膜(CCM)样品与粉末样品相比,铂衍射峰变窄,说明这两中样品的铂晶粒尺寸变大。铂催化剂的这种粗化现象可能表明,在溶剂中的碳载体催化剂粉分散过程中,浆料变得过热。因此,在超声处理过程中,通常使用 5℃ 的水浴对浆料进行冷却。[8]在加工过程中,晶粒尺寸的变化(如颗粒粗化),会影响催化剂活性。 四、马尔文帕纳科解决方案—— 激光衍射技术激光衍射技术 (LD)是测量颗粒粒度分布的常用分析方法,粒度范围从十几纳米到几个毫米。动态范围宽,非常适合分析催化剂浆料的粒度分布。激光衍射法操作简便,测试速度快,通常不到1分钟,也非常适合生产过程控制。此外,激光衍射技术还可以研究工艺条件变化对浆料粒度分布的影响。 图 5 是使用 Mastersizer 3000 激光粒度仪对稀释后的催化剂浆料重复5次的粒度测试结果。该浆料中颗粒的粒度呈双峰分布,峰值在1 µm左右的颗粒占最大体积分数,20nm左右的颗粒体积分数占比较小。如表 3 所示,该浆料的粒度分布结果相对标准偏差(RSD)1%,具有高度的重复性。 激光衍射法通常测量的是催化剂浆料中碳载催化剂团聚物的粒度分布。分散良好的催化剂浆料中,碳载催化剂团聚物典型的粒度范围在 100 nm 至 1 µm 之间。但是图 5 中可以观察到100nm 以下的颗粒,表明在分散过程中能量输入过高导致铂催化剂颗粒从载体上脱落,使浆料过度分散。众所周知,催化剂颗粒的粒度对电池性能影响很大。如果催化浆料分散不好,会导致催化剂利用率和传质效率下降,降低电池性能。适当的分散能够改善催化浆料的分散状态(进而改善电池的整体性能),但过度分散也会导致催化剂颗粒从碳载体上脱落,最终影响电池性能。 激光衍射法也可以研究颗粒的易碎性,优化分散过程。将铂担载量40%的Vulcan XC72R 碳载催化剂粉末加入到异丙醇中,在剪切条件下进行分散,使用Mastersizer 3000监测浆料粒度随剪切时间的的变化。如图 6 所示,随着剪切时间的延长,10-100 µm 团聚体颗粒的数量减少,而 10µm 以下的颗粒数量增加。2 小时后,仍有大量团聚物 (10 µm) 存在,这说明还需要增加剪切或者使用更高能量的分散方法进一步分散,才能达到合格的催化剂浆料要求。 五、马尔文帕纳科解决方案 —— 动态光散射技术 与激光衍射法相比,动态光散射 (DLS) 更适合于测量纳米级颗粒的平均粒度,范围从1 nm 至 1 µm。 将催化剂浆料以 1:10 比例分散在异丙醇(IPA)中,用Zetasizer Ultra纳米粒度仪测量催化浆料的平均粒度。稀释后的浆料仍然是高度不透明的,采用非侵入背散射 (NIBS)技术进行测量,重复测量5次。如图 7 所示,尽管浆料不透明,5次测量的相关曲线的一致性很好。图 8 是催化剂浆料的粒度分布图。如表 4所示,体积平均粒度为 1.04 µm,多分散指数也比较大(0.1)说明浆料的粒度分布宽,与激光衍射法的结果吻合。动态光散射技术(DLS)主要是检测颗粒的布朗运动产生的散射光光强波动,颗粒的散射光强与粒径的 6 次方成正比,大颗粒的信号很容易掩盖小颗粒的信号,因此动态光散射法(DLS)没有观察到激光衍射法测得的小颗粒。 动态光散射技术还可用于测量催化剂浆料的 Zeta 电位,研究电解质聚合物与碳载催化剂之间的相互作用,确定电解质聚合物在催化剂上的均匀分布。Zeta电位与浆料的离子浓度有关,可以通过对碳载体颗粒功能化改性或者改变电解质聚合物浓度来调节。通常来讲,特别是在介电常数较高的分散介质(如甲醇)中,Zeta 电位越高,浆料的稳定性越好。Zeta 电位分析还可以用于优化配方,改进浆料的稳定性。事实上,已经有研究报道可以通过模型根据初级颗粒的粒度和体系的Zeta 电位来预测催化剂浆料稳定[9]。 六、结论 通过X射线衍射技术发现,浆料和阴极催化剂涂覆膜中的晶粒尺寸比催化剂粉末大。这种颗粒粗化现象通常是由于浆料在分散过程中过热引起的。激光衍射法检测到在20 nm附近有大量初级颗粒,说明催化剂浆料出现了过度分散的现象。 联合使用激光衍射、X射线衍射和动态光散射技术,可以从不同尺度表征催化剂浆料,优化和监测催化浆料配方和稳定性。使用 Mastersizer 3000 激光粒度仪测量催化剂浆料的粒度分布,可评估临界颗粒分散的有效性。使用 Zetasizer 纳米粒度及Zeta电位仪进行 Zeta 电位测量,可研究聚合物电解质和碳载催化剂的相互作用,预测浆料稳定性。使用 Aeris 台式 X 射线衍射仪,可以测量纳米催化剂的晶粒尺寸,验证防止纳米颗粒粗化的方法的有效性。 参考文献[1] 陈光. 新材料概论:科学出版社,2003年[2] Kamaruzzaman.Sopian ,Wan Ramli Wan Daud.Challenges and Future Developments in Proton Exchange Membrane Fuel Cells [J].Renewable.Energy.2006,31(5):719~727[3] 胡嫦娥,刘琼,周敏. 质子交换膜燃料电池的研究现状. 新能源网. 2016.[4] D. Papageorgopoulos, US Dept. of Energy Hydrogen and Fuel Cells Program Report, FY 2018 Annual Progress Report[5] Orfanidi et al, J. Electrochem. Soc.165 (2018) F1254[6] Wang et al, ACS Appl. Energy Mater. (2019) DOI: 10.1021/acsaem.9b01037[7] Swanson Natl. Bur. Stand. (U.S.) Circ. (1953) 539 1 31[8] Sharma et al, Materials chemistry and Physics 226 (2019) 66-72[9] Shukla et al, J. Electrochem. Soc.164 (2017) F600-F609 关于马尔文帕纳科马尔文帕纳科的使命是通过对材料进行化学、物性和结构分析,打造出更胜一筹的客户导向型创新解决方案和服务,从而提高效率和产生可观的经济效益。通过利用包括人工智能和预测分析在内的最近技术发展,我们能够逐步实现这一目标。这将让各个行业和组织的科学家和工程师可解决一系列难题,如最大程度地提高生产率、开发更高质量的产品,并缩短产品上市时间。

质子交换膜燃料电池测试系统相关的方案

质子交换膜燃料电池测试系统相关的资料

质子交换膜燃料电池测试系统相关的试剂

质子交换膜燃料电池测试系统相关的论坛

  • 燃料电池质子交换膜高低温性能测试中替代环境试验箱的TEC半导体温度控制解决方案

    燃料电池质子交换膜高低温性能测试中替代环境试验箱的TEC半导体温度控制解决方案

    [size=16px][color=#339999][b]摘要:针对燃料电池质子交换膜高低温退化机理表征,基于德国慕尼黑工业大学团队提出的替代环境试验箱的TEC半导体制冷温控方案及其功能指标,本文给出此方案具体实施内容的补充,详细介绍了用于TEC半导体制冷温控系统的PID调节器和大功率电源驱动器。[/b][/color][/size][align=center][size=16px][img=燃料电池质子交换膜高低温性能测试中的TEC温度控制解决方案,600,403]https://ng1.17img.cn/bbsfiles/images/2023/03/202303070908318537_6710_3221506_3.jpg!w690x464.jpg[/img][/size][/align][b][size=16px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 燃料电池聚合物电解质膜或质子交换膜(PEM)的性能和耐久性对工作温度十分敏感,为了研究退化机理和考核退化性能,必须在较宽的高低温环境下对质子交换膜进行各种性能测试。目前测试中所采用的高低温测试环境大多为环境试验箱,在环境试验箱中进行测试试验除了设备昂贵和耗时长之外,关键是环境试验箱的测试环境与实际应用相比不具有代表性,这主要是因为电池在低温启动以及正常运行的实际使用期间PEM表面是不均匀的温度分布,而这种温度不均匀性会导致电池的性能下降和退化,故环境试验箱温度控制方法缺乏模拟PEM表面温度梯度的能力。[/size][size=16px] 为了准确模拟出质子交换膜实际使用过程中的温度不均匀性分布以及相应的高低温交变试验环境,德国慕尼黑工业大学的研究团队[1]提出了采用TEC半导体制冷的技术方案,整个测试装置结构如图1所示。[/size][align=center][size=16px][img=质子交换膜退化性能高低温试验装置结构示意图,690,469]https://ng1.17img.cn/bbsfiles/images/2023/03/202303070910015558_3661_3221506_3.jpg!w690x469.jpg[/img][/size][/align][align=center][size=16px][color=#339999][b]图1 质子交换膜退化性能高低温试验装置结构示意图[1][/b][/color][/size][/align][size=16px] 图1所示测试系统的核心部分——TEC半导体制冷型温控装置的详细结构如图2所示[2]。[/size][align=center][size=16px][color=#339999][b][img=TEC温控装置结构示意图,500,444]https://ng1.17img.cn/bbsfiles/images/2023/03/202303070910471523_3799_3221506_3.jpg!w690x613.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 TEC温控装置结构示意图[2][/b][/color][/size][/align][size=16px] 从文献[2]中的描述可知,TEC温控装置具备的功能和相关指标如下:[/size][size=16px] (1)上下布置有两组TEC制冷片,分别用两个PID控制器进行控温。控制器具有可编程控制能力,以实现-10℃~80℃之间的温度交变控制。[/size][size=16px] (2)温控装置加热时的温度变化速率为24℃/min,冷却时的温度变化速率可达到17℃/min,整个温区内的控温精度可达到±0.3℃。[/size][size=16px] (3)针对50平方厘米和285平方厘米两种规格的质子交换膜测试,配备了不同结构、规格尺寸和数量的TEC模组,总功率分别为2×240W和2×1280W。[/size][size=16px] (4)由于质子交换膜高低温退化性能测试装置还需进行加载压力、气压压力、气体流速等参数的自动控制,因此PID温控器具有通讯能力,以便上位机进行多参数的设置和控制。[/size][size=16px] (5)除了上述温控精度和动态变化性能之外,采用了TEC半导体制冷模组的温控装置可实现高达70℃的纵向温度梯度,由此扩大了电池测试的范围,且使用较低成本和较小空间的方式来模拟不同的扰动效应或进行温度交变试验,[/size][size=16px] 针对上述TEC温控装置具备的功能和相关指标,本文将给出更具体的实施方案,由此给出燃料电池质子交换膜高低温退化机理表征测试装置中温控系统的全貌。[/size][b][size=16px][color=#339999]2. 解决方案[/color][/size][/b][size=16px] 针对上述TEC温控装置具备的功能和相关指标,本文给出的具体实施方案如图3所示。[/size][align=center][size=16px][color=#339999][b][img=TEC温控装置具体实施方案示意图,690,211]https://ng1.17img.cn/bbsfiles/images/2023/03/202303070911235598_2631_3221506_3.jpg!w690x211.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 TEC温控装置具体实施方案示意图[/b][/color][/size][/align][size=16px] 图3所示的实施方案具体包含以下几部分内容:[/size][size=16px] (1)执行机构:为了实现TEC的加热制冷功能,除了需要对TEC模组的加载电流进行自动调节之外,还需在调节过程中能自动改变电流方向,为此实施方案中配备了双向电源驱动器。双向电源驱动器接收加热和制冷控制信号,并根据控制信号大小和方向输出相应的工作电流。另外,根据所配备的TEC模组功率配备相应的双向电源驱动器以满足额定电流要求。[/size][size=16px] (2)温度传感器:温度传感器是决定温度控制精度的关键因素之一,因此本方案中配置了铂电阻温度计,使得温度传感器的温度分辨率能达到0.05℃以及测温精度能达到0.1~0.2℃。[/size][size=16px] (3)高精度PID控制器:决定温度控制精度的另一个关键因素是温度控制器的数据采集精度、控制算法和控制输出精度。为此,在本解决方案中采用了目前控制精度较高的VPC2021-1系列的工业用PID程序调节器,除具有不超过96mm×96mm×87mm的小巧尺寸外,关键是此PID调节器的模数转换AD为24位、数模转换DA为16位、双精度浮点运行运算以及0.01%的最小输出百分比,并可对控制程序进行编辑设计,适合质子交换膜高低温退化试验在全温度量程内交变温度的程序控制。同时,此调节器采用了高级无超调PID控制模式,并具有PID参数自整定功能,结合高精度的数据采集和控制输出,可实现十分精细的温度变化调节和控制。另外,此调节器附带功能强大的计算机软件,通过计算机运行此软件可快速进行PID控制器的远程设置和运行操作,同时能图形化的显示和记录所有设置参数、控制程序曲线和温度控制变化曲线。[/size][size=16px] 总之,本文所述解决方案中所采用的TEC高低温温控系统,已经成为高精度可编程温度控制的一种标准和通用性方案,完全适用于质子交换膜高低温退化表征试验过程中的温度精密控制。[/size][b][size=16px][color=#339999]3. 参考文献[/color][/size][/b][size=16px][1] Sabawa J P, Bandarenka A S. Investigation of degradation mechanisms in PEM fuel cells caused by low-temperature cycles[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15951-15964.[/size][size=16px][2] Sabawa J P, Haimerl F, Riedmann F, et al. Dynamic and precise temperature control unit for PEMFC single‐cell testing[J]. Engineering Reports, 2021, 3(8): e12345.[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

质子交换膜燃料电池测试系统相关的耗材

  • 爱谱斯 气体扩散电极变温测试池(燃料电池) 电解池
    气体扩散电极变温测试池(燃料电池)适用于气体扩散电极测试,如氢氧燃料电池,直接甲醇燃料电池等。电解池可以控制温度,控制实验过程中气体的流速,参比电极默认为可逆氢参比电极,工作电极可选择不同类型的气体扩展电极。另外该电解池也适合于腐蚀测试,CO2还原测试等。气体扩散电极变温测试池(燃料电池)特点:电解池集成了工作电极和对电极(惰性铂)平行布置,形成平行的电流线;参比电极位于单独的储液罐中,因此电流曲线不受干扰;工作电极可根据需要通气测试;Flex Cell电解池可通过集成加热系统将口昂之温度85°C(PP)或160°C(PTFE);Flex Cell电解池适用于电解液的pH值为-2至16;Flex Cell电解池的最小电解液体积为40ml;
  • 美国博纯-燃料电池加湿器-FC 系列加湿器
    燃料电池加湿器-FC 系列加湿器FCTM系列加湿器是壳管式水分交换器,实现了水蒸汽的转换。加湿器可安装为气-到-气或水-到-气装置。水分子被吸入Nafion® 管壁内,并转化为干燥的气流。对面水蒸汽部分压力差值促进了这一转化的实现。? 低压降? 生命周期长? 可以用来加湿H2? 结构紧凑、坚固耐用? 可以采用水/气(water to gas)加湿模式,也可采用气/气(gas to gas)模式FC 100便携式小型加湿器,适用200w以下的燃料电池系统。重量低于100g,可为流速达16alpm的气体加湿FC 125低成本,FC125系列加湿器是1kw以下燃料电池系统的理想选择。可加湿气体流速达80alpm(gas to gas)和200alpm (water to gas)FC 200适用于高达3kw的系统,FC200系列紧凑耐用,适用于移动和固定式的燃料电池系统。可加湿的气体流速达225alpm(gas to gas)和650alpm(water to gas)。FC 300应对5kw系统的气/气加湿的标准产品。针对高压力,FC300系列外壳可选ABS或者聚环氧丙烷PPO(Noryl)。可加湿的气体流速达700alpm(gas to gas)和2,000alpm(water to gas)FC 400可选ABS和聚环氧丙烷PPO外壳,FC400系列为7-12kw的燃料电池系统加湿设计。高压型的现正应用于乘用车燃料电池系列。可加湿的气体流速达1,000alpm(gas to gas)和7,000alpm(water to gas)。FC 600FC600系列可用于高达50kw燃料电池系列(gas to gas加湿)。当采用water to gas加湿模式时,对于大型测试台(80-100kw),可以替代大体积的鼓泡加湿系统。可加湿的气体流速达4,000alpm(gas to gas)和10,000alpm(water to gas)FC 800在产的最大型号加湿器,FC800系列适用于高达100kw的系统。该型号是城市巴士,SUV和轻型卡车的理想选择。气体流速可达5,500alpm(gas to gas)和15,000alpm(water to gas)*alpm=实际每分钟。以标准升每分钟(slpm)为单位的流速除于bar单位的绝压=alpm.美国博纯有限责任公司(Perma Pure LLC)是创新的样气预处理技术领导者。一直以来我们运用Nafion® 专利,连同其他多样的技术和专业知识来帮助我们的客户安全、准确地分析气流采样。我们的业务分为以下三大领域。医疗设备-作为一个通过FDA注册并拥有ISO 13485认证的医疗设备制造商,我们的医疗呼吸干燥管应用于呼吸气体分析及对呼吸机中氧气与氮气加湿应用。我们也专注于高容量医疗采样管线。气体分析仪和分析仪器-我们样气干燥管作为一个部件广泛应用于气体分析仪及科学分析设备中。我们的气体加湿器用于燃料电池加湿,恒温箱,测试室环境控制等应用中。气体预处理系统用于烟气排放及过程监控:我们的气体预处理系统基于独特的Nafion技术,解决了许多在CEMS和过程监控市场上测量SOx及NOx排放物所产生的问题。我们也提供Baldwin样气冷凝器,稀释法采样探头与样气预处理系统。博纯是豪迈旗下子公司,依托其技术,投资和生产展开全球业务。北京谱飞科技有限公司专业代理美国博纯有限责任公司的全线产品,有意联系请电话或邮件沟通。
  • 燃料电池加湿器
    博纯产品广泛的应用领域博纯的产品被广泛应用于工业领域中。八大应用区域已被罗列至下表中,请点击查看每个产品应用领域::1、OEM 医疗设备- 呼吸气体分析2、OEM 分析设备3、烟囱测试和排放物监测4、环境空气监测5、 燃料电池应用6、实验室和科学研究7、CO2 保温箱和环境加湿8、行业源样气预处理。博纯用于制造医疗设备和呼吸气体分析的产品博纯公司是通过ISO 13485 认证的医疗设备制造商,供应独特的样气采样管线、气体干燥器和水分交换器,这些产品广泛应用在麻醉监护、压力测试/肺功能检查、碳酸波形图(二氧化碳监控)和哮喘监控(一氧化氮)上。我们的产品技术主要应用在去除呼吸样气中的湿气,以方便精确分析呼吸气体。燃料电池加湿器博纯的FC™ 系列加湿器符合行业标准,提供无与伦比的性能、可靠性和寿命在某些情况下,高达20,000小时。旨在满足用户对燃料电池的严格要求,Nafion® 系列产品能为指定流量范围内的空气和氢提供可持续且重复的加湿。博纯加湿器特性为低压降,运行不需电力,大大减少您系统的实际负载。FC™ 系列具有强大的和可定制的外壳,以满足您的个人需求。结实且可定制化的外壳是其一大优势,FC系列可以为您的个人需求量身定制。FC™ 系列加湿器是便携式、固定式、材料处理和汽车应用的良好选择。燃料电池加湿器产品选型指南FC™ 系列加湿器-便携式、固定式、物料处理和汽车应用博纯的FC™ 系列加湿器符合行业标准,提供无与伦比的性能、可靠性和寿命在某些情况下,高达20,000小时。旨在满足用户对燃料电池的严格要求,Nafion® 系列产品能为指定流量范围内的空气和氢提供可持续且重复的加湿。博纯加湿器特性为低压降,运行不需电力,大大减少您系统的实际负载。FC包含以下优势:高效无能源消耗无冷冻/解冻问题自限制加湿紧凑坚固气到气或水到气加湿适合氢气使用智能产品编号系统:博纯提供各种长度,材质和端口配置的FC系列加湿器。根据您流速和压力要求来选择尺寸,并按照选型指南和产品型号表来构建合适您应用的加湿器。1 -系列和管束数量FC100-80 SeriesFC100-80FC125-240 SeriesFC125-240FC150-480 SeriesFC150-480FC200-780 SeriesFC200-780FC300-1660 SeriesFC300-1660FC400-2500 SeriesFC400-2500FC600-7000 SeriesFC600-70003 – 加湿器有效长度5″ (12 cm) (FC125 Only)56″ (15 cm) (FC100 Only)67″ (18 cm)710″ (25 cm)1015″ (38 cm)154 – 管壳 / 外壳材料Kynar / Kynar (FC100 only)MKKKynar / Stainless (FC100 only)MKSStainless / Stainless (FC100 only)MSSMolded Noryl (FC300 and FC400)LPMolded Polypropylene (FC125 and FC200)MPMachined Polypropylene (FC150 and FC 600)PPHigh Pressure PPO (10″ FC300 and FC 400 only)HP5 – 接口配置Ports on opposite sides of shell01Ports on same side of shell (in line)02Ports rotated 90° clockwise03Ports rotated 90° counter-clockwise04燃料电池系统-FC 系列选型指南:FC100 系列– 用于便携式系统的紧凑型加湿器,至500w。重量小于100克. 流速达16 alpm。FC125 系列– 使用低成本模压部件。系统高达1KW时,FC125系列加湿器是理想选择。气体流速80 alpm (气-气) and 200 alpm (水-气)FC200 系列– 系统高达3KW的理想选择。FC200系列是坚固且紧凑的加湿器,用于汽车和固定式应用的理想选择。气流 225 alpm (气-气) 和 650 alpm (水-气)FC300 系列– 在5KW系统中,用于气到气加湿可使用我们标准加湿器FC300系列,在高压力应用中有ABS和PPO(Noryl)材质可作选择。气体流速700 alpm (气-气) 和2,000 alpm (水-气)FC400 系列– 有ABS和PPO材质可供选择。7-12KW系统应用中,FC400系列是最佳选择。高压型号已被评估用于客车中。气流高达 1,000 alpm (气-气) 和7,000 alpm (水-气)FC600 系列– FC600-系列适用于系统高达50KW的气-气加湿应用。当运行水-气,加湿器是最佳选择,来替代广泛应用于实验台(80-100KW)中的喷水装置。流速为1,000 alpm (气-气) 和 7,000 alpm (水-气)博纯的FC系列Nafion气体加湿器既可以作为水-气加湿器,也可以作为气-气的水分交换器。水-气加湿器的工作原理是Nafion管壁的一边是水,然后对另一边的气体进行加湿。规格和尺寸:系列Nafion管的数量接口4最大压力气-气1水-气2推荐气体流量FC100801/4″ FNPTto 25 psig4-16 slpmFC1252401/2″ FNPTto 25 psig15-75 slpmFC1504803/4″ FNPTto 15 psig35-150 slpm200-300 slpmFC2007801″ FNPTto 10 psig50-300 slpm300-450 slpmFC30016601-1/2″ FNPTto 5 psig120-625 slpm450-2000 slpmFC300HP16601-1/2″ FNPT3 barg120-625 slpm450-2000 slpmFC40025001″ FNPT3200-1000 slpm1000-7000 slpmFC60070002″ FNPT500-2500 slpm1500 + slpm最大压力差, Nafion管内 外壳内, 5 psig 最高温度 90℃FC系列加湿器不推荐使用金属接头。建议使用尼龙,ABS或聚丙烯接头。1基于趋近温度在4-6度之间的流量推荐。最佳干燥气体入口温度范围为35℃至55℃。2水-气加湿的流量是基于80-85%的相对湿度。具体流量参见实际性能曲线。请注意,气体压力必须大于水压。32″接头可供选择。4订货时,指定为同一侧或180度旋转的接头方向。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制