推荐厂家
暂无
暂无
请问各位高手,小第最近遇见个问题,客户问我压力传感器和数字式压力计有什么区别,我一时间回答不上来,他们的工作原理有什么不同呢?请哪位大哥帮我解释下好吗?
随着生产和科学技术的发展,对电测技术提出了更高的要求,一般的电工指示仪表、已不能满足某些测量的需要。数字式仪表、晶体管电压表等电子测量仪器具有高精确度、高灵敏度、高速度以及易于实现自动化等优点,因此得到了迅速的发展和广泛的应用。数字式仪表是利用半导体脉冲数字电路自动地将被测量数值用数字形式直接显示出来的一种电子仪表。 和电工指示仪表相比,数字仪表有以下的优点: (1)准确度高,如六位数字电压表测直流电压的误差可低于10—s数量级。 (2)灵敏高度,如积分式数字电压表的分辨率可达1微伏。 (3)测量速度快,一秒内可测多次,有些数字电压表可达每秒几万次。 (4)输入阻抗高、仪表功耗小。如数字电压表的基本量程的输入阻抗提高达2500兆欧。而消耗功率只有4×10 瓦,这是一般指示仪表根本达不到的。 (5)读数方便,没有读数误差这是由于测量结果直接用数字给出,所以不会由于使用者读数时站立角度不同而产生视差。数字仪表的缺点是:由于采用了大量的电子元件和其它部件,所以结构比较复杂,成本也较高。但是由于大规模集成电路的发展,现已有可能制造出价格低廉的数字式仪表。不同数字仪表的工作原理和测试功能是各不相同的,但都是由模拟一数字变换系统(简称模/数变换或A/D变换)和计数系统两部分组成。模拟一数字变换系统的作用是将被测的模拟量,如电压、电阻等变换为数字量,即将被测信号变换成与之成比例的脉冲参量,而计数系统的作用是对转换成的数字量进行计数和显示。由于数字仪表具有以上特点,它主要应用于:精密测量;对大批生产的精密指示仪表进行刻度与校验;对大量生产的元件进行分选;远距离测量;生产过程自动检测系统和控制等方面。常用的数字仪表有计数器、数字频率表、数字电压表、数字相位表和数字功率表等。
21世纪,工业技术发展迅速,但随之而来的环境污染问题也逐渐加剧,国家乃至全世界对环境保护问题都非常重视,“工业三废”之一的污水排放的规范化,科学化和定量化的管理已成为国家环境保护法规的一个重要方面,各地环保部门正在 根据国家法规的要求,加强对排污口的规范化整治。在污水流量计量领域,国内外较多采用的是电磁式流量计、超声波式流量计等技术,在一定程度上对污水流量的检测起到了一定的作用,但是由于其采集处理 系统采用模拟式的数据采集传输方式,受环境因素的影响比较大,因此,其使用范围受到了很大程度的限制。在经过大量的实地考察和资料学习后,根据各部门对污 水计量的急切要求,结合我们现有数字传感器的技术思路,开发出了一套新型智能数字式明渠污水流量计量的数据采集处理系统。1、基本原理1.1、巴歇尔槽流量计量原理的介绍巴歇尔槽是在污水计量领域应用较多的一种流量槽。其流量原理是,当标准巴歇尔槽内流过理想定常流体时,可以在实际工程中使用其经验公式(1)对槽内水体瞬时流量进行计量。http://ws.llybw.com/up_files/image/Article/2013/11/22/52287911.png (1)式中:qv为槽体内瞬时流量;b为喉道的宽度;h为相对于喉管底的上游侧的水位。由公式(1)可知,只要测出巴歇尔槽上游侧水位,即可得流体的瞬时流量qv。1.2 巴歇尔槽在设计中的应用明渠中的流体可以看作是在无压状态下流动,即理想定常流体,满足巴歇尔槽公式的应用条件,因此可以在明渠流量计量中使用 巴歇尔槽。设计中,巴歇尔槽的喉道宽度b已知,数字式明渠污水流量计的数据采集系统用于采集巴歇尔槽体内的水位值高度h,并将此水位值传入微处理器,进入 微处理器的水位数据可以根据公式(1)转化成流量值,等待进一步的综合处理。2、系统软硬件设计2.1、低功耗、数字式水位采样电路的设计随着传感技术的不断发展,在水位传感领域出现了一种新型的数字式水位传感器———检索式数字水位传感器,它是太原 理工大学测控技术研究所自主研发的一种新型水位传感器,其基本原理是利用不同位置的信号取样电路来采集水中传播的电信号,从而确定水位。本设计中应 用了检索式水位传感器的数字采样原理,采样系统的原理框图如图1所示。http://ws.llybw.com/up_files/image/Article/2013/11/22/52287912.png图1采集系统原理框图采样电路主要由信号取样电路,数字信号变送电路,微处理器电路构成。为了实现电路的微型化,低功耗,稳定性,一致性等问 题,取样电路和变送电路分别集成为数字化芯片MFC7710和MFC7720。每片MFC7710带有8个水位感应触点,在实验中我们将10片 MFC7710级连,并将感应触点的排列方式由线式变为点阵式,如图2所示,这种点阵式的触点排列方式能够消除由于水的表面张力作用而使感应触点误 动作,从而导致采集系统分辨率不高,易受水质影响等缺点。实验证明,水位采样的精度达到了2mm。采集电路的工作原理:水位信号取样电路由数片MFC7710组成,片与片之间通过时钟线、数据线级连而成。变送器 与取样电路之间也是通过时钟线,数据线进行数据的通讯。每片MFC7710受变送器时钟信号控制,通过数据线,逐级向上传递感应触点感知的包含水位信息的 一系列0,1数字信号,变送器将此数字信号转变成对应的16位的BCD码。微控制器通过控制三级管,以间歇式供电方式向MFC7720发送采集时钟(即只 在微控制器发出采集水位信号时,给MFC7720供电,利于降低系统的功耗),并在时钟的上升沿时逐位采集MFC7720发回的16位BCD码,自动识别 其中包含的水位信息,计算出水位值,再经公式(1)将水位值转化为流量值,实现流量的计量。2.2微处理器的低功耗设计污水流量计的安装地点多为野外或条件恶劣的场所,因此整个系统采用电池供电,这样可以避免长距离的铺设电缆,节省了安装 费用。在电池供电的情况下,系统的电能利用无疑是关键的因素,微处理器需要采用微功耗、微型化的控制芯片,本文采用了MSP430单片机系列中的 MSP430F149。其工作电压为3.3V,与5V电压供电的单片机相比,在同等条件下,3.3V微控制器能够节省一半以上的电能,同时设计中采用 8MHz和32768kHz双时钟系统,配合微处理器本身具有的五种工作模式,可以实现系统在工作时程序高速运行,休眠时超低功耗的特点。2.3、其他外围部件的设计在设计中,考虑到需要对系统进行实时调试,有些场合也需要有就地显示部件,所以系统电路设计时留有液晶拓展接口。液晶采 用点阵式液晶块CM12864,可显示4×8四排32个字。监控中心要对现场数据进行实时或历史数据调用,以进行定期的进行计量监测,时钟芯片 SD2200具有32k的存储空间,同时兼有实时时钟电路,且内置备用电池,满足流量计的设计需求。3、系统软件设计软、硬件设计的合理搭配,是实现系统的低功耗的一个重要因素,数字式明渠污水流量计采集处理系统的软件设计充分利用了微控制器的低功耗待机工作模 式。由C语言编写的程序分为主程序和中断程序两部分。主程序只负责对系统上电复位后的系统参数及功能部件的初始化设定,中断服务程序负责执行各种操作模块 功能。开放中断后,单片机进入低功耗休眠状态,等待中断发生,处理完中断后,微处理器继续进入低功耗休眠状态,这种工作方式大大减少了微控制器的非有效工 作时间,与查询等待方式相比,系统功耗减至非常低。主程序,中断程序流程图如图2、图3所示。http://ws.llybw.com/up_files/image/Article/2013/11/22/52287913.png图2主程序流程图http://ws.llybw.com/up_files/image/Article/2013/11/22/52287914.png图3中断处理流程图4、实验验证4.1、试验装置及试验方法实验采用比较法对实验数据进行分析,验证数据采集系统是否符合设计。为了能模拟工业现场的污水排放,实验设计了自循环明渠巴歇尔槽水流装置,同时安装有超声波明渠流量计作为实验参照对象。实验计量装置由上位水箱、流量槽、下位水箱、水泵四大部分组成。下位水箱水量作为实际总流量。实验中记录智能数字式明渠污水流量计的累计流量与瞬时 流量,超声波流量计的累积流量与瞬时流量,下位水箱实际流量等五部分实验数据。累计流量实验数据如表1,三次试验中超声波与数字流量计的误差数据如表2, 三次实验中瞬时流量比较如表3所示。http://ws.llybw.com/up_files/image/Article/2013/11/22/52287915.png4.2实验分析4.2.1实验中的问题及解决方案实验初期,采样电路与无线传输的其他处理电路一起浇注在流量计中,构成集成一体化仪器,取样采用查询方式,这样需要对采 样电路持续供电。在这种情况下,MFC7720会由于散热不充分而出现突然死机的现象,为了解决这个问题,笔者将采集方式改为中断式,对变送、取样电路的 供电方式改为由三级管控制的间歇式供电。解决了MFC7720的发热死机现象,同时,间歇式的供电方式也大大降低了系统功耗。软件设计涉及的另一个问题是采样公式的参数调整问题,初期实验数据证明流量计的计量存在一定的误差。笔者认为有三方面的