液相色谱质谱优化裂解能量

仪器信息网液相色谱质谱优化裂解能量专题为您提供2024年最新液相色谱质谱优化裂解能量价格报价、厂家品牌的相关信息, 包括液相色谱质谱优化裂解能量参数、型号等,不管是国产,还是进口品牌的液相色谱质谱优化裂解能量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合液相色谱质谱优化裂解能量相关的耗材配件、试剂标物,还有液相色谱质谱优化裂解能量相关的最新资讯、资料,以及液相色谱质谱优化裂解能量相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

液相色谱质谱优化裂解能量相关的厂商

  • 400-611-9236
    服务科学,世界领先--赛默飞世尔科技赛默飞世尔科技(纽约证交所代码:TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有约50,000名员工。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于首要品牌Thermo Scientific、Applied Biosystems、Invitrogen、Fisher Scientific和Unity Lab Services,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。欲了解更多信息,请浏览公司网站:https://www.thermofisher.cn/cn/zh/home.html。 赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约3700名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了6个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名专业人员直接为客户提供服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站https://www.thermofisher.cn/cn/zh/home.html。 联系方式:电话:400-611-9236售前咨询电子邮箱:yang.chen4@thermofisher.com售后服务电子邮箱:cru.cn@thermofisher.cn扫一扫,关注 “赛默飞色谱与质谱中国”官方微信
    留言咨询
  • 无锡加莱克色谱科技有限公司成立于2009年,是由美籍华人色谱专家和中科院科技管理人员共同创立的高科技企业,位于无锡(马山)国家生命科学园,致力于生产生物工程、制药、食品安全和环境检测等领域所急需的以聚合物和硅胶为基质的专用色谱填料,色谱柱、装柱系统、纯化设备以及分离纯化工艺和检测方法开发;是一家专业提供完整的生物医药分离纯化解决方案及设备、产线的集成商。加莱克公司拥有在美国知名企业从事20余年液相色谱填料研发和产业化的资深色谱专家团队,具有很强实战和创新能力,加莱克公司经过十多年的深耕细作,形成蛋白与抗体纯化、天然产物纯化和硅胶色谱填料三大技术平台,拥有10项发明专利、8项实用新型专利和近百种产品;并向市场推出四十余种产品,逐渐在生物医药纯化领域崭露头角;产品与技术已在国内众多药企广泛使用,并出口美国、俄罗斯、日本、印度和台湾地区等地区。为更好的解决客户需求,无锡加莱克色谱科技有限公司牵头国内知名厂商,大学研究机构,多个国内知名研究团队组成了战略合作联盟,为客户提供完整的生物医药解决方案,涵盖生物医药产品的工艺开发与优化、中试放大、工业级生产线设计等不同阶段、自动化控制、公用工程需求等方案的设计,相应生产设备提供、生产线的安装施工等,同时提供配套相关符合GMP要求的认证文件的制作和编写。希望通过加莱克的专业知识和技能,以及始终秉承“创新、专注、高效、诚信、责任、奉献”的企业理念,力求服务再多一点,质量再高一点,给客户和企业带来更优质的产品和服务,为我国生物医药产业的健康快速发展贡献一份力量。
    留言咨询
  • 深圳通瑞色谱仪器有限公司是一家专业从事液相色谱仪研发、设计、生产与销售的高科技企业, 开发了具有先进水平的GI-3000液相色谱系统、GI-3000XY血药浓度分析仪、GI-5200多功能离子色谱仪系统,产品已在医疗、食品、制药、环境环保、科研、高校科研实训、生物、石油化工等多行业领域使用。通瑞仪器注重于技术创新,紧盯国际新技术,推出了高性能双直线电机驱动精密滚珠丝杆的恒流泵输液系统(第三代技术,与waters,2695、安捷伦1260方案相同),达到国际先进技术水平。目前研发完成GI-3000XY血药浓度分析仪(全智能二维液相色谱系统),系统集成了,医院多科室上百种药物成分及其浓度的测定方法,为儿童的健康成长发育以及需要长期治疗、精准治疗的大病与慢性病患者,制定精准医疗方案,提供了科学支持,本系统也适用于常见药物的临床药物分析研究。 公司主要产品:GI-3000高效液相色谱仪系列产品,研发完成四元低压梯度液相色谱仪,目前是国率先家采用直线电机驱动滚珠丝杆的恒流泵输液系统(同waters2695方案),技术先进,具有完全自主知识产权。
    留言咨询

液相色谱质谱优化裂解能量相关的仪器

  • LC-MS 2000是天瑞仪器自主研发生产的新一代液相色谱-单四级杆质谱联用仪。LC-MS 2000具有体积更小,灵敏度更高,维护更方便,性价比更优的特点。可应用于生物医药(生物大分子、蛋白、多肽)、化工、食品安全(农残、兽残、食品添加剂)、环境保护(环境中VOCS检测) 、公检刑侦( 兴奋剂) 、工业检测(RoHS2.0指令、REACH指令)等领域。LC-MS 2000产品各项性能指标均达到国家检定规程要求。其采用更大抽速的进口真空泵、有效降低了本底真空的化学干扰。结构更加紧凑,大大缩减了仪器的体积,为实验室节约更多空间。产品性能升级离子源独特的涡旋加热气体设计,离子源温度控制精度高,均匀。多通道采集功能,快速地提高了分析速度及工作效率。可快速切换正、负电离模式,灵活测试;高压电源最快切换时间-10KV到+10KV可达20ms。专利的六级杆聚焦设计,可大幅提高离子的通过率,特别是高质量数离子信号。可获得丰富的质谱信息(包含分子量和多个结构信息)。ChemAnalyst软件功能强大、可一键切换的中英文用户界面,操作简便。可以选择多种离子源配置组合ESI(标配),APCI(选配),APPI(选配)。软件可操控自动进样器,有效提高样品通量,可完成无人值守的自动化序列检测。满足GMP,GLP要求,增加用户权限管理模块,数据完整性,审计追溯模块。测试质量范围10-2000AMU。大幅提升检测器的使用寿命,增强动态范围和灵敏度。应用领域生物医药:合成药物检测(CRO有机合成、生物多肽合成),原料药检测(合成原料药、中药药材)等。RoHS,REACH检测: PAEs,PAHs,双酚A,PBBs,PBDEs的超快速筛查。工业分析:生产质控(合成中间体及成品质量控制)。环境监测:环境污染物监测分析。食品安全:食品添加剂,食品残留物、污染物,非法添加物等。
    留言咨询
  • LCMS-2050高效液相色谱质谱联用仪是一款性能出色的单四极杆LC-MS,实现了小型化设计,对用户友好。LCMS-2050质谱仪融合了作为LC检测器的简便性和MS出色的性能,即使在小型化设计后依然能提供快速和高灵敏度分析。即使对于没有质谱使用经验的用户,也可以轻松上手,如同操作LC系统一般开展分析工作。凭借岛津在多年质谱开发中积累的技术, LCMS-2050实现了理想的小型化和高性能无缝融合,展现出令人难以置信的便捷操作性和优异的稳健性。LCMS-2050具有如下三大特点:1. 无缝融合——与LC化为一体。仪器体积小巧,设计紧凑,体积相比前一代产品减少 66%。这使得它可以灵活地与LC系统组合搭配,节省实验室空间。2. 优异性能——精彩表现,出类拔萃。继承并浓缩了岛津用于离子化和宽质量范围内离子传输的专有技术。加热复合离子源 (DUIS)适用范围更加广泛,对各种化学性质的化合物(包括低极性化合物)均实现了出色的灵敏度。Mass-it是一项显示质谱信息的全新功能,可帮助用户直观地掌握复杂数据。3. 操作简便——节省时间、电力和成本。只需6分钟即可开始工作,启动速度比前一代产品至少快3倍。充分节省操作、能耗和实验室空间,最大限度地提高实验室生产力。
    留言咨询
  • 作为岛津LC家族新成员,Nexera Mikros在流量范围(1 - 500 μL/min)上完美补充了现有产品线。相比半微流量液相色谱(流速100 μL/min至500 μL/min范围),Nexera Mikros在与LCMS联用检测目标化合物时可以获得更高的灵敏度;与纳流LCMS系统(流量范围在100 nL/min至1 μL/min范围)相比,可以获得更短的分析时间和更好的稳定性。另外,Nexera Mikros提升了可操作性,同时通过更小的系统死体积实现更高的灵敏度。便捷的UF-Link技术,可以一键连接和断开LCMS离子源接口和分析色谱柱。在低浓度成分的药代动力学分析、血液中的激素及其他痕量组分分析中,用于微流量液相色谱LCMS联用系统的Shim-pack MC分析柱和Shim-pack MCT捕集柱可以抑制样品吸附和色谱峰拖尾现象,提高检测灵敏度。Nexera Mikros满足各种用户需求,例如节省新药研发周期及成本,缩短分析时间,便捷维护。同时,与LCMS联用时,还能展现良好的灵敏度和便捷性。 产品特点: 1. 卓越的灵敏度相比半微量系统,该产品提供了高达数倍至数十倍的灵敏度,通过优化适用于低流速下的ESI喷针相对于进样部分(脱溶剂管,DL)的位置,将离子化效率和离子通过率最大化。CTO-Mikros设计为可以安装在MS主机单元上,色谱柱和ESI喷针直接相连以减少死体积,以及由于峰展宽带来的灵敏度损失。2. 良好的耐用性和稳定性优化后的喷针和DL夹角提高了离子的通过效率,同时去除了过量的溶剂分子。这样可以减少污染的影响,并能进行稳定的分析。3. 优异的可操作性该产品是基于现有的离子源的设计,由于其便于更换、拆卸附件和维护,已经受到用户的好评。我们还开发了UF-Link,可以零死体积一键连接色谱柱和ESI毛细管。与常规半微流量液相色谱相比,在微流量液相色谱中,样品在管路连接等处的死体积中会出现显著的样品扩散。由于这个原因,没有死体积的连接是必要的,这样可以稳定地提供高灵敏度。使用UFLink,用户可以通过简单的倾斜来连接色谱柱和ESI毛细管,确保无死体积。UF-Link可以广泛用于岛津和其他公司的多种色谱柱。通过高分辨率的相机,可以方便地从电脑上检查喷雾状态和位置,必要时可以通过简单的程序进行优化。 4. 宽的流速设定范围由于精确的压力反馈控制、内置的主动入口单向阀和溶剂输送管路的自动切换控制,脉动流量值显著降低。因此,溶剂流速范围可以在1 μL/min到500 μL/min之间广泛地设置。 5. 在微流量区域的高通量分析该系统可以从进样过程带来的压力下降中快速恢复,从而提高了微流量区域的分析通量。 6. 追求分析稳定性通过自动压缩算法可以自动测量溶剂的压缩性,并在压力波动过程中提供修正函数来优化流量。此外,在分析开始时,LC-Mikros柱塞操作是同步的,因此分析总是从相同的柱塞位置开始,从而提高分析稳定性。
    留言咨询

液相色谱质谱优化裂解能量相关的资讯

  • 孰优孰劣?气相色谱、液相色谱大PK
    p style="text-indent: 2em "气相和液相是有机检测的两大基本仪器,占据着有机实验室的统治地位,虽然同做有机检测,但就两个仪器本身也有着较大区别,本篇文章将从流动相、固定相、分析对象、检测技术和制备分离5个方面进行比较。/pp  气相色谱是二十世纪五十年代出现的一项重大科学技术成就。这是一种新的分离、分析技术,它在工业、农业、国防、建设、科学研究中都得到了广泛应用。同为色谱技术之一,液相色谱也是一种分离与分析技术,它的特点是以液体作为流动相,固定相可以有多种形式,如纸、薄板和填充床等。那么,气相色谱和液相色谱相比各有什么特点呢?可以从以下几个方面进行比较:/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/67f10b1e-e84f-40fc-a467-a87d254ca65a.jpg" title="1.jpg" alt="1.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "流动相/span/strong/pp  GC用气体作流动相,又叫载气。常用的载气有氦气、氮气和氢气。与HPLC相比,GC流动相的种类少,可选择范围小,载气的主要作用是将样品带入GC系统进行分离,其本身对分离结果的影响很有限。/pp  而在HPLC中,流动相种类多,且对分离结果的贡献很大。换一个角度看,GC的操作参数优化相对HPLC要简单一些。此外,GC载气的成本要低于HPLC流动相的成本。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "固定相/span/strong/pp  因为GC的载气种类相对少,故其分离选择性主要通过不同的固定相来改变,尤其在填充柱GC中,固定相常由载体和涂敷在其表面的固定液组成,这对分离有决定性的影响,所以,导致了种类繁多的GC固定相的开发研究。迄今已有数百种GC固定相可供我们选择使用,但常用的HPLC固定相也就十几种。/pp  故LC在很大程度上要靠选用不同的流动相来改变分离选择性。当然,毛细管GC常用的固定相也不过十几种。在实际分析中,GC一般是选用一种载气,然后通过改变色谱柱(即固定相)以及操作参数(柱温和载气流速等)来优化分离,而LC则往往是选定色谱柱后,通过改变流动相的种类和组成以及操作参数(柱温和流动相流速等)来优化分离。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "分析对象/span/strong/pp  GC所能直接分离的样品是可挥发、且热稳定的,沸点一般不超过500℃。据有关资料统计,在目前已知的化合物中,有20%~25%可用GC直接分析,其余原则上均可用LC分析。也就是说GC的分析对象远没有LC多。/pp  需要指出的是,有些虽然不能用GC直接分析的样品,通过特殊的进样技术,如顶空进样和裂解进样,也可用GC间接分析。比如高分子材料的裂解色谱就是如此。这在一定程度上扩大了GC分析对象的范围。此外,GC比LC更适合于气体的分析。/pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "检测技术/span/strong/pp  GC常用的检测技术有多种,比如热导检测器(TCD)、火焰离子化检测器(FID)、电子俘获检测器(ECD)、氮磷检测器(NPD)等,其中FID对大部分有机化合物均有响应,且灵敏度相当高,最小检测限可达纳克级。/pp  而在LC中尚无通用性这么好的高灵敏度检测器。商品LC仪器常配的也就是紫外-可见光吸收检测器(UV-Vis)和示差折光检测器(RI)。前者的通用性远不及GC中的FID,后者的灵敏度又较低,且不适于梯度洗脱。当然,不论GC还是LC,都有一些高灵敏度的选择性检测器,GC有ECD和NPD等,LC有荧光和电化学检测器。较为理想的检测器应该首推MS,但在这一点上,GC目前要优于LC。/pp  因为GC流动相的特点,它与MS的在线联用已不存在任何问题,特别是毛细管GC与MS的联用已成为常规分析方法。而LC与MS的联用就受到了流动相的限制。虽然目前已有多种接口,如离子束、热喷雾、电喷雾等,但流动相的选择还是受到明显的限制。/pp style="text-align: center"img src="https://img1.17img.cn/17img/images/201812/uepic/dc79324a-3854-4369-a9f5-19ad962fc77f.jpg" title="2.jpg" alt="2.jpg"//pp style="text-align: center "strongspan style="color: rgb(0, 112, 192) "制备分离/span/strong/pp  在新产品的研究开发过程中,或在未知物的定性鉴定工作中,常需要收集色谱分离后的组分作进一步分析,而某些高纯度的生化试剂则是直接用色谱分离来制备的。就这一点而言,GC在原理上应该是有优势的,因为收集馏分后载气很容易除去。然而,由于GC的柱容量远不及LC,如果用GC作制备,那是相当费时的。因此,制备GC的实用价值很有限。制备LC则有很广泛的应用。/pp  strong下面就来介绍一下,相比于气相色谱,液相色谱在以下三大方面所具备的优越性。/strong/pp  1. 气相色谱不适用于不挥发物质和对热不稳定物质,而液相色谱却不受样品的挥发性和热稳定性的限制。有些样品因为难以汽化而不能通过柱子,热不稳定的物质受热会发生分解,也不适用于气相色谱法。这使气相色谱法的使用范围受到了限制。/pp  2. 对于很难分离的样品,用液相色谱常比用气相色谱容易完成分离,主要有以下三个方面的原因:/pp  ①液相色谱中,由于流动相也影响分离过程,这就对分离的控制和改善提供了额外的因素。而气相色谱中的载气一般不影响分配,也就是说,在液相色谱中,有两个相与样品分子发生选择性的相互作用。/pp  ②液相色谱中具有独特效能的柱填料(固定相)的种类较多,这样就使固定相的选择余地更大,从而增加了分离的可能性。/pp  ③液相色谱使用较低的分离温度,分子间的相互作用在低温时更为有效,因此降低温度一般会提高色谱分离效率。/pp  3. 和气相色谱相比,液相色谱对样品的回收比较容易,而且是定量的,样品的各个组分很容易被分离出来。因此,在很多场合,液相色谱不仅作为一种分析方法,而且可以作为一种分离手段,用以提纯和制备具有中等纯度的单一物质。/pp  综上所述,与气相色谱相比,液相色谱在样品的适用性、分离能力以及样品回收方面都具备着一定的优越性。凭借着技术上的这些优势,液相色谱得以在更多领域得到广泛应用。/p
  • 二维液相色谱-高分辨质谱检测平台SEC-RPLC-QTOF轻松鉴定抗生素中聚合物杂质
    目前,在抗生素新药申报日益严格的大背景下,聚合物杂质的研究常常是药品审评中心(Center for Drug Evaluation, CDE)发补及退审的理由。抗生素中聚合物杂质是引起临床不良反应的主要过敏原,严格控制其含量具有重要的意义。传统的聚合物杂质检测通常采用排阻色谱法,该方法检测时间长、分离度和专属性不足,对聚合物杂质进行笼统的总量控制,定量不准确,且无法鉴定聚合物杂质的结构。 为了解决这些难题,岛津公司与北京新领先医药科技发展有限公司合作搭建了SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台。基于该平台二维杂质动态上样、在线脱盐等技术,以及岛津高分辨质谱仪的高质量准确度和高质量稳定性等性能特点,目前双方的研发人员共同参与完成了十四种β-内酰胺类抗生素的聚合物杂质的全面解析,并建立质谱数据库。 二维液相色谱-高分辨质谱检测平台SEC-RPLC-QTOF 参考2020年版《中国药典》头孢米诺和头孢地嗪有关物质Ⅱ检测方法,一维采用岛津Shimpack Bio Diol-60高效凝胶色谱柱进行分离,将聚合物杂质指针性地导入样品环;然后采用中心切割在线除盐进行二维反相色谱分离目标杂质,并通过LCMS-9030四极杆飞行时间高分辨质谱采集,获得准确的一级和二级质谱数据来达到鉴定杂质的目的。 SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台流路图 抗生素杂质数字化标准品数据库 创新中心开发的《抗生素杂质数字化标准品数据库》已收录《欧洲药典》β-内酰胺类抗生素相关杂质标准品基于岛津液相色谱-高分辨质谱仪LCMS-9030采集的ESI正/负双模式,7个不同碰撞能量下的二级质谱图,同时数据库已登录化合物信息、可能的结构式、分析方法的色谱条件和《中国药典》流动相条件对应的保留时间等。此外,为方便使用者从高分辨质谱方法向低分辨质谱方法的转化,本数据库还登录了14种抗生素品种相关杂质的MRM方法文件,适用于液相色谱-三重四极杆质谱产品的检测。 目前数据库包含头孢甲肟、拉氧头孢、氟氧头孢钠、头孢呋辛、头孢曲松、头孢他碇、头孢吡肟、头孢唑啉钠、阿莫西林、头孢呋辛酯、头孢哌酮钠舒巴坦钠、头孢克肟、头孢泊肟酯和头孢地尼等14种β-内酰胺类抗生素品种,153种杂质和主成分对照品,以及50余种高分子聚合物杂质的共计1483张二级质谱图。 应用案例:阿莫西林聚合物杂质的鉴定 采用SEC-RPLC-QTOF二维液相色谱-高分辨质谱检测平台共检出阿莫西林热降解溶液中14种杂质成分,成功分离出阿莫西林二聚体,三聚体,四聚体及其异构体。下图为阿莫西林二聚体在数据库中的检索结果。 阿莫西林二聚体鉴定结果 详细信息请参考:《阿莫西林胶囊热降解聚合物杂质的2D-HPLC分析及质谱裂解机理探讨》《药物分析杂志》中图分类号:R917 文献标识码:A 文章编号:0254-1793(2021)07doi: 10.16155/j.0254-1793.2021.07。 总结 创新中心搭载的专属性中心切割二维反相色质谱联用分析平台SEC-RPLC-QTOF,采用中心切割技术,在线除盐分离出目标杂质,利用LCMS-QTOF配合自主开发的质谱库进行鉴定。该分析平台不仅为企业客户大大降低了企业研发成本,同时也为企业的工艺改进、剂型研发、品质提升等方面提供技术参考。
  • 《出口水果中多果定残留量的测定 液相色谱-质谱/质谱法》等86项行业标准发布
    现发布《进口再生铜原料检验规程》等86项行业标准(目录见附件1)。《蜜蜂美洲幼虫腐臭病检疫技术规范》(SN/T 1168-2011)等8项被代替标准自新标准实施之日起废止。本次发布的标准文本可通过中国技术性贸易措施网站(http://www.tbtsps.cn)标准栏目查阅。《TCK疫麦环氧乙烷熏蒸处理方法》(SN/T 2016-2007)等3项行业标准(见附件2)自本公告发布之日起废止。特此公告。附件:1.《进口再生铜原料检验规程》等86项行业标准目录.xls2.废止行业标准目录.xls海关总署2022年3月14日公告正文下载链接:海关总署关于发布《进口再生铜原料检验规程》等86项行业标准并废止3项行业标准的公告.doc海关总署关于发布《进口再生铜原料检验规程》等86项行业标准并废止3项行业标准的公告.pdf相关标准如下:发布行业标准目录序号标准编号 标准名称替代标准号实施日期1SN/T 0184.4-2022 出口食品中单核细胞增生李斯特菌的检测方法 第4部分:肽核酸荧光原位杂交(PNA-FISH)方法2022-10-012SN/T 0500-2022 出口水果中多果定残留量的测定 液相色谱-质谱/质谱法SN 0500-952022-10-013SN/T 1168-2022 蜜蜂美洲幼虫腐臭病检疫技术规范SN/T 1168-20112022-10-014SN/T 1632.4-2022 出口乳粉中克罗诺杆菌属(阪崎肠杆菌)检测方法 第4部分:PCR-CRISPR法2022-10-015SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法SN/T 2073-20082022-10-016SN/T 2922-2022 出口保健食品中EPA、DHA和AA的测定 气相色谱法SN/T 2922-20112022-10-017SN/T 4544.2-2022 商品化试剂盒检测方法 菌落总数 方法二2022-10-018SN/T 4545.3-2022 商品化试剂盒检测方法 沙门氏菌 方法三2022-10-019SN/T 4545.4-2022 商品化试剂盒检测方法 沙门氏菌 方法四2022-10-0110SN/T 4675.32-2022 进出口葡萄酒中羧甲基纤维素钠的测定 分光光度法2022-10-0111SN/T 5363-2022 鲤浮肿病检疫技术规范2022-10-0112SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法2022-10-0113SN/T 5366.1-2022 商品化试剂盒检测方法 肠杆菌科计数 方法一2022-10-0114SN/T 5367.1-2022 商品化试剂盒检测方法 单核细胞增生李斯特氏菌 方法一2022-10-0115SN/T 5368.1-2022 商品化试剂盒检测方法 克罗诺杆菌属(阪崎肠杆菌) 方法一2022-10-0116SN/T 5408-2022 再生塑料与改性塑料的鉴别方法2022-10-0117SN/T 5414-2022 再生塑料中33种禁限用物质的测定 裂解气相色谱-质谱筛选法2022-10-0118SN/T 5419-2022 进出境陆生动物隔离检疫场防疫消毒技术规范2022-10-0119SN/T 5420-2022 蜜蜂热厉螨病检疫技术规范2022-10-0120SN/T 5436-2022 乳及乳制品发酵剂、发酵产品中乳酸菌计数 流式细胞仪法2022-10-0121SN/T 5437-2022 出口动物源食品中苯海拉明残留量的测定 液相色谱-质谱/质谱法2022-10-0122SN/T 5438-2022 出口乳粉中核苷酸含量的测定 液相色谱-质谱/质谱法2022-10-0123SN/T 5439.1-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第1部分:沙门氏菌2022-10-0124SN/T 5439.2-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第2部分:金黄色葡萄球菌2022-10-0125SN/T 5439.3-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第3部分:副溶血性弧菌2022-10-0126SN/T 5439.4-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第4部分:克罗诺杆菌2022-10-0127SN/T 5439.5-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第5部分:产志贺毒素大肠埃希氏菌及大肠埃希氏菌O1572022-10-0128SN/T 5439.6-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第6部分:空肠弯曲菌2022-10-0129SN/T 5439.7-2022 出口食品中食源性致病菌快速检测方法 PCR-试纸条法 第7部分:单核细胞增生李斯特氏菌2022-10-0130SN/T 5440-2022 出口食品中双炔酰菌胺、噻唑菌胺、吲唑磺菌胺等多种酰胺类杀菌剂残留量的测定 液相色谱-质谱/质谱法2022-10-0131SN/T 5441-2022 出口水产品中三卡因、苯佐卡因、喹哪啶残留量的测定 液相色谱-质谱/质谱法2022-10-0132SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法2022-10-0133SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法2022-10-0134SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法2022-10-0135SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法2022-10-0136SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法2022-10-0137SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法2022-10-0138SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法2022-10-0139SN/T 5450-2022 动物源食品中9种双稠吡咯啶类生物碱的测定 液相色谱-质谱/质谱法2022-10-0140SN/T 5451-2022 商品化试剂盒检测方法 乳酸菌总数 方法一2022-10-0141SN/T 5452-2022 食品检测用浓缩仪采购与验收指南2022-10-01废止行业标准目录序号标准编号标准名称1SN/T 2016-2007TCK疫麦环氧乙烷熏蒸处理方法2SN/T 2837-2011进境集装箱承载废物原料动植物检疫除害处理规程3SN/T 4642-2016枇杷桔小实蝇、梨小食心虫检疫处理技术标准

液相色谱质谱优化裂解能量相关的方案

液相色谱质谱优化裂解能量相关的资料

液相色谱质谱优化裂解能量相关的论坛

  • 【原创大赛】基于密度泛函理论研究四环素的电喷雾质谱裂解机理

    【原创大赛】基于密度泛函理论研究四环素的电喷雾质谱裂解机理

    基于密度泛函理论研究四环素的电喷雾质谱裂解机理摘要: 基于密度泛函理论(Densityfunctional theory,DFT)方法,考察四环素的优势构像极其在电喷雾正离子模式下准分子离子峰处于基态的最优构型,结合构形参数及质谱测定对准分子离子的最优构型进行了确认,并通过全几何结构优化,对四环素的优势构像及其在电喷雾质谱(LC-ESI-Q-Orbitrap-MS)正离子模式下准分子离子的二级谱中碎片离子的最优构型进行研究。结合高分辨率质谱数据对其质谱裂解机理进行解释。该研究可以为进一步探索四环素类化合物及其衍生物ESI-MS正离子模式下的质谱裂解规律提供参考和理论指导依据。关键词:密度泛函理论(DFT);静电轨道离子阱(Orbitrap);四环素(Tetracycline)1 实验部分1.1 仪器与试剂Thermo Scientific:Q Exactive Orbitrap ,Merck:CH3OH,Standard: Tetracycline(上海士锋生物科技有限公司)1.2 分析条件质谱(Mass Spectrometry):Ion Source:ESI, MS Type:MS2,Ion Mode:Positive(+),Fragmentation Mode:HCD,Collsion Energy:30ev色谱(Chromatography):Column Name:WatersXBridge TM(Waters,C18)3.5um,2.1*50mmFlow Gradient:90A(0min)-50A(5min)-5A(25min)-90A(30min),FlowRate:200ul/minSolvent A:H2O+0.1%Acid,Solvent B:CH3OH+0.1%Acid1.3 量子化学计算 使用密度泛函的B3LYP方法,以6-311+G*为基组,对反应势能面上的各驻点的构型进行了全几何参数优化,并由频率分析确认了稳定点的正确性,为了得到更精确的能量信息,又在B3LYP//6-311++G(3df,3pd)水平上计算了各驻点的单点能,所有计算采用Gaussian 03程序包完成。前言 四环素类(Tetracyclines,TCs)是由链霉菌产生的一类广谱抗生素(1),在化学结构上都属于多环并四苯羧基酰胺母核的衍生物。四环素类可分为天然品和半合成品两大类。天然品为从放线菌金色链丛菌的培养液等分离出来的抗菌物质,四环素类药物为广谱抗生素,广泛用于临床治疗,并常被用做动物促生长剂,但耐药性的出现限制了该类药物的使用。目前关于四环素类抗生素的分析大多采用液相色谱质谱联用技术分析(2-9),并多数是采用电喷雾离子源。随着串联质谱技术的不断发展,采用量子化学方法及理论计算从分子水平研究化合物的质谱裂解规律及机理受到广泛而长期的关注。采用量子化学理论在质谱的裂解机理计算中,准分子离子几何构型的可靠性直接影响后续更加深层次的分析,而确定准分子离子最可能的最优构型是解析谱裂解机理的首要解决问题,本研究采用量子化学计算方法,依据密度泛函理论,并借助高斯软件Gaussian 03计算分析,计算了四环素正离子模式下准分子离子的最优构型,并且结合高分辨率质谱静电轨道离子阱质谱(Q-Orbitrap-MS)给出的可靠数据,对特征离子的裂解做以归属,为此类化合的鉴定解析提供理论依据。四环素的结构及其空间三维立体模型见图1http://ng1.17img.cn/bbsfiles/images/2015/09/201509221738_567179_2359621_3.bmp图1 Tetracycline结构及其空间立体构型2 结果分析2.1 量子化学计算各质子化位点的质子亲和势能 由于化合物结构有多个质子化位点,所以需通过计算确定其最稳定构型及最大可能质子化位点,质子化反应方程为:RX+H+→RH+分子的气相碱性由其质子化方程的焓变ΔrH来确定,即质子亲和能EPA=-ΔrH,质子亲和能较大的化合物,其气相碱性较强,按照分子轨道理论,质子化方程的气相质子亲和能WPA与分子RX的最高占据道HOMO和质子H+的最低未占据轨道LUMO的差值有关,由于H+的LUMO是一个定值,所以可以认定WPA只与RX的HOMO相关并呈线性关系,原则上RX分子的HOMO能级值可以由量子计算得到。在B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p),B3LYP/6-311++G(3df,2p)//B3LYP/6-311++G(3df,2p)和B3P86/6-311++G(3df,2p)//B3P86/6-311++G(3df,2p)基础下,计算了各质子化位点的平衡几何构型,优化得到的分子平衡几何构型都经频率计算证明是势能面上的极小点(无虚频),获得各质子化位点的质子亲和能(E),各质子结合位点的质子亲和能计算结果见表1http://ng1.17img.cn/bbsfiles/images/2015/09/201509221752_567196_2359621_3.bmp表1 四环素各质子结合位点的质子亲和能EPATabel 1 Protonaffinity for proton binding sites of Tetracycline(EPA)通过表1可以看出质子结合位点位于氨基上具有较高的质子亲和能,表明N上孤对电子可能占据HOMO轨道,所以质子化位点极可能位于氨基上。2.2 四环素在LC-ESI-Q-Orbitrap-MS下的质谱裂解途分析通过以上计算,以质子化位点位于氨基上为起点,并结合高分辨率质谱数据对其质谱裂解途径和机理进行分析,使用(LC-Q-Orbitrap-MS)获得准分子离子峰m/z 445.1594的二级谱,质谱碎片离子及相对丰度见表2http://ng1.17img.cn/bbsfiles/images/2015/09/201509221750_567191_2359621_3.bmp表2 四环素电喷雾离子源下准分子离子(MS2)的碎片离子及其相对丰度Tabel 2 Relative abundancesof characteristic ions in the ESI(MS2) mass spectra of Tetracycline依据表1计算结果,对比质子亲和能,质子最可能的结合位点为氨基上氮原子,氮原子的一对未成键电子最可能占据HOMO轨道,所以以质子结合到氨基上所形成的准分子离子峰为起始点(备注:只是最可能概率最大的,但是不排除其他小概率的质子结合位点所引发的裂解),对其可能的质谱裂解途径做以下分析。准分子离子峰失去H2O中性分子后得到碎片离子m/z427.1500,与理论误差为-2.61ppm。而失去H2O中性分子可能有多个不同位点,1.2-消除脱水和-2.4消除脱水,从空间立体构型中可以看到氢和羟基均位于一侧,所以有利于发生1.2-消除和2.4-消除,如此就有了三种可能的脱水方式,所以通过计算得到不同三种方式下脱水后生成离子的稳定构型及其能量,见表3。由表3可以看出第一种模式下生成的离子能量最低,表明此方式为主要途径,更容易进行。准分子离子通过正电荷转移失去NH3可以生成离子m/z 428.1340,与理论误差为0.02ppm,β为的氢重排到侧链氮原子上可以脱去侧链CH3NHCH3得到碎片离子m/z 383.0761,与理论值误差为1.01ppm。该离子进一步通过1.2-消除脱H2O后生成离子m/z 365.0656,与理论值误差为0.19ppm。后通过2.4-消除脱水生成离子m/z 347.0550,与理论值误差为-1.91ppm。,由于2.4-消除相比1.2-消除难所以生成的离子丰度相对较低,离子m/z

  • 【求助】请教:裂解气相色谱

    现在已经有很多人开始用裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]来对多聚物进行定性和半定量,我想就这个方面的知识具体了解一下,特别是裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],有没有裂解液相色谱呢?我看了一些资料裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]主要是用裂解器对大分子的样品进行裂解过程,然后得到一级产物和二级产物,其实就是一些小分子的有机物,再进入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]出峰,根据质谱中质子的质量可以判断[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]峰的出峰情况.如果再用内标物质一起进行裂解过程的话是可以进行定量的,但是不可以进行绝对定量.我想请问一些关于这个方面的问题:裂解色谱的裂解器,它的裂解过程具体是如何实行的?得到的样品是可以挥发的样品吗?如果不是可以挥发的样品可以进入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱吗?裂解液相色谱这个装置有吗?可以从裂解器中得到的产品再进入液相色谱中进行分析吗?最后一个问题,如果有谁有裂解[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]方面的资料可以在这里和我分享吗?如果有这个方面的专家可以方便我联系您吗?我很希望得到指教,谢谢您的阅读和给我的良好的建议,我现在很想做这个方面的突破.我的联系邮箱:rch_qi@126.com

液相色谱质谱优化裂解能量相关的耗材

  • 裂解器
    产品简介 随着裂解色谱法的发展和普及,裂解器已成为当今色谱分析仪器发展的一个重要组成部分,我国目前拥有新老色谱仪面广量大,应用裂解器配备在这些色谱仪上能更好地、更广泛地发挥作用,提高经济效益。 RJ-1型裂解器是一种小型的管炉式裂解器,它与气相色谱仪、质谱等仪器联用是高分子合成材料、橡胶、食品、生物、医药卫生、化妆品、矿产、侦破等领域不可缺少的分析进样工具。产品特性☆灵敏度高,样品用量少。☆裂解室死体积小。☆采用不切断载气流,直接进样方式。☆不受样品形态和物理性质的限制,适应性广。☆裂解温度选择方便,显示直观。☆可与色谱、质谱等仪器联用。☆备有出口保温装置。技术指标仪器型号RJ-1温度控制范围氦气纯化器温度波动1%气密度从裂解器的入口处充入0.2Mpa气体,堵住出口,半小时内压力不下降0.01Mpa。加热功率300W作用条件环境温度:室温-45℃相对湿度:≤85%无强烈的机械振动和强干扰电磁场存在空气新鲜。电源220V±10% 频率20Hz外形尺寸裂解器: 170×65×70(mm)2)温度控制器:280×120×230(mm)
  • 裂解器 0 0
    产品简介 随着裂解色谱法的发展和普及,裂解器已成为当今色谱分析仪器发展的一个重要组成部分,我国目前拥有新老色谱仪面广量大,应用裂解器配备在这些色谱仪上能更好地、更广泛地发挥作用,提高经济效益。 RJ-1型裂解器是一种小型的管炉式裂解器,它与气相色谱仪、质谱等仪器联用是高分子合成材料、橡胶、食品、生物、医药卫生、化妆品、矿产、侦破等领域不可缺少的分析进样工具。产品特性☆灵敏度高,样品用量少。☆裂解室死体积小。☆采用不切断载气流,直接进样方式。☆不受样品形态和物理性质的限制,适应性广。☆裂解温度选择方便,显示直观。☆可与色谱、质谱等仪器联用。☆备有出口保温装置。技术指标仪器型号RJ-1温度控制范围氦气纯化器温度波动1%气密度从裂解器的入口处充入0.2Mpa气体,堵住出口,半小时内压力不下降0.01Mpa。加热功率300W作用条件环境温度:室温-45℃相对湿度:≤85%无强烈的机械振动和强干扰电磁场存在空气新鲜。电源220V±10% 频率20Hz外形尺寸裂解器: 170×65×70(mm)2)温度控制器:280×120×230(mm)
  • 裂解器RJ-1
    产品简介 随着裂解色谱法的发展和普及,裂解器已成为当今色谱分析仪器发展的一个重要组成部分,我国目前拥有新老色谱仪面广量大,应用裂解器配备在这些色谱仪上能更好地、更广泛地发挥作用,提高经济效益。 RJ-1型裂解器是一种小型的管炉式裂解器,它与气相色谱仪、质谱等仪器联用是高分子合成材料、橡胶、食品、生物、医药卫生、化妆品、矿产、侦破等领域不可缺少的分析进样工具。产品特性☆灵敏度高,样品用量少。☆裂解室死体积小。☆采用不切断载气流,直接进样方式。☆不受样品形态和物理性质的限制,适应性广。☆裂解温度选择方便,显示直观。☆可与色谱、质谱等仪器联用。☆备有出口保温装置。技术指标仪器型号RJ-1温度控制范围氦气纯化器温度波动1%气密度从裂解器的入口处充入0.2Mpa气体,堵住出口,半小时内压力不下降0.01Mpa。加热功率300W作用条件环境温度:室温-45℃相对湿度:≤85%无强烈的机械振动和强干扰电磁场存在空气新鲜。电源220V±10% 频率20Hz外形尺寸裂解器: 170×65×70(mm)2)温度控制器:280×120×230(mm)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制