环境可控型原子力显微镜

仪器信息网环境可控型原子力显微镜专题为您提供2024年最新环境可控型原子力显微镜价格报价、厂家品牌的相关信息, 包括环境可控型原子力显微镜参数、型号等,不管是国产,还是进口品牌的环境可控型原子力显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合环境可控型原子力显微镜相关的耗材配件、试剂标物,还有环境可控型原子力显微镜相关的最新资讯、资料,以及环境可控型原子力显微镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

环境可控型原子力显微镜相关的厂商

  • 400-878-6829
    帕克(Park)公司的创始人是世界上第一台原子力显微镜发明组的一员,1986年研制了世界首台商用原子力显微镜,一直致力于原子力显微镜技术的开发与应用,帕克(Park)在原子力显微镜的发展过程中一直占有重要的一席之地。本公司作为纳米显微镜和计量技术领域的领导革新者,一直致力于新兴技术的开发。我们的总部遍及中国大陆,宝岛台湾,韩国,美国,日本,新加坡和德国等地,我们为研究领域和工业界提供世界上最精确,最高效的原子力显微镜。我们的团队正在坚持不懈的努力,力求满足全球科学家和工程师们的需求。随着全球显微镜市场的迅速增长,我们将持续创新,不断开发新的系统和功能,确保我们的产品始终得到最有效最快捷的使用!Park产品主要有以下特点: 1.非接触工作模式:全球唯一一家真实实现非接触式测量模式的原子力显微镜厂家,非接触模式使原子力针尖磨损大大降低,延长了探针寿命,提高了测量图像的重复性; 2.高端平板扫描器:所有产品型号均采用的高端平板扫描器,远远优于传统的管式扫描器 3.全球最高的测量精度:Z轴精度可达0.02nm; 4.智能扫描Smartscan:仪器操作极其简单,可实现自动扫描,对操作者无特殊要求,并且有中文操作界面; 5.简单的换针方式:换针非常方便,采用磁拖直接吸上即可,不需调整激光光斑; 6.Park拥有全球最广泛的工作模式:可用于光学,电学,热学,力学,磁学,电化学等方面的研究与测试。
    留言咨询
  • 400-860-5168转3750
    企业概况英国工业显微镜有限公司是一家专业从事开发和生产人机工学的体视显微镜和非接触式测量系统的制造厂商。自1958年创立以来,英国Vision已成为世界上最具有创新活力的显微镜制造厂商,其分支机构遍及欧亚及北美。 世界各地的工程人员和科学家广泛地使用着我们的产品系统来从事他们在工业领域以及生物工程的日常的放大、检测和测量应用。迄今为止,已在全球各地安装 超过30万套设备系统。 英国Vision主要的生产基地设立在英国伦顿南部的沃京。商业运行及生产装配部门也设立在附近的厂房。英国Vision的北美生产分部设立在美国康州丹堡丽市,并在美国东岸和西岸的独立机构进行直销和分销网络运作。 本公司分别在日本、中国、法国、德国、意大利、以及比利时-荷兰-卢森堡经济联盟等国家建立了多个分支机构,此外加上由120多个拥有库存并经过专业技术培训的分销代理商所组成的服务网络,在所有其它发达国家里为企业提供解决问题的应用方案。同时我们根据发展,不断地扩大新代理的加盟机会。 出口和分销渠道英国Vision的产品出口占总产值的80%%以上,所以我们认识健全分销渠道的重要性。在1991 年,英国Vision荣获出口成就的英女皇奖。公司获得的其他荣誉还包括:1997年度科技创新的威尔士亲王奖和 1974 年度技术成就的英女皇奖。**的光学技术 英国Vision所拥有的世界**光学技术改变了在传统双目显微镜上安装目镜的必要。这些技术来源于采用英国Vision的高能光学(Dynascope)装置、扩大光瞳和宽阔成像光学系统、以及先进的人-机工学所带来的舒适使用、光学的清晰度、和减轻眼部疲劳。这一系列的功能改善了客户的生产效益和产品质量。Vision 的 Mantis 体视观察器在各行业得以广泛采用的实例可说明无目镜光学技术的优势效益。 在1994 年推出的第一代Mantis体视观察器主要是填补台式放大镜与显微镜之间的空白。 从此Mantis 就成了所有体视观察器的首选,超过13 万套的Mantis设备已在全球安装使用。 英国Vision的新一代Mantis系列产品于2005年开始在各行业里使用,它秉承原型产品的实用价值,并融合人机工学以进一步优化Mantis的设计。 产品研发近年来,大量的研发投入已成为取得 成功的关键,它确保了新产品和现有产品的持续的发展,以不断满足科学界和制造领域的需求。英国Vision不断地以研发新产品和新技术在光学革新和技术前沿引领全球。
    留言咨询
  • 原FEI公司,2016年被赛默飞世尔科技收购,成为赛默飞材料与结构分析(MSD) 电镜事业部,是显微镜和微量分析解决方案的创新者和供应商。 我们提供扫描电子显微镜SEM,透射电子显微镜TEM和双束-扫描电子显微镜DualBeam?FIB-SEM,结合先进的软件套件,运用最广泛的样本类型,通过将高分辨率成像与物理、元素、化学和电学分析相结合,使客户的问题变成有效可用的数据。更多信息可在公司官网上找到:http://thermofisher.com/EM 或扫描二维码,关注我们的微信公众号
    留言咨询

环境可控型原子力显微镜相关的仪器

  • AFM5300E是一款环境型原子力显微镜,它的环境控制单元可以使样品在大气中、真空中、溶液中等环境中进行测量。AFM5300E还具有高低温控制功能,可以检测温度对样品表面形貌和物理特性的影响。 特点1. 环境控制功能(大气,真空,液体,温控等)AFM5300E能够实现高真空的测试环境,几乎避免了样品表面吸附水对测试的影响,实现精确的物理特性测量。 真空环境下可以实现更大范围的温度控制。另外,新开发的『温度扫描功能』可监视样品Z方向的热胀冷缩,通过控制反馈信号,使悬臂在变温环境下连续测试样品表面的物理特性。(3857581号、3926638号)●大气中 ●液体中 ●真空中 ●特殊气氛(流量控制)●温度控制 加热?冷却(-120~300℃) 高温(室温~800℃)●湿度控制(0~80%)●外加磁场(水平、垂直、面内旋转、max 5000 Oe )2. 简便操作(综合型Holder Flange)通过采用『综合型Holder Flange开合功能』,样品和扫描器更換更为方便的同时,免去了以往环境型SPM的样品更換后的所需的光轴调整。 也省去测试模式切换时的支架更換环节。3. 卓越的高性能采用了『Swing Cancel功能』,减轻了样品的浮动,降低了漂移。提高了纳米分析性能,提升了可信度。 漂移量:0.015nm/sec以下4. 通过减轻表面吸附水的影响,提高了电气性能的检测精度真空环境下减轻样品表面吸附的水分和污染物的影响,因而实现高分辨高灵敏的电学性能分析。
    留言咨询
  • Nanowizard V 第五代生物型原子力显微镜(BioAFM最新一代产品充满各种创新 25年引领生物原子力显微镜技术的研发和创新 全球超过1000家用户的广泛认可8500多篇在生物学领域具有影响的文章 拥有专注于高清晰成像和其它应用的探针研发支持丰富的功能为实现科学研究突破铺平了道路:PeakForce-QI, PeakForce Tapping, PeakForce QNM, QI 单分子力谱技术 单细胞力谱技术 DirectOverlay 2实现AFM与先进光学技术的绝佳整合 全新V8软件 新的ExperimentPlanner和ExperimentControl功能 高数值孔径显微镜整合,多维度环境控制等各类高级整合方案完美的性能,更高的效率 NanoWizardV 诠释了BioAFM的美好未来 无与伦比的易用性 高速成像可用于捕捉动力学过程以及提高实验效率 自动化、高分辨成像
    留言咨询
  • 美国Anasys公司的AFM+可以提供全面的原子力显微功能,具有强大的分析能力,使得AFM不仅仅是一个普通的成像工具,还可以进行材料纳米级尺度的成分分析,热性能和机械性能的分析。AFM+的主要特点:简洁的安装与操作 □ AFM+为最便利的使用而设计制造。探针预装在金属圆片上,确保探针位置的准确性和装针的便捷□ 仪器集几十年AFM设计大师的经验之大成,即使初次使用也能快速获取结果完整的AFM工作模式 □ 包含所有常规成像模式:接触、轻敲、相位、侧向力、力调制、力曲线□ 独有高分辨率低噪音的闭环成像□ 基于DI传承的多功能AFM,实现纳米热学,力学,电学和磁学测量:l 纳米热分析模块(nanoTA, SThM)l 洛仑兹接触共振模块(LCR)l 导电原子力显微镜镜(CAFM)l 开尔文电势显微镜(KPFM)l 磁力显微镜(MFM)l 静电力显微镜(EFM)独有的可升级功能□ 热学性能:独有的热探针技术,提供纳米级红外分析□ 机械性能:洛伦兹接触共振模式能够提供宽频纳米机械分析□ 化学性能:可升级具有纳米红外光谱技术,实现局部化学组分分析□ 近场成像:可升级具有散射式近场光学成像和光谱采集功能
    留言咨询

环境可控型原子力显微镜相关的资讯

  • 高真空可控环境型原子力显微镜 AFM5300E
    产品介绍AFM5300E配置专业的真空腔体,可在环境控制条件下原位对样品微观尺度的形貌及物性进行观测分析。真空环境下可大幅降低氧化、水膜吸附等对样品真实情况的影响;真实测量特殊条件下材料的性能。让研究达到常规原子力显微镜无法企及的高度和深度。产品特点1、环境控制:具备常温大气,高真空、高低温、气氛、液相、湿度等环境功能;2、多功能配置:接触式,轻敲式,SIS(样品智能扫描)等工作模式,能进行三维形貌,电磁及机械力学性能观察分析,独有的极高分辨的SNDM(扫描非线性介电显微镜);3、操作便捷:激光器/样品移动螺杆置于真空腔外;触点式控温台/扫描器设计;4、真空转移:一体化提供离子研磨仪、高分辨扫描电镜、可控环境原子力显微镜,使用真空转移盒可保护样品在各个设备间转移测量,避免大气暴露; 5、高分辨:真空下极高的相位及磁畴分辨能力。 公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 日立原子力显微镜应用技术研讨会在上海举行
    2016年6月30日,日立原子力显微镜应用技术研讨会在上海举行,来自北京、上海、南京等地区的20多位专家学者参加了此次技术研讨会。会议前后,日立原子力显微镜应用工程师在中科院上海硅酸盐研究所对用户进行了系统的应用培训。  此次研讨会邀请到了中科院上海硅酸盐研究所的曾华荣研究员做了题为《高分辨扫描探针压电-声学-热学显微术及其应用研究》的报告,介绍了其在铁电材料研究中对于日立高分辨型原子力SPA-400及日立环境型原子力显微镜AFM5300E的应用心得。日立高新北京分公司总经理加藤博司先生、天美公司上海分公司总经理顾家晖先生分别致辞,日立原子力显微镜全球应用中心山冈武博博士,日立高新北京分公司罗琴女士,天美公司原子力应用工程师周海鑫博士等人参与了研讨会。  日立高新北京分公司总经理加藤博司先生在致辞中介绍了日立原子力的发展历程,并对日立原子力显微镜的发展规划向与会学者做了介绍。天美公司上海分公司总经理顾家晖先生对于日立原子力显微镜的市场发展情况进行了回顾,并对日立原子力显微镜日后的发展表达了美好的祝愿。  中科院上海硅酸盐研究所曾华荣教授结合其在铁电畴领域的应用,对压电响应显微术、扫描探针声学显微术、扫描热学显微术、扫描热电显微术等先进探针显微术的特点进行了介绍,扫描探针压电-声学-热学联用研究的方式引起了与会学者的极大兴趣。  日立原子力显微镜全球应用中心山冈武博博士针对日立环境可控型原子力显微镜AFM5300E的特点,介绍了AFM5300E在力学、磁学、电学等方面的应用。AFM5300E可调节密闭样品仓中的温度、湿度,并可使样品处于真空或者气氛保护条件下进行原子力测试。山冈博士将日本运用AFM5300E取得的最新科研成果向大家做了分享。  天美公司原子力应用工程师周海鑫博士介绍了日立原子力的产品线,对于高分辨型AFM5100N、环境可控型AFM5300E以及最新发布的全自动化原子力显微镜AFM5500M的特点和应用做了详细的介绍。  最后,日立高新电镜应用工程师罗琴女士对于日立扫描电镜-原子力的联用方案进行了介绍。日立高新在扫描电镜领域拥有丰富的经验,原子力显微镜产品线的加入实现了SEM-SPM同位置同气氛保护方面的联用,为科研工作者提供了更加丰富的科研解决方案。日立高新与天美公司会继续以支持中国科技发展为己任,不断开发高性能仪器,为广大科研工作者提供更加优质的服务。关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。  更多详情欢迎访问天美(中国)官方网站:http://www.techcomp.cn
  • qPlus型原子力显微镜技术
    |作者:彭金波1,2,† 江颖3,4,††(1 上海交通大学 李政道研究所 )(2 上海交通大学物理与天文学院 )(3 北京大学物理学院 量子材料科学中心 )(4 北京大学轻元素先进材料研究中心 )本文选自《物理》2023年第3期摘要:扫描探针显微镜主要包括扫描隧道显微镜和原子力显微镜,其利用尖锐的针尖逐点扫描样品,可在原子和分子尺度上获取表面的形貌和丰富的物性,改变了人们对物质的研究范式和基础认知。近年来,qPlus型高品质因子力传感器的出现将扫描探针显微镜的分辨率和灵敏度推向了一个新的水平,为化学结构、电荷态、电子态、自旋态等多自由度的精密探测和操控提供了前所未有的机会。文章首先简要介绍原子力显微镜的发展历史和基本工作原理,然后重点描述qPlus型原子力显微镜技术的优势及其在单原子、单分子和低维材料体系中的应用,最后展望该技术的未来发展趋势和潜在应用。关键词:扫描探针显微镜,原子力显微镜,qPlus力传感器,高分辨成像,原子分辨01原子力显微镜的诞生显微镜是人类认识微观世界的最重要工具之一。光学显微镜的诞生让人们第一次看到了细菌、细胞等用肉眼无法看到的微小物体,从而打开了崭新的世界。然而,由于光学衍射极限的限制,光学显微镜的空间分辨率一般局限于可见光波长的一半左右(约300 nm),很难用于分辨纳米尺度下更细微的结构,更无法用于观察物质最基本的原子结构排布。要想进一步提高探测的空间分辨率,一种途径是减小探测波的波长,比如扫描电子显微镜就是利用波长更短的电子波来进行成像。另一种途径是采取近场的局域探测,比如近场光学显微镜及其他基于局域相互作用探测的扫描探针显微镜。可以想象,要想获得更高的空间分辨率,就需要对样品的探测更加局域,即“探针”尖端足够尖,最好只有探针和样品最接近的几个原子能够发生相互作用,“感受”到彼此。这种相互作用可以是电子波函数的交叠或者原子作用力等。1981年,Binnig和Rohrer发明了扫描隧道显微镜(scanning tunneling microscope,STM),STM是基于探测针尖和样品之间的隧道电流来进行空间成像的工具。由于隧道电流正比于针尖尖端几个原子与衬底原子的电子波函数的交叠,对针尖与样品之间的距离非常敏感,因此可以获得原子级的空间分辨率。STM的发明,使得人们可以在实空间直接观察固体表面的原子结构,因此荣获1986年的诺贝尔物理学奖[1]。然而,STM依赖于隧道电流的探测,无法用于扫描绝缘样品,因此使用范围受到了极大的限制。有趣的是,在早期的STM实验中,研究人员发现当针尖和样品比较近而出现隧道电流时,会同时产生较强的相互作用力。Binnig意识到通过测量针尖与样品原子之间的相互作用力也可用来对样品表面成像。1986年,他提出了基于探测针尖和样品之间原子作用力的新型显微镜——原子力显微镜(atomic force microscope,AFM)[2],并随后与Quate和Gerber搭建出了第一套可以工作的AFM[3]。三人于2016年获得了Kavli纳米科学奖。AFM是基于针尖与样品之间原子作用力的探测,不需要样品具有导电性,因而可以用于研究包括金属、半导体、绝缘体等多种材料体系,大大弥补了STM的研究局限。此外,AFM还可以在大气和液体环境中工作,具有很好的工况条件和生物体系兼容性。这些优势使得AFM成为纳米科学领域使用最广泛的成像工具之一。然而,AFM并不像STM那样在发明之初就获得了原子级分辨率,而是直到5年之后(1991年),惰性固体表面的原子分辨成像才得以实现[4,5]。近年来,由于qPlus力传感器的引入,AFM的空间分辨能力得到了极大的提升。通过针尖修饰,人们可以更加容易地获得原子级成像,甚至实现氢原子和化学键的超高分辨成像。接下来,本文将简要介绍常见AFM的基本工作原理,然后着重介绍基于qPlus力传感器的AFM(简称qPlus-AFM)及其在各种体系中的应用,最后展望qPlus-AFM在物理和其他领域的潜在应用和面临的挑战。02常规AFM的原理和工作模式介绍2.1 AFM工作的基本原理目前使用最为广泛的是激光反射式AFM,其典型的结构示意图如图1(a)所示[6]。最核心的部分是力传感器,它一般是一个由微加工技术制备的可以振动的悬臂(常用的材料是硅或者氮化硅),悬臂的末端有一个与悬臂梁一体的尖锐针尖,悬臂的背面镀有一层金属以达到镜面反射。当一束激光照射到悬臂上,光斑被反射到一个对光斑位置非常敏感的光电探测器上。当针尖扫描样品表面时,由于针尖与样品之间存在相互作用力,悬臂将随样品表面形貌的起伏而产生不同程度的弯曲形变,因而反射光斑的位置也会发生变化。通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。图1 AFM工作的基本原理[6] (a)典型激光反射式AFM的结构示意图;(b)超高真空下针尖与样品的相互作用力Fts及各成分力与针尖—样品距离z的关系2.2 原子力的分类在超高真空环境中,针尖与样品之间的相互作用力(Fts)与针尖—样品距离z之间典型的关系曲线如图1(b)所示。Fts大致可以分为长程力和短程力,长程力通常包括范德瓦耳斯力和静电力等,其衰减长度一般为几纳米或者几十纳米。短程力主要包括来自针尖和样品之间形成化学键的作用力和由于针尖—样品电子云交叠产生的泡利排斥力,其衰减长度一般约为0.1 nm左右。长程力对距离不敏感,很难分辨较小的表面起伏,要想获得较高的空间分辨率,需要让短程力的贡献占主导。在特殊的环境下,针尖和样品之间的相互作用力还包括机械接触力、毛细力、磁场力、卡西米尔力、水合力等。2.3 AFM的主要工作模式AFM有多种工作模式,通常分为静态模式和动态模式,后者包括非接触模式和轻敲模式两种(图2(a))。在静态模式下,针尖以拖拽的形式在样品表面扫描并记录表面的形貌起伏变化,因此也叫接触模式。悬臂的形变量为q=Fts/k (k为悬臂的劲度系数),为了提高力探测的灵敏度,一般使用较软(k较小)的悬臂。为了避免较大的吸引力引起针尖发生“突跳”现象,静态模式主要工作在短程的排斥力区间(图2(b)),因此空间分辨率较高。但这种模式下针尖和样品之间的相互作用力较大,容易对较软的样品产生破坏。图2 AFM的工作模式[6] (a)接触模式、非接触模式和轻敲模式的示意图;(b)不同模式的大致工作范围(区分并不严格);(c)悬臂在频率调制和振幅调制模式下的共振曲线。人们也经常把振幅调制模式称为轻敲模式,把频率调制模式称为非接触模式在动态模式下,悬臂被压电陶瓷励振器驱动以共振频率振动,当振幅A足够大使得回复力k∙Amax(Fts)时可以避免“突跳”现象的发生。动态模式有轻敲模式和非接触模式两种。轻敲模式类似于盲人使用手杖行走,其振幅比较大,一般从几纳米到一百多纳米,主要的力的贡献来源于针尖距离样品很近甚至接触的时候。这种模式对样品的损坏小,适用于不同的材料,是目前AFM使用最为广泛的模式。但是这种模式由于包含较多的长程力贡献,因此一般较难获得原子级分辨。此外,由于轻敲模式下振幅较大,测量振幅变化的信噪比较高,这种模式一般使用幅度调制(amplitude modulated,AM),即以固定频率和振幅的激励信号来驱使悬臂振动,针尖和样品的作用力会引起悬臂振幅(及相对于激励信号的相位)的变化,将测量的振幅(或相位)的变化作为反馈信号可以获取样品表面的形貌信息(图2(c))。非接触模式的振幅一般是几纳米或埃的量级,针尖在振动过程中不会接触样品,因此可以避免对样品的扰动或者破坏。非接触式AFM除了可以使用AM模式外,还能以频率调制(frequency modulated,FM)模式工作。这其实与收音机的AM和FM模式原理类似,只是工作的频段不同。在FM模式下,悬臂保持相位和振幅不变,针尖和样品的作用力引起悬臂振动频率的变化,测量振动频率的变化可以得到样品表面形貌的信息(图2(c))。AM和FM模式下悬臂的共振频率变化的响应时间[7,8]分别约为τAM=Q/(πf0),τFM=1/(2πf0),其中Q是悬臂的品质因子,f0为悬臂的本征振动频率。由此可见,AM模式的响应时间会随Q因子的增加而线性变大,而FM模式的响应时间不受Q因子的影响。在超高真空低温环境中,悬臂的Q因子会比大气环境下增加几十倍,这使得AFM对力的敏感度及信噪比会有很大提升,但也会使得AM模式下AFM的响应时间大幅延长,导致扫描成像需要很长的时间。因此,AM模式(轻敲模式)主要被用于大气或者液体环境中。Q因子的增加对FM模式下AFM的响应时间没有影响,所以FM模式是超高真空环境下被广泛使用的工作模式,即保持高Q因子的同时还能保证较高的扫描速度。2.4 影响频率调制AFM噪音大小的因素在FM模式下,AFM直接探测的信号是针尖—样品相互作用力引起的悬臂频率偏移∆f,利用公式[9]可进一步转化为相互作用力Fts。频率偏移对应的相对噪音,因此可以用δkts的形式来表示FM模式下AFM测量中4种主要的噪音来源,分别为[10]热噪音:力传感器信号探测的噪音:AFM悬臂振荡的噪音:漂移噪音:其中kB为玻尔兹曼常数,T是温度,B是与扫描速度对应的带宽,nq是悬臂偏转信号探测的噪音密度,r 是频率的漂移速率,N是扫描图像的像素数。由上述式子可知,k越小,4种噪音都更小,因此在满足k∙Amax(Fts)的前提下,选择的k越小越好;Q越大,会使得第一和第三种噪音更小,但过大的Q会使得悬臂在FM模式下的稳定起振难以维持;振幅A越大,前三种噪音都更小,但A太大会引起短程力贡献大幅减小的问题(见下节)。03基于qPlus力传感器的非接触式AFM3.1 振幅对非接触式AFM分辨率的影响在FM模式下,AFM探测的频率偏移∆f,可以转化为权重函数w(z,A)和针尖—样品相互作用力的梯度的卷积[11]。如图3所示,w(z,A)是与振幅A和距离z相关的半椭圆,kts是力Fts与z曲线的梯度,也呈现为勺子形,只是最低点对应的距离z有所不同。可见,当振幅较大时,长程力对频率偏移的贡献占主导;随着振幅减小,短程力的贡献变大。当振幅与短程力的衰减长度(亚埃级)接近时,更容易得到原子级分辨率[10]。图3 长程力和短程力的贡献与AFM悬臂振幅A的关系[11]3.2 qPlus力传感器的发明传统AFM力传感器一般采用微加工制备的硅或者氮化硅悬臂,其劲度系数较小(约1 N/m),力的探测灵敏度高。为了能探测短程力从而实现高空间分辨,往往需要让针尖靠近表面,从而导致“突跳”的发生。为了避免“突跳”引起的针尖损坏,需要悬臂在较大的振幅下工作。然而,大的振幅会使长程力的贡献增加,引起AFM的空间分辨率大大降低。图4 石英音叉和qPlus力传感器实物图 (a),(b)手表中拆出来的石英音叉[12];(c)第一代qPlus力传感器的实物图(图片来自德国雷根斯堡大学Giessibl课题组)[13];(d)第四代qPlus力传感器的实物图(图片来自北京大学江颖课题组)[6]要想克服上述矛盾,实现在小振幅下工作的同时而不引起“突跳”的发生,则需要使用劲度系数k较大的悬臂。石英音叉是被广泛用于手表中的计时元件(图4(a),(b))[12],劲度系数高,可产生极高精度的振荡频率(一般为32—200 kHz),且具有很高的Q因子。此外,其悬臂的形变可以利用石英的压电效应以电学的方式来直接探测,不需要激光系统,更容易兼容低温环境。早期,人们一般是在石英音叉的一个悬臂上粘上针尖来作为力传感器使用。然而,两个悬臂(相当于两个耦合的谐振子)由于质量和受力的不对称性导致Q因子大幅度降低,严重降低了AFM的信噪比。1996年,Giessibl将音叉的一个悬臂固定在质量很大的基底上,而在另一个自由的悬臂上粘上针尖以作为AFM力传感器,这样把两个耦合的谐振子变成单个独立的谐振子,可以保持较高的Q因子,且Q因子几乎不受针尖—样品相互作用力的影响。因此,这种力传感器被称为qPlus力传感器[13](图4(c))。目前,qPlus力传感器已经经过了四代的升级和改进,最新的版本是直接设计单个石英悬臂作为力传感器(图4(d))。表1 微加工硅悬臂力传感器与qPlus力传感器典型参数的对比[6]典型的qPlus力传感器与广泛使用的微加工硅悬臂力传感器的主要参数对比见表1。可以看到,qPlus力传感器悬臂的劲度系数高得多(一般约1800 N/m),因此其力灵敏度一般情况下低于硅悬臂。然而,qPlus力传感器可以在非接触模式下,以极小的振幅(约100 pm)近距离扫描样品,而不会出现“突跳”现象。由于qPlus-AFM的振幅可以与短程力的衰减长度接近,因此短程力的贡献非常大,更加容易获得超高的空间分辨率。最近,田野等通过优化设计qPlus力传感器,将Q因子提升到140000以上,最小振幅小于10 pm,最小探测力小于2 pN,从而将qPlus力传感器的性能推向了一个新的水平[14]。此外,使用导电针尖,并通过单独的导线把经过针尖的电流提取出来,可以很容易地将qPlus-AFM与STM集成在一起,以同时发挥STM和AFM的功能。关于qPlus-AFM更为系统的介绍见综述[10,11]。3.3 获得超高空间分辨率的关键如前所述,针尖与样品间的相互作用越局域,空间分辨率越高。换言之,要想获得超高的空间分辨率,需要减小长程力的贡献,凸显短程力的贡献。要实现这一点,有两点非常关键:一是使用与短程力衰减长度接近的亚埃级的小振幅工作(详见3.1节);二是让针尖更加尖锐,减少长程的范德瓦耳斯力的贡献。对于AFM成像来说,针尖末端几纳米的部分尤其是针尖末端的几个原子扮演着最重要的角色。为了让针尖末端更尖锐,常用办法是让金属针尖轻戳金属衬底或对针尖进行原子或者分子修饰,使得短程的泡利排斥力、化学键力或者高阶静电力占主导。3.3.1 短程的泡利排斥力当针尖与样品的距离足够近时,二者的电子云会发生交叠,产生很强的短程泡利排斥力。大部分时候,泡利排斥力是对固体及分子体系成像获得原子级分辨率的关键。2009年,Gross等[15]发现对针尖修饰一氧化碳(CO)分子后,可以实现对单个并五苯分子的化学键和结构(图5(a))的超高分辨成像(图5(c)),其分辨率已经超过了STM图像(图5(b))。这种超高空间分辨率的成像主要起源于CO针尖“尖锐”的p轨道与并五苯分子之间电子云交叠所导致的短程泡利排斥力。这种针尖修饰方法简单易行,成像分辨率高,使得qPlus-AFM成像技术迅速获得了广泛的应用。除了CO分子修饰外,人们还可以对针尖修饰其他种类的原子或者分子,以提高空间分辨率或者实现其他特定功能,例如Cl离子[16]和Xe分子[17]修饰的针尖以及CuO针尖[18]等。图5 基于泡利排斥力的单分子化学键成像[15] (a)并五苯分子的结构图;用 CO 分子修饰的针尖得到的 STM 图(b)和AFM图(c)3.3.2 短程的化学键力当针尖和衬底的化学活性都较强时,在近距离扫描过程中,二者可以形成局域的化学键,基于这种短程的化学键力,也可以获得超高的空间分辨率。典型的例子是半导体表面的AFM高分辨成像。例如,Giessibl等[19]发现在用AFM扫描Si(111)-(7×7)样品时,针尖会从样品上吸起一些Si团簇而被修饰,因此在扫描时容易与样品表面带悬挂键的Si原子形成共价键,而得到原子级分辨率。然而,这种成像方式对表面结构扰动较大,不适用于弱键和分子体系。3.3.3 短程的静电力通常所说的静电力主要来源于低阶静电力,比如点电荷与点电荷或者电偶极之间的静电力,其大小分别正比于r -2和r -3(r是二者作用的距离),是较长程的相互作用力,因此空间分辨率较低。而在某些特殊的情况下,高阶静电力的贡献会起主要作用,而且是更加短程的,因此会导致分辨率的显著提升。一个典型的例子是对离子晶体(如NaCl,MgO,Cu2N等)的原子分辨成像。离子晶体表面周期性的正负电荷排布产生指数衰减的短程静电势分布[20],针尖与离子晶体表面的短程静电力作用可以得到原子级分辨的成像[21]。图6 基于高阶静电力的水分子高分辨成像 (a)CO针尖示意图(上)及DFT计算得到的CO针尖的电荷分布(下),呈现出明显的电四极矩特征[16];(b)水四聚体的原子结构图(上)和AFM图(下)[16]。白色箭头和弧线分别指示水分子中氧原子和氢原子的位置;(c)Au(111)上双层二维冰的原子构型(上)和AFM图像(下),其中可以分辨平躺(蓝色箭头)和直立(黑色箭头)的水分子[23];(d)Au(111)表面由Zundel类型水合氢离子(黑色箭头)自组装形成的单层结构图(上)和AFM图像(下)[14]另一个例子是利用CO针尖对强极性分子的高分辨成像。彭金波等[16]利用CO修饰的针尖(图6(a)上图)扫描水分子四聚体时,发现即使在针尖距离较远时也能获得亚分子级的分辨率(图6(b)),且图像的形貌与水分子四聚体的静电势分布极其接近,从中可识别水分子OH键的取向。通过理论计算得知,CO修饰的针尖具有电四极矩(图6(a)下图),与水分子电偶极之间存在高阶静电力相互作用,这是一种更为短程的静电力(正比于r -6),因此能够在未进入泡利排斥区域时获得超高空间分辨。这种基于微弱的高阶静电力的成像技术可以区分水分子中氢、氧原子的位置和氢键的取向并且扰动极小。近年来,这个技术已被成功应用于亚稳态水分子团簇[16]、盐离子水合物[22]、二维冰[23](图6(c))及单层水中的水合氢离子[14]的非侵扰高分辨成像(图6(d)),将水科学的研究推向了原子尺度。04超高分辨qPlus-AFM的应用相对于传统的AFM,qPlus-AFM可以很方便地与STM集成在一起,并兼容超高真空和低温环境,而且可获得原子级甚至单个化学键级的超高空间分辨率。这些优势使得qPlus-AFM获得了广泛的应用,大大促进了表面科学和低维材料研究领域的快速发展。下面我们简要介绍qPlus-AFM在高分辨结构成像、电荷态和电子的测量、原子力的测量和操纵等方面的应用和最新进展。4.1 高分辨结构成像qPlus-AFM在高分辨结构成像方面得到了最为广泛的应用。Gross等[15]通过对AFM针尖进行CO修饰,首次实现对有机分子的化学结构的直接测量(图5),触发了一系列后续研究,包括:分子之间的氢键相互作用[24]、分子化学键键序[25]、铁原子团簇[26]、化学反应产物识别[27]等。近年来,人们通过控制有机分子前驱体的表面化学反应可以精确制备低维纳米材料,如石墨烯、石墨烯纳米带等。STM虽然被广泛用于表征其电子态,但是难以直接确定其原子结构、局域缺陷和边界构型等。qPlus-AFM对原子结构的敏感及超高的空间分辨率,可以很好地解决这些问题。例如,Gröning等[28]利用扫描隧道谱成像观测到了石墨烯纳米带末端的拓扑末端态(图7(a)右),并通过AFM成像确定了拓扑非平庸的石墨烯纳米带的原子构型(图7(a)左)。图7 qPlus-AFM在低维材料高分辨成像中的典型应用 (a)表面合成的石墨烯纳米带的AFM图(左)和0.25 V偏压下的dI /dV 图(右)[28],四角较亮部分指示拓扑边缘态;(b)利用磁性针尖得到的绝缘反铁磁NiO表面的AFM图像(左)及沿[100]方向相邻两个Ni原子不同自旋取向对应的高度轮廓线(右)[34]此外,qPlus-AFM开始被用于绝缘体表面原子结构的高分辨成像,如KBr[29],CaF2[30]等。在复杂氧化物表面方向,Diebold组观测了钙钛矿KTaO3(001)的表面重构[31]和TiO2(110)及In2O3(111)表面分子的吸附和分解[32,33]等。最近,qPlus-AFM被用于对绝缘反铁磁材料NiO的成像,而且使用磁性针尖成像时,由于超交换作用可以分辨不同Ni原子的自旋取向[34](图7(b))。4.2 电荷态和电子态的测量在电荷态测量方面,由于qPlus-AFM极高的信噪比和力灵敏度,Gross等[35]率先展示了单个原子的不同带电状态可以通过AFM直接测量(图8(a))。通过测量AFM的局域接触势差,单个原子和分子内部的电荷分布也可进行成像[36,37]。利用厚层绝缘的NaCl阻断分子与金属衬底之间的电荷转移,可对单分子进行多重电荷的充放电并控制分子间的电荷横向转移[38]。图8 AFM在电荷和电子态探测中的应用 (a)电中性和带负电的金原子的恒高AFM图(插图)及对应的频率偏移的轮廓线[35];(b)三重激发态寿命的探测:左图为单个并五苯分子和近邻吸附的两个氧气分子的结构图(上)和AFM图(下);右图为测量三重激发态占据比例随电压脉冲停留时间的变化,通过指数拟合可得猝灭后三重激发态的寿命仅0.58(5) μs[42]近些年,人们利用qPlus-AFM实现了对分子电子态的测量。例如,绝缘衬底上单分子的基态和激发态电子能谱被成功测量[39,40]。进一步,将AFM与纳秒电学脉冲结合,能直接对绝缘体表面上单分子在不同带电状态下电子转移的概率分布进行成像[41]。最近,qPlus-AFM被成功用于对分子自旋激发态的探测。彭金波等[42]发展了一套新颖的电学泵浦—探测AFM技术,首次实现了以原子级分辨率对单分子三重激发态寿命的探测并观测到了近邻氧气分子引起的三重态的猝灭(图8(b))。4.3 原子力的测量与操纵利用qPlus-AFM可以对原子作用力直接测量。Ternes等[43]变高度扫过表面上吸附的单原子并记录针尖—原子之间相互作用力引起的频率偏移(利用公式[9]可以将频率偏移∆f 转化成垂直作用力Fz),直到原子发生移动,便可知移动原子所需的最小垂直作用力(图9(a))。进一步,可以将垂直作用力转化为相互作用势,将其对x坐标微分可以得到移动原子所需的最小水平作用力Fx 的大小。利用类似的方法,单个石墨烯纳米带在Au(111)表面的摩擦力已被精确测量[44]。最近,通过测量原子力曲线,人们揭示了针尖上CO分子与衬底上单个铁/铜原子的物理吸附向化学吸附的转变过程[45]。图9 qPlus-AFM在原子力测量和操纵中的应用 (a)测量移动Pt(111)表面(灰色小球)吸附的单个Co原子(红色圆球)所需的力[43]。由远及近测量沿原子上方(x方向,图(a-i))的频率偏移及垂直作用力Fz(a-ii),直到在某个高度下开始引起原子移动(红色箭头所示),从而可以得知移动原子所需要的最小垂直作用力(a-iii);(b)利用AFM针尖和金刚石样品之间产生的局域强电场,通过“拉出—推离”方法耗尽NV色心附近的杂质电荷((b-i),(b-ii)),使NV色心的自旋相干时间提升20倍(b-iii)[47]此外,qPlus-AFM也开始被尝试应用于绝缘载体中固态量子比特的操控。边珂等[46]利用金属针尖的局域强电场和激光成功诱导了金刚石氮—空位色心(NV center)的电荷态转换。进一步,郑闻天等[47]通过施加较大的偏压,在AFM针尖—样品之间产生强电场,改变电场的方向,利用“拉出—推离”方法来清除NV色心周围的未配对电子,实现了金刚石近表面电子自旋噪声的高效抑制,从而大幅提升了浅层NV色心的相干性(T2,echo时间提升20倍)及其探测灵敏度(图9(b))。05总结和展望基于qPlus力传感器的超高分辨AFM技术,有力促进了单分子、表面科学、低维材料等研究方向的发展,为人们理解物质的结构、电子态、电荷态、自旋态等提供了崭新的信息。这种超高分辨的AFM成像技术仍处于快速发展期,我们相信在接下来若干年它会成为物理、材料、化学、生物等学科领域的重要工具,并对这些领域产生深远的影响。5.1 应用展望首先,高分辨qPlus-AFM成像技术可以提供固体表面的原子结构和原子尺度电荷分布的信息。STM仅对费米能级附近的电子态或外层电子敏感,常常很难将几何结构和电子态的信息分离开,而qPlus-AFM测量的泡利排斥力对总电子态密度敏感,其中包含内层电子的信息,可以反映原子核位置。因此,STM与qPlus-AFM的结合将有助于人们更准确细致地确定材料的结构和电子态分布。另一方面,通过qPlus-AFM对静电力的探测,可实现以单个电荷的灵敏度和原子级的空间分辨率确定原子或者分子带电状态。利用开尔文探针力显微镜(KPFM)模式或者对短程静电力的成像,还可对材料表面的电荷分布进行高分辨表征,这种关于电荷的新信息将为人们在原子尺度研究各种电荷序带来巨大的便利,比如电荷密度波、高温超导中的电荷序、铁电材料中的电荷分布等。其次,qPlus-AFM也将为各种绝缘材料或者材料绝缘相研究打开全新的窗口。例如,高温超导体的母体一般是莫特绝缘体,STM很难成像。而qPlus-AFM可以用于研究高温超导体随着掺杂浓度的增加从莫特绝缘体向超导态和金属态转变的全过程,有助于理解高温超导的机制。如果将针尖进行自旋极化,还可研究各种磁性绝缘体(如NiO)或者材料绝缘相(如高温超导体的母体)的自旋分布等。此外,qPlus-AFM还将在以绝缘体为载体的固态量子比特研究中发挥独特的作用。借助qPlus-AFM强大的空间表征、操纵与局域调控能力,有望发展出表面/近表面量子比特的相干性提升、精密量子比特网络构筑、纳米尺度扫描量子传感等多种前沿技术。最后,qPlus-AFM在化学和生物领域也将发挥重要的作用。qPlus-AFM可以用来识别化学反应的产物,还可以被用于研究绝缘体(如NiO,Fe3O4)表面的化学反应及固液界面各种化学反应(如电化学过程)的机制。在生物大分子的结构成像方面,可以精准识别DNA、RNA、蛋白质分子等的构型和相互作用位点,揭示其结构与功能的关系。5.2 挑战和机遇qPlus-AFM技术本身面临的一些问题和技术瓶颈亟待解决。qPlus力传感器的悬臂劲度系数大,对力的灵敏度较低。Q因子受环境和温度影响大,从而严重影响信噪比。一种可能的途径是发展主动控制Q因子的技术[48]。qPlus力传感器共振频率低(一般约几十kHz),成像速度慢,难以捕捉较快的非平衡态动力学过程,需要发展高速甚至超快的AFM技术。比如制备质量更小共振频率更高的AFM悬臂;或者将AFM与泵浦—探测技术相结合,将短的电压脉冲[42]或者超短的激光脉冲[49]耦合到qPlus-AFM中。利用qPlus-AFM对非平面的三维立体结构和分子的测量,还面临着挑战,发展新的算法(如利用机器学习)是一条可能的途径。此外,qPlus-AFM通常缺乏化学分辨,有时候很难仅从图像上获取样品的化学信息。一种途径是将其与具有化学分辨的光谱技术(如拉曼光谱)相结合[50]或者与磁共振技术结合。最后,qPlus-AFM面临的另一个巨大挑战是如何将其应用推广到溶液、生物体系等复杂的环境或体系中。大气溶液环境兼容的金刚石色心量子传感技术[51]可能为qPlus-AFM带来全新的应用场景和探测自由度。参考文献[1] Binnig G,Rohrer H. Rev. Mod. Phys.,1987,59:615[2] Binnig G. Atomic Force Microscope and Method for Imaging Surfaces with Atomic Resolution. 1986,US Patent No.:4,724,318[3] Binnig G,Quate C F,Gerber C. Phys. Rev. Lett.,1986,56:930[4] Giessibl F J. Rastertunnel-und Rasterkraftmikroskopie bei 4.2 K im Ultrahochvakuum. Ph.D. thesis,1991[5] Ohnesorge F,Binnig G. Science,1993,260:1451[6] Peng J,Guo J,Ma R et al. Surf. Sci. Rep.,2022,77:100549[7] Albrecht T R,Grutter P,Horne D et al. J. Appl. Phys.,1991,69:668[8] Gildemeister A E,Ihn T,Barengo C et al. Rev. Sci. Instrum.,2007,78:013704[9] Sader J E,Jarvis S P. Appl. Phys. Lett.,2004,84:1801[10] Giessibl F J. Rev. Sci. Instrum.,2019,90:011101[11] Giessibl F J. Rev. Mod. Phys.,2003,75:949[12] Giessibl F J,Hembacher S,Herz M et al. Nanotechnology,2004,15:S79[13] Giessibl F J. Vorrichtung zum beruehrungslosen Abtasten einer Oberflaeche und Verfahren dafuer. 1996,German Patent DE:19633546[14] Tian Y et al. Science,2022,377:315[15] Gross L,Mohn F,Moll N et al. Science,2009,325:1110[16] Peng J B et al. Nat. Commun.,2018,9:112[17] van der Lit J,Di Cicco F,Hapala P et al. Phys. Rev. Lett.,2016,116:096102[18] Monig H et al. ACS Nano.,2016,10:1201[19] Giessibl F J,Hembacher S,Bielefeldt H et al. Science,2000,289:422[20] Lennard-Jones J E,Dent B M. Trans. Faraday. Society,1928,24:92[21] Schneiderbauer M,Emmrich M,Weymouth A et al. Phys. Rev.Lett.,2014,112:166102[22] Peng J et al. Nature,2018,557:701[23] Ma R et al. Nature,2020,577:60[24] Zhang J et al. Science,2013,342:611[25] Gross L et al. Science,2012,337:1326[26] Emmrich M et al. Science,2015,348:308[27] de Oteyza D G et al. Science,2013,340:1434[28] Gröning O et al. Nature,2018,560:209[29] Wastl D S,Weymouth A J,Giessibl F J. Phys. Rev. B,2013,87:245415[30] Giessibl F J,Reichling M. Nanotechnology,2005,16:S118[31] Setvin M et al. Science,2018,359:572[32] Sokolović I et al. Proceedings of the National Academy of Sciences,2020,117:14827[33] Wagner M,Meyer B,Setvin M et al. Nature,2021,592:722[34] Pielmeier F,Giessibl F J. Phys. Rev. Lett.,2013,110:266101[35] Gross L et al. Science,2009,324:1428[36] Mohn F,Gross L,Moll N et al. Nat. Nanotechnol.,2012,7:227[37] Mallada B et al. Science,2021,374:863[38] Steurer W,Fatayer S,Gross L et al. Nat. Commun.,2015,6:8353[39] Fatayer S et al. Nat. Nanotechnol.,2018,13:376[40] Fatayer S et al. Phys. Rev. Lett.,2021,126:176801[41] Patera L L,Queck F,Scheuerer P et al. Nature,2019,566:245[42] Peng J et al. Science,2021,373:452[43] Ternes M,Lutz C P,Hirjibehedin C F et al. Science,2008,319:1066[44] Kawai S et al. Science,2016,351:957[45] Huber F et al. Science,2019,366:235[46] Bian K et al. Nat. Commun.,2021,12:2457[47] Zheng W et al. Nat. Phys.,2022,18:1317[48] Humphris A D L,Tamayo J,Miles M J. Langmuir,2000,16:7891[49] Jahng J et al. Appl. Phys. Lett.,2015,106:083113[50] Xu J Y et al. Science,2021,371:818[51] Schirhagl R,Chang K,Loretz M et al. Annu. Rev. Phys. Chem.,2014,65:83

环境可控型原子力显微镜相关的方案

环境可控型原子力显微镜相关的资料

环境可控型原子力显微镜相关的试剂

环境可控型原子力显微镜相关的论坛

  • 【分享】原子力显微镜

    【分享】原子力显微镜

    原子力显微镜  原子力显微镜  atomic force microscope  一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面结构信息。它主要由带针尖的微悬臂  、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分辨率也在纳米级水平。AFM测量对样品无特殊要求,可测量固体表面、吸附体系等。   原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表面的形貌或原子成分.  优点与缺点  相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。  和扫描电子显微镜(SEM)相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。[~116643~][~116644~][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624039_1602049_3.jpg[/img]

  • 常压原子力显微镜实现从超高真空到1bar的可变压力精密控制解决方案

    常压原子力显微镜实现从超高真空到1bar的可变压力精密控制解决方案

    [align=center][size=16px] [img=常压原子力显微镜实现从超高真空到1bar的可变压力精密控制解决方案,690,446]https://ng1.17img.cn/bbsfiles/images/2023/10/202310111648213082_8409_3221506_3.jpg!w690x446.jpg[/img][/size][/align][size=16px][color=#000099][b]摘要:针对原子力显微镜对真空度和气氛环境精密控制要求,本文提出了精密控制解决方案。解决方案基于闭环动态平衡法,在低真空控制时采用恒定进气流量并调节排气流量的方法,在高真空和超高真空控制时则采用恒定排气流量并调节进气流量的方法。原子力显微镜真空度控制系统主要由高速电控针阀、电动可变泄漏阀、高速电控球阀、电容真空计、电离真空计和超高精度PID调节器构成,在超高真空至一个大气压范围内可达到很高的控制精度。[/b][/color][/size][align=center][size=16px][color=#000099][b]=================[/b][/color][/size][/align][size=18px][color=#000099][b]1. 问题的提出[/b][/color][/size][size=16px] 环境可控型原子力显微镜(AFM)是一种可以选择真空环境、气氛环境、液体环境以及变温环境等不同工作环境,并基于检测被测样品与探针之间的弱相互作用来研究包括材料表面形貌和物理化学性质的精密仪器。原子力显微镜要具备真空和气氛环境功能,主要出于以下应用需求:[/size][size=16px] (1)众所周知,原子之间的相互作用力非常微小的,AFM在工作时,为了维持两者之间的作用力,探针和样品之间的距离非常近,通常只有几个纳米或几十个纳米,这就对仪器周围环境的要求非常之高。目前市场上的原子力显微镜都是在普通空气环境中进行操作,但由于空气中活跃着各种气体分子、存在各种机械振动以及电磁干扰的缘故,要想获得极高的分辨率还是比较困难的,要想利用原子力显微镜真正获得原子级别的分辨率,还是需要在真空和超高真空环境下进行工作。[/size][size=16px] (2)随着微纳尺度下研究的逐步深入,在诸多研究中,需要在真空环境或者同一气氛环境(如氮气、氧气、湿度以及酒精蒸汽等)中,对样品表面同一实验区域原位开展多种不同的探测实验(如摩擦能量耗散测量,需要在不破坏工作环境的前提下更换其他具有不同功能的探针,实现原位探测)。 [/size][size=16px] (3)在有些微纳尺度研究中,不同真空度和不同气氛下的力谱测量结果显示AFM针尖和所研究材料之间的粘附力显著依赖于所暴露的真空压力和气体。[/size][size=16px] 总之,为了使原子力显微镜具有环境可控功能,关键是解决原子力显微镜的真空度和环境气氛精密控制问题,为此本文提出以下解决方案。[/size][size=18px][color=#000099][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的基本思路是在采用多个进气管路来选择具体工作气体的基础上,采用了两种技术途径来改变和精密控制原子力显微镜内的真空度。[/size][size=16px][color=#000099][b]2.1 回填技术[/b][/color][/size][size=16px] 在文献1所报道的如图1所示的环境压力原子力显微镜中,采用的就是回填技术,即先对环境压力腔室抽真空至超高真空度,然后通过泄漏阀的调节向环境压力腔室内回填所需的工作气体,使腔室内的压力达到所需的真空度。整个真空回填系统结构如图2所示。[/size][align=center][size=16px][color=#000099][b][img=带有制备室和环境压力室的超高真空度原子力显微镜,690,485]https://ng1.17img.cn/bbsfiles/images/2023/10/202310111651309750_3730_3221506_3.jpg!w690x485.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图1 带有制备室和环境压力室的超高真空度原子力显微镜[/b][/color][/size][/align][align=center][size=16px][color=#000099][b][img=原子力显微镜真空压力回填系统结构示意图,550,361]https://ng1.17img.cn/bbsfiles/images/2023/10/202310111651565751_1942_3221506_3.jpg!w460x302.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图2 原子力显微镜真空压力回填系统结构示意图[/b][/color][/size][/align][size=16px] 如图2所示,回填系统主要由以下几部分构成:(1)涡轮分子泵、(2)旋转低真空泵、(3)一氧化碳气体管线的碳过滤器、(4)压力计、(5)冷阱、(6)AP室气体计量的泄漏阀和(7)AP室初始排空闸阀。[/size][size=16px] 环境压力室真空压力范围为超高真空1×10[sup]-7[/sup]mBar~1Bar,在打开泄漏阀之前,环境压力室与准备室和离子泵隔离。由于真空室压力最高可达1巴,因此关闭离子压力计,使用全量程压力计(冷阴极压力计和对流压力计的组合)监控压力。[/size][size=16px] 从图2可以看出,在文献1所描述气体回填系统是一个真空压力的开环控制系统,我们分析此真空度控制系统并未进行更详细的描述,甚至可能根本无法真正实现文中所述的从超高真空度到一个大气压的1%精度内的准确控制,主要原因如下:[/size][size=16px] (1)首先,文献1中所采用的真空度传感器是超高真空用离子压力计和全量程压力计(冷阴极压力计和对流压力计的组合),这些真空计本身的精度就无法达到1%以内的测量精度。[/size][size=16px] (2)文献1采用了调节泄漏阀的开环控制形式向AFM环境压力腔内回填气体来进行真空度调节,根本就无法做到实施的反馈控制,关闭泄漏阀后,腔体自身漏率的存在一定会使腔内压力逐渐回升,这种回升在超高真空度范围内会非常明显,会明显影响超高真空度的稳定性。[/size][size=16px] (3)泄漏阀是一种漏率极低的调节阀门,其微小的进气流量仅适合10[sup]-3[/sup]~10[sup]-10[/sup]mBar范围内的高真空和超高真空度调节。对于10[sup]-3[/sup]mBar~1Bar的低真空控制,泄漏阀的作用非常有限,或者需要非常长的进气时间才能达到所需真空度,因此对于低真空范围内的进气控制,一般都会采用进气流量较大的针阀。[/size][size=16px][color=#000099][b]2.2 闭环控制和不同流量阀技术[/b][/color][/size][size=16px] 针对上述文献1中所用的回填技术存在的问题,本文提出的解决方案将逐项予以解决,一方面采用闭环控制技术,即由真空计、电动进气流量调节阀和真空压力PID控制器过程闭环控制回路,对所设定的不同真空度进行准确控制。另一方面是针对不同的真空度范围,分别采用了微小进气流量的电动可变泄漏阀和较大流量的电动针阀。由此构成的真空控制系统结构如图3所示。[/size][align=center][size=16px][color=#000099][b][img=原子力显微镜真空压力闭环控制系统结构示意图,690,364]https://ng1.17img.cn/bbsfiles/images/2023/10/202310111652283772_3144_3221506_3.jpg!w690x364.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#000099][b]图3 原子力显微镜真空压力闭环控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图3所示,整个真空压力闭环控制系统分为以下四条气体管路,各自功能如下:[/size][size=16px] 抽气管路:抽气管路主要由电动球阀、干泵和分子泵组成,其中干泵和分子泵的作用是提供相应的真空源,而电动球阀则是用于调节使用干泵时管道内的抽气速率。[/size][size=16px] 大流量进气管路:大流量进气管路主要由电动针阀组成,其作用是以较大的流量形式调节腔体的进气流量。[/size][size=16px] 微小流量进气管路:微小流量进气管路主要由电动可变泄漏阀组成,其作用是以极小的流量形式调节腔体的进气流量。[/size][size=16px] 进气管路:进气管路的作用是连接气源和为腔体提供多种压力恒定的工作气体,图3中并未绘出。进气管路中也可以通过增加混气罐来进行各种进气的混合。[/size][size=16px] 通过上述四条管路以及相应的真空度传感器和真空压力控制器,图3所示的闭环控制系统可实现从超高真空度至一个大气压的全量程真空压力精确控制,具体控制的过程如下:[/size][size=16px] (1)低真空度范围(10mBar~1Bar):在低真空度范围内,双通道真空压力控制器的第一通道采集1000Torr电容真空计(测量精度0.25%)的真空度测量信号,与设定值比较后驱动电动球阀,通过快速改变电动球阀的开度调节排气流量,从而在低真空度范围内实现1%内的控制精度。需要注意的是在低真空度范围控制时,大流量进气管路上的电动针阀要保持恒定开度。[/size][size=16px] (2)高真空度范围(0.01mBar~10mBar):在高真空度范围内,双通道真空压力控制器的第二通道采集10Torr电容真空计(测量精度0.25%)的真空度测量信号,与设定值比较后驱动电动针阀,通过快速改变电动针阀的开度调节进气流量,从而在高真空度范围内实现1%内的控制精度。需要注意的是在高真空度范围控制时,抽气管路上的电动球阀要始终处于全开状态。[/size][size=16px] (3)高真空度范围(10[sup]-10[/sup]mBar~0.01mBar):在超高真空度范围内,真空压力控制器采集电离真空计(测量精度15%)的真空度测量信号,与设定值比较后驱动电动可变泄漏阀,通过快速改变泄漏阀的进气流量,从而在超高真空度范围内实现15%内的控制精度。需要注意的是在超高真空度范围控制时,抽气管路上的电动球阀要始终处于全开状态,大流量进气管路上的电动针阀处于关闭状态,而分子泵处于工作状态。[/size][size=16px] 在真空压力的控制过程中,要实现高精度控制,以下部件需要达到相应的技术指标要求:[/size][size=16px] (1)真空度传感器:真空度传感器的测量精度是决定控制精度的关键指标之一,本解决方案在低真空和高真空范围内采用了精度可达0.25%的薄膜电容真空计,而在超高真空范围内采用了精度最高可达15%的电离真空计。[/size][size=16px] (2)阀门:各种进气和排气阀门调节精度和速度也是决定控制精度的关键指标,解决方案所采用的电动针阀、电动球阀和电动可变泄漏阀都具有非常好的调节精度,响应速度都小于1秒以内,其中可变泄漏阀的响应速度可以到达十几微秒,完全可以满足超高真空度的进气控制。[/size][size=16px] (3)真空压力控制器:真空压力控制器的采集精度、调节输出精度和线性化处理功能也是决定控制精度的关键指标,解决方案采用了VPC2021系列超高精度PID调节器,具有24位AD、16位DA、0.01%最小输出百分比和八点拟合处理功能,可很好的实现全量程真空度的精密控制。[/size][size=18px][color=#000099][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本文提出的解决方案可很好的实现环境可控原子力显微镜从超高真空至一个大气压全真空度范围内任意真空压力设定点的准确控制,也可以按照设定的真空度变化曲线进行程序控制。另外,此解决方案可以推广应用到各种显微镜的真空度和气氛环境的精密控制。[/size][size=18px][color=#000099][b]4. 参考文献[/b][/color][/size][size=16px] [1] Choi, Joong Il Jake, et al. "Ambient-pressure atomic force microscope with variable pressure from ultra-high vacuum up to one bar." Review of Scientific Instruments 89.10 (2018).[/size][size=16px][/size][align=center][b]~~~~~~~~~~~~~~~[/b][/align][size=16px][color=#000099][b][/b][/color][/size]

  • 【分享】基本原则的原子力显微镜

    基本原则的原子力显微镜 在原子力显微镜基本上是一个微型悬臂式(一小束停泊在一端,而另一项目进入太空像跳水板) ,以纤巧,指出探针(同一个极为精细陶瓷或半导体尖端这是衡量规模的纳米)底下的一端,就像笔就测谎,甚至是地震。 不同的笔在纸上打印或其他媒介,一个原子力显微镜有几项改进,使原子级测量的吸引力或令人厌恶的部队之间的“笔”尖和样品的表面。 作为小费是吸引或排斥的样品的表面,是悬臂偏转。 的严重性挠度测量激光反映在斜角月底的调查。 绘图激光挠度对冰山上的立场样品表面创造了“地图”的丘陵和山谷的表面。 这提供了一个高分辨率图像的样品的表面。 在原子力显微镜有两种扫描模式。 在接触模式下,原子力显微镜的探针接触样品的表面。 作为文书拖累冰山的表面,检测设备的措施悬臂的垂直挠度和说明了当地的样品高度-实际上,衡量'排斥'势力之间的尖端和样品。 在非接触模式下,原子力显微镜的探针没有触及表面的样本,它的措施有吸引力的部队之间的冰山,表面画地形图的表面。 利弊原子力显微镜 一个原子力显微镜具有优势了扫描电子显微镜( SEM ) 。 其中之一是,一个原子力显微镜可以功能的空气或液体的环境不同,电子显微镜,要求所有探头进行在真空中进行。 鉴于此,研究人员已经开始测试原子力显微镜的适宜用于研究活生物体在纳米尺度(例如,扫描和研究生物大分子如DNA等) 。 另一方面,一个原子力显微镜可以绘制三维图像 的扫描电镜只能提供二维图像或投影的抽样调查。 另一方面,一个主要的缺点是原子力显微镜是该地区它可以扫描和图像分辨率,它可以产生。 电子显微镜可以扫描面积测量毫米 一个原子力显微镜的扫描涵盖微米(纳米,事实上) 。 从这个角度看,可以很容易地看到,电子显微镜可以扫描的区域面积更广,速度超过了原子力显微镜。 原子力显微镜是相当新的,仍然有一些错误,但它是目前使用广泛的研究在电子,化学和生物领域包括深奥的学科磨损和粘附,清洗和腐蚀,以及作为东道主的其他应用软件。

环境可控型原子力显微镜相关的耗材

  • AFM原子力显微镜纳米标尺
    产品特点:GATTA-AFM纳米标尺具有准确、高度平行的结构,可以完美地用于检测或优化原子力显微镜。在实际环境中测试原子力显微镜可以达到的分辨率非常重要,不仅可以测出原子力显微镜达到产品标称分辨率的可能性,还可以测出实际使用时可达到的极限。如今GATTA也提供适合测试的GATTA-AFM纳米标尺,现在,有了GATTA原子力显微镜纳米标尺之后,就有了足够的测试样品,这些样本用DNA做成,呈现70nm*90nm*2nm(高)的长方体形状。纳米标尺,AFM纳米标尺,原子力显微镜纳米标尺,共聚焦显微镜纳米标尺,超高分辨显微镜纳米标尺,SIM纳米标尺,STED纳米标尺,STORM纳米标尺,电镜纳米螺旋标尺,金纳米螺旋标尺,显微镜亮度灵敏度标尺,显微镜纳米标尺技术参数:
  • AFM原子力显微镜计量校准片
    问题:当原子力显微镜做样品成像时,很难知道表面是否准确的表征?也许会受针尖的顶端破碎或钝影响。破损或钝的探针针尖会使测量结果有显著差异,如粗糙度或表面结构等等。要确保用户在使用探针时要有适当的提示,必须直接扔掉旧探针或定期使用SEM电镜检测,这两种方法都非常的浪费探针或耗时。解决方案:BudgetSensors Tipcheck介绍-一个SPM样品可以在原子力显微镜的针尖条件下快速、简便的测定。即使在一个单一的扫描线上,也使之间的差异变得明显。因此,tipcheck提供了一个快速简便的方法来比较和分类原子力显微镜探针不同的针尖、形状和清晰度。您可以很容易的检查您的AFM探针是否完好,是否已经磨损或破损,从而不需要扫描使用该探针扫描整个样品图像或做SEM电镜扫描检测。此外,该样品的完美自动提示和针尖表征软件在市场上可用。BudgetSensors Tipcheck样品是一种非常耐磨的薄膜涂层,沉积在硅芯片上。这层薄膜涂层呈颗粒状,尖锐的纳米机构使得它能在AFM探针针尖反向成像。该Tipcheck模具的尺寸为5*5mm。下面的图片显示了使用不同探针测试tipcheck样本之间的比较,扫描尺寸为1*1um,高度为100nm。根据下面的形貌图你可以找到一个具有代表性的断面图像。为什么我们需要高度校准块?原子力显微镜已经成为一个有价值的工具,不仅用于可视化,而且也可以用于进行精确的纳米和微米尺度测量。为了能使原子力显微镜最精确的测量,原子力显微镜需要正确的校准。HS-20MG / HS-100MG / HS-500MG作为budgetsensors 高度标准介绍作为增加相应,能负担原子力显微镜的高品质校准标准需求。HS-20MG / HS-100MG / HS-500MG是一个尺寸为5*5mm且阵列在硅基底上的二氧化硅结构。芯片结构的制造工艺保证了良好的均匀性。这将确保你的AFM系统Z轴方向校准方便可靠。校准区域位于芯片的中心,使用原子力显微镜的光学系统很容易找到。校准结构的台阶高度为20nm(HS-20MG)100nm(HS-100MG)和500nm(HS-500MG)每一个芯片的精确值都标识在盒子标签上。芯片上集成了不同形状和间距的结构阵列。在1*1mm的大区域内包含了间距为10um的方柱孔。在500*500um的小区域内包含了XY方向间距为5um的圆柱形孔。除了Z轴校准,这样的设计也让XY方向有了更大的校准范围(40~100um以内),而且,校准片的结构对称性使得校准原子力显微镜时不需要旋转和调整校准片XY刻度的方向。HS-20MG / HS-100MG / HS-500MG用优质导电环氧树脂粘在一个12毫米金属圆盘上,并将其用作装运的材料。横向尺寸:5*5mm几何结构:在1*1mm平方内排列间距为10um的方形孔柱在500*500um平方内XY方向排列间距为5um的圆形孔柱台阶高度HS-20MG:~20nmHS-100MG:~100nmHS-500MG:~500nm注:每个校准片盒子标签上都标有明确数值为什么需要XYZ标定校准?为了使原子力显微镜更精准的测量,必须进行正确校准。因此,更精确的校准标准才能实现原子力显微镜更好的测量结果。在这方面,校准的标定标准允许原子力显微镜系统的最精确校准。我们的解决方案:CS-20NG是一种先进的XYZ标定校准,使校准精度降低到纳米级。它的特点是在一个5*5mm的硅芯片上阵列二氧化硅结构。确保整个芯片结构有良好的均匀性。反之,又确保了方便可靠的校准原子力显微镜的XYZ三方向的精度。校准区域位于芯片的中心,使用原子力显微镜的光学系统很容易找到。台阶高度在20nm范围内,每一个芯片的精确值都标识在盒子标签上。芯片上集成了不同形状和间距的结构阵列。在1*1mm的大区域内包含了间距为10um的方柱孔。在中区域内包含了XY方向间距为5um的圆柱形孔。在小区域内500nm间距的圆形孔。CS-20NG适用于横向和纵向的AFM扫描校准。校准片的结构对称性使得校准原子力显微镜时不需要旋转和调整校准片XY刻度的方向。CS-20NG用优质导电环氧树脂粘在一个12毫米金属圆盘上,并将其用作装运的材料。横向尺寸:5*5mm几何机构:在1*1mm平方内排列间距为10um的方形孔柱在500*500um平方内XY方向排列间距为5um的圆形孔柱在100*100um平方内分布着间距为500nm的圆形孔台阶高度:20nm每个校准片盒子标签上都标有明确数值
  • 原子力显微镜探针/afm探针/磁力显微镜/MESP-V2
    AFM配件,原子力探针,AFM探针,原子力探针针尖,显微镜探针针尖,原子力针尖,原子力显微镜探针针尖,接触探针,纳米压痕探针,氮化硅探针,硅探针,热探针,超尖探针,电子探针,显微镜针尖,原子力显微镜针尖,轻巧模式探针,AFM针尖,接触式探针,磁性探针,导电探针,显微镜探针,探针,布鲁克探针,原子力探针,BRUKER PROBE,AFM PROBE,BRUKER探针,原子力显微镜探针,AFM探针,VEECO探针作为一家能够提供AFM/SPM仪器和AFM/SPM探针的企业,布鲁克公司深刻理解每个单独的组件对于一整套性能AFM系统的价值。布鲁克公司以的生产工艺,专业的AFM领域背景,得天独厚的生产装备,赋予探针制造众多的优势,确保在应用领域中提供完整的AFM解决方案。布鲁克AFM探针制造优势:*Class100级别的无尘室*的设计、制造工序及制造工具*探针设计团队与AFM设备研发团队通力合作,配合紧密*训练有素的生产团队,制造出各种型号的探针*的质量管理体系,确保探针性能行业在实验中,用户所得到的数据取决于探针的质量及探针的重复性。布鲁克的探针具有严格的纳米加工控制,的质量测试,和AFM领域的专业背景。所以用户尽可放心,我们的探针不仅为您当前的应用提供所需的结果,同时也能为将来的研究提供参考数据。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制