超高真空多腔体束蒸镀系统

仪器信息网超高真空多腔体束蒸镀系统专题为您提供2024年最新超高真空多腔体束蒸镀系统价格报价、厂家品牌的相关信息, 包括超高真空多腔体束蒸镀系统参数、型号等,不管是国产,还是进口品牌的超高真空多腔体束蒸镀系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合超高真空多腔体束蒸镀系统相关的耗材配件、试剂标物,还有超高真空多腔体束蒸镀系统相关的最新资讯、资料,以及超高真空多腔体束蒸镀系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

超高真空多腔体束蒸镀系统相关的厂商

  • 贰零壹捌科技(天津)有限公司是一家专业从事纳米颗粒与纳米薄膜制备设备以及复杂真空系统设计、开发、制造、销售的高科技公司。创始人曾在德国和美国的高水平大学学习与工作,致力于团簇束流沉积技术和质谱、能谱等复杂真空系统的研究和设备开发。因此,公司以纳米团簇束流技术见长,拥有雄厚的复杂真空系统设计、制造及研发能力。开发完成的纳米团簇束流源及质量选择和沉积系统设备达到了国际先进水平,拥有研究型和生产型两个系列。擅长纳米团簇束流沉积技术在工业应用领域的方案设计、技术服务与产品代工,尤其适合于纳米光电与传感器件、微机电器件工业制程领域提供系统解决方案。公司采用国际上先进的“设备与工艺相结合”模式进行研发、生产与销售,引领世界先进技术。公司拥有良好的售前服务平台、完善的售后服务体系、广泛的技术支持能力,致力于向广大的国内外用户提供性能高、稳定性强、安全可靠的产品。公司配备了优秀的科研人员,为用户提供售前、售后工艺服务与工艺技术支持,包括:设备选型实验、设备考察实验、项目预研与立项、合作攻关、工艺指导、工艺培训等。 广泛应用在光学、半导体、离子束、真空设备、真空机械、科研仪器及相关控制软件。镀膜、沉积设备、超高真空设备、复杂系统联动控制、低维材料制备、石墨烯传感器及系统集成:v v沉积设备:化学(催化)、材料、新材料、电极材料(新能源)(磁控溅射(单靶或多靶)、热型、电子束轰击型) v复杂真空系统:超高真空环境下,材料制备、原位表征、材料转移、集成LEED,角分辨激光光电子能谱(磁瓶和动量谱仪型)、高分辨质谱、医用质谱、各类离子与团簇源(离子源包括高电荷态ECR、中等离子态强流ECR离子源、磁控溅射强流团簇源、整发型团簇源)、不同功能光谱、质谱、电子能谱的多功能系统集成。 v抛光:荷能纳米颗粒超光滑表面抛光 v超高真空系统设计、超高真空系统相关联动系统软件、超高真空腔体与部件的加工、离子光学系统的设计 v真空部件加工
    留言咨询
  • 普发真空技术(上海)有限公司普发真空(Pfeiffer Vacuum)作为全球领先的真空技术解决方案的供应商之一。我们不仅拥有全系列的混合轴承及全磁悬浮涡轮分子泵, 同时还拥有各种旋片泵,多级罗茨泵,罗茨泵,气体检漏仪,真空计,气体质谱仪等产品以及真空管件、腔体、泵组和高度定制化的真空系统。 从普发1958年发明涡轮分子泵至今, 我们在全球分析仪器、科研、真空镀膜、半导体和尖端工业领域,始终代表着创新的解决方案、高品质、稳定可靠的产品和一流的服务。公司自1890年创立至今百余年,现有3000余名员工,20多家分公司遍布全球,并且在德国、法国、罗马尼亚、韩国、美国等地设有生产制造基地。随着中国综合国力的提升,产业结构升级,以及对节能减排,科研和高精尖制造工艺的强烈需求,对真空技术的需求也在不断的提升。作为德国Pfeiffer Vacuum GmbH的全资子公司,普发真空技术上海有限公司Pfeiffer Vacuum (Shanghai) Co., Ltd. 于2007年正式入驻中国上海,标志着普发真空在中国的业务已经初具规模,以及公司对中国持续增长的信心。公司现坐落于上海市浦东新区世纪公园附近,并且在江苏无锡建有8000 m2的售后服务和组装工厂。普发真空技术上海有限公司主要负责中国大陆、香港、澳门地区的销售及售后服务工作。公司现在全国各地设有常驻区域销售及现场售后服务工程师。普发真空希望凭借百余年的行业经验,高品质的德国工艺和全球领先的解决方案,帮助中国的顶尖企业、科研机构及合作伙伴共同进步,实现双赢。德国总部中国总部 - 上海中国组装维修中心 - 无锡
    留言咨询
  • 鹏城半导体技术(深圳)有限公司,由哈尔滨工业大学(深圳)与有多年实践经验的工程师团队共同发起创建。公司立足于技术前沿与市场前沿的交叉点,寻求创新引领与可持续发展,解决产业的痛点和国产化难题,争取产业链的自主可控。公司核心业务是微纳技术与高端精密制造,具体应用领域包括半导体材料、半导体工艺和半导体装备的研发设计和生产制造。公司人才团队知识结构完整,有以哈工大教授和博士为核心的高水平材料研究和工艺研究团队;还有来自工业界的高级装备设计师团队,他们具有20多年的半导体材料研究、外延技术研究和半导体薄膜制备成套装备设计、生产制造的经验。公司依托于哈尔滨工业大学(深圳),具备先进的半导体研发设备平台和检测设备平台,可以在高起点开展科研工作。公司总部位于深圳市,具备半导体装备的研发、生产、调试以及半导体材料与器件的中试、生产、销售的能力。公司主营业务微纳米材料与器件、微纳米制造工艺、微纳工艺装备、工艺自动化及软件系统化合物半导体衬底材料和外延片|化合物半导体系列氮化镓、碳化硅、氧化镓、砷化镓、金刚石等|物理气相沉积(PVD)系列磁控溅射、电子束、热蒸发、离子束溅射、离子辅助磁控溅射、多弧离子镀、磁控溅射与离子束溅射复合、磁控溅射与多弧离子镀复合|化学气相沉积(CVD)系列PECVD、ICPECVD、MOCVD、LPCVD、热丝CVD、微波CVD|超高真空系列MBE分子束外延设备(科研型、生产型)、超高真空磁控溅射外延设备(10-8Pa)|其它ICP等离子刻蚀机、半导体合金退火炉、等离子清洗机、真空机械手、金刚石薄膜与厚膜生长设备|团簇式设备系列太阳能薄膜电池设备:PECVD+磁控溅射+样品预处理+真空自动机械手OLED中试设备:热蒸发+电子束+磁控溅射+PECVD+样品预处理+真空自动机械手+手套箱封装室综合薄膜制备和器件制造实验平台:以内置真空机械手的样品传递室为中心(配4~8个进出口),配置各真空工艺室|技术服务非标成套薄膜制备设备设计制造、薄膜制备设备升级改造、自动化软硬件设计承接工艺研发、样品试制与打样、进口设备真空零部件的维修和替换及控制系统更新本科及研究生的毕业课题立项及实训培养、工程师培训
    留言咨询

超高真空多腔体束蒸镀系统相关的仪器

  • 超高真空光学显微镜/光谱仪测试系统Ultra-high Vacuum (UHV) Optical / SpectroscopicMicroscope System将光学显微镜或光谱仪模组对接于超高真空系统,可以作为超高真空互联系统的检测节点之一,用于材料和器件在不同制备环节之间对外延的薄膜或者转移沉积的二维材料等样品的质量进行快速无损检测。产品特性和核心技术模块化设计,光学部分相对独立。&bull 包含光学显微镜、激光离焦量传感器、自动调焦和共聚焦耦合光路等等在内的全部光学部分全部集成于一个光学模组之中,作为整体置于超高真空腔体之外,透过视窗玻璃聚焦于真空腔内的样品表面。&bull 不污染真空内环境。&bull 超高真空系统烘烤时可以整体取走,并在烘烤完毕之后方便地定位安装。&bull 可根据用户需求,灵活配置激光器、单色仪、探测器和物镜等光学组件。视窗玻璃厚度像差的补偿校正。&bull 拉曼光谱的高收集效率和分辨率。性能参数:注:上述表格中的激光波长、物镜和单色仪等部件可以根据客户需求调整。测试案例:超高真空长工作距离(120 mm)显微测试
    留言咨询
  • 超高真空多腔体镀膜系统——按照客户要求,加工订制;——一对一专业出图设计;——可配套指定真空机组系统;——耐高温、耐腐蚀;——高质量、高精度;加工工艺,采用真空焊接技术拼装焊接;先进的真空捡漏设备,更加保证产品的质量;我公司采用三维建模软件,按照实际比例建立三维模型,根据客户文字、语言草图等需求描述,专业设计出适合客户所需产品方案(在方案定稿之前所有设计不收取任何费用)。为了生产出最匹配客户需求的产品,需要告知我公司以下几个问题点:1、产品在使用过程中是否有温度产生,高温和低温分别是多少摄氏度,是否需要通水或液氮冷却等内外在因素。2、对产品材质是否有特殊要求,真空领域腔体常用材质为:碳钢、铝、304不锈钢、316不锈钢等3、产品的链接方式,抽真空的方式,抽真空所用的真空泵等4、腔体真空度的要求,腔体抽完真空以后是否需要冲入保护气体或其他气体。通常常见真空腔体技术性能:材质:304不锈钢或客户指定材质。腔体适用温度范围:-190℃~+1200℃密封方式:氟胶“O”型圈或金属无氧铜密封圈出厂检测事项:1、真空漏率检测:标准检测漏率:1.3*10-8PaL/S 2、水冷水压检测:标准检测压力:8公斤24小时无泄漏检测。内外表面处理:拉丝抛光处理、喷砂电解处理、酸洗处理、电解抛光处理和镜面抛光处理等。实验室真空系统,真空腔体,真空探针台超高真空多腔体镀膜系统
    留言咨询
  • 产品详情法国Plassys超高真空多腔体电子束镀膜机MEB550SL3详细介绍超高真空多腔体电子束蒸镀系统磁控溅射、电子束蒸镀、超高真空、镀膜、约瑟夫森结、超导、量子器件、量子比特、多腔体、Qubit、UHV、铌基超导、氮化铌、钛氮化铌、NbTiN、NbN、sputtering systemEvaporation system、Nb-based superconductor、超导铝结、Josephson junction品牌:PLASSYS 型号:MEB 550SL3 产地:欧洲 法国 应用:约瑟夫森结(Al, Nb, NbN, NbTiN) 超高真空多腔体电子束蒸发镀膜仪电子束蒸镀仪是纳米器件制备中必不可少的仪器,用于蒸镀各种高纯金属薄膜,如Ti, Au, Ni, Cr, Al, Al2O3等。电子束蒸发沉积法可在同一蒸发沉积装置中安装多个坩埚,使得可以蒸发和沉积多种不同的高质量金属薄膜。开展量子计算机实验研究,如基于金刚石NV色心,离子阱,超导量子结,量子点电子自旋的研究,均需要蒸镀各种高质量金属薄膜来制备量子器件,特别是在利用超导量子结来实现量子计算的实验研究中,Josephson结的制备最为关键:需要在非常干净的蒸镀腔里进行,而且需要在不同的角度上蒸镀两次,两次之间需要注入氧气进行金属氧化。所以样品台必须具有三维的旋转功能,同时,蒸镀腔内还需要有可以注射氧气及其他气体来实现清洁和氧化过程。 推荐配置:可以用于沉积Ti, Ni, Au, Cr, Al, Al2O3等金属及氧化物薄膜,目前全球主要超导量子实验室均使用该设备制备超导Al结(量子比特和约瑟夫森结)和量子器件,可以制备大面积、高度稳定性和可重复性超导结。更详细信息或资料,请咨询我们! 预处理腔:衬底旋转、倾斜(3D);干泵+ 分子泵 真空度10-8 T 蒸发镀膜腔:电子枪6-15KW; 样品台: 。可加载4英寸衬底; 。衬底可加热到800℃ 。衬底旋转、倾斜, 。倾斜精度和重复性优于0.1°(可升级) 真空泵系统: 。干泵 + 低温泵; 。真空度10-10T或10-11T 膜厚控制仪: 。频率分辨率10-4Hz或更高; 。速率分辨率10-3nm/s; 。厚度分辨率10-2nm 残余气体分析仪 反应蒸镀:氧气气路+MFC 氧化腔体: 。静态/动态氧化 。臭氧发生器/原子氧发生源/辉光放电; 。卤素灯加热至最高200℃ 。残余气体分析仪分子泵 + 干泵;真空度10-8 T 全自动软件包,支持半自动和手动模式,支持远程网络操作和维护。典型用户:耶鲁大学、日本NTT、中科院物理所、中科大、南大、南方科技大学
    留言咨询

超高真空多腔体束蒸镀系统相关的资讯

  • 中科院科研装备研制项目“从超高真空到常压的 表面光谱原位表征系统”顺利验收
    p  5月26日,中国科学院新疆理化技术研究所承担的中科院科研装备研制项目“从超高真空到常压的表面光谱原位表征系统”通过了中科院条件保障与财务局组织的专家验收。/pp  项目负责人邱恒山向专家组详细汇报了项目的实施情况和仪器装备最终所达到的性能指标。测试组专家到现场进行了各项性能指标的实际测试,验收组专家审阅了项目的相关验收材料和经费使用情况。经过测试组专家和验收组专家的综合评议,专家组给予高度评价并一致认为该研制装备的各项性能指标均达到预期目标。/pp  该项目将表面谱学的方法引入到了光催化领域的研究中,通过大量的创新性设计,实现真空腔体本底真空度优于3× 10-10 mbar,高压腔内真空度在10-9 mbar到1000 mbar之间可变并可由质谱原位检测 可传样样品则可以实现加热(1000 K)、冷却(100 K)和测温 通过高压腔与真空红外谱仪的密封连接,装备最终可以实现样品在高压腔内不同气体压力、不同温度和不同光照条件下的真空(偏振)红外谱的原位检测。与会专家一致认为该项目的实施有助于开展气固(光)催化反应机理的系统研究,在分子水平上获得反应的微观信息,是对现有研究方法的重要补充和全新发展。/pp  中科院条财局装备办公室主任张红松、新疆理化所副所长崔旺诚出席会议。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/9309c784-241c-4d39-944f-95765aa8d3d7.jpg" title="W020170531466982123675.jpg"//pp style="text-align: center "从超高真空到常压的表面光谱原位表征系统/ppbr//p
  • 微立体光刻3D打印125GHz倍频器的波导腔体
    太赫兹波是指频率在0.1THz~10THz内的电磁波,它的波长介于30~3000μm,在频谱中的位置处于微波和可见光之间,长波段部分与毫米波重合,短波段部分与红外线重合,在电磁波频谱中占据非常特殊的位置,具有很多特殊的性质:宽带性、互补性、瞬态性、相干性、低能性、投射性。相对于毫米波而言,太赫兹波的频率更高、波长更短,因此具有更高的分辨率、更强的方向性和更大的信息容量,同时器件可以更小;相对于光波而言,太赫兹波具有更强的穿透性,适合于云雾、硝烟等极端恶劣环境。太赫兹频率源是太赫兹技术发展的关键,其性能指标影响着整个太赫兹系统的性能,所以太赫兹频率源的获得至关重要。通过倍频的方式获得的信号源具有高频稳定性好、设备的主振动频率低、工作频段宽的优点,是目前获取太赫兹频率源广泛采取的方案。基于GaAs肖特基二极管的太赫兹倍频器因其高效率、低能量消耗和室温下可适用性,已广泛用于外差接收器中局部振荡器(LO)的可靠信号源。太赫兹倍频器具有广泛的实际应用,包括大气遥感、医学成像甚至高速通信。目前,用于封装太赫兹倍频器的波导腔体通常采用计算机数控(CNC)加工制造,该工艺成熟,可实现高精确度、高精密度和良好表面光洁度,能满足电子元件与波导腔体间严格的尺寸公差要求。近年来,3D打印凭借其小批量快速加工的能力,逐渐被用于加工被动微波器件。但是,兼具大的打印幅面以及高公差控制的打印设备较少,因此鲜少有3D打印制备超过100GHz频段的器件报道。3D打印的倍频器更是未见报道。图1. 125GHz倍频器的剖面图:(a)波导腔体的布局 (b)MMIC的特写图2. 微纳3D打印的波导腔体(左)和放置MMIC的波导通道(右)近日,英国伯明翰大学的Talal Skaik和Yi Wang等首次采用面投影微立体光刻(PμSL)3D打印工艺制备太赫兹倍频器的波导腔体。研究团队使用摩方精密科技有限公司(BMF)的nanoArch S140系统3D打印了波导腔体,打印材料为耐高温树脂(HTL),如图2所示,外形尺寸为30.4 mm×25.5 mm×19.1 mm,打印层厚为20μm以及光学精度为10μm。打印后在异丙醇中清洗,并进行30分钟的紫外线固化,最后在60°C下进行30分钟的热固化。制备的波导腔体通过光学系统检测并未发现缺陷,与MMIC(单片微波集成电路)配合的波导通道测量值为609μm,优于设计的630μm;同时超高光学精度打印保证了严格的尺寸公差,确保波导腔体的两部分能精确配合,避免MMIC电路的损坏。图3. 电镀后波导腔体的表面光洁度图4. 装配后的太赫兹倍频器为促进信号的传递以及减小外界干扰,在波导腔体表面镀上4μm厚的铜和0.1μm厚的金,平均表面光洁度约为1.4μm,如图3和图4所示,电磁仿真结果表明该粗糙度对变频损耗的影响可以忽略不计。图5. 3D打印与传统CNC加工的太赫兹倍频器的性能参数对比实验测试发现,3D打印制备的太赫兹倍频器与传统CNC制备的倍频器性能非常接近,相关性能参数如图5所示。3D打印的太赫兹倍频器在输出频率为126GHz下达到33mW的最大输出功率,在80mW~110mW的输入功率下转换效率约为32%,与传统CNC加工的倍频器具有相近的最大输出功率和转换功率。此研究成果以题为“125 GHz Frequency Doubler using a Waveguide Cavity Produced by Stereolithography”发表在会议期刊《IEEE Transactions on Terahertz Science and Technology 》上。
  • 首台国产KAWAI大腔体HTHP压机成功交付
    9月底,洛克泰克车间门口热闹非常,大卡车,叉车,吊车轰隆隆的忙不停。原来是洛克泰克公司生产的一个重达10吨的1000吨大腔体压机,今天要出发去见它的主人啦~ 那这个设备,为啥要举这么高呢? 跟车间负责人沟通后得知,由于仪器本身太重,输运的大卡车车身较高,同时要保护好厂区地面,所以用吊车是最好的办法,可以一次就把设备放到大卡车承重最好的位置。 原来重量级仪器发货有这么多讲究啊! 负责人还告知,这个仪器是专车专送,专门找的用户当地的公司,一路从车间门口由专业的搬家机构直接送到用户的实验室,客户只需要在实验室指挥放置位置即可 看车牌就知道用户来自于咱们的大北京啦!洛克泰克真是想的周到~那么大家想知道这到底是个什么仪器,怎么这么重呢?现在隆重的介绍它啦:Kawai型大腔体压机 产品介绍:大压机采用Kawai型6-8式二级加压高温高压装置,开放式结构多引线测量更方便。利用碳化钨压砧,可在样品上产生 20Gpa高压, 2000°C高温。 技术优势:带自动控制系统对压力进行监测、控制,通过网络与上位机进行通讯。实际压力值由数字压力传感器测量,传输到控制系统 控制系统分段控制程序,每段分别对压力、时间进行设定,产生用户需要的压力曲线,同时将实际压力和设备状态信息传输到计算机。PLC调节伺服电机,调节实际压力,使其趋近设定压力 在自动控制下,只有伺服电机对压力进行调节,高温高压设备噪声极小,非常适合科研实验室使用,设备稳定性高,维护成本极低湖北洛克泰克是中国领先的高温高压全方案提供商,可以提供从设备到附件,及耗材的完整产品线,且提供全系列的定制解决方案。数年来洛克泰克公司专业研发生产活塞圆筒压机、大腔体压机设备,及其相应耗材,积累了深厚的技术经验,填补了国内市场高温高压设备制造的空白,满足了国内相关科研工作者的需求,也打破了国外设备的垄断局面。高温高压(GPa级)设备,广泛应用于地质、物理、材料、化学等学科研究。

超高真空多腔体束蒸镀系统相关的方案

超高真空多腔体束蒸镀系统相关的资料

超高真空多腔体束蒸镀系统相关的论坛

  • 岛津真空腔体

    岛津液相DGU-20A3真空脱气机真空腔体(228-44485)在哪里可以买到,价格?

  • 【求助】如何控制腔体内的温度和湿度

    对于密封不是很严的(非真空腔体)腔体,整体容积1m3内,如何控制里面的温度和湿度,而且还要保证里面的温度和湿度分布均匀,有什么比较好的方法?另外,谁给详细介绍一下改变湿度的溶液法。谢谢了。[em0805]

  • 开机时真空腔体无法吸紧是怎么回事

    今天清洗离子源后,开机时腔体怎么都无法吸紧,真空无法抽上去,会是前级泵哪个地方漏气了吗?还会有其他原因吗?仪器是安捷伦5975来自一群友的问题

超高真空多腔体束蒸镀系统相关的耗材

  • 质谱仪真空腔体
    质谱仪核心部件高真空腔体,材料选用6060-T6,通过五轴一体加工成型,再结合精密的抛光和表面处理工艺,综合公差保证0.01以内,不仅可以保证长期保压状态下的真空度,而且可以满足在设备里长期使用的稳定性。支持不同规格及不同材质的定制。
  • 多模光纤跳线,兼容超高真空和高温
    多模光纤跳线,兼容超高真空和高温多模光纤跳线特性 兼容超高真空(UHV):真空水平低至1 x10-10Torr无护套光纤设计zui大程度地减少了表面区域,以减少气体释放使用兼容真空的环氧树脂和304不锈钢SMA905接头所有产品经过清洁,然后以双层真空密封的包装形式发货兼容Thorlabs的SMA真空馈通 兼容高温:镀聚酰亚胺膜的光纤,能够在zui高250 °C下连续工作耐热元件和跳线设计 数值孔径0.22的阶跃折射率光纤纤芯?100、?200、?400或?600 μm波长范围180 nm - 1150 nm(高羟基)或380 nm - 2200 nm(低羟基)库存标准产品长度有0.5 m和1 m 提供定制长度和纤芯尺寸;Thorlabs兼容超高真空和高温的多模光纤跳线属于兼容真空的系列产品,适用于气压低至10-10Torr的UHV环境及zui高250 °C下的连续工作。高羟基跳线的工作范围为180 - 1150 nm,而低羟基跳线的工作范围为380 - 2200 nm。库存纤芯?100、?200、?400或?600 μm的标准跳线长度有0.5 m和1 m。低羟基和高羟基兼容UHV高温跳线的光纤衰减数据兼容超高真空这些跳线具有无护套光纤设计,zui大程度地减少了表面区域,以减少低至10-10Torr真空环境下的气体释放速率。每根跳线两端都有兼容真空的SMA905接头和由304不锈钢制成的套管。跳线中使用的环氧树脂(型号353NDPK)经过NASA测试适合低释气应用。组装的跳线同样经过严格测试,确保在这些UHV环境下释气zui少(详情请看工作标签)。这些跳线可与我们的SMA真空馈通和ADASMAV兼容真空的匹配套管配合使用。兼容高温对于高温条件,这些跳线经过设计和测试,能够在zui高250 °C的环境下连续工作(8小时)或在zui高280 °C的环境下间歇使用(一分钟只一小时)。组成跳线的材料都是耐热的;我们使用镀聚酰亚胺膜的光纤、304不锈钢光纤接头和耐高温的环氧树脂。产品在高温炉中经过测试,确保跳线满足高温条件下的光学规格(详情请看工作标签)。每根跳线有两个金属保护盖,防止插芯端受到灰尘污染或其他损害。SMA905终端跳线更换用的CAPM(橡胶)和CAPMM(金属)保护盖单独提供。请注意,保护盖既不兼容真空,也不耐热。定制兼容UHV和高温的跳线这些光纤跳线为需要在高真空或高温环境中工作的应用提供了一种集成光纤的解决方案。为了兼容大量的实验设备,我们可以生产不同纤芯尺寸或不同长度的光纤跳线。请注意,我们仅提供SMA接头。In-Stock Multimode Fiber Optic Patch Cable SelectionStep IndexGraded IndexFiber BundlesUncoatedCoatedMid-IROptogeneticsSpecialized ApplicationsSMAFC/PCFC/PC to SMASquare-Core FC/PC and SMAAR-Coated SMAHR-Coated FC/PCBeamsplitter-Coated FC/PCFluoride FC and SMALightweight FC/PCLightweight SMARotary Joint FC/PC and SMAHigh-Power SMAUHV, High-Temp. SMAArmored SMASolarization-Resistant SMAFC/PCFC/PC to LC/PC工作这些兼容超高真空和高温的跳线经过严格测试,确保在极端的环境下能够维持机械完整性和光学性能。组装和测试过程中确定连续工作和间歇工作的zui高温度和真空条件。连续工作连续工作定义为在指定真空或高温条件下连续使用时间超过8小时。为了测试这种用途,我们将跳线放置在高真空(1 x 10-9 Torr)或高温(250 °C)环境8小时,并监测插入损耗。在这些条件下,对跳线进行跳线粘合和插入损耗测试,以分别确定机械完整性和光学性能。间歇工作间歇工作是指在指定的温度条件下1分钟至1小时的使用时间。这些条件是根据光纤跳线制造和组装中使用的材料特性而不是基于测试来确定的。因此,如果在这些条件下长时间使用,Thorlabs无法保证跳线的机械性能和光学性能。多模光纤教程弯曲损耗因光纤的外部和内部几何发生变化而产生的损耗称之为弯曲损耗。通常包含两大类:宏弯损耗和微弯损耗。宏弯损耗造成的衰减微弯损耗造成的衰减宏弯损耗一般与光纤的物理弯曲相关;例如,将其卷成圈。如右图所示,引导的光在空间上分布在光纤的纤芯和包层区域。以某半径弯曲光纤时,在弯曲外半径的光不能在不超过光速时维持相同的空间模分布。相反,由于辐射能量会损耗到周边环境中。弯曲半径较大时,与弯曲相关的损耗会比较小;但弯曲半径小于光纤的推荐弯曲半径时,弯曲损耗会非常大。光纤可以在弯曲半径较小时进行短时间工作;但如果要长期储存,弯曲半径应该大于推荐值。使用恰当的储存条件(温度和弯曲半径)可以降低对光纤造成yong久性损伤的几率;FSR1光纤缠绕盘设计用来zui大程度地减少高弯曲损耗。微弯损耗由光纤的内部几何,尤其是纤芯和包层发生变化而产生。光纤结构中的这些随机变化(即凸起)会破坏全内反射所需的条件,使得传播的光耦合到非传播模中,造成泄露(详情请看右图)。与由弯曲半径控制的宏弯损耗不同,微弯损耗是由制造光纤时在光纤内造成的yong久性缺陷而产生。包层模虽然多模光纤中的大多数光通过纤芯内的TIR引导,但是由于TIR发生在包层与涂覆层/保护层的界面,在纤芯和包层内引导光的高阶模也可能存在。这样就产生了我们所熟知的包层模。这样的例子可在右边的光束分布测量中看到,其中体现了包层模包层中的光强比纤芯中要高。这些模可以不传播(即它们不满足TIR的条件),也可以在一段很长的光纤中传播。由于包层模一般为高阶模,在光纤弯曲和出现微弯缺陷时,它们就是损耗的来源。通过接头连接两个光纤时包层模会消失,因为它们不能在光纤之间轻松耦合。由于包层模对光束空间轮廓的影响,有些应用(比如发射到自由空间中)中可能不需要包层模。光纤较长时,这些模会自然衰减。对于长度小于10 m的光纤,消除包层模的一种办法就是将光纤缠绕在半径合适的芯轴上,这样能保留需要的传播模式。在FT200EMT多模光纤与M565F1 LED的光束轮廓中,展现了包层而不是纤芯引导的光。入纤方式多模光纤未充满条件对于在NA较大时接收光的多模光纤来说,光耦合到光纤的的条件(光源类型、光束直径、NA)对性能有着极大影响。在耦合界面,光的光束直径和NA小于光纤的芯径和NA时,就出现了未充满的入纤条件。这种情况的常见例子就是将激光光源发射到较大的多模光纤。从下面的图和光束轮廓测量可以看出,未充满时会使光在空间上集中到光纤的中心,优先充满低阶模,而非高阶模。因此,它们对宏弯损耗不太敏感,也没有包层模。这种条件下,所测的插入损耗也会小于典型值,光纤纤芯处有着较高的功率密度。展示未充满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤过满条件在耦合界面,光束直径和NA大于光纤的芯径和NA时就出现了过满的情况。实现这种条件的一个方法就是将LED光源的光发射到较小的多模光纤中。过满时会将整个纤芯和部分包层裸露在光中,均匀充满低阶模和高阶模(请看下图),增加耦合到光纤包层模的可能性。高阶模比例的增加意味着过满光纤对弯曲损耗会更为敏感。在这种条件下,所测的插入损耗会大于典型值,与未充满光纤条件相比,会产生较高的总输出功率。展示过满条件的图(左边)和使用FT200EMT多模光纤进行的光束轮廓测量(右边)。多模光纤未充满或过满条件各有优劣,这取决于特定应用的要求。如需测量多模光纤的基准性能,Thorlabs建议使用光束直径为光纤芯径70-80%的入纤条件。过满条件在短距离时输出功率更大;而长距离(10 - 20 m)时,对衰减较为敏感的高阶模会消失。损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。Estimated Optical Power Densities on Air / GlassInterfaceaTypeTheoretical DamageThresholdbPractical SafeLevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。SMA-SMA光纤跳线,兼容超高真空和高温,?100 μm,数值孔径0.22Item #PrefixFiberOperatingRangeCoreDiameterCladdingDiameterCoatingDiameterNABend RadiusVacuum LevelaContinuous OperatingTemperatureaMV11LHigh OH,Polyimide Coated180 - 1150 nmb100 ± 3 μm120 ± 3 μm140 ± 4 μm0.22≥6 mm (Short Term)≥11 mm (Long Term)1 x 10-10Torr250 °C (Max)MV12LLow OH,Polyimide Coated380 - 2200 nm这些跳线可以在低至10-10Torr的真空环境和zui高250 °C的温度下连续工作(8小时)。它们也可以在zui高280 °C的温度下间歇工作(1分钟至1小时)。在波长300 nm以下时可能发生负感现象。我们还提供抗负感多模光纤。产品型号公英制通用MV11L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?100 μm,数值孔径0.22,高羟基,0.5米MV11L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?100 μm,数值孔径0.22,高羟基,1米MV12L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?100 μm,数值孔径0.22,低羟基,0.5米MV12L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?100 μm,数值孔径0.22,低羟基,1米SMA-SMA光纤跳线,兼容超高真空和高温,?200 μm,数值孔径0.22Item #PrefixFiberOperatingRangeCoreDiameterCladdingDiameterCoatingDiameterNABend RadiusVacuum LevelaContinuous OperatingTemperatureaMV21LHigh OH,Polyimide Coated180 - 1150 nmb200 ± 4 μm220 ± 4 μm239 ± 5 μm0.22≥11 mm (Short Term)≥22 mm (Long Term)1 x 10-10Torr250 °C (Max)MV22LLow OH,Polyimide Coated380 - 2200 nm这些跳线可以在低至10-10Torr的真空环境和zui高250 °C的温度下连续工作(8小时)。它们也可以在zui高280 °C的温度下间歇工作(1分钟至1小时)。在波长300 nm以下时可能发生负感现象。我们还提供抗负感多模光纤。产品型号公英制通用MV21L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?200 μm,数值孔径0.22,高羟基,0.5米MV21L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?200 μm,数值孔径0.22,高羟基,1米MV22L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?200 μm,数值孔径0.22,低羟基,0.5米MV22L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?200 μm,数值孔径0.22,低羟基,1米SMA-SMA光纤跳线,兼容超高真空和高温,?400 μm,数值孔径0.22Item #PrefixFiberOperatingRangeCoreDiameterCladdingDiameterCoatingDiameterNABend RadiusVacuum LevelaContinuous OperatingTemperatureaMV41LHigh OH,Polyimide Coated180 - 1150 nmb400 ± 8 μm440 ± 9 μm480 ± 7 μm0.22≥22 mm (Short Term)≥44 mm (Long Term)1 x 10-10Torr250 °C (Max)MV42LLow OH,Polyimide Coated380 - 2200 nm这些跳线可以在低至10-10Torr的真空环境和zui高250 °C的温度下连续工作(8小时)。它们也可以在zui高280 °C的温度下间歇工作(1分钟至1小时)。在波长300 nm以下时可能发生负感现象。我们还提供抗负感多模光纤。产品型号公英制通用MV41L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?400 μm,数值孔径0.22,高羟基,0.5米MV41L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?400 μm,数值孔径0.22,高羟基,1米MV42L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?400 μm,数值孔径0.22,低羟基,0.5米MV42L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?400 μm,数值孔径0.22,低羟基,1米SMA-SMA光纤跳线,兼容超高真空和高温,?600 μm,数值孔径0.22Item #PrefixFiberOperatingRangeCoreDiameterCladdingDiameterCoatingDiameterNABend RadiusVacuum LevelaContinuous OperatingTemperatureaMV63LHigh OH,Polyimide Coated180 - 1150 nmb600 ± 10 μm660 ± 10 μm710 ± 10 μm0.22≥33 mm (Short Term)≥67 mm (Long Term)1 x 10-10Torr250 °C (Max)MV64LLow OH,Polyimide Coated380 - 2200 nm这些跳线可以在低至10-10Torr的真空环境和zui高250 °C的温度下连续工作(8小时)。它们也可以在zui高280 °C的温度下间歇工作(1分钟至1小时)。在波长300 nm以下时可能发生负感现象。我们还提供抗负感多模光纤。产品型号公英制通用MV63L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?600 μm,数值孔径0.22,高羟基,0.5米MV63L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?600 μm,数值孔径0.22,高羟基,1米MV64L05NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?600 μm,数值孔径0.22,低羟基,0.5米MV64L1NEW!CustomerInspired! SMA光纤跳线,兼容UHV和高温,?600 μm,数值孔径0.22,低羟基,1米
  • 进口无油脂高真空玻璃活栓,活塞,阀门 GBM/12/2 ,GBF/12/2 腔体:2mm, 外径 7mm
    :英国进口高真空系统阀门,活塞,应用于特定仪器及高真空样品前处理和气体制备系统,真空度可达到10-6托(毫巴)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制