农业遥感用通道多相机

仪器信息网农业遥感用通道多相机专题为您提供2024年最新农业遥感用通道多相机价格报价、厂家品牌的相关信息, 包括农业遥感用通道多相机参数、型号等,不管是国产,还是进口品牌的农业遥感用通道多相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合农业遥感用通道多相机相关的耗材配件、试剂标物,还有农业遥感用通道多相机相关的最新资讯、资料,以及农业遥感用通道多相机相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

农业遥感用通道多相机相关的厂商

  • 我公司是生产农药残留仪器和农残试剂的.而且是农残仪器里唯一能检测果蔬容易出现假阳性的仪器.且我们根据客户需求开发了一系列:农产品(食品)质量安全监控系统、农情监测物联网系统、网格化监督管理系统、农产品追溯系统等.上海博纳新技术研究所,自一九九二年十二月成立以来,本着“博学笃志,纳才报国”的坚定信念,在仪器仪表、通讯技术、监控软件和分析系统等领域,深入研究、不断创新,制定了一项国家标准,多项地方标准和企业标准,取得了多项实用新型**、发明**和几十项的软件著作权。 一九九九年,我所成功研制了CL-BIII型残留农药测定仪,并通过检测数据分析软件、标样比对数据库、检测国家标准库和INTERNET技术,实现对农产品质量安全的实时动态监控、检测数据统计分析、多级监控的安全预警、生产源头的档案追溯等功能。为各地区的食品安全提供了较完整、先进的地区性解决方案。目前CL-BIII型测定仪在全国各地得到了广泛使用,所构建的“食品安全检测信息平台”已经覆盖全国28个省区。服务的领域有卫生检疫、质量监督、工商执法和农业现代化管理等…上海复博农业科技有限公司(前身上海复博软件科技有限公司)成立于二OO一年初,是上海博纳新技术研究所下属的一家民营高科技企业。 公司拥有大批优秀软件开发工程师,是一个年轻有朝气的团队。公司依托北京大学、中国农业大学、上海交大农学院和上海复旦大学等高等院校的研究力量,借助上海博纳新技术研究所在食品安全领域的行业优势,在农业生产的HACCP现代化综合管理、农产品的深加工质量控制和农产品的流通安全监管等方面,锐利进取、努力创新,先后开发出了:果蔬残留农药监控系统、农业生产综合管理系统(FMS)、IC卡市场管理系统(MMS)和食品安全监控系统(FSS)等系统软件。公司本着“复报民众,博济家国”的理念,同兄弟公司合作、同大专院校合作,已完成了多个国家和上海市有关部门的多个科研项目。我们真诚希望团结各界优秀人士,共同保障广大人民群众的食品安全,实现“以信息化推动农业现代化”而努力奋斗!
    留言咨询
  • 泊头市大昌农业科技有限公司,位于河北省泊头市。我公司生产销售大棚配件、大棚卷膜器。主要产品有:温室大棚配件、侧用卷膜器、顶用卷膜器、电动卷膜器、大棚双拱卡、大棚人字卡、大棚十字卡、大棚压紧簧、大棚卡槽卡簧、压膜线、压膜卡等温室配件。是一家集农业工程设计、开发、销售以及售后的农业技术服务为一体的综合性化企业。泊头市大昌农业科技有限公司拥有的搭建和设计,能够适应从南方到北方的所有气候。我们在不断适应与紧跟技术的同时,拥有的搭建和设计,摒弃了国内其他同行厂家生产上的部分缺陷,在生产工艺上进行改良,不断创新,能够适应从南方到北方的所有气候。可根据客户的需求定做各种温室及园艺工程。我公司一直以“质量保障、服务、顾客满意”为经营宗旨,以“求仁为大、求利为小、 服务为人民”为经营理念,我公司愿以精良的产品和真诚的服务与客户精诚,共拓市场、共创辉煌,我公司全体员工将热情欢迎各界友人和新老用户光临指导!
    留言咨询
  • 南京泽朗农业发展有限公司位于*白马农业高新技术开发区,专业从事天然食品添加剂、食用植物提取物的研究开发与生产。公司技术力量雄厚,是市级重点农业龙头企业、省级高新技术企业,核心产品均拥有自主知识产权,年申报发明专利一百余项。公司占地30余亩,建有2000平米综合实验大楼,1000平米天然食品添加剂QS生产线,1000平米食用植物提取物(浓缩粉)QS生产线,生产设备齐全,可完成中试及大生产各生产流程。检测中心配备有高效液相色谱仪、紫外可见分光光度计、分析天平、原子吸收分光光度计等,可确保产品质量可控、可溯源。车间配备有多功能不锈钢提取罐、高效浓缩器、层析柱、结晶罐、喷雾干燥喷塔、真空干燥箱、离心机、精密过滤器等,能顺利完成从试验到大生产各阶段的质量控制。公司还规划了二期建设项目4000平方米,正努力成为天然植物提取物行业*优秀和*具良好信誉的企业之一。
    留言咨询

农业遥感用通道多相机相关的仪器

  • 农业遥感专用5通道多光谱相机 - RedEdge MX(升级版)技术服务人员:吴工(Pete) 电话: 邮箱:RedEdge-MX 5通道多光谱相机是RedEdge-M的升级版,这款产品技术更加先进,集成化程度更高,更加易于集成到各种型号的无人机设备上,这款多光谱相机继承了RedEdge-M的诸多性能,与RedEdge-M相比,它将DLS光照传感器模块和GPS模块集成到一起,形成新一代DLS2代,其拥有更多的感光器件,有先进的辐照和太阳角度测量技术,它提供更准确、可靠的数据,大大减少了后期处理的需要,大大提高了辐射测量精度。关于RedEdge M多光谱相机的资料可以详见链接:主要特点: ①同时收集红、绿、蓝、红边、近红外五个不连续的光谱波段②地物分辨率位于离地高度120米可达8厘米③全局的快门设计可消除各种平台上的图像失真④直观的网络界面,能与任何WIFI设备连接⑤DLS光照传感器模块和GPS模块集成形成DLS2代,提高集成度和辐射测量精度特征参数:RedEdge-MX重量232g尺寸8.7厘米 x 5.9厘米 x 4.54厘米电源4.2V-15.8V功耗4/8W(常规、峰值)多光谱红、绿、蓝、红边、近红外RGB输出全局快门,所有波段对齐传感器分辨率1280 x 960地物分分辨率(GDS)200px位于120m离地高度接口串行,10/100/1000以太网,可移动Wi-Fi,外部触发器,GPS, SDHC捕获率1次/1秒视场角47.2° HFOV 存储SD卡(32G)触发方式时间触发、重复率触发、外部触发Band NumberBand NameCenter Wavelength (nm)Bandwidth FWHM (nm)1Blue475202Green560203Red668104Near IR840405Red Edge71710通过多光谱相机可以得到客户需要的植被指数,在农林业病虫害、生长长势等精 准农业方面有很大作用。获取植被指数:Chlorophyll Map:红边光谱波段是这里的重要参数,与其他波段一起工作,以提供更精 确的测量,不仅是植物活力,而且是植物健康。NDVI Layer:这个常见的植被指数比较了红波段和近红外波段的反射率。这个指数也是农业分析中常见的参考依据。Digital Surface Model:DSM在任何农业分析中有利的工具,主要是因为它在判定表面特性和水流方面的使用。RGB Image:RedEdge-MX为全局拍摄的无失真图像数据,包括RGB彩色图像的红、绿、蓝窄带,处理后所有可见和不可见的波段与植被指数对齐。RedEdge - MX是一款随时可操作的产品,无论平台如何都能无缝集成,因为体积小,重量轻,低功耗,可以在更少的飞行中获取更多的数据,所以一般旋翼机和固定翼无人机集成搭载都不成问题。
    留言咨询
  • Ecodrone 轻便型10通道多光谱无人机遥感系统是易科泰光谱成像与无人机遥感技术研究中心在Ecodrone UAS-4无人机平台基础上,采用倾斜补偿方法及同步触发控制技术推出的一款免云台多光谱遥感监测系统,应用于大范围、多维度智慧农业研究、森林植被资源调查、生态环境监测、水质水色反演、大田高通量表型分析、国土资源调查等,荣获中国杨凌农业高新科技成果“后稷奖”。 该系统集成轻便型无人机平台、10通道多光谱成像及高分辨率RGB成像,具有机动灵活、操作简单、光谱通道数多、时空分辨率高、续航时间长等特点,一次作业即可同时获得10通道多光谱影像及高清RGB影像,对冠层尺度作物/植物生长监测、叶绿素效率及植物红边坡度分析、森林资源调查、水土资源监测管理、生态环境动态监测、物种多样性调查研究等具有重要意义。主要特点:? 4旋翼轻便型无人机遥感平台,搭载10通道多光谱及高清RGB相机,飞行时间可达40分钟,同步获取10通道多光谱影像及高分辨率RGB影像,飞行作业事半功倍? 高影像分辨率:100m飞行高度时分辨率可达6.7cm? 可测量NDVI、NDRE、DVI、RVI、SAVI、EVI、VOG、绿度指数、光利用效率、浅水环境(气溶胶、浮质等)、叶绿素效率或红边坡度? 集成下行光传感器DLS和GPS,配备标准反射校准板,确保精确的环境光校准,多镜头共用,节省成本和重量的同时,确保同时、同步、同光线? 物理安全开关+遥控器双重加锁,确保安全操作? 角度倾斜补偿技术,免云台飞行,可选配磁编码自稳云台,实时姿态调整,每秒300次? 安全保护功能,支持低电量报警、一键返航,磁罗盘失灵等极端情况下一键切换手工控制? 预留接口:无需改动,轻松集成红外热成像、ENVIS环境因子监测等传感器,实现一机多能? 系统总重<6kg、收纳尺寸小、起降场地要求低,方便野外移动、运输、作业应用案例:(1)不同胁迫条件下水稻表型分析易科泰光谱成像与无人机遥感技术研究中心使用Ecodrone多光谱无人机遥感系统在浙江一水稻田采集了多光谱成像数据并进行了分析处理。基于NDVI和NDRE结果可以看出,除水稻田边缘部分外整体指数数值较高,说明作物叶绿素含量和绿色部分生物量较高,几乎使NDVI数值达到了饱和。而从NDRE图可以更为清晰的看出不同处理条件下水稻生理特性的差异,通常NDRE数值越高反应着植株越健康。基于无人机多光谱数据进一步研究验证筛选出种植品种、种植密度和施肥用量的最优组合,可以有效减少资源浪费,缓解氮肥流失造成的环境问题,或结合实际测量的理化数据建立拟合模型,通过光谱信息反演作物生化指标,实现精准农业生产研究。 (2)水土资源调查下图为湖州师范学院校内人工湖及周边,该区域地物丰富多样,使用Ecodrone 10 通道多光谱无人机遥感系统采集该区域的10通道多光谱影像数据,并进行地物分类及水体资源研究。 (3)内陆水体水质监测内陆及海岸带水体湿地监测,主要监测的污染物主要有三类,分别为浮游植物(主要是藻类),由于藻类都含有叶绿素,所以主要监测叶绿素a浓度;非色素悬浮物(简称悬浮物),由于浮游植物死亡而产生的有机碎屑以及陆生或湖体底泥经再悬浮而产生的无机悬浮颗粒;有色可溶性有机物(CDOM),有黄腐酸、腐殖酸组成的溶解性有机物。 易科泰生态技术公司致力于生态-农业-健康研究发展与创新应用,为精准农业研究、森林植被资源调查、生态环境监测、地质矿产勘查、环境污染控制与影响评估等低空遥感应用领域提供无人机及近地遥感全面技术方案:1)Ecodrone UAS-4轻便型无人机遥感平台,可搭载多光谱成像、Thermo-RGB成像传感器2)Ecodrone UAS-8无人机高光谱遥感平台,可搭载一体式高光谱成像-红外热成像等3)Ecodrone-Kestrel高分辨率无人机高光谱遥感系统,全新自主专利产品,高负载无人机遥感平台,可搭载定制化方案4)Ecodrone一体式高光谱红外热成像无人机遥感系统,高光谱-红外热成像同步监测5) 轻小型固定翼无人机遥感技术方案,可挂载多光谱相机、红外热成像及RGB相机,最大起飞重量1350g,续航时间可达75分钟6)PhenoPlot近地遥感技术方案,可扩展、可定制
    留言咨询
  • 新型农业无人机三合一遥感相机--5通道多光谱/热成像/RGBAltum是新型的三合一的多光谱兼热成像相机--包含多光谱、热成像、RGB,这款相当于该集团公司的新一代产品,技术更加先进、搭载更加灵活。DLS2是新的光照传感器,将DLS和GPS集成在一起,拥有先进的辐照和太阳角度测量技术,它提供更准确、可靠的数据,大大减少了后期处理的需要,大大提高了辐射测量精度,对于无人机的设置和搭载更加方便。它在包含以前产品的优势的情况下,升级了诸多技术层面。Altum拥有五个独立的成像器,分别配上特制的滤光片,能让每个成像器接收到波长范围的光谱。它为工业级别的成像仪,具有不同光照状态下的高动态量程,同时没有一般无人机录像和拍照时产生的伪象。同时它还具有一个热成像的功能,这是其它产品所不具备的。仅使用一个传感器就能捕获对齐的高分辨率、多光谱和热图像。从一个数据集生成表型、灌溉和植物健康分析。重要的是Altum提高了空间分辨率和地物分辨率意味着更准确的数字表面模型,另外解决了内存的后顾之忧,采用USB的接口容量可以达到128GB!意味着你可以飞行更长时间,覆盖更多的面积。不再更换SD卡! 产品特点: 同时收集五个不连续的光谱波段以及11um热成像 校准,可重复测量 窄带滤光片提供针对单一波段大图像分辨率 圆形的快门设计可消除各种平台上的图像失真 能单机运行,也可选用来自飞行器的外部触发和数据连接 可选择通过Ethernet或串口与飞行器连接,实现直接配置,状态变化以及相机控制 地物分辨率能达到5.2厘米位于120米离地高度 USB内存接口可以大提供128GB存储基本规格参数:MultispectralThermalPixel size3.45um12umResolution2064x1544 px(3.2MPx5images)160 x 120 pxAspect ratio4:34:3Sensor size7.12 x 5.33 mm1.92 x 1.44 mmFocal length5.5 mm1.68 mmField of view(H x V)48°x 36.8°57°x44.4°Thermal sensitivityn/a<50mkOutput bit depth12-bit14-bitGSD@120m5.2 cm81 cmGSD@60m2.1 cm41 cmDimensions82mm x 67mm x 64.5mm(357g)-Band NumberBand NameCenter Wavelength Bandwidth FWHM 1Blue475 nm20 nm2Green560 nm20 nm3Red668 nm10 nm4Near IR840 nm40 nm5Red Edge717 nm10 nm6Thermal11 um6 um标准的16位TIFF文件输出使您可以完全访问原始数据,因此您可以在您选择的平台上处理它。可以对该传感器的图像进行拼接,数据进行处理等功能,提供NDVI,NDRE等指标图像。输出数据也可以使用Pix 4D、NI、Photoscan等软件进行处理。
    留言咨询

农业遥感用通道多相机相关的资讯

  • 黑龙江省再添3家中科院科学家工作室 涉及农业遥感监测
    近日,黑龙江省科技厅公布了2023年第一批新备案的3家黑龙江省中国科学院科学家工作室,均来自农业领域。中科院的“最强大脑”与龙江黑土特色紧密结合,将推动黑龙江省在寒地早粳稻分子育种、农业遥感监测、延长玉米深加工产品产业链等领域开展开创性研究,推动现代农业发展。   此次新备案的3家科学家工作室分别是依托省农科院绥化分院建立的中国科学院方军寒地早粳稻遗传资源改良工作室,依托黑龙江伊品新材料有限公司建立的中国科学院温廷益合成生物学工作室,依托齐齐哈尔市依安县农业技术推广中心建立的中国科学院吴骅农业遥感工作室。   中科院东北地理与农业生态研究所研究员方军说,建立中国科学院寒地早粳稻遗传资源改良工作室,可以支持绥化分院进行寒地早粳稻遗传资源改良工作,精准挖掘早粳稻有利基因,筛选出一批重要资源,并进行保护、利用,进一步丰富寒地粳稻育种的亲本遗传资源和优异基因资源,完善寒地水稻种质资源评价与利用体系,加快黑龙江高产优质水稻新品种的培育。   “温廷益研究员在氨基酸及其衍生物的生物合成机制、菌种创新和产业化方面取得了一系列成果。我们合作已久,通过他的技术研发和指导,伊品新材料以玉米为原料,生产尼龙56切片新产品,有效延长了玉米深加工产业链。产品在新能源汽车和民用丝领域得到推广。”黑龙江伊品新材料有限公司新材料研发负责人郭小炜介绍,“此次成立工作室后,双方将深入挖掘和开拓戊二胺和尼龙5x在民用纺织、工程塑料、特种聚氨酯、水性涂料等领域的应用”。   中国科学院吴骅农业遥感工作室则依靠吴骅及其团队的技术力量,获取黑土卫星与无人机多模态遥感数据、作物生长状况信息,并在此基础上开展科学研究,建立遥感监测模型。为开展黑土保育与养护、提升农业信息化与智慧化水平提供技术支撑。   黑龙江省对外科技合作中心(黑龙江省院士工作服务中心)副主任冉东升介绍,截至目前,黑龙江省共有中科院科学家工作室88家,通过科研技术联合攻关,推动了一批中科院高端科技成果在黑龙江省落地转化,培养了高水平科技人才,推动了黑龙江省区域创新能力提升和产业转型升级。
  • 农业农村部:《食用菌中粗多糖的测定 分光光度法》等74项农业行业标准发布
    《畜禽品种(配套系) 澳洲白羊种羊》等74项标准业经专家审定通过,现批准发布为中华人民共和国农业行业标准,自2023年8月1日起实施。标准编号和名称见附件。该批标准文本由中国农业出版社出版,可于发布之日起2个月后在中国农产品质量安全网(http://www.aqsc.org)查阅。特此公告。附件:《畜禽品种(配套系) 澳洲白羊种羊》等74项农业行业标准目录农业农村部2023年4月11日相关标准如下:序号标准编号及标准名称代替标准号1NY/T 129-2023 饲料原料 棉籽饼NY/T 129-19892NY/T 1676-2023 食用菌中粗多糖的测定 分光光度法NY/T 1676-20083NY/T 2316-2023 苹果品质评价技术规范NY/T 2316-20134NY/T 4326-2023 畜禽品种(配套系)澳洲白羊种羊5NY/T 4327-2023 茭白生产全程质量控制技术规范6NY/T 4328-2023 牛蛙生产全程质量控制技术规范7NY/T 4329-2023 叶酸生物营养强化鸡蛋生产技术规程8NY/T 4330-2023 辣椒制品分类及术语9NY/T 4331-2023 加工用辣椒原料通用要求10NY/T 4332-2023 木薯粉加工技术规范11NY/T 4333-2023 脱水黄花菜加工技术规范12NY/T 4334-2023 速冻西兰花加工技术规程13NY/T 4335-2023 根茎类蔬菜加工预处理技术规范14NY/T 4336-2023 脱水双孢蘑菇产品分级与检验规程15NY/T 4337-2023 果蔬汁(浆)及其饮料超高压加工技术规范16NY/T 4338-2023 苜蓿干草调制技术规范17NY/T 4339-2023 铁生物营养强化小麦18NY/T 4340-2023 锌生物营养强化小麦19NY/T 4341-2023 叶酸生物营养强化玉米20NY/T 4342-2023 叶酸生物营养强化鸡蛋21NY/T 4343-2023 黑果枸杞等级规格22NY/T 4344-2023 羊肚菌等级规格23NY/T 4345-2023 猴头菇干品等级规格24NY/T 4346-2023 榆黄蘑等级规格25NY/T 4347-2023 饲料添加剂 丁酸梭菌26NY/T 4348-2023 混合型饲料添加剂 抗氧化剂通用要求27NY/T 4349-2023 耕地投入品安全性监测评价通则28NY/T 4350-2023 大米中2-乙酰基-1-吡咯啉的测定气相色谱-串联质谱法29NY/T 4351-2023 大蒜及其制品中水溶性有机硫化合物的测定 液相色谱-串联质谱法30NY/T 4352-2023 浆果类水果中花青苷的测定 高效液相色谱法31NY/T 4353-2023 蔬菜中甲基硒代半胱氨酸、硒代蛋氨酸和硒代半胱氨酸的测定 液相色谱-串联质谱法32NY/T 4354-2023 禽蛋中卵磷脂的测定 高效液相色谱法33NY/T 4355-2023 农产品及其制品中嘌呤的测定 高效液相色谱法34NY/T 4356-2023 植物源性食品中甜菜碱的测定 高效液相色谱法35NY/T 4357-2023 植物源性食品中叶绿素的测定 高效液相色谱法36NY/T 4358-2023 植物源性食品中抗性淀粉的测定 分光光度法37NY/T 4359-2023 饲料中16种多环芳烃的测定 气相色谱-质谱法38NY/T 4360-2023 饲料中链霉素、双氢链霉素和卡那霉素的测定 液相色谱-串联质谱法39NY/T 4361-2023 饲料添加剂 α-半乳糖苷酶活力的测定 分光光度法40NY/T 4362-2023 饲料添加剂 角蛋白酶活力的测定 分光光度法41NY/T 4363-2023 畜禽固体粪污中铜、锌、砷、铬、镉、铅汞的测定 电感耦合等离子体质谱法42NY/T 4364-2023 畜禽固体粪污中139种药物残留的测定 液相色谱-高分辨质谱法43NY/T 4365-2023 蓖麻收获机 作业质量44NY/T 4366-2023 撒肥机 作业质量45NY/T 4367-2023 自走式植保机械 封闭驾驶室 质量评价技术规范46NY/T 4368-2023 设施种植园区 水肥一体化灌溉系统设计规范47NY/T 4369-2023 水肥一体机性能测试方法48NY/T 4370-2023 农业遥感术语 种植业49NY/T 4371-2023 大豆供需平衡表编制规范50NY/T 4372-2023 食用油籽和食用植物油供需平衡表编制规范51NY/T 4373-2023 面向主粮作物农情遥感监测田间植株样品采集与测量52NY/T 4374-2023 农业机械远程服务与管理平台技术要求53NY/T 4375-2023 一体化土壤水分自动监测仪技术要求54NY/T 4376-2023 农业农村遥感监测数据库规范55NY/T 4377-2023 农业遥感调查通用技术 农作物雹灾监测技术规范56NY/T 4378-2023 农业遥感调查通用技术 农作物干旱监测技术规范57NY/T 4379-2023 农业遥感调查通用技术 农作物倒伏监测技术规范58NY/T 4380.1-2023 农业遥感调查通用技术 农作物估产监测技术规范 第1部分:马铃薯59SC/T 1135.8-2023 稻渔综合种养技术规范 第8部分:稻鲤:(平原型)60SC/T 1168-2023 鳊61SC/T 1169-2023 西太公鱼62SC/T 1170-2023 梭鲈63SC/T 1171-2023 斑鳜64SC/T 1172-2023 黑脊倒刺鲃65SC/T 1174-2023 乌鳢人工繁育技术规范66SC/T 2001-2023 卤虫卵SC/T 2001-200667SC/T 3058-2023 金枪鱼冷藏、冻藏操作规程68SC/T 3059-2023 海捕虾船上冷藏、冻藏操作规程69SC/T 3060-2023 鳕鱼品种的鉴定 实时荧光PCR法70SC/T 3061-2023 冻虾加工技术规程71SC/T 4018-2023 海水养殖围栏术语、分类与标记72SC/T 6106-2023 鱼类养殖精准投饲系统通用技术要求73SC/T 9443-2023 放流鱼类物理标记技术规程74SC/T 9444-2023 水产养殖水体中氨氮的测定 气相分子吸收光谱法
  • 农业生产情况的遥感监测:机遇与挑战
    利用遥感方法,可以对地面上的农作物生长情况进行及时、准确的监测和分析。所获得的作物信息有助于粮食安全早期预警,为作物种植管理和贸易决策提供有效支撑。然而在技术层面上,如何用定量和客观的方法来提升农情监测信息的可靠性,仍然极富挑战。在近期发表于《国家科学评论》(National Science Review, NSR)的综述文章中,中国科学院空天信息创新研究院、对地观测组织全球农业监测旗舰计划(GEOGLAM)联合主席吴炳方研究员团队(以下简称CropWatch团队),联合澳大利亚昆士兰大学、比利时法兰德斯技术研究院、美国内布拉斯加大学和俄罗斯科学院空间研究所的相关研究人员系统总结了遥感农情监测中作物长势、面积、产量等信息的监测方法,分析其中存在的问题和挑战,提出了提升农情信息定量化的实现途径和解决地面数据制约农情监测的众源数据方案,并主张发布农情信息需要避免利益冲突。监测作物长势在现有的农情监测系统中,常使用植被指数来评价大区域尺度下作物的综合生长活力,并通过对植被指数当前值与历史值的差异比较,来评价作物长势的好坏。然而,年际间的物候变化、作物轮作休耕现象,以及植被指数饱和等问题,均会导致作物长势监测信息的偏差。因此,作者指出,在作物长势监测时,需要结合物候差异、轮作和休耕等信息对作物长势信息进行订正,以降低作物长势监测的不确定性。另一方面,如何将遥感监测得到的长势信息转化为作物的苗情等级,还缺乏统一的标准,作物长势评估的定量化方法也尚待建立。监测胁迫信息干旱、病虫害等胁迫因素会影响作物的生长,对其进行监测有利于及时发出预警和指导农业生产管理。在旱情监测领域,目前用于气象干旱和农业干旱监测的指标不胜枚举,但是部分旱情指数混淆了气象干旱和农业干旱的表征意义——事实上,通过适当的农田管理措施,如灌溉等,可有效缓解气象干旱对农作物的影响,将二者混淆不利于对真实旱情的把握。因此,对于气象干旱和农业干旱,需要研制不同的监测指标。另一方面,干旱指标划分的旱情严重程度与作物实际受旱程度存在偏差,如何将干旱指数反映的旱情转化为作物的实际受旱程度还缺乏统一的标准。在病虫害监测方面,虽然已有众多遥感指标用于对病虫害的胁迫程度进行表征,但是这些指标都依赖先验知识来确定病虫害的类型。高光谱数据可以反映叶片生化成分及其变化,是养分胁迫和病虫害胁迫监测的有效数据源。然而当前高光谱卫星时间分辨率低、幅宽窄,在大区域业务化监测中还有很长的路要走。未来,需要发展高时间分频率、专注于养分胁迫和病虫害敏感谱段的传感器,以提升养分胁迫和病虫害遥感监测的能力。监测作物产量作物产量预测是农情遥感监测的核心内容,也是用户最关注的农情信息。要完成这一预测,需要通过遥感监测掌握两类信息:特定作物的种植面积,以及该种作物的单产。要了解某种作物的种植面积,首先需要在遥感数据中实现作物分类。随着遥感技术的不断发展,以及机器学习和深度学习等自动分类方法的逐渐应用,作物分类方法也日臻完善,为全球尺度的作物分类制图提供了可能。然而当前方法都高度依赖地面调查样本,当样本量不足时,往往难以取得理想的效果。未来,还需要发展不依赖样本的结构化作物精准识别方法,如CropWatch团队研制的水稻“淹水期-移栽期”光学植被指数和微波后向散射系数显著变化相耦合的方法,实现了南亚和东南亚10m水田的精准提取。此外,还应当发展完善分类模型中的时间和空间迁移学习方法,以减少作物分类模型对地面数据的依赖性。融合水稻关键物候期光学植被指数和雷达后向散射系数强度变化的东南亚和南亚的10m分辨率水稻分布图在种植结构复杂的区域,作物精准识别仍面临挑战,不可能一味通过提高卫星遥感数据的分辨率来实现大范围作物分布的提取。而将遥感监测获得的耕地种植成数与众源数据监测的作物分类成数相结合,可以更为高效可行地解决农田破碎区、作物种植结构复杂区的作物种植面积监测难题,可以满足全球作物种植面积监测时效性高等运行化的需求。作物单产监测则是农情遥感监测的难点。当前的作物单产预测方法可以归纳为:①基于农气信息、关键植被指数和微波特性的统计回归方法;②基于作物生长过程的物理模型法;③生物量和收获系数结合的半经验法;④以机器学习和深度学习为主的数据驱动的预测方法。作物单产预测模型(a.统计回归法,b.生物量与收获指数法,c.作物生长模型,d.数据驱动方法)然而,由于影响作物单产的要素众多,且要素之间相互关联,产量的形成和波动涉及复杂的生物、物理和化学过程,导致作物单产预测仍然是当前农情监测的最薄弱环节,原因是目前所使用的参数、指标和方法并不能完全解释作物单产的决定因素。未来,还需要发展新的传感器来预测作物单产,特别是在光学、微波、热红外监测的基础上,开展作物几何结构的观测,发展新的作物单产预测方法。农情监测:挑战与机遇在农情监测领域,实地观测数据和区域专家知识的缺乏,会显著降低监测信息的准确性和适用性,导致相关决策的误判。实地观测数据因费时、费力、可获得性差,一直制约着农情监测的发展。随着智能手机的普及,其内嵌的传感器越来越丰富,众源大数据有望弥补地面调查数据不足的问题。CropWatch团队基于智能手机开发的GVG众源信息采集APP,通过耦合深度学习算法,实现了带有位置标签的作物类型、灌溉类型信息的高效感知;同时通过融合计算机视觉方法,发展了可用于作物单产快速采集的技术,通过计算穗数、每穗的籽粒数和千粒重等参数,实现了小麦/水稻单产的无损化精确观测,显著提升了地面调查数据的采集效率。基于智能手机、计算机视觉和深度学习的小麦单产无损获取此外,虽然卫星观测数据美丽又客观,但是通过专家分析得到的信息往往包含利益导向。因此,综述作者明确主张发布农情信息需要避免利益冲突,用户也需要使用不同的信息源以避免无意识地被误导。为了减少农情监测的主观影响,CropWatch团队允许用户参与到农情监测信息分析的全过程,最大程度的确保了结果的客观性和透明度,避免了信息的偏差对决策的干扰。当然,最好的方式是用户有自己的农情监测系统。但受开发和维护成本以及技术的限制,这对大多数用户来说都很难实现。为此CropWatch以应用程序编程接口(API)方式开放了所有组件和功能供用户调用。莫桑比克农业和农村发展部通过调用相关功能,实现了整个国家的农情监测。这一实践被国际农业发展基金(IFAD)评为2020年最佳农村解决方案之一,也是2022年联合国“南南合作”促进可持续发展的优秀案例。上述成果得到了科技部政府间国际合作重点项目“GEOGLAM框架下的先进农情监测方法”和中科院地球大数据A类先导专项课题“一带一路资源调查与评估”等项目的支持。

农业遥感用通道多相机相关的方案

农业遥感用通道多相机相关的资料

农业遥感用通道多相机相关的论坛

  • 【转帖】遥感技术在大气环境监测中的应用综述

    遥感技术具有监测范围广、速度快、成本低,且便于进行长期的动态监测等优势, 还能发现有时用常规方法难以揭示的污染源及其扩散的状态, 它不但可以快速、实时、动态、省时省力地监测大范围的大气环境变化和大气环境污染, 也可以实时、快速跟踪和监测突发性大气环境污染事件的发生、发展, 以便及时制定处理措施, 减少大气污染造成的损失。因此,遥感监测作为大气环境管理和大气污染控制的重要手段之一, 正发挥着不可替代的作用。1  大气环境遥感监测技术的基本原理遥感监测就是用仪器对一段距离以外的目标物或现象进行观测,是一种不直接接触目标物或现象而能收集信息,对其进行识别、分析、判断的更高自动化程度的监测手段。它最重要的作用是不需要采样而直接可以进行区域性的跟踪测量,快速进行污染源的定点定位,污染范围的核定,污染物在大气中的分布、扩散等,从而获得全面的综合信息。根据所利用的波段, 遥感监测技术主要分为紫外、可见光、反射红外遥感技术 热红外遥感技术和微波遥感技术三种类型。大气环境遥感监测作为遥感技术应用中较为重要的内容之一,在业务上不同于常规气象要素的监测。常规气象要素遥感监测[1 ] 主要是指测量大气的垂直温度剖面、大气的垂直湿度剖面、降水量及频度、云覆盖率(云量和云层厚度) 和长波辐射、风(风速和风向) 、地球辐射收支的测量等。而大气环境遥感则是监测大气中的臭氧(O3 ) 、CO2 、SO2 、甲烷(CH4 ) 等痕量气体成分以及气溶胶、有害气体等的三维分布。这些物理量通常不可能用遥感手段直接识别,但由于水汽、二氧化碳、臭氧、甲烷等微量气体成分具有各自分子所固有的辐射和吸收光谱特征,如影响水汽分布的主要光谱波长在017μm , O3在0155~0165μm 之间存在一个明显的吸收带等,因此我们实际上可通过测量大气散射、吸收及辐射的光谱特征值而从中识别出这些组分来。研究表明,在卫星遥感中,有两个非常好的大气窗可以用来探测这些组分,即位于可见光范围内的0140~0175μm 的波段范围和在近红外和中红外的0185μm、1106μm、1122μm、1160μm、2120μm 波段处。2  大气环境遥感监测技术的应用大气环境遥感监测技术按其工作方式可分为被动式遥感监测和主动式遥感监测,被动式遥感监测主要依靠接收大气自身所发射的红外光波或微波等辐射而实现对大气成分的探测 主动式遥感监测是指由遥感探测仪器发出波束、次波束与大气物质相互作用而产生回波,通过检测这种回波而实现对大气成分的探测。由于主动式大气探测仪器既要发射波束,又要接收回波,通常将这种方式称为雷达工作方式。根据遥感平台的不同,大气环境遥感监测又可分为天基、空基遥感和地基遥感。天基、空基遥感是以卫星、宇宙飞机、飞机和高空气球等为遥感平台,地基遥感则是以地面为主要遥感平台。本文将根据大气环境遥感监测技术的工作方式和遥感平台的不同,从四个方面来介绍大气环境遥感监测技术在实际中的应用。2. 1  大气环境的被动式空基遥感监测目前利用被动式空基遥感对大气环境监测主要包括:对臭氧层的监测,对大气气溶胶和温室气体如CO2 、甲烷(CH4 ) 的监测,对大气主要污染物、大气热污染源以及突发性大气污染事故如沙尘暴等的监测。大气环境污染主要体现在大气污染物上,大气污染物的种类约有数千种,已发现有危害作用而被人们注意到的有一百多种,其中大部分为有机物。本文为了论述的方便,将大气污染的主要污染物按污染区域及污染性质分为三大类,第一类为区域性污染的大气污染物,主要有二氧化硫、氮氧化物、大气颗粒物(包括可吸入颗粒物) 、有机污染物等 第二类为灾害性大气污染,如沙尘暴、有毒气体的泄漏等 第三类为在全球变化中起着不可忽视作用的污染物,如对流层气溶胶、臭氧(O3 ) 、CO2 、甲烷(CH4 ) 等。本文将针对以上三大类污染物来介绍被动式空基遥感在大气环境监测中的应用。21111  区域性大气污染物的被动式空基遥感监测利用遥感对大气环境进行监测的其中一个方面是对区域性大气污染物的监测,然而区域性大气污染信息是叠加于多变的地面信息之上的微弱信息,这些物理量通常不可能用遥感手段直接识别,提取非常困难,一般的地物提取方法均不实用。目前常用的方法主要有两类,一类是根据污染地区地物反射率发生变化,边界模糊的情况来对大气污染情况进行估计[2 ,3 ] 另一类是间接方法,主要根据树叶中SO2 等污染物含量与遥感数据中植被指数的关系估计大气污染的情况[4 ] 。王雪梅、邓孺孺等[5 ] 分析了卫星遥感像元信息构成的物理机制, 将像元信息概化为土壤、植被、水体等基本信息类型的线性集合与污染气体( SO2 ,NOx) 信息的简单叠加,首次从TM 卫星数据直接定量提取珠江口地区大气污染气体累加浓度信息。实验结果表明,所提取的污染信息满足精度要求。有学者[6 ,7 ] 用红外航片资料研究了环境污染区与植被的响应关系,指出受污染杨树与正常健康的杨树相比,光谱发射率在近红外波段(017~111) 有较大幅度的下降,而在红波段(016~017) 则有所增加,叶绿素指数也迅速减少,因此叶绿素指数可成为反映大气污染的一个重要指标。L. BRUZZONE[8 ] 等利用搭载在ERS - 2 卫星上的GOME 和ATSR - 2 传感器所接收到的数据,通过两种方法对生物燃烧排放到对流层中的NO2进行了计算,一种是假设这两种传感器所获得的数据与NO2浓度之间存在线性关系 另外一种是用基于辐射传输方程神经网络的非线性无参数方法来反演NO2 浓度。实验结果表明,这两种方法在实际反演NO2 浓度时效果较好。S. CORRADINI 等人[9 ] 根据aster 数据, 利用劈窗算法( the split2window technique) 计算了意大利Mt Etna 火山排放的SO2 ,试验证明,运用该方法可较为准确地计算出SO2的分布。21112  灾害性大气污染———沙尘暴的被动式空基遥感监测利用遥感技术对大气环境进行监测的另一个方面是对大气污染事故的监测,如对沙尘暴的监测。沙尘暴是严重的生态环境问题,同时也是严重的大气污染问题,它突发性强,危害巨大,当沙尘暴发生时,大量沙尘粒子悬浮于空中并随风移动,对人畜及环境造成极大危害。沙尘暴属于大气气溶胶的一种极端情况。在气象学中,沙尘暴是指强风从地面卷起大量沙尘,使空气很浑浊,水平能见度小于110km 的灾害性天气现象。周明煜等[10 ] 利用NOAAPAVHRR 资料分析了1993 年4月北京、天津上空沙尘暴特性,得到在沙尘暴发生时,AVHRR 可见光通道1 和可见光通道2 的反射率都有增加,沙尘暴强度越大,反射率增加越大,但仅给出了反射率增加的大小,而没有根据卫星反射率的变化对沙尘暴进行定量研究。目前对沙尘暴的遥感监测主要是利用GMS 和NOAAPAVHRR 数据,其研究表明, GMS 的红外通道数据有利于确定沙尘暴的位置,同时它所具有的高时间分辨率(1h) ,更有利于大尺度监测沙尘暴的运动轨迹[11~14 ] 。由于NOAAPAVHRR 数据不但可以监测到沙尘暴反射辐射特性[15 ,16 ] ,而且可以在较大尺度上监测到沙尘暴的时空分布[11 ,12 ] ,因此是目前沙尘暴研究和监测的主要遥感信息源。

  • 农业部拟禁限用6种高毒农药

    农业部拟禁限用6种高毒农药

    http://ng1.17img.cn/bbsfiles/images/2015/07/201507151604_555640_3013923_3.jpg  近日,为保障农产品质量安全和生态环境安全,农业部发布公告,拟对杀扑磷等6种高毒农药采取禁用限用措施。公告内容如下:  一是撤销杀扑磷使用于柑橘作物的农药登记,撤销甲拌磷、甲基异柳磷、克百威使用于甘蔗作物的农药登记。将溴甲烷、氯化苦农药登记的使用范围变更为土壤熏蒸。  二是自2015年10月1日起,禁止杀扑磷、甲拌磷、甲基异柳磷、克百威、氯化苦、溴甲烷使用于蔬菜、瓜果、茶叶、甘蔗、中草药材等作物。  针对上述禁用限用措施,农业部同时向工信部、环保部、国家工商总局、国家质检总局及各级农业主管和农药生产经营单位征求意见,要求于7月15日前将书面意见反馈至农业部种植业管理司。  对此,部分相关企业负责人表示,这次涉及的6个农药品种中,杀扑磷的撤销,对农药行业影响较大,其他5个品种的农药已有部分替代产品。 据了解,杀扑磷主要用于防治柑橘树介壳虫,共有40家企业登记的49个产品及4个原药,其中最近取得登记证的是在2015年4月2日。其他几种拟禁用农药主要登记在棉花、花生等作物上防治地下害虫及土传病害上。而且在蔬菜、瓜果、茶叶、中草药上均未见登记产品。

  • 【我们不一YOUNG】+探索水质遥感监测,科技创新、数据挖掘与信息分析

    [align=left][font=宋体][color=black][back=white]水质评估为水与所含杂质的综合特性展示,涵盖了物理性、化学性、热力学及生物学多个维度的描述。[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]1、智慧水体监测新视角:水质遥感技术革新[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]水质遥感监测,作为一项前沿科技,利用远程感知技术,探究水体光谱特性与水质指标浓度间的内在联系,旨在构建精确的水质参数反演算法,实现广域、多时段水质信息的快速捕捉。此技术凸显了实时监测、高效处理与成本效益的显著优势。尽管面临气候波动、水体光学特性的复杂变化及数据精度挑战,持续优化算法模型,结合多元影响因子的考量与验证,是提升反演准确性的关键路径。[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]2、水质遥感监测背后的科学逻辑[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]水体的光学表现源自内部光学活性物质对光辐射的吸收与散射作用。遥感技术正是借由分析这些光谱特征,捕捉太阳光与水体相互作用的微妙信号。光线在遭遇溶解物质、悬浮颗粒及叶绿素等时,会发生特定波长的选择性吸收与散射,每种物质都有其独特的光谱指纹。例如,叶绿素对蓝红光的强吸收与绿光的相对低吸收,成为通过遥感图像分析,推定水中叶绿素浓度的科学依据。[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]3、水质遥感的宝贵数据资源[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]水质遥感监测依托的主要数据来源为卫星与航空遥感资料。卫星数据覆盖可见光至微波频谱,包括多光谱、高光谱及[/back][/color][/font][font=宋体][color=black][back=white]SAR图像,提供宏观视野。相比之下,航空遥感凭借更高空间分辨率与作业灵活性,利用多光谱相机、高光谱成像等高端传感器,为局部水体监测提供详尽信息。[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]4、水质遥感监测的核心关注点[/back][/color][/font][/align][align=left][font=宋体][color=black][back=white]随着技术演进与光谱分析的深化,水质遥感从定性迈向定量飞跃,监测指标亦日益丰富,涵盖浮游生物、悬浮固体、叶绿素[/back][/color][/font][font=宋体][color=black][back=white]a、溶解性有机物等关键要素。此外,诸如TOC、水温、透明度、DO、COD、TP、TN等间接反映水质状况的参数,通过复杂的关联分析与算法模型,亦能在遥感数据中寻找其存在的痕迹。[/back][/color][/font][/align]

农业遥感用通道多相机相关的耗材

  • 智能农业系统配件
    智能农业系统配件是一款应用于农业领域的植物生长监控系统,是农业变得智能化,从而提高效率,可用于检测光照度,空气湿度,空气温度,土壤水分和土壤温度。智能农业系统配件特点应用于农业领域的系统,物联网现在可适用于农业应用。我们的智能农业系统可以监测影响植物生长的5个重要因素。它可以由安卓应用程序或我公司的云软件监控。充分了解农作物生长条件及状况使工作起来更有效率。价位更合理,尺寸刚好,轻便,测量的精确度高智能农业系统配件规格发光度(LUX)空气湿度空气温度土壤水分土壤温度系统通过ZigBee协议的,可以链接许多系统(最多可达200个)在一个半径约500米或更大如果网格自动化分。安装包标准包括;4台空气温度/湿度探头4台土壤温度探查4台土壤水分探头4台光照明探头4单位二氧化碳探针4 台PH探针1台主的MK - R主控继电器、PWM、4-20mA、UART1个软件和zigee盒1;MK -网关:以太网、ZigBee、WiFi、BLE、RS4851云软件和应用程序电缆智能农业系统配件优势BrandSkyeye其他产品 A其他产品 B尺寸(cm)9.5x6.5x4.5大大重量轻重重精确度高高一般时间监测有无无历史数据有无无UI定制有无无测量性好好困难价格合理高高
  • 赶酸器GS赶酸仪配套内杯微波罐用多孔赶酸架
    赶酸器GS赶酸器:又称赶酸电热板、赶酸板、样品处理器、赶酸仪、消解器。适用于食品、疾控、农科院、医药、农业、林业、环保、化工、生化等行业以及高等院校、科研部门对微波消解、高压消解的后期赶酸,是原子吸收、原子荧光、ICP- AES、AA、ICP- MS等分析仪器的理想配套产品。技术参数型号GS型孔数、孔径要求可根据客户样品量加工成12 、16、20、24、36、42、54、63、72等位数及特殊孔径×深度的电热板加热方式环绕式电加热 PID数显温控范围室温-200℃控温精度±1℃加热板块表面防腐进口Teflon涂层加热板材质铝合金额定电压220V连续工作时间>48h配套产品配套美国CEM、配套迈尔斯通、配套利曼、配套上海新仪、配套北分瑞利、配套安东帕、配套上海屹尧等厂家的内罐,配套消解罐内杯、烧杯、试管、坩埚、消解罐内杯、PFA溶样罐等
  • 蔬果中农药残留快速检测仪
    深芬仪器生产的CSY-N10蔬果中农药残留快速检测仪基于酶促反应动力学原理,被测样品如含有机磷类或氨基甲酸酯类农药,将会抑制胆碱酯酶的活性,影响显色体系的反应速度,通过测定显色体系吸光度随时间的变化率来测量待测样品中的农药残留量(抑制率)。有机磷和氨基甲酸酯类农药对胆碱酯酶正常功能有抑制作用,其抑制率与农药的浓度呈正相关系。正常情况下,酶催化神经传导代谢产物(乙酰胆碱)水解,其水解产物显色剂反应,产生黄色物质,用农药残留检测仪器测定吸光度随时间的变化值,计算出抑制率,通过抑制率可以判断出样品中是否含有有机磷或氨基甲酸酯类农药的存在。深芬仪器CSY系列农药残留检测仪采用现代光电技术研发的一种用于半定量分析蔬菜、水果、粮食、茶叶以及土壤中有机磷和氨基甲酸脂类农药残留的智能化仪器;可广泛应用于各级政府蔬菜检测中心、农贸市场、超市、环保机构、蔬菜种植基地、饭店、车载及实验室等食品安全检测与监控场所等单位对果蔬中农药残留的测定。仪器特点1、十通道光路系统,同时启动和单通道分别启动两种测量模式。进行多个样品测量时,客户可根据操作熟练程度,自行选择测量模式,大限度消除通道间的变异系数而引起的测量误差。2、采用新型一体机仪器结构设计,抗干扰、抗振动,检测精度高,仪器寿命长。3、大屏幕彩色液晶触摸屏中文显示,人性化操作界面,读数准确、直观。4、采用USB接口设计,方便数据的存贮和移动,并可随时与计算机直接相连,实现数据查询、浏览、分析、统计、打印和发布信息。5、自动化程度高:仪器自动诊断系统故障、波长校准:自动校准6、自动保存检测结果,数据存储量大,内置微型打印机,可实时打印检测结果。7、仪器使用寿命长:采用LED光源,自动开关节能设计,非连续工作模式。使用寿命可达10年8、可实时打印检测结果检测报告可打印蔬菜名称,抑制率,是否合格,检测日期,检测单位。更能体现检测结果的权*性,并利于公示。技术参数1、波长范围: 410nm±2nm2、吸光度准确度:±2.0%3、线 性 误 差:±1.0%4、吸光度重复性:±0.0055、通 讯 接 口: USB 6、电源:电源适配器(输入120~240VAC,频率: 50~60HZ;输出DC5V/3A )7、仪器工作环境: 1)温度 0~40℃,湿度 35~85%。2)仪器周围无强磁场、电场干扰。3)供电电源的电压220V±22V,频率50Hz±1Hz。电源电压波动不应超过标称电压的±15%4)仪器只用于分析和记录测试结果,因此仪器本身不存在生物危害.但是部分试剂存在生物学危害,因此,操作人员需注意.。5)仪器放置于平整操作台上,另外不要将设备放在难以操作断开装置的位置。CSY-N10蔬果中农药残留快速检测仪检测通道:5通道、6通道、8通道、10通道、12通道、16通道、24通道(可定制)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制