多模式原子力显微镜

仪器信息网多模式原子力显微镜专题为您提供2024年最新多模式原子力显微镜价格报价、厂家品牌的相关信息, 包括多模式原子力显微镜参数、型号等,不管是国产,还是进口品牌的多模式原子力显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多模式原子力显微镜相关的耗材配件、试剂标物,还有多模式原子力显微镜相关的最新资讯、资料,以及多模式原子力显微镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

多模式原子力显微镜相关的厂商

  • 400-878-6829
    帕克(Park)公司的创始人是世界上第一台原子力显微镜发明组的一员,1986年研制了世界首台商用原子力显微镜,一直致力于原子力显微镜技术的开发与应用,帕克(Park)在原子力显微镜的发展过程中一直占有重要的一席之地。本公司作为纳米显微镜和计量技术领域的领导革新者,一直致力于新兴技术的开发。我们的总部遍及中国大陆,宝岛台湾,韩国,美国,日本,新加坡和德国等地,我们为研究领域和工业界提供世界上最精确,最高效的原子力显微镜。我们的团队正在坚持不懈的努力,力求满足全球科学家和工程师们的需求。随着全球显微镜市场的迅速增长,我们将持续创新,不断开发新的系统和功能,确保我们的产品始终得到最有效最快捷的使用!Park产品主要有以下特点: 1.非接触工作模式:全球唯一一家真实实现非接触式测量模式的原子力显微镜厂家,非接触模式使原子力针尖磨损大大降低,延长了探针寿命,提高了测量图像的重复性; 2.高端平板扫描器:所有产品型号均采用的高端平板扫描器,远远优于传统的管式扫描器 3.全球最高的测量精度:Z轴精度可达0.02nm; 4.智能扫描Smartscan:仪器操作极其简单,可实现自动扫描,对操作者无特殊要求,并且有中文操作界面; 5.简单的换针方式:换针非常方便,采用磁拖直接吸上即可,不需调整激光光斑; 6.Park拥有全球最广泛的工作模式:可用于光学,电学,热学,力学,磁学,电化学等方面的研究与测试。
    留言咨询
  • 原FEI公司,2016年被赛默飞世尔科技收购,成为赛默飞材料与结构分析(MSD) 电镜事业部,是显微镜和微量分析解决方案的创新者和供应商。 我们提供扫描电子显微镜SEM,透射电子显微镜TEM和双束-扫描电子显微镜DualBeam?FIB-SEM,结合先进的软件套件,运用最广泛的样本类型,通过将高分辨率成像与物理、元素、化学和电学分析相结合,使客户的问题变成有效可用的数据。更多信息可在公司官网上找到:http://thermofisher.com/EM 或扫描二维码,关注我们的微信公众号
    留言咨询
  • 400-860-5168转3750
    企业概况英国工业显微镜有限公司是一家专业从事开发和生产人机工学的体视显微镜和非接触式测量系统的制造厂商。自1958年创立以来,英国Vision已成为世界上最具有创新活力的显微镜制造厂商,其分支机构遍及欧亚及北美。 世界各地的工程人员和科学家广泛地使用着我们的产品系统来从事他们在工业领域以及生物工程的日常的放大、检测和测量应用。迄今为止,已在全球各地安装 超过30万套设备系统。 英国Vision主要的生产基地设立在英国伦顿南部的沃京。商业运行及生产装配部门也设立在附近的厂房。英国Vision的北美生产分部设立在美国康州丹堡丽市,并在美国东岸和西岸的独立机构进行直销和分销网络运作。 本公司分别在日本、中国、法国、德国、意大利、以及比利时-荷兰-卢森堡经济联盟等国家建立了多个分支机构,此外加上由120多个拥有库存并经过专业技术培训的分销代理商所组成的服务网络,在所有其它发达国家里为企业提供解决问题的应用方案。同时我们根据发展,不断地扩大新代理的加盟机会。 出口和分销渠道英国Vision的产品出口占总产值的80%%以上,所以我们认识健全分销渠道的重要性。在1991 年,英国Vision荣获出口成就的英女皇奖。公司获得的其他荣誉还包括:1997年度科技创新的威尔士亲王奖和 1974 年度技术成就的英女皇奖。**的光学技术 英国Vision所拥有的世界**光学技术改变了在传统双目显微镜上安装目镜的必要。这些技术来源于采用英国Vision的高能光学(Dynascope)装置、扩大光瞳和宽阔成像光学系统、以及先进的人-机工学所带来的舒适使用、光学的清晰度、和减轻眼部疲劳。这一系列的功能改善了客户的生产效益和产品质量。Vision 的 Mantis 体视观察器在各行业得以广泛采用的实例可说明无目镜光学技术的优势效益。 在1994 年推出的第一代Mantis体视观察器主要是填补台式放大镜与显微镜之间的空白。 从此Mantis 就成了所有体视观察器的首选,超过13 万套的Mantis设备已在全球安装使用。 英国Vision的新一代Mantis系列产品于2005年开始在各行业里使用,它秉承原型产品的实用价值,并融合人机工学以进一步优化Mantis的设计。 产品研发近年来,大量的研发投入已成为取得 成功的关键,它确保了新产品和现有产品的持续的发展,以不断满足科学界和制造领域的需求。英国Vision不断地以研发新产品和新技术在光学革新和技术前沿引领全球。
    留言咨询

多模式原子力显微镜相关的仪器

  • 美国Anasys公司的AFM+可以提供全面的原子力显微功能,具有强大的分析能力,使得AFM不仅仅是一个普通的成像工具,还可以进行材料纳米级尺度的成分分析,热性能和机械性能的分析。AFM+的主要特点:简洁的安装与操作 □ AFM+为最便利的使用而设计制造。探针预装在金属圆片上,确保探针位置的准确性和装针的便捷□ 仪器集几十年AFM设计大师的经验之大成,即使初次使用也能快速获取结果完整的AFM工作模式 □ 包含所有常规成像模式:接触、轻敲、相位、侧向力、力调制、力曲线□ 独有高分辨率低噪音的闭环成像□ 基于DI传承的多功能AFM,实现纳米热学,力学,电学和磁学测量:l 纳米热分析模块(nanoTA, SThM)l 洛仑兹接触共振模块(LCR)l 导电原子力显微镜镜(CAFM)l 开尔文电势显微镜(KPFM)l 磁力显微镜(MFM)l 静电力显微镜(EFM)独有的可升级功能□ 热学性能:独有的热探针技术,提供纳米级红外分析□ 机械性能:洛伦兹接触共振模式能够提供宽频纳米机械分析□ 化学性能:可升级具有纳米红外光谱技术,实现局部化学组分分析□ 近场成像:可升级具有散射式近场光学成像和光谱采集功能
    留言咨询
  • Dimension FastScan世界上扫描速度最快的原子力显微镜扫描速度的全新诠释,拥有最高的扫描分辨率,最优异的仪器检测性能 Dimension FastScanTM原子力显微镜(Atomic Force Microscope,AFM),在不损失Dimension Icon 超高的分辨率和卓越的仪器性能前提下,最大限度的提高了成像速度。这项突破性的技术创新,从根本上解决了AFM成像速度慢的难题,大大缩短了各技术水平的AFM用户获得数据的时间。 为满足AFM使用者对提高AFM使用效率的需求,Bruker开发了这套快速扫描系统,不降低分辨力,不增加设备复杂性,不影响仪器操作成本的前提下,帮助用户实现了利Dimension快速扫描系统,即时快速得到高分辨高质量AFM图像的愿望。当您对样品进行扫描时,无论设置实验参数为扫描速度 125Hz,还是在大气下或者溶液中1秒获得1张AFM图像,都能得到优异的高分辨图像。快速扫描这一变革性的技术创新重新定义了AFM仪器的操作和功能。 高效率 在空气或液体中成像速度是原来速度的100倍,自动激光调节 和检测器调节,智能进针,大大缩短了实验时间。自动测量软件和高速扫描系统完美结合,大幅提高了实验数据 的可信度和可重复性。 高分辨率 Fastscan精确的力控制模式提高图像分辨率的同时,延长了探针的使用寿命。扫描速度20Hz时仍能获得高质量的TappingModeTM图像,扫描速度6Hz仍能获得高质量的ScanAsyst图像。低噪音,温度补偿传感器展现出亚埃级的噪音水平。在任何样品上均有卓越表现闭环控制的Icon和FastScan的扫描管极大地降低了Z方向噪音,使它们Z方向的噪音水平分别低于30pm和40 pm,具有超低的热漂移率,可得到超高分辨的真实图像。Fast Scan可以对不同样品进行测量,保证高度从埃级到100多纳米的样品高精度无失真扫描。 Dimension Fastscan是世界上第一台将扫描速度、分辨率、精确度和噪音控制完美结合的AFM,真正实现了快速扫描原子力显微镜的商业化应用。为了实现AFM扫描速度变革性的提升,Bruker的工程师致力于AFM技术的改造和完善。 ■采用最低热漂移的针尖扫描AFM技术,提高了系统的固有振动频率。■应用新的NanoScope控制器,为机器提供了更高的带宽。■开发了小悬臂的生产工艺,在空气中共振频率为1.3MHz,在液体中共振频率为250KHz到500KHz。■采用了低噪音的机械和电子的主要部件,结合高共振频率X-Y-Z扫描管,在技术上获得了重大突破。■更高的带宽提供了精确的力控制和高扫描速度,结合高精度的闭环控制,在效率上远远高于其它任何商业化的AFM。■以20Hz扫描速度进行TappingMode成像得到的图片的分辨率和以1Hz扫描速度得到的图片的分辨率一样高,即使使用更高的扫描速度100Hz,图像分辨率同样不会降低。■在ScanAsyst模式中,使用6Hz的扫描速度可以得到高分辨率的图片,即使扫描速度达到32Hz同样可以得到普通分辨率的图片。■Z方向,探针在Contact模式中移动速度可达到12mm/s,同时在闭环工作中X-Y方向的移动速度达到2.5mm/s, X-Y方向的跟踪误差1%,真正使Fastscan成为了世界上第一台快速扫描AFM。■ 自动的激光和检测器的调节使得实验的组建更为快速有效。■ 系统使用自带的样品导航软件MIRO,利用光学成像系统能够在几分钟之内分辨并抓取纳米级的样品特征。最新的光学系统可以使用任何Bruker的探针,在不降低系统稳定性的前提下,得到最好的激光信号调节。■ 针尖扫描系统的设计与210mm大尺寸样品台结合,消除了样品尺寸的限制,同时维持了最低的噪音和热漂移水平。 AFM终极性能 Dimension FastScan AFM 优秀的分辨率,与Bruker特有的电子扫描计算方法相结合,提供给用户显著提升的测量速度与质量。Dimension Icon是我们工业领先的针尖扫描技术的最新革新,配置了温度补偿位置传感器,展现出Z轴亚埃级范围和XY轴埃级范围的噪音水平,这个惊人的性能出现在大样品台,34微米和90微米的扫描范围的系统上,尤胜高分辨率原子力显微镜的开环噪音水平。XYZ闭环扫描头的新设计也能展现较高扫描速度,而不损坏图像质量,实现更大的数据采集输出量。Icon 扫描管比当今市场上任何一款大样品台AFM具有更低的噪音水平和更高的精确度。这种革新与新的专利扫描和下针算法相结合,即使是在难测量的样品上也能得到更高的图像保真效果。 杰出的生产力 使用Dimension系列原子力显微镜发表的文章远比其他大样品台原子力显微镜要多。在科研和工业生产的过程研究中已成为一个标志性的符号。FastScan把此平台引入了更卓越的新水平,展现出更高的性能和更快地获得测量结果。其软件的直观工作流程,使其操作过程比以往最先进的AFM技术更加简便。可以使初学者在操作中,同样得到专家级的图像。Dimension FastScan用户可以立即获得高质量的结果,而无需像以前一样通常需要几小时的专业调整。Dimension FastScan的每个方面—从完全开放式针尖样品空间,到预存软件参数设置—都经过特殊设计以求达到无障碍操作和惊人的AFM操作简易性。每分钟低于200pm的热漂移速率,全新的直观用户界面,世界闻名的Dimension AFM平台,三者结合提供了无与伦比的AFM仪器性能,保证您在最短时间内得到测试结果并发表出版。 世界上最灵活的平台 Dimension FastScan 展现出的无与伦比的性能,坚固性和灵活度,使得这台仪器实现了以前只有在特制的系统中才能完成的所有测量。利用开放式平台,大型多元样品支架和许多简单易用的性能,将AFM强大的功能完全展现在科研领域和工业领域的研究者面前,为高质量AFM 成像和纳米研究设定了新的标准。Dimension 系列原子力显微镜在不断演变提升,以迎合您不断增长的研究需求。Dimension FastScan 支持AFM 的所有模式和力学、电学和电化学附件。 无与伦比的性能和多种附加模块满足您的一切科研需要 出众的性能满足各种应用需求 Dimension FastScan可同时高速捕捉多个通道的数据,获得更多通道的高质量数据。结合我们Bruker的很多AFM专利技术,模式和模式增强功能,Dimension FastScan以其独特的性能优势,帮助您完成更高水平的纳米研究。 材料成像 FastScan在使用ICON的扫描管的情况下支持Bruker的专利PeakForce QNMTM成像模式,在使用快速扫描扫描管的情况下可进行纳米力学成像。使用FastScan技术,大大减少了研究者获得高分辨率形貌和纳米力学图谱的时间。 纳米操纵 可实现在纳米和分子级别的纳米操纵和刻蚀。FastScan的XYZ闭环扫描器解决了扫描管的蠕变效应,大大提高了操纵的精确度。同时超低噪音的精密探针的准确定位,适用于任何纳米操作系统。 加热和冷却 在以各种AFM 模式扫描的同时可实现-35℃到250℃的温度的精确控制和热分析。另外还可使用热探针对低于100nm的局部加热到500℃。 电学表征 使用专利的模式,可以在更高的灵敏度和更大的动态范围上实现电学表征。PeakForce TUNA&trade 和PeakForce SSRM提供了独特的电学表征方法,同时还可以与样品上的力学属性相联系。 利用最短时间获得高质量可发表数据结果 无论是作为科研交流还是发表科学文章,Dimension FastScan可比以前快几十倍至上百倍获得专业精确的数据测量和高质量AFM图片。真正的快速扫描AFM系统使您能够运用简易方法对大量数据进行快速准确的处理分析。 样品筛选 利用AFM系统获取大量样品信,进行样品常规筛选。无论是材料生产中进行失效分析或纳米级的质量控制,及时的产品信息反馈是必不可少的产品质量控制过程。纳米表征面临提高表征速度的挑战时,高精准度成为必备条件。在获取药物配方的过程中需要大量的数据对其中的非晶药物成分进行筛选,这可能成为FastScan的一个新用途。 动态应用范例 另一种常见的应用是观察一个纳米级物体在外部条件变化或受刺激的情况下,随着时间产生变化的过程。无论是在空气中还是在液体中,对纳米尺度的动态变化观察都是极具研究价值的。Dimesion FastScan为这种实验提供了极为便利的条件。 布鲁克纳米表面仪器部开通优酷视频专辑Bruker Nano Surfaces YouKu Channel — 欢迎订阅优酷上Bruker Nano Surfaces的相关视频,观看最新的AFM产品和相关技术进展,以及历届网络研讨会和培训资料,精彩内容持续更新中!布鲁克纳米表面仪器部 Bruker Nano Surfaces 北京办公室 北京市海淀区中关村南大街 11号光大国信大厦6层 6218室上海办公室 上海市徐汇区漕河泾开发区桂平路 418号新园科技广场 19楼E-mail:
    留言咨询
  • alpha300 RA –在一个系统里面集成化学成分分析和纳米级别的结构成像alpha300 RA 是市场上首个高度集成的拉曼原子力显微镜系统,可以在标准的Alpha 300R共聚焦拉曼系统上通过标准模块升级即可完成拉曼原子力系统联用,获得原位的AFM和Raman图像的叠加。alpha300 RA 独特的设计理念使联用系统既保留300R强大的化学组分分析能力,同时加入微纳级别的表面形貌等特性的分析能力,使研究者能对样品进行深度完善的分析和理解。 alpha300 RA 让拉曼和原子力两种互补的技术得以在一套系统里面实现,两种技术的性能完全不受联用的影响,而且使用同一个操作软件,使得操作和分析变得简单应用。拉曼和原子力显微镜使用不同的显微镜物镜,只需要简单转动物镜转盘,成像软件即可原位完成两种技术的图像对比,叠加和分析 此外alpha300 RA可进一步升级来配合TERS (高分辨拉曼)测量 拉曼原子力显微镜系统主要特点l 所有alpha300 R (拉曼) 和alpha300 A (原子力) 的性能集成到一个显微镜系统内l 优异的原位化学组分分析(拉曼)和微纳级别表面特征分析(原子力)的结合l 原子力和拉曼同时进行的绝佳选择l 严格原位,完全不需要在测量过程中移动样品l 只需要转动物镜转盘即可在两种测量技术之间简单切换 拉曼原子力显微镜系统应用实例 多组分高分子混合物,包含了1:1:1比例的聚苯乙烯(PS),充油丁苯橡胶(SRB)和丙烯酸乙基己酯(EHA)的原位拉曼及原子力图像对标最左边的拉曼成像: 绿色代表PS, 红色代表SRB,蓝色代表EHA.第二至第五张图像分别是样品的表面拓扑结构,相位,粘附力和粘度 金刚石压砧在单晶硅表面的压痕的应力分析,原位拉曼原子力图像左图:10x10um原子力表面拓扑结构和深度轮廓图,右图压痕周边的应力拉曼图像,紫色为未受应力影响,黄色为压力应变,灰色为张力应变 拉曼原子力显微镜系统性能通用拉曼操作模式l 拉曼光谱成像:连续扫描的拉曼高光谱全谱成像,每个样品点都能获得完整的拉曼光谱l 平面2D和包含深度Z方向的3D成像模式l 快速和慢速时间序列l 单点及Z方向深度扫描l 光纤耦合的UHTS 系列光谱仪,专为弱光应用的拉曼光谱设计l 共聚焦荧光显微镜功能l 明场显微镜功能 通用原子力显微镜操作模式l 接触模式l AC 模式(轻敲模式)l 数字脉冲力模式 (DPFM)l 抬高模式l 磁力显微镜模式 (MFM)l 静电力显微镜模式 (EFM)l 相位成像模式l 力曲线分析l 微纳操控及微纳印刷l 横向力模式 (LFM)l 化学力模式 (CFM)l 电流探测模式l 其他可选 基本显微镜指标l 研究级别的光学显微镜,6孔物镜转盘l 明场CCD相机,代替目镜观察样品l LED明场科勒照明l 电动XYZ样品台,25x25x20mm平移范围l 主动隔震平台 各类拉曼升级选项(如true surface等)l 多种激光可选择l 多种光谱仪可选择l 自动共聚焦拉曼成像l 自动多区域多点测量l 可升级超快拉曼图像模式(需配置EMCCD和Piezo样品台,可获得每秒1300张光谱的速度)l 可升级落射荧光照明l 自动聚焦功能l 显微镜观察法可选,如暗场,像差,偏光,微分干涉等 超高通光量UHTS光谱仪l 各类透射式波长优化谱仪可选 (UV, VIS or NIR),均为弱光拉曼光谱设计l 光纤耦合,70%超高光通量l 优异的成像质量,光谱峰形对称无像差 控制电脑WITec控制和数据采集,处理软件
    留言咨询

多模式原子力显微镜相关的资讯

  • Park纳米科学原子力显微镜系列讲座培训(1) I 原子力显微镜在纳米研究中的应用:AFM的成像原理
    Park纳米科学原子力显微镜系列讲座培训一原子力显微镜在纳米研究中的应用:AFM的成像原理2021年5月25日(周二)北京时间下午3:30-4:30原子力显微镜(AFM)作为扫描探针显微镜家族的一员,具有纳米级的分辨能力,其操作容易简便,是目前研究纳米科技和材料分析的最重要的工具之一。此外原子力显微镜还具有摩擦性能,纳米机械性能和电学性能等高级性能。 在本研究中,我们将讨论接触模式、非接触模式和轻敲模式等原子力显微镜使用中的不同操作模式;内容将概括到从原子力显微镜测量中常用的原子相互作用的基本理论,到原子力显微镜的主要硬件组成。本讲座还将讨论各模式的关键点(如设定值、反馈)。 在接触模式下,系统会给探针恒定的力作为设定的基准点也就是设定点来物理接触样品。扫描期间为了维持这个设定点而进行反馈。在三种模式中,原理相对简单。然而,由于接触模式很容易对针尖和样品造成损伤。相比之下,非接触模式允许在不接触表面的情况下进行形貌测量。因此,可以很好地保护针尖和样品。轻敲模式与非接触模式原理相似,在扫描过程中,探针轻触样品表面,以获得测量材料属性分布的额外信息(例如模量分布)。 本次讲座主要针对AFM原理的基础知识,帮助大家了解探针和样品之间的相互作用。由三种模式测出的图像对比也将在讲座中呈现。报告人 : Park原子力显微镜应用科学家Chris Jung Chris Jung, is an Application Scientist for Park Systems Korea - Research Application Technology Center (RATC) department. He received his Master’s degree in Physics from the Kyung Hee University, and his Bachelor’s degree in Physics from Dankook University in South Korea. His major project includes Evaluation of Kelvin Probe Force Microscopy (KPFM) at the perspective of resolution.Park原子力显微镜系列讲座列表(5月-9月) 想了解更多详情,请关注微信公众号:Park原子力显微镜 400电话:400-878-6829 Park官网:parksystems.cn
  • 测试秘籍丨原子力显微镜(AFM)
    原子力显微镜(Atomic Force Microscopy,AFM)是一种具有原子级别高分辨率的新型表面分析仪器,它不但能像扫描隧道显微镜(STM)那样观察导体和半导体材料的表面现象,而且能用来观察诸如玻璃、陶瓷等非导体表面的微观结构,还可以在气体、水和油中无损伤地直接观察物体,大大地拓展了显微技术在生命科学、物理、化学、材料科学和表面科学等领域中的应用,具有广阔的应用前景。1 原子力显微镜的工作原理1.1 基本原理AFM 进行表面分析的基本原理如下:AFM 中有一由氮化硅片或硅片制成的对微弱力极敏感的弹性臂,微悬臂顶端有一硅或碳纳米管等材料制成的微小针尖,控制这一针尖,使其扫描待测样品的表面,这一过程是由压电陶瓷三维扫描器驱动的。当针尖与样品表面原子做相对运动时,作用在样品与针尖之间的力会使微悬臂发生一定量的形变。通过光学或电学的方法检测微悬臂的形变,转化成为图像输出,即可用于样品表面分析。简单地说,原子力显微镜是通过分析样品表面与一个微弱力敏感元件之间的相互作用力来呈现材料表面结构的。1.2 工作模式(一)接触工作模式扫描时如果控制针尖一直与样品表面原子或分子接触,那么这种工作模式称为接触模式。在这一过程中,针尖原子与样品表面原子之间力的作用主要表现为是两者相接触原子间的互斥力(大小约为10-8-10-11 N)。接触模式下工作的原子力显微镜可得到稳定的、高分辨率的样品表面图像。但是这种工作模式也有它的不足之处:当研究易变形的样品(液体样品)、生物大分子等的时候,由于针尖与样品原子直接接触,会使样品表面的原子移动、粘附于针尖或者发生较大形变,从而造成样品损坏、污染针尖或者结果中出现假象。(二)非接触工作模式扫描时如果控制针尖一直不与样品表面的原子或分子接触,那么这种工作模式称为非接触模式。非接触工作模式下由于扫描样品时针尖始终在样品上方5-20 nm 距离范围内,针尖与样品间的距离较接触模式远,所以获得的样品表面图像分辨率相对接触模式较低。但正是这一距离也克服了接触模式的不足之处,不再会造成样品的损坏、针尖污染等问题,灵敏度也提高了。(三)间歇接触工作模式扫描时如果控制针尖间歇性的与样品表面的原子或分子接触,那么这种工作模式称为间歇接触模式,也称为轻敲模式,常通过振动来实现针尖与样品的间歇性接触。该模式下微悬臂的振动是由磁线圈产生的交流磁场直接激发的,针尖与样品表面原子作用力主要是垂直方向的,不再受横向力的影响。间歇接触工作模式集合了接触与非接触模式的优点,既减少了剪切力对样品表面的破坏,又适用于柔软的样品表面成像,因此特别适合于生物样品研究。2 原子力显微镜的组成AFM 的硬件系统由力检测部分、位置检测部分和反馈控制系统三部分组成。图1 所示为AFM 的工作原理图,从图中可以看出,AFM 就是通过集合以上三个系统来将样品的表面特性反映出来的:在AFM的工作系统中,使用由微小悬臂和针尖组成的力检测部分来感应样品与针尖间的作用力;当微悬臂受力形变时,照射在微悬臂末端的激光会发生一定程度的偏移,此偏移量反射到激光检测器的同时也会将信号传递给反馈控制系统;反馈控制系统根据接受的调节信号调节压电陶瓷三维扫描器的位置,最终通过显示系统将样品表面的形貌特征以图像的形式呈现出来。3 样品制备3.1 样品要求原子力显微镜研究对象可以是有机固体、聚合物以及生物大分子等,样品的载体选择范围很大,包括云母片、玻璃片、石墨、抛光硅片、二氧化硅和某些生物膜等,其中最常用的是新剥离的云母片,主要原因是其非常平整且容易处理。而抛光硅片最好要用浓硫酸与30%双氧水的7∶3 混合液在90 ℃下煮1h。利用电性能测试时需要导电性能良好的载体,如石墨或镀有金属的基片。试样的厚度,包括试样台的厚度,最大为10 mm。如果试样过重,有时会影响Scanner的动作,请不要放过重的试样。试样的大小以不大于试样台的大小(直径20 mm)为大致的标准。稍微大一点也没问题。但是,最大值约为40 mm。如果未固定好就进行测量可能产生移位。请固定好后再测定。3.2 样品制备粉末样品的制备:粉末样品的制备常用的是胶纸法,先把两面胶纸粘贴在样品座上,然后把粉末撒到胶纸上,吹去为粘贴在胶纸上的多余粉末即可。块状样品的制备:玻璃、陶瓷及晶体等固体样品需要抛光,注意固体样品表面的粗糙度。液体样品的制备:液体样品的浓度不能太高,否则粒子团聚会损伤针尖。(纳米颗粒:纳米粉末分散到溶剂中,越稀越好,然后涂于云母片或硅片上,手动滴涂或用旋涂机旋涂均可,并自然晾干)。4 原子力显微镜的应用4.1 在材料科学及化学中的应用目前,AFM 在材料科学中主要应用于材料的表面结构、表面重构现象以及表面的动态过程(例如扩散现象)等方面的研究,表面科学的中心内容是研究晶体表面的原子结构,例如从理论上推算出的金属表面结构往往不如实际复杂,借助原子力显微镜可以直观地观察材料的表面重构现象,有助于理论的进一步完善。4.1.1 在探测材料样貌方面的应用利用原子力显微镜来观测材料的样貌进行成像的时候,材料与探针之间出现相应作用力改变能够很好的反映出材料表面的三维图像。可以通过数值分析出材料表面的高低起伏情况,因此,在利用原子力显微镜对材料进行图像分析的时候,可以有效地发现材料表面的颗粒程度、粗糙程度、孔径分布以及孔的结构等。可以利用这种成像的方式把材料表面的情况形成三维图像进行模拟显示,促使形成的图像更加利于人们观察。4.1.2 在粉体材料中的应用在对粉体材料进行分析和研究的时候,可以利用原子力显微镜来逐渐分析原子或者分子中尺度,从而保证可以准确观测晶体以及非晶体的位置、形态、缺陷、聚能、空位以及不同力之间的相互作用。一般来说,粉体材料基本上都是使用在工业中的,但是现阶段有关于检测粉体材料的方法还是十分少的,研制样品也相对比较困难。原子力显微镜实际上是一种新兴的检测方式,具有操作方便、制样简单等特点。很多专家学者认为,人们使用化学方式研制出了SnS粉末,利用原子力显微镜把涂在硅基板上的材料进行成像,从图像上我们很容易发现此类材料具有分布均匀的特点,每一个大约15nm。4.1.3 在晶体材料中的应用专家学者经过不断研究和分析得到了很多晶体生长的模型,但是经过更加深入的分析和研究发现这些理论模型和实际情况是否相同还是具有一定差异,也逐渐成为学者讨论和研究的重点,所以人们希望通过显微镜来监测和观察生长过程。虽然,使用传统的显微镜已经观测出一定的成果,但是由于这些光学显微镜、激光全息干涉技术等存在分辨率不是十分高、实验条件不是很好以及放大不足等问题,使得研究过程出现很大困难,导致不能观测纳米级的分子等。原子力显微镜的发展,为科学家们研究纳米级分子或者原子提供了依据,也成为了专业人士研究晶体过程的重要方式。利用这种显微镜具有的能够在溶液中观察以及高分辨率等特点,可以保证科学家们能够很好的观测到晶体生长过程中的纳米级图像,从而不断分析和掌握材料的情况。4.2 在生物学中的应用AFM 能在气体、液体中无损伤地直接观察物体,可对生物分子在近生理条件下进行检测,是生命科学研究中的有力工具。目前,在生命科学中AFM 主要应用于对细胞、病毒、核酸、蛋白质等生物大分子的三维结构和动态结构信息进行研究。4.2.1 对细胞膜表面形态的研究细胞膜有重要的生理功能,它既使细胞维持稳定代谢的胞内环境,又能调节和选择物质进出细胞。AFM 能够观察到细胞膜表面的超微结构,因此它可以用来观察正常细胞与病变细胞的细胞膜,发现两者的异同,为临床病理诊断提供新的视角和方法。4.2.2 测定细胞弹性以及力学性质病变这一生理过程与细胞的形态和力学性质有关。细胞形态学的变化会影响和反映细胞性质、功能以及细胞微环境的改变。健康细胞与病理状态的细胞在机械性能上是完全不同的。抓住这一点,可以利用AFM 测量出的细胞弹性性质识别癌细胞,以及辅助诊断红细胞相关的各种疾病等,从细胞层面上对各种疾病进行早期诊断和治疗。4.2.3 检测活细胞间相互作用AFM 也可以对细胞间的相互作用进行观察。将一种细胞连接在AFM 扫面探针的尖端,使针尖功能化,对另一种单层排列的细胞进行扫描就可以进行细胞间相互作用的研究。4.2.4 观察动态生物过程AFM也是观察细胞生物过程非常有效的工具。研究痘病毒和活细胞,得到了痘病毒感染活细胞全过程的AFM 图。通过活着的细胞观察子代病毒颗粒,并用AFM 在水溶液环境中在分子水平分辩出有规则重复的烙铁状结构和准有序的环状结构。观察中发现: 在感染前后最初几小时,细胞并无显著变化 子代病毒粒子沿细胞骨架进入细胞内部,还有胞吐、病毒颗粒聚集等现象。通过AFM 图像可以看出哑铃状小泡逐渐形成、消失并在细胞膜表面形成凹陷的全过程。4.2.5 观察生物大分子之间相互作用在生物体内,DNA 与蛋白质间的相互作用有着同样举足轻重的地位。在转录、翻译的过程中,DNA 与特定的蛋白质如解旋酶、聚合酶、启动因子等的结合就决定着生命活动的开启。Gilmore 等利用AFM 以每500 ms 拍摄1 次的速度,清晰地观察到了蛋白质在DNA 上的结合情况。因此,AFM 可以真正帮助我们深入地“看到”生命活动的本质。4.2.6 测定细胞电学性质细胞不论在静止状态还是活动状态,都会产生与生命状态密切相关的、有规律的电现象,生物电信号包括静息电位和动作电位,其本质是离子的跨膜流动。因此,研究细胞的电生理学也成为了生命科学领域一个重要的分支。在AFM 系统中增加了导电模块,在迎春花细胞、酵母菌细胞等样品和探针之间加一个偏压,在扫描的过程中,同时获得样品的表面形貌和电流像,且在成像的同时检测探针和细胞样品之间的电流,得到样品表面形貌和局域电流分布及两者之间的对应关系,从而实现AFM 在纳米尺度上对细胞样品电学特性的分析检测。参考文献[1]高翔.原子力显微镜在材料成像中的应用[J].化工管理,2015(08):67.[2]王明友,王卓群,焦丽君.原子力显微镜在表面分析中的应用[J].邢台职业技术学院学报,2015,32(01):75-78.[3]万旻亿.原子力显微镜的核心技术与应用[J].科技资讯,2016,14(35):240-241.[4]鞠安,蒋雯,许阳,杨升,常宁,王鹏,顾宁.原子力显微镜在生命科学领域研究中的应用进展[J].东南大学学报(医学版),2015,34(05):807-812.
  • qPlus型原子力显微镜技术
    |作者:彭金波1,2,† 江颖3,4,††(1 上海交通大学 李政道研究所 )(2 上海交通大学物理与天文学院 )(3 北京大学物理学院 量子材料科学中心 )(4 北京大学轻元素先进材料研究中心 )本文选自《物理》2023年第3期摘要:扫描探针显微镜主要包括扫描隧道显微镜和原子力显微镜,其利用尖锐的针尖逐点扫描样品,可在原子和分子尺度上获取表面的形貌和丰富的物性,改变了人们对物质的研究范式和基础认知。近年来,qPlus型高品质因子力传感器的出现将扫描探针显微镜的分辨率和灵敏度推向了一个新的水平,为化学结构、电荷态、电子态、自旋态等多自由度的精密探测和操控提供了前所未有的机会。文章首先简要介绍原子力显微镜的发展历史和基本工作原理,然后重点描述qPlus型原子力显微镜技术的优势及其在单原子、单分子和低维材料体系中的应用,最后展望该技术的未来发展趋势和潜在应用。关键词:扫描探针显微镜,原子力显微镜,qPlus力传感器,高分辨成像,原子分辨01原子力显微镜的诞生显微镜是人类认识微观世界的最重要工具之一。光学显微镜的诞生让人们第一次看到了细菌、细胞等用肉眼无法看到的微小物体,从而打开了崭新的世界。然而,由于光学衍射极限的限制,光学显微镜的空间分辨率一般局限于可见光波长的一半左右(约300 nm),很难用于分辨纳米尺度下更细微的结构,更无法用于观察物质最基本的原子结构排布。要想进一步提高探测的空间分辨率,一种途径是减小探测波的波长,比如扫描电子显微镜就是利用波长更短的电子波来进行成像。另一种途径是采取近场的局域探测,比如近场光学显微镜及其他基于局域相互作用探测的扫描探针显微镜。可以想象,要想获得更高的空间分辨率,就需要对样品的探测更加局域,即“探针”尖端足够尖,最好只有探针和样品最接近的几个原子能够发生相互作用,“感受”到彼此。这种相互作用可以是电子波函数的交叠或者原子作用力等。1981年,Binnig和Rohrer发明了扫描隧道显微镜(scanning tunneling microscope,STM),STM是基于探测针尖和样品之间的隧道电流来进行空间成像的工具。由于隧道电流正比于针尖尖端几个原子与衬底原子的电子波函数的交叠,对针尖与样品之间的距离非常敏感,因此可以获得原子级的空间分辨率。STM的发明,使得人们可以在实空间直接观察固体表面的原子结构,因此荣获1986年的诺贝尔物理学奖[1]。然而,STM依赖于隧道电流的探测,无法用于扫描绝缘样品,因此使用范围受到了极大的限制。有趣的是,在早期的STM实验中,研究人员发现当针尖和样品比较近而出现隧道电流时,会同时产生较强的相互作用力。Binnig意识到通过测量针尖与样品原子之间的相互作用力也可用来对样品表面成像。1986年,他提出了基于探测针尖和样品之间原子作用力的新型显微镜——原子力显微镜(atomic force microscope,AFM)[2],并随后与Quate和Gerber搭建出了第一套可以工作的AFM[3]。三人于2016年获得了Kavli纳米科学奖。AFM是基于针尖与样品之间原子作用力的探测,不需要样品具有导电性,因而可以用于研究包括金属、半导体、绝缘体等多种材料体系,大大弥补了STM的研究局限。此外,AFM还可以在大气和液体环境中工作,具有很好的工况条件和生物体系兼容性。这些优势使得AFM成为纳米科学领域使用最广泛的成像工具之一。然而,AFM并不像STM那样在发明之初就获得了原子级分辨率,而是直到5年之后(1991年),惰性固体表面的原子分辨成像才得以实现[4,5]。近年来,由于qPlus力传感器的引入,AFM的空间分辨能力得到了极大的提升。通过针尖修饰,人们可以更加容易地获得原子级成像,甚至实现氢原子和化学键的超高分辨成像。接下来,本文将简要介绍常见AFM的基本工作原理,然后着重介绍基于qPlus力传感器的AFM(简称qPlus-AFM)及其在各种体系中的应用,最后展望qPlus-AFM在物理和其他领域的潜在应用和面临的挑战。02常规AFM的原理和工作模式介绍2.1 AFM工作的基本原理目前使用最为广泛的是激光反射式AFM,其典型的结构示意图如图1(a)所示[6]。最核心的部分是力传感器,它一般是一个由微加工技术制备的可以振动的悬臂(常用的材料是硅或者氮化硅),悬臂的末端有一个与悬臂梁一体的尖锐针尖,悬臂的背面镀有一层金属以达到镜面反射。当一束激光照射到悬臂上,光斑被反射到一个对光斑位置非常敏感的光电探测器上。当针尖扫描样品表面时,由于针尖与样品之间存在相互作用力,悬臂将随样品表面形貌的起伏而产生不同程度的弯曲形变,因而反射光斑的位置也会发生变化。通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。图1 AFM工作的基本原理[6] (a)典型激光反射式AFM的结构示意图;(b)超高真空下针尖与样品的相互作用力Fts及各成分力与针尖—样品距离z的关系2.2 原子力的分类在超高真空环境中,针尖与样品之间的相互作用力(Fts)与针尖—样品距离z之间典型的关系曲线如图1(b)所示。Fts大致可以分为长程力和短程力,长程力通常包括范德瓦耳斯力和静电力等,其衰减长度一般为几纳米或者几十纳米。短程力主要包括来自针尖和样品之间形成化学键的作用力和由于针尖—样品电子云交叠产生的泡利排斥力,其衰减长度一般约为0.1 nm左右。长程力对距离不敏感,很难分辨较小的表面起伏,要想获得较高的空间分辨率,需要让短程力的贡献占主导。在特殊的环境下,针尖和样品之间的相互作用力还包括机械接触力、毛细力、磁场力、卡西米尔力、水合力等。2.3 AFM的主要工作模式AFM有多种工作模式,通常分为静态模式和动态模式,后者包括非接触模式和轻敲模式两种(图2(a))。在静态模式下,针尖以拖拽的形式在样品表面扫描并记录表面的形貌起伏变化,因此也叫接触模式。悬臂的形变量为q=Fts/k (k为悬臂的劲度系数),为了提高力探测的灵敏度,一般使用较软(k较小)的悬臂。为了避免较大的吸引力引起针尖发生“突跳”现象,静态模式主要工作在短程的排斥力区间(图2(b)),因此空间分辨率较高。但这种模式下针尖和样品之间的相互作用力较大,容易对较软的样品产生破坏。图2 AFM的工作模式[6] (a)接触模式、非接触模式和轻敲模式的示意图;(b)不同模式的大致工作范围(区分并不严格);(c)悬臂在频率调制和振幅调制模式下的共振曲线。人们也经常把振幅调制模式称为轻敲模式,把频率调制模式称为非接触模式在动态模式下,悬臂被压电陶瓷励振器驱动以共振频率振动,当振幅A足够大使得回复力k∙Amax(Fts)时可以避免“突跳”现象的发生。动态模式有轻敲模式和非接触模式两种。轻敲模式类似于盲人使用手杖行走,其振幅比较大,一般从几纳米到一百多纳米,主要的力的贡献来源于针尖距离样品很近甚至接触的时候。这种模式对样品的损坏小,适用于不同的材料,是目前AFM使用最为广泛的模式。但是这种模式由于包含较多的长程力贡献,因此一般较难获得原子级分辨。此外,由于轻敲模式下振幅较大,测量振幅变化的信噪比较高,这种模式一般使用幅度调制(amplitude modulated,AM),即以固定频率和振幅的激励信号来驱使悬臂振动,针尖和样品的作用力会引起悬臂振幅(及相对于激励信号的相位)的变化,将测量的振幅(或相位)的变化作为反馈信号可以获取样品表面的形貌信息(图2(c))。非接触模式的振幅一般是几纳米或埃的量级,针尖在振动过程中不会接触样品,因此可以避免对样品的扰动或者破坏。非接触式AFM除了可以使用AM模式外,还能以频率调制(frequency modulated,FM)模式工作。这其实与收音机的AM和FM模式原理类似,只是工作的频段不同。在FM模式下,悬臂保持相位和振幅不变,针尖和样品的作用力引起悬臂振动频率的变化,测量振动频率的变化可以得到样品表面形貌的信息(图2(c))。AM和FM模式下悬臂的共振频率变化的响应时间[7,8]分别约为τAM=Q/(πf0),τFM=1/(2πf0),其中Q是悬臂的品质因子,f0为悬臂的本征振动频率。由此可见,AM模式的响应时间会随Q因子的增加而线性变大,而FM模式的响应时间不受Q因子的影响。在超高真空低温环境中,悬臂的Q因子会比大气环境下增加几十倍,这使得AFM对力的敏感度及信噪比会有很大提升,但也会使得AM模式下AFM的响应时间大幅延长,导致扫描成像需要很长的时间。因此,AM模式(轻敲模式)主要被用于大气或者液体环境中。Q因子的增加对FM模式下AFM的响应时间没有影响,所以FM模式是超高真空环境下被广泛使用的工作模式,即保持高Q因子的同时还能保证较高的扫描速度。2.4 影响频率调制AFM噪音大小的因素在FM模式下,AFM直接探测的信号是针尖—样品相互作用力引起的悬臂频率偏移∆f,利用公式[9]可进一步转化为相互作用力Fts。频率偏移对应的相对噪音,因此可以用δkts的形式来表示FM模式下AFM测量中4种主要的噪音来源,分别为[10]热噪音:力传感器信号探测的噪音:AFM悬臂振荡的噪音:漂移噪音:其中kB为玻尔兹曼常数,T是温度,B是与扫描速度对应的带宽,nq是悬臂偏转信号探测的噪音密度,r 是频率的漂移速率,N是扫描图像的像素数。由上述式子可知,k越小,4种噪音都更小,因此在满足k∙Amax(Fts)的前提下,选择的k越小越好;Q越大,会使得第一和第三种噪音更小,但过大的Q会使得悬臂在FM模式下的稳定起振难以维持;振幅A越大,前三种噪音都更小,但A太大会引起短程力贡献大幅减小的问题(见下节)。03基于qPlus力传感器的非接触式AFM3.1 振幅对非接触式AFM分辨率的影响在FM模式下,AFM探测的频率偏移∆f,可以转化为权重函数w(z,A)和针尖—样品相互作用力的梯度的卷积[11]。如图3所示,w(z,A)是与振幅A和距离z相关的半椭圆,kts是力Fts与z曲线的梯度,也呈现为勺子形,只是最低点对应的距离z有所不同。可见,当振幅较大时,长程力对频率偏移的贡献占主导;随着振幅减小,短程力的贡献变大。当振幅与短程力的衰减长度(亚埃级)接近时,更容易得到原子级分辨率[10]。图3 长程力和短程力的贡献与AFM悬臂振幅A的关系[11]3.2 qPlus力传感器的发明传统AFM力传感器一般采用微加工制备的硅或者氮化硅悬臂,其劲度系数较小(约1 N/m),力的探测灵敏度高。为了能探测短程力从而实现高空间分辨,往往需要让针尖靠近表面,从而导致“突跳”的发生。为了避免“突跳”引起的针尖损坏,需要悬臂在较大的振幅下工作。然而,大的振幅会使长程力的贡献增加,引起AFM的空间分辨率大大降低。图4 石英音叉和qPlus力传感器实物图 (a),(b)手表中拆出来的石英音叉[12];(c)第一代qPlus力传感器的实物图(图片来自德国雷根斯堡大学Giessibl课题组)[13];(d)第四代qPlus力传感器的实物图(图片来自北京大学江颖课题组)[6]要想克服上述矛盾,实现在小振幅下工作的同时而不引起“突跳”的发生,则需要使用劲度系数k较大的悬臂。石英音叉是被广泛用于手表中的计时元件(图4(a),(b))[12],劲度系数高,可产生极高精度的振荡频率(一般为32—200 kHz),且具有很高的Q因子。此外,其悬臂的形变可以利用石英的压电效应以电学的方式来直接探测,不需要激光系统,更容易兼容低温环境。早期,人们一般是在石英音叉的一个悬臂上粘上针尖来作为力传感器使用。然而,两个悬臂(相当于两个耦合的谐振子)由于质量和受力的不对称性导致Q因子大幅度降低,严重降低了AFM的信噪比。1996年,Giessibl将音叉的一个悬臂固定在质量很大的基底上,而在另一个自由的悬臂上粘上针尖以作为AFM力传感器,这样把两个耦合的谐振子变成单个独立的谐振子,可以保持较高的Q因子,且Q因子几乎不受针尖—样品相互作用力的影响。因此,这种力传感器被称为qPlus力传感器[13](图4(c))。目前,qPlus力传感器已经经过了四代的升级和改进,最新的版本是直接设计单个石英悬臂作为力传感器(图4(d))。表1 微加工硅悬臂力传感器与qPlus力传感器典型参数的对比[6]典型的qPlus力传感器与广泛使用的微加工硅悬臂力传感器的主要参数对比见表1。可以看到,qPlus力传感器悬臂的劲度系数高得多(一般约1800 N/m),因此其力灵敏度一般情况下低于硅悬臂。然而,qPlus力传感器可以在非接触模式下,以极小的振幅(约100 pm)近距离扫描样品,而不会出现“突跳”现象。由于qPlus-AFM的振幅可以与短程力的衰减长度接近,因此短程力的贡献非常大,更加容易获得超高的空间分辨率。最近,田野等通过优化设计qPlus力传感器,将Q因子提升到140000以上,最小振幅小于10 pm,最小探测力小于2 pN,从而将qPlus力传感器的性能推向了一个新的水平[14]。此外,使用导电针尖,并通过单独的导线把经过针尖的电流提取出来,可以很容易地将qPlus-AFM与STM集成在一起,以同时发挥STM和AFM的功能。关于qPlus-AFM更为系统的介绍见综述[10,11]。3.3 获得超高空间分辨率的关键如前所述,针尖与样品间的相互作用越局域,空间分辨率越高。换言之,要想获得超高的空间分辨率,需要减小长程力的贡献,凸显短程力的贡献。要实现这一点,有两点非常关键:一是使用与短程力衰减长度接近的亚埃级的小振幅工作(详见3.1节);二是让针尖更加尖锐,减少长程的范德瓦耳斯力的贡献。对于AFM成像来说,针尖末端几纳米的部分尤其是针尖末端的几个原子扮演着最重要的角色。为了让针尖末端更尖锐,常用办法是让金属针尖轻戳金属衬底或对针尖进行原子或者分子修饰,使得短程的泡利排斥力、化学键力或者高阶静电力占主导。3.3.1 短程的泡利排斥力当针尖与样品的距离足够近时,二者的电子云会发生交叠,产生很强的短程泡利排斥力。大部分时候,泡利排斥力是对固体及分子体系成像获得原子级分辨率的关键。2009年,Gross等[15]发现对针尖修饰一氧化碳(CO)分子后,可以实现对单个并五苯分子的化学键和结构(图5(a))的超高分辨成像(图5(c)),其分辨率已经超过了STM图像(图5(b))。这种超高空间分辨率的成像主要起源于CO针尖“尖锐”的p轨道与并五苯分子之间电子云交叠所导致的短程泡利排斥力。这种针尖修饰方法简单易行,成像分辨率高,使得qPlus-AFM成像技术迅速获得了广泛的应用。除了CO分子修饰外,人们还可以对针尖修饰其他种类的原子或者分子,以提高空间分辨率或者实现其他特定功能,例如Cl离子[16]和Xe分子[17]修饰的针尖以及CuO针尖[18]等。图5 基于泡利排斥力的单分子化学键成像[15] (a)并五苯分子的结构图;用 CO 分子修饰的针尖得到的 STM 图(b)和AFM图(c)3.3.2 短程的化学键力当针尖和衬底的化学活性都较强时,在近距离扫描过程中,二者可以形成局域的化学键,基于这种短程的化学键力,也可以获得超高的空间分辨率。典型的例子是半导体表面的AFM高分辨成像。例如,Giessibl等[19]发现在用AFM扫描Si(111)-(7×7)样品时,针尖会从样品上吸起一些Si团簇而被修饰,因此在扫描时容易与样品表面带悬挂键的Si原子形成共价键,而得到原子级分辨率。然而,这种成像方式对表面结构扰动较大,不适用于弱键和分子体系。3.3.3 短程的静电力通常所说的静电力主要来源于低阶静电力,比如点电荷与点电荷或者电偶极之间的静电力,其大小分别正比于r -2和r -3(r是二者作用的距离),是较长程的相互作用力,因此空间分辨率较低。而在某些特殊的情况下,高阶静电力的贡献会起主要作用,而且是更加短程的,因此会导致分辨率的显著提升。一个典型的例子是对离子晶体(如NaCl,MgO,Cu2N等)的原子分辨成像。离子晶体表面周期性的正负电荷排布产生指数衰减的短程静电势分布[20],针尖与离子晶体表面的短程静电力作用可以得到原子级分辨的成像[21]。图6 基于高阶静电力的水分子高分辨成像 (a)CO针尖示意图(上)及DFT计算得到的CO针尖的电荷分布(下),呈现出明显的电四极矩特征[16];(b)水四聚体的原子结构图(上)和AFM图(下)[16]。白色箭头和弧线分别指示水分子中氧原子和氢原子的位置;(c)Au(111)上双层二维冰的原子构型(上)和AFM图像(下),其中可以分辨平躺(蓝色箭头)和直立(黑色箭头)的水分子[23];(d)Au(111)表面由Zundel类型水合氢离子(黑色箭头)自组装形成的单层结构图(上)和AFM图像(下)[14]另一个例子是利用CO针尖对强极性分子的高分辨成像。彭金波等[16]利用CO修饰的针尖(图6(a)上图)扫描水分子四聚体时,发现即使在针尖距离较远时也能获得亚分子级的分辨率(图6(b)),且图像的形貌与水分子四聚体的静电势分布极其接近,从中可识别水分子OH键的取向。通过理论计算得知,CO修饰的针尖具有电四极矩(图6(a)下图),与水分子电偶极之间存在高阶静电力相互作用,这是一种更为短程的静电力(正比于r -6),因此能够在未进入泡利排斥区域时获得超高空间分辨。这种基于微弱的高阶静电力的成像技术可以区分水分子中氢、氧原子的位置和氢键的取向并且扰动极小。近年来,这个技术已被成功应用于亚稳态水分子团簇[16]、盐离子水合物[22]、二维冰[23](图6(c))及单层水中的水合氢离子[14]的非侵扰高分辨成像(图6(d)),将水科学的研究推向了原子尺度。04超高分辨qPlus-AFM的应用相对于传统的AFM,qPlus-AFM可以很方便地与STM集成在一起,并兼容超高真空和低温环境,而且可获得原子级甚至单个化学键级的超高空间分辨率。这些优势使得qPlus-AFM获得了广泛的应用,大大促进了表面科学和低维材料研究领域的快速发展。下面我们简要介绍qPlus-AFM在高分辨结构成像、电荷态和电子的测量、原子力的测量和操纵等方面的应用和最新进展。4.1 高分辨结构成像qPlus-AFM在高分辨结构成像方面得到了最为广泛的应用。Gross等[15]通过对AFM针尖进行CO修饰,首次实现对有机分子的化学结构的直接测量(图5),触发了一系列后续研究,包括:分子之间的氢键相互作用[24]、分子化学键键序[25]、铁原子团簇[26]、化学反应产物识别[27]等。近年来,人们通过控制有机分子前驱体的表面化学反应可以精确制备低维纳米材料,如石墨烯、石墨烯纳米带等。STM虽然被广泛用于表征其电子态,但是难以直接确定其原子结构、局域缺陷和边界构型等。qPlus-AFM对原子结构的敏感及超高的空间分辨率,可以很好地解决这些问题。例如,Gröning等[28]利用扫描隧道谱成像观测到了石墨烯纳米带末端的拓扑末端态(图7(a)右),并通过AFM成像确定了拓扑非平庸的石墨烯纳米带的原子构型(图7(a)左)。图7 qPlus-AFM在低维材料高分辨成像中的典型应用 (a)表面合成的石墨烯纳米带的AFM图(左)和0.25 V偏压下的dI /dV 图(右)[28],四角较亮部分指示拓扑边缘态;(b)利用磁性针尖得到的绝缘反铁磁NiO表面的AFM图像(左)及沿[100]方向相邻两个Ni原子不同自旋取向对应的高度轮廓线(右)[34]此外,qPlus-AFM开始被用于绝缘体表面原子结构的高分辨成像,如KBr[29],CaF2[30]等。在复杂氧化物表面方向,Diebold组观测了钙钛矿KTaO3(001)的表面重构[31]和TiO2(110)及In2O3(111)表面分子的吸附和分解[32,33]等。最近,qPlus-AFM被用于对绝缘反铁磁材料NiO的成像,而且使用磁性针尖成像时,由于超交换作用可以分辨不同Ni原子的自旋取向[34](图7(b))。4.2 电荷态和电子态的测量在电荷态测量方面,由于qPlus-AFM极高的信噪比和力灵敏度,Gross等[35]率先展示了单个原子的不同带电状态可以通过AFM直接测量(图8(a))。通过测量AFM的局域接触势差,单个原子和分子内部的电荷分布也可进行成像[36,37]。利用厚层绝缘的NaCl阻断分子与金属衬底之间的电荷转移,可对单分子进行多重电荷的充放电并控制分子间的电荷横向转移[38]。图8 AFM在电荷和电子态探测中的应用 (a)电中性和带负电的金原子的恒高AFM图(插图)及对应的频率偏移的轮廓线[35];(b)三重激发态寿命的探测:左图为单个并五苯分子和近邻吸附的两个氧气分子的结构图(上)和AFM图(下);右图为测量三重激发态占据比例随电压脉冲停留时间的变化,通过指数拟合可得猝灭后三重激发态的寿命仅0.58(5) μs[42]近些年,人们利用qPlus-AFM实现了对分子电子态的测量。例如,绝缘衬底上单分子的基态和激发态电子能谱被成功测量[39,40]。进一步,将AFM与纳秒电学脉冲结合,能直接对绝缘体表面上单分子在不同带电状态下电子转移的概率分布进行成像[41]。最近,qPlus-AFM被成功用于对分子自旋激发态的探测。彭金波等[42]发展了一套新颖的电学泵浦—探测AFM技术,首次实现了以原子级分辨率对单分子三重激发态寿命的探测并观测到了近邻氧气分子引起的三重态的猝灭(图8(b))。4.3 原子力的测量与操纵利用qPlus-AFM可以对原子作用力直接测量。Ternes等[43]变高度扫过表面上吸附的单原子并记录针尖—原子之间相互作用力引起的频率偏移(利用公式[9]可以将频率偏移∆f 转化成垂直作用力Fz),直到原子发生移动,便可知移动原子所需的最小垂直作用力(图9(a))。进一步,可以将垂直作用力转化为相互作用势,将其对x坐标微分可以得到移动原子所需的最小水平作用力Fx 的大小。利用类似的方法,单个石墨烯纳米带在Au(111)表面的摩擦力已被精确测量[44]。最近,通过测量原子力曲线,人们揭示了针尖上CO分子与衬底上单个铁/铜原子的物理吸附向化学吸附的转变过程[45]。图9 qPlus-AFM在原子力测量和操纵中的应用 (a)测量移动Pt(111)表面(灰色小球)吸附的单个Co原子(红色圆球)所需的力[43]。由远及近测量沿原子上方(x方向,图(a-i))的频率偏移及垂直作用力Fz(a-ii),直到在某个高度下开始引起原子移动(红色箭头所示),从而可以得知移动原子所需要的最小垂直作用力(a-iii);(b)利用AFM针尖和金刚石样品之间产生的局域强电场,通过“拉出—推离”方法耗尽NV色心附近的杂质电荷((b-i),(b-ii)),使NV色心的自旋相干时间提升20倍(b-iii)[47]此外,qPlus-AFM也开始被尝试应用于绝缘载体中固态量子比特的操控。边珂等[46]利用金属针尖的局域强电场和激光成功诱导了金刚石氮—空位色心(NV center)的电荷态转换。进一步,郑闻天等[47]通过施加较大的偏压,在AFM针尖—样品之间产生强电场,改变电场的方向,利用“拉出—推离”方法来清除NV色心周围的未配对电子,实现了金刚石近表面电子自旋噪声的高效抑制,从而大幅提升了浅层NV色心的相干性(T2,echo时间提升20倍)及其探测灵敏度(图9(b))。05总结和展望基于qPlus力传感器的超高分辨AFM技术,有力促进了单分子、表面科学、低维材料等研究方向的发展,为人们理解物质的结构、电子态、电荷态、自旋态等提供了崭新的信息。这种超高分辨的AFM成像技术仍处于快速发展期,我们相信在接下来若干年它会成为物理、材料、化学、生物等学科领域的重要工具,并对这些领域产生深远的影响。5.1 应用展望首先,高分辨qPlus-AFM成像技术可以提供固体表面的原子结构和原子尺度电荷分布的信息。STM仅对费米能级附近的电子态或外层电子敏感,常常很难将几何结构和电子态的信息分离开,而qPlus-AFM测量的泡利排斥力对总电子态密度敏感,其中包含内层电子的信息,可以反映原子核位置。因此,STM与qPlus-AFM的结合将有助于人们更准确细致地确定材料的结构和电子态分布。另一方面,通过qPlus-AFM对静电力的探测,可实现以单个电荷的灵敏度和原子级的空间分辨率确定原子或者分子带电状态。利用开尔文探针力显微镜(KPFM)模式或者对短程静电力的成像,还可对材料表面的电荷分布进行高分辨表征,这种关于电荷的新信息将为人们在原子尺度研究各种电荷序带来巨大的便利,比如电荷密度波、高温超导中的电荷序、铁电材料中的电荷分布等。其次,qPlus-AFM也将为各种绝缘材料或者材料绝缘相研究打开全新的窗口。例如,高温超导体的母体一般是莫特绝缘体,STM很难成像。而qPlus-AFM可以用于研究高温超导体随着掺杂浓度的增加从莫特绝缘体向超导态和金属态转变的全过程,有助于理解高温超导的机制。如果将针尖进行自旋极化,还可研究各种磁性绝缘体(如NiO)或者材料绝缘相(如高温超导体的母体)的自旋分布等。此外,qPlus-AFM还将在以绝缘体为载体的固态量子比特研究中发挥独特的作用。借助qPlus-AFM强大的空间表征、操纵与局域调控能力,有望发展出表面/近表面量子比特的相干性提升、精密量子比特网络构筑、纳米尺度扫描量子传感等多种前沿技术。最后,qPlus-AFM在化学和生物领域也将发挥重要的作用。qPlus-AFM可以用来识别化学反应的产物,还可以被用于研究绝缘体(如NiO,Fe3O4)表面的化学反应及固液界面各种化学反应(如电化学过程)的机制。在生物大分子的结构成像方面,可以精准识别DNA、RNA、蛋白质分子等的构型和相互作用位点,揭示其结构与功能的关系。5.2 挑战和机遇qPlus-AFM技术本身面临的一些问题和技术瓶颈亟待解决。qPlus力传感器的悬臂劲度系数大,对力的灵敏度较低。Q因子受环境和温度影响大,从而严重影响信噪比。一种可能的途径是发展主动控制Q因子的技术[48]。qPlus力传感器共振频率低(一般约几十kHz),成像速度慢,难以捕捉较快的非平衡态动力学过程,需要发展高速甚至超快的AFM技术。比如制备质量更小共振频率更高的AFM悬臂;或者将AFM与泵浦—探测技术相结合,将短的电压脉冲[42]或者超短的激光脉冲[49]耦合到qPlus-AFM中。利用qPlus-AFM对非平面的三维立体结构和分子的测量,还面临着挑战,发展新的算法(如利用机器学习)是一条可能的途径。此外,qPlus-AFM通常缺乏化学分辨,有时候很难仅从图像上获取样品的化学信息。一种途径是将其与具有化学分辨的光谱技术(如拉曼光谱)相结合[50]或者与磁共振技术结合。最后,qPlus-AFM面临的另一个巨大挑战是如何将其应用推广到溶液、生物体系等复杂的环境或体系中。大气溶液环境兼容的金刚石色心量子传感技术[51]可能为qPlus-AFM带来全新的应用场景和探测自由度。参考文献[1] Binnig G,Rohrer H. Rev. Mod. Phys.,1987,59:615[2] Binnig G. Atomic Force Microscope and Method for Imaging Surfaces with Atomic Resolution. 1986,US Patent No.:4,724,318[3] Binnig G,Quate C F,Gerber C. Phys. Rev. Lett.,1986,56:930[4] Giessibl F J. Rastertunnel-und Rasterkraftmikroskopie bei 4.2 K im Ultrahochvakuum. Ph.D. thesis,1991[5] Ohnesorge F,Binnig G. Science,1993,260:1451[6] Peng J,Guo J,Ma R et al. Surf. Sci. Rep.,2022,77:100549[7] Albrecht T R,Grutter P,Horne D et al. J. Appl. Phys.,1991,69:668[8] Gildemeister A E,Ihn T,Barengo C et al. Rev. Sci. Instrum.,2007,78:013704[9] Sader J E,Jarvis S P. Appl. Phys. Lett.,2004,84:1801[10] Giessibl F J. Rev. Sci. Instrum.,2019,90:011101[11] Giessibl F J. Rev. Mod. Phys.,2003,75:949[12] Giessibl F J,Hembacher S,Herz M et al. Nanotechnology,2004,15:S79[13] Giessibl F J. Vorrichtung zum beruehrungslosen Abtasten einer Oberflaeche und Verfahren dafuer. 1996,German Patent DE:19633546[14] Tian Y et al. Science,2022,377:315[15] Gross L,Mohn F,Moll N et al. Science,2009,325:1110[16] Peng J B et al. Nat. Commun.,2018,9:112[17] van der Lit J,Di Cicco F,Hapala P et al. Phys. Rev. Lett.,2016,116:096102[18] Monig H et al. ACS Nano.,2016,10:1201[19] Giessibl F J,Hembacher S,Bielefeldt H et al. Science,2000,289:422[20] Lennard-Jones J E,Dent B M. Trans. Faraday. Society,1928,24:92[21] Schneiderbauer M,Emmrich M,Weymouth A et al. Phys. Rev.Lett.,2014,112:166102[22] Peng J et al. Nature,2018,557:701[23] Ma R et al. Nature,2020,577:60[24] Zhang J et al. Science,2013,342:611[25] Gross L et al. Science,2012,337:1326[26] Emmrich M et al. Science,2015,348:308[27] de Oteyza D G et al. Science,2013,340:1434[28] Gröning O et al. Nature,2018,560:209[29] Wastl D S,Weymouth A J,Giessibl F J. Phys. Rev. B,2013,87:245415[30] Giessibl F J,Reichling M. Nanotechnology,2005,16:S118[31] Setvin M et al. Science,2018,359:572[32] Sokolović I et al. Proceedings of the National Academy of Sciences,2020,117:14827[33] Wagner M,Meyer B,Setvin M et al. Nature,2021,592:722[34] Pielmeier F,Giessibl F J. Phys. Rev. Lett.,2013,110:266101[35] Gross L et al. Science,2009,324:1428[36] Mohn F,Gross L,Moll N et al. Nat. Nanotechnol.,2012,7:227[37] Mallada B et al. Science,2021,374:863[38] Steurer W,Fatayer S,Gross L et al. Nat. Commun.,2015,6:8353[39] Fatayer S et al. Nat. Nanotechnol.,2018,13:376[40] Fatayer S et al. Phys. Rev. Lett.,2021,126:176801[41] Patera L L,Queck F,Scheuerer P et al. Nature,2019,566:245[42] Peng J et al. Science,2021,373:452[43] Ternes M,Lutz C P,Hirjibehedin C F et al. Science,2008,319:1066[44] Kawai S et al. Science,2016,351:957[45] Huber F et al. Science,2019,366:235[46] Bian K et al. Nat. Commun.,2021,12:2457[47] Zheng W et al. Nat. Phys.,2022,18:1317[48] Humphris A D L,Tamayo J,Miles M J. Langmuir,2000,16:7891[49] Jahng J et al. Appl. Phys. Lett.,2015,106:083113[50] Xu J Y et al. Science,2021,371:818[51] Schirhagl R,Chang K,Loretz M et al. Annu. Rev. Phys. Chem.,2014,65:83

多模式原子力显微镜相关的方案

  • 原子力显微镜AM-FM 粘弹性成像模式的应用解决方案
    本文利用牛津仪器Asylum Research原子力显微镜的纳米机械成像新技术AM-FM粘弹性成像模式,对云母基底上的polystyrene-polycaprolactone (PS-PCL) 聚合物的存储模量、损耗因子等粘弹性特征进行了表征。AM-FM模式能够在纳米尺度上快速且无破坏的对包括存储模量、损耗因子等粘弹性特征进行表征。
  • Park生物型原子力显微镜对活细胞观测
    本文主要回顾了原子力显微镜的基本原理以及其在细胞生物学领域的应用,重点分析了传统式生物型原子力显微镜的不足,并介绍了Park XE-Bio在对细胞无损扫描以及活细胞长期培养动态观察方面的应用,突出了该生物型原子力显微镜独创的离子电导扫描模式在细胞观察领域的技术领先优势。
  • 利用原子力显微镜的非接触模式对石墨烯/HBN异质结的莫尔图案进行自动且非破坏性地表征
    介绍石墨烯因其独特的带隙结构可用于高迁移率半导体器件,吸引了研究人员广泛的注意。 然而,由于缺乏合适的衬底,实现这种基于石墨烯的高性能器件一直具有挑战性。最近有研究人员发现可以通过在六方氮化硼(hBN)上外延生长石墨烯的方法来解决这个问题[1,2]。hBN具有和石墨烯高度相似的六方晶格结构,是一种合适的石墨烯衬底。莫尔图案是由于石墨烯与hBN晶格之间存在2%左右的失配而产生的超晶格,其具有周期性,晶格常扫描探针显微镜(SPM)是表征莫尔图案的关键技术。与任何其他显微技术相比,SPM可以提供最高的Z轴分辨率[4]。这是用于验证通过外延生长技术制备的石墨烯/hBN器件成功与否的基本要素。然而,SPM一直面临着如下两个问题的挑战:复杂参数优化让入门的研究者(甚至是专家)都有一个陡峭的学习曲线以及高分辨率成像所使用的专用针尖的高成本。此外,SPM的摩擦模式会导致针尖与样品之间存在机械接触,使得在表征石墨烯/ hBN器件时对样品表面产生破坏。几乎所有关于莫尔图案表征的研究都使用破坏性SPM模式[1,2,3]。 数比这两种材料的晶格常数大两个数量级[3]。非接触模式原子力显微镜(AFM)是一种自80年代末开始使用的非破坏性的SPM技术[5]。为实现非接触模式成像,针尖与样品之间的距离必须严格精确控制。这是一个挑战,也是这项技术最初的局限性之一。但通过研发,该技术在过去十年已经达到成熟,现在Park 系统公司可以提供标准的AFM成像模式。

多模式原子力显微镜相关的资料

多模式原子力显微镜相关的试剂

多模式原子力显微镜相关的论坛

  • 原子力显微镜的表面电势模式

    本节微课主要介绍了原子力显微镜的表 面电势模式,它主要用于研究材料微区 形貌和表面电势分布图像,这里介绍了 其工作原理和应用。

  • 【求助】原子力显微镜做kelvin probe 模式的问题求解~~

    请问我用原子力显微镜做kelvin probe 模式扫描时候, 和表面形貌同时得到的图,是称为表面电势图像吗? 它所表示的是表面电势, 还是样品的功函数差??? 还是其他的呢?? 表面电势和功函数的概念到底这么理解?? 谢谢大家~

  • 【讨论】原子力显微镜

    【讨论】原子力显微镜

    原子力显微镜(atomic force microscope,简称AFM)利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不足。原子力显微镜是由IBM公司苏黎世研究中心的格尔德?宾宁与斯坦福大学的Calvin Quate于一九八五年所发明的,其目的是为了使非导体也可以采用类似扫描探针显微镜(SPM)的观测方法。原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子穿隧效应,而是检测原子之间的接触,原子键合,范德瓦耳斯力或喀希米尔效应等来呈现样品的表面特性。1. 工作原理原子力显微镜的原理示意图: Detector and Feedback Electronics 侦检器及回馈电路; Photodiode 感光二极管; Laser 激光器; Sample Surface 样品表面; Cantilever & Tip 微悬臂及探针; PZT Scanner 压电扫描器 AFM的关键组成部分是一个头上带有一个用来扫描样品表面的尖细探针的微观悬臂。这种悬臂大小在数十至数百微米,通常由硅或者氮化硅构成,其上载有探针,探针之尖端的曲率半径则在纳米量级。当探针被放置到样品表面附近的地方时,悬臂会因为受到探针头和表面的引力而遵从胡克定律弯曲偏移。在不同的情况下,这种被AFM测量到的力可能是机械接触力、范德华力、毛吸力、化学键、静电力、磁力(见磁力显微镜)喀希米尔效应力、溶剂力等等。通常,偏移会由射在微悬臂上的激光束反射至光敏二极管阵列而测量到,较薄之悬臂表面常镀上反光材质( 如铝)以增强其反射。其他方法还包括光学干涉法、电容法和压电效应法。这些探头通常由采用压电效应的变形测量器而制得。通过惠斯登电桥,探头的形变何以被测得,不过这种方法没有激光反射法或干涉法灵敏。 当在恒定高度扫描时,探头很有可能撞到表面的造成损伤。所以通常会通过反馈系统来维持探头与样品片表面的高度恒定。传统上,样品被放在压电管上并可以在z方向上移动以保持与探头之间的恒定距离,在x、y方向上移动来实现扫描。或者采用一种“三脚架”技术,在三个方向上实现扫描。扫描的结果S(x,y)就是样品的表面图。AFM可以在不同模式下运行。这些模式可以被分为接触模式(Contact Mode)、非接触(Non-Contact Mode)、轻敲模式(Tapping Mode)、侧向力(Lateral Force Mode)模式。2. 优点与缺点 相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。和扫描电子显微镜(SEM)相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812311440_127077_1664664_3.jpg[/img]

多模式原子力显微镜相关的耗材

  • 原子力显微镜探针/轻敲模式/轻敲探针/形貌表征/VTESPA-300
    AFM配件,原子力探针,AFM探针,原子力探针针尖,显微镜探针针尖,原子力针尖,原子力显微镜探针针尖,接触探针,纳米压痕探针,氮化硅探针,硅探针,热探针,超尖探针,电子探针,显微镜针尖,原子力显微镜针尖,轻巧模式探针,AFM针尖,接触式探针,磁性探针,导电探针,显微镜探针,探针,布鲁克探针,原子力探针,BRUKER PROBE,AFM PROBE,BRUKER探针,原子力显微镜探针,AFM探针,VEECO探针作为一家能够提供AFM/SPM仪器和AFM/SPM探针的企业,布鲁克公司深刻理解每个单独的组件对于一整套性能AFM系统的价值。布鲁克公司以的生产工艺,专业的AFM领域背景,得天独厚的生产装备,赋予探针制造众多的优势,确保在应用领域中提供完整的AFM解决方案。布鲁克AFM探针制造优势:*Class100级别的无尘室*的设计、制造工序及制造工具*探针设计团队与AFM设备研发团队通力合作,配合紧密*训练有素的生产团队,制造出各种型号的探针*的质量管理体系,确保探针性能行业在实验中,用户所得到的数据取决于探针的质量及探针的重复性。布鲁克的探针具有严格的纳米加工控制,的质量测试,和AFM领域的专业背景。所以用户尽可放心,我们的探针不仅为您当前的应用提供所需的结果,同时也能为将来的研究提供参考数据。
  • 原子力显微镜探针/轻敲模式/轻敲探针/形貌表征/OTESPA-R3
    AFM配件,原子力探针,AFM探针,原子力探针针尖,显微镜探针针尖,原子力针尖,原子力显微镜探针针尖,接触探针,纳米压痕探针,氮化硅探针,硅探针,热探针,超尖探针,电子探针,显微镜针尖,原子力显微镜针尖,轻巧模式探针,AFM针尖,接触式探针,磁性探针,导电探针,显微镜探针,探针,布鲁克探针,原子力探针,BRUKER PROBE,AFM PROBE,BRUKER探针,原子力显微镜探针,AFM探针,VEECO探针作为一家能够提供AFM/SPM仪器和AFM/SPM探针的企业,布鲁克公司深刻理解每个单独的组件对于一整套性能AFM系统的价值。布鲁克公司以的生产工艺,专业的AFM领域背景,得天独厚的生产装备,赋予探针制造众多的优势,确保在应用领域中提供完整的AFM解决方案。布鲁克AFM探针制造优势:*Class100级别的无尘室*的设计、制造工序及制造工具*探针设计团队与AFM设备研发团队通力合作,配合紧密*训练有素的生产团队,制造出各种型号的探针*的质量管理体系,确保探针性能行业在实验中,用户所得到的数据取决于探针的质量及探针的重复性。布鲁克的探针具有严格的纳米加工控制,的质量测试,和AFM领域的专业背景。所以用户尽可放心,我们的探针不仅为您当前的应用提供所需的结果,同时也能为将来的研究提供参考数据。
  • 布鲁克Bruker原子力显微镜探针AFM探针 智能成像模式 空气中—ScanAsyst Air AFM探针
    布鲁克Bruker原子力显微镜探针AFM探针 智能成像模式 空气中—ScanAsyst Air ScanAsyst Air,是空气中智能成像模式ScanAsyst 专用探针,仅适用于具有Scansyst成像的AFM。其中包含:Dimension Icon,Multimode8,Bioscope Catalyst,Bioscope Resolve. ScanAsyst 利用一种专门的曲线采集方法和复杂的算法,对图像质量进行持续的监测,并能自动地对参数进行适当的调整。因此:- 无论用户的专业技术水平如何,图像自动优化都能更快获取更一致的结果。- 可直接控制力的强弱,调到超低力,从而保护易碎样品和针尖不受损坏。 实现了悬臂调节的消除,定位调整,获得最大优化让液态成像变得简单。 氮化硅单悬臂探针,所有ScanAsyst针尖都有2度的悬臂弯曲。详细规格: 延展阅读:关于布鲁克:布鲁克公司以先进的生产工艺,专业的AFM领域背景,得天独厚的生产装备,赋予探针制造众多的优势,确保在应用领域中提供完整的AFM解决方案。 布鲁克AFM探针制造中心独特优势:*Class100级别的无尘室*先进的设计、制造工序及制造工具*探针设计团队与AFM设备研发团队通力合作,配合紧密*训练有素的生产团队,制造出各种型号的探针*全面的质量管理体系,确保探针性能 在实验中,用户所得到的数据取决于探针的质量及探针的重复性。布鲁克的探针具有严格的纳米加工控制,全面的质量测试,和AFM领域的专业背景。所以用户尽可放心,我们的探针不仅为您当前的应用提供所需的结果,同时也能为将来的研究提供参考数据。 原子力显微镜AFM探针: 探针的工作模式:主要分为:扫描(接触)模式和轻敲模式探针的结构:悬臂梁+针尖探针针尖曲率半径Tip Radius:一般为10nm到几十nm。制作工艺:半导体工艺制作 指标:探针的指标主要分三个部分,分别对应了基片,微悬臂梁,和针尖三个部分。1. 基片,就是基片的长,宽,高,各种探针的基片尺寸是基本一致的。2. 悬臂梁,分为矩形梁和三角形悬臂梁,他们的长宽厚的几何尺寸决定了悬臂梁的弹性系数和共振频率。而弹性常数K是探针的很重要的一个参数,一般来说,接触模式的探针的弹性常数小于1N/m。轻敲模式的探针的悬臂梁弹性系数从几个N/m到几十个N/m。常用的RTESP的弹性常数是40N/m。3. 针尖,针尖的的几何形状是一个四面体。指标主要有,曲率半径(Tip Radius),探针高度(Tip Height),对应于四面体的指标,前角(Front Angel),后角(Back Angel),侧角(Side Angel),还有一个是Tip Set Back,对应的是针尖离悬臂梁最末端的水平距离。材质:1. 轻敲探针:一般是单晶硅,型号如RTESP;2. 接触模式探针:材质是SiN,而新型号的SNL接触探针,悬臂梁是SiN,而针尖则Si(曲率半径2nm左右),这种探针可以提供接触模式下的分辨率图;3. 功能探针:如磁力探针(MESP),导电探针,则是在普通的硅探针的基础上再镀上相应的材料。MESP的镀层是Co/Cr,SCM-PIT的镀层是Pt。常用探针型号介绍: 常用探针型号介绍1. 轻敲模式,RTESPA-300,TESP,FESP2. 接触模式,SNL,NP,3. 智能扫描模式:Scanasyst air,ScanAsyst-fluid,ScanAsyst-Fluid+4. 磁力显微镜,MESP-V2,MESP-RC-V25. 静电力显微镜,导电AFM,等电学测量模式,DDESP,SCM-PIT,SCM-PIC等。6. 其他特殊功能探针。如金刚石探针,大长径比探针。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制