多入射角激光椭偏仪

仪器信息网多入射角激光椭偏仪专题为您提供2024年最新多入射角激光椭偏仪价格报价、厂家品牌的相关信息, 包括多入射角激光椭偏仪参数、型号等,不管是国产,还是进口品牌的多入射角激光椭偏仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多入射角激光椭偏仪相关的耗材配件、试剂标物,还有多入射角激光椭偏仪相关的最新资讯、资料,以及多入射角激光椭偏仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

多入射角激光椭偏仪相关的厂商

  • 北京量拓科技有限公司(ELLITOP SCIENTIFIC CO., LTD.)(以下简称“量拓科技”)是专业的高端椭偏仪器研发制造企业。量拓科技成立于2008年4月,是中国唯一的专业椭偏仪器企业,专业致力于椭偏测量的方法研究、技术开发、产品制造和仪器销售,并提供纳米薄膜层构和物性参数的椭偏测试服务和椭偏测量整体解决方案的专业咨询服务。经过持续的创新发展,目前已成为国际高端激光椭偏仪的主要厂商。量拓科技以发展国际领先的椭偏测量技术,提供纳米薄膜检测整体解决方案为企业使命,将通过持之以恒的不懈努力,在国际椭偏测量领域树立源自中国的高端专业椭偏品牌ELLiTOP形象,藉此提升中国在国际椭偏测量领域的实力和地位,实现中国高科技企业贡献世界的梦想。量拓科技作为专业的高端椭偏仪器制造商,荣获国家“高新技术企业”、“ISO9001国际质量体系认证”、“中关村高新技术企业”、“海淀区创新企业”等资质,并获得“第五届北京发明创新大赛”金奖,以及入围“2011年度光伏行业十大创新设备供应商”等殊荣。量拓科技坚持国际水准的自主创新战略,已获得多项国家专利和软件著作权,在核心的椭偏测量技术和仪器制造方面形成了自主知识产权保护体系。承担了“北京市科技型中小企业促进专项(创新基金)”项目,并与中国科学院电工研究所、理化研究所、苏州纳米所、深圳先进技术研究院、国家天文台、北京理工大学、南开大学等多家科研单位形成了密切的科技合作关系,并且积极参加相关的国际和国内学术研讨会和展览会,开放的全方位科技交流为企业持续发展提供了坚实的基础。 量拓科技“以量拓产品和服务协助客户创造价值,走向成功”为衡量自身价值的基本出发点,依托深厚的椭偏测量研发基础和专业的椭偏测量技术服务队伍,为客户持续不断地提供国际一流的椭偏测量产品和服务。
    留言咨询
  • 400-860-5168转4131
    森泉光电有限公司是专业从事焊接设备、光电相关领域仪器设备代理与系统集成业务的综合性服务商,公司总部设在青岛,北京、上海设有分公司,业务范围涵盖国内各著名高校和各科研院所。 我们拥有优质的产品,稳定的供货渠道,强大的技术支持和成熟的销售服务经验,可提供全面的光电应用解决方案,竭诚为您提供服务。森泉为您的科研事业添砖加瓦: 1) 激光控制:电流源、温控器、温度控制器、激光控制器、激光伺服器、偏移锁相伺服器、激光器控制、伺服设备与系统等等2) 探测器:光电探测器、高速光电探测器、位置传感器、单光子计数器、单光子探测器、CCD、光谱仪、椭偏仪、光谱分析系统等等3) 定位与加工:纳米定位系统、微纳运动系统、多维位移台、旋转台、位移台、微型操作器等等4) 光源:半导体激光器、固体激光器、单频激光器、单纵模激光器、窄线宽激光器、光通讯波段激光器、CO2激光器、中红外激光器、染料激光器、飞秒超快激光器等等5) 光机械件:用于光路系统搭建的高品质无应力光机械件,如光学调整架、镜架、挠性镜架、真空镜架、支撑杆、固定底座等等6) 光学平台:主动隔振平台、气浮隔振台、刚性工作台、实验桌、隔振、隔磁、隔声综合解决方案等等7) 光学元件:光学隔离器、光隔离器、棱镜、阿米西棱镜、三角棱镜、直角棱镜、二向色镜、玻璃板、光学窗口片、光纤、偏转镜、反射镜、透射镜、半透半反镜、滤光片、衰减片、玻片等等8)高光谱:高光谱解决方案,光谱仪、可调谐光源、光源
    留言咨询
  • 400-860-5168转3086
    欧屹科技,是一家以光电产品为核心业务的专业代理商和服务商,以我们多年的行业经验,为客户引进国外先进的光电器件,光电仪器,光电系统等优良设备,并提供专业的技术支持和售后服务!例如:光学检测设备有日本Photonic lattice的应力双折射仪、椭偏仪、偏振相机等;日本Lasertec的激光加白光的双光共聚焦显微镜;日本ARMS的无掩膜光机。半导体相关设备有NDS6寸和12寸自动划片机、冈本研磨机等等。业务范围涵盖国内各著名高校、中国科学院、信息产业部、航空工业总公司所属各研究单位及相关领域内的大型公司。我们具有丰富国际贸易经验;我们努力协调各方面的行动,力争让用户在最短的时间内收到仪器;我们以全体用户的利益为重,尽最大努力把欧屹科技建设成为值得您信赖的公司。
    留言咨询

多入射角激光椭偏仪相关的仪器

  • EMPro是针对高端研发和质量控制领域推出的极致型多入射角激光椭偏仪。EMPro可在单入射角度或多入射角度下进行高精度、高准确性测量。可用于测量单层或多层纳米薄膜样品的膜层厚度、折射率n和消光系数k;也可用于同时测量块状材料的折射率n和消光系数k;亦可用于实时测量快速变化的纳米薄膜动态生长中膜层的厚度、折射率n和消光系数k。多入射角度设计实现了纳米薄膜的绝对厚度测量。EMPro采用了量拓科技多项专利技术。特点:原子层量级的极高灵敏度百毫秒量级的快速测量简单方便的仪器操作应用:EMPro适合于高精度要求的科研和工业产品环境中的新品研发或质量控制。EMPro可用于测量单层或多层纳米薄膜层构样品的薄膜厚度、折射率n及消光系数k;可用于同时测量块状材料的折射率n和消光系数k;可用于实时测量快速变化的纳米薄膜的厚度、折射率n和消光系数k。EMPro可应用的纳米薄膜领域包括:微电子、半导体、集成电路、显示技术、太阳电池、光学薄膜、生命科学、化学、电化学、磁介质存储、平板显示、聚合物及金属表面处理等。可应用的块状材料领域包括:固体(金属、半导体、介质等),或液体(纯净物或混合物)。 技术指标: 项目技术指标仪器型号EMPro31激光波长632.8nm (He-Ne Laser)(1)膜层厚度精度0.01nm (对于平面Si基底上100nm的SiO2膜层)(1)折射率精度1x10-4 (对于Si基底上100nm的SiO2膜层)单次测量时间与测量设置相关,典型0.6s结构PSCA(&Delta 在0° 或180° 附近时也具有极高的准确度)激光光束直径1mm入射角度40° -90° 可手动调节,步进5° 样品方位调整Z轴高度调节:± 6.5mm二维俯仰调节:± 4° 样品对准:光学自准直和显微对准系统样品台尺寸平面样品直径可达&Phi 170mm最大的膜层范围透明薄膜可达4000nm吸收薄膜则与材料性质相关最大外形尺寸887 x 332 x 552mm (入射角为90º 时)仪器重量(净重)25Kg选配件水平XY轴调节平移台真空吸附泵软件ETEM软件:中英文界面可选;l多个预设项目供快捷操作使用;l单角度测量/多角度测量操作和数据拟合;方便的数据显示、编辑和输出丰富的模型和材料数据库支持 注:(1)精度:是指对标准样品上同一点、同一条件下连续测量25次所计算的标准差。性能保证: 高稳定性的He-Ne激光光源、先进的采样方法以及低噪声探测技术,保证了高稳定性和高准确度高精度的光学自准直系统,保证了快速、高精度的样品方位对准稳定的结构设计、可靠的样品方位对准,结合先进的采样技术,保证了快速、稳定测量分立式的多入射角选择,可应用于复杂样品的折射率和绝对厚度的测量一体化集成式的仪器结构设计,使得系统操作简单、整体稳定性提高,并节省空间一键式软件设计以及丰富的物理模型库和材料数据库,方便用户使用
    留言咨询
  • ES0S3是针对科研和工业环境中薄膜测量领域推出的波长扫描式高精度多入射角光谱椭偏仪,此系列仪器的波长范围覆盖紫外、可见、近红外、到远红外。ESS03采用宽光谱光源结合扫描单色仪的方式实现高光谱分辨的椭偏测量。ESS03系列多入射角光谱椭偏仪用于测量单层和多层纳米薄膜的层构参数(如,膜层厚度、表面微粗糙度等)和光学参数(如,折射率n、消光系数k、复介电常数&epsilon 等),也可用于测量块状材料的光学参数。ESS03系列多入射角光谱椭偏仪尤其适合科研中的新品研发。技术特点:极宽的光谱范围 采用宽光谱光源、宽光谱扫描德系统光学设计,保证了仪器在极宽的光谱范围下都具有高准确度,非常适合于对光谱范围要求极其严格的场合。灵活的测量设置仪器的多个关键参数可根据要求而设定(包括:波长范围、扫描步距、入射角度等),极大地提高了测量的灵活性,可以胜任要求苛刻的样品。原子层量级的检测灵敏度国际先进的采样方法、高稳定的核心器件、高质量的设计和制造工艺实现并保证了能够测量原子层量级地纳米薄膜,膜厚精度达到0.05nm。非常经济的技术方案 采用较经济的宽光谱光源结合扫描单色仪的方式实现高光谱分辨的椭偏测量,仪器整体成本得到有效降低。 应用领域:ESS03系列多入射角光谱椭偏仪尤其适合科研中的新品研发。ESS03适合很大范围的材料种类,包括对介质材料、聚合物、半导体、金属等的实时和非实时检测,光谱范围覆盖半导体地临界点,这对于测量和控制合成的半导体合金成分非常有用。并且适合于较大的膜厚范围(从次纳米量级到10微米左右)。ESS03可用于测量光面基底上的单层和多层纳米薄膜的厚度、折射率n及消光系数k。应用领域包括:微电子、半导体、集成电路、显示技术、太阳电池、光学薄膜、生命科学、化学、电化学、磁介质存储、平板显示、聚合物及金属表面处理等。薄膜相关应用涉及物理、化学、信息、环保等,典型应用如:半导体:如:介电薄膜、金属薄膜、高分子、光刻胶、硅、PZT膜,激光二极管GaN和AlGaN、透明的电子器件等);平板显示:TFT、OLED、等离子显示板、柔性显示板等;功能性涂料:增透型、自清洁型、电致变色型、镜面性光学涂层,以及高分子、油类、Al2O3表面镀层和处理等;生物和化学工程:有机薄膜、LB膜、SAM膜、蛋白子分子层、薄膜吸附、表面改性处理、液体等。节能环保领域:LOW-E玻璃等。ESS03系列也可用于测量块状材料的折射率n和消光系数k。应用领域包括:固体(金属、半导体、介质等),或液体(纯净物或混合物)。典型应用包括:玻璃新品研发和质量控制等。技术指标:项目技术指标光谱范围ESS03VI:370-1700nmESS03UI:245-1700nm光谱分辨率(nm)可设置入射角度40° -90° 手动调节,步距5,重复性0.02准确度&delta (Psi): 0.02 ° ,&delta (Delta): 0.04° (透射模式测空气时)膜厚测量重复性(1)0.05nm (对于平面Si基底上100nm的SiO2膜层)折射率n测量重复性(1)0.001 (对于平面Si基底上100nm的SiO2膜层)单次测量时间典型0.6s / Wavelength / Point(取决于测量模式)光学结构PSCA(&Delta 在0° 或180° 附近时也具有极高的准确度)可测量样品最大尺寸直径200 mm样品方位调整高度调节范围:10mm二维俯仰调节:± 4° 样品对准光学自准直显微和望远对准系统软件&bull 多语言界面切换&bull 预设项目供快捷操作使用&bull 安全的权限管理模式(管理员、操作员)&bull 方便的材料数据库以及多种色散模型库&bull 丰富的模型数据库选配件自动扫描样品台聚焦透镜 注:(1)测量重复性:是指对标准样品上同一点、同一条件下连续测量30次所计算的标准差。可选配件: NFS-SiO2/Si二氧化硅纳米薄膜标片 NFS-Si3N4/Si氮化硅纳米薄膜标片 VP01真空吸附泵 VP02真空吸附泵 样品池
    留言咨询
  • EM13LD 系列是采用先进的测量技术,针对普通精度需求的研发和质量控制领域推出的多入射角激光椭偏仪。 EM13LD系列采用半导体激光器作为光源,可在单入射角度或多入射角度下对样品进行准确测量。可用于测量单层或多层纳米薄膜样品的膜层厚度、折射率n和消光系数k;也可用于同时测量块状材料的折射率n和消光系数k;亦可用于实时测量纳米薄膜动态生长中膜层的厚度、折射率n和消光系数k。多入射角度设计实现了纳米薄膜的绝对厚度测量。 EM13LD系列采用了量拓科技多项专利技术。特点:次纳米的高灵敏度国际先进的采样方法、稳定的核心器件、高质量的制造工艺实现并保证了能够测量极薄纳米薄膜,膜厚精度可达到0.5nm。3秒的快速测量国际水准的仪器设计,在保证精度和准确度的同时,可在3秒内快速完成一次测量,可对纳米膜层生长过程进行测量。简单方便的仪器操作用户只需一个按钮即可完成复杂的材料测量和分析过程,数据一键导出。丰富的模型库、材料库方便用户进行高级测量设置。应用:EM13LD系列适合于普通精度要求的科研和工业环境中的新品研发或质量控制。EM13LD系列可用于测量单层或多层纳米薄膜层构样品的薄膜厚度、折射率n及消光系数k;可用于同时测量块状材料的折射率n和消光系数k;可用于实时测量快速变化的纳米薄膜的厚度、折射率n和消光系数k。EM13LD可应用的纳米薄膜领域包括:微电子、半导体、集成电路、显示技术、太阳电池、光学薄膜、生命科学、化学、电化学、磁质存储、平板显示、聚合物及金属表面处理等。可应用的块状材料领域包括:固体(金属、半导体、介质等),或液体(纯净物或混合物)。技术指标: 项目技术指标仪器型号EM13 LD/635 (或其它选定波长)激光波长635 nm (或其它选定波长,高稳定半导体激光器)膜厚测量重复性(1)0.5nm (对于平面Si基底上100nm的SiO2膜层)折射率测量重复性(1)5x10-3 (对于平面Si基底上100nm的SiO2膜层)单次测量时间与测量设置相关,典型3s最大的膜层范围透明薄膜可达1000nm吸收薄膜则与材料性质相关光学结构PSCA(&Delta 在0° 或180° 附近时也具有极高的准确度)激光光束直径2mm入射角度40° -90° 可手动调节,步进5° 样品方位调整Z轴高度调节:± 6.5mm二维俯仰调节:± 4° 样品对准:光学自准直和显微对准系统样品台尺寸平面样品直径可达&Phi 170mm最大外形尺寸887 x 332 x 552mm (入射角为90º 时)仪器重量(净重)25Kg选配件水平XY轴调节平移台,真空吸附泵软件(ETEM)* 中英文界面可选* 多个预设项目供快捷操作使用* 单角度测量/多角度测量操作和数据拟合* 方便的数据显示、编辑和输出* 丰富的模型和材料数据库支持 注:(1)测量重复性:是指对标准样品上同一点、同一条件下连续测量30次所计算的标准差。 性能保证:稳定性的半导体激光光源、先进的采样方法,保证了稳定性和准确度 高精度的光学自准直系统,保证了快速、高精度的样品方位对准 稳定的结构设计、可靠的样品方位对准,结合先进的采样技术,保证了快速、稳定测量 分立式的多入射角选择,可应用于复杂样品的折射率和绝对厚度的测量 一体化集成式的仪器结构设计,使得系统操作简单、整体稳定性提高,并节省空间 一键式软件设计以及丰富的物理模型库和材料数据库,方便用户使用 可选配件: NFS-SiO2/Si二氧化硅纳米薄膜标片 NFS-Si3N4/Si氮化硅纳米薄膜标片 VP01真空吸附泵 VP02真空吸附泵 样品池
    留言咨询

多入射角激光椭偏仪相关的资讯

  • 一文了解椭偏仪的前世今生
    椭偏仪概述椭偏仪是一种用于探测薄膜厚度、光学常数以及材料微结构的光学测量设备。由于并不与样品接触,对样品没有破坏且不需要真空,使得椭偏仪成为一种极具吸引力的测量设备。椭偏仪可测的材料包括:半导体、电介质、聚合物、有机物、金属、多层膜物质。椭偏仪涉及领域有:半导体、通讯、数据存储、光学镀膜、平板显示器、科研、生物、医药等。椭偏法测量优点(1)能测量很薄的膜(1nm),且精度很高,比干涉法高1~2个数量级。(2)是一种无损测量,不必特别制备样品,也不损坏样品,比其他精密方法如称重法、定量化学分析法简便。(3)可同时测量膜的厚度、折射率以及吸收率。因此可以作为分析工具使用。(4)对一些表面结构、表面过程和表面反应相当敏感,是研究表面物理的一种方法。在半导体制造领域,为了监测硅片表面薄膜生长/蚀刻的工艺,需要对其尺寸进行量测。一般量测的对象分为两种:3D结构与1D结构。3D结构是最接近于真实Device的结构,其量测出来的结果与电性关联度最大。3D结构量测的精度一般是纳米级别的。1D结构就是几层,几十层甚至上百层薄膜的堆叠,主要是用来给研发前期调整工艺稳定性保驾护航的,其测量精度一般是埃数量级的。就逻辑芯片来说,最重要的量测对象是HKMG这些站点各层薄膜的量测。因为这些站点每层薄膜的厚度往往只有几个到十几个埃,而process window更极限,往往只有1-1.5个埃,也就是说对工艺要求极高。而这些金属层又跟电性关联度很大,所以每一家fab都对这些站点的量测非常重视。如何验证这些精度呢?在fab里,一般会撒一组DOE wafer: Baseline wafer,以及Baseline +/-几埃的wafer,然后每片wafer上切中心与边缘的两个点。zai采用TEM或XPS结果作为参考值,与椭偏仪量测结果拉线性,比如R-Square达到0.9以上就算合格。最能精确验证椭偏仪精度的是沉积那些薄膜的机台,比如应用材料等公司的机台,通过调节cycle数可以沉积出不同厚度的薄膜,其名义值往往与椭偏仪的量测值有极其高的线性(比如R-Square在0.95以上)。但为啥不用这些机台的名义值作为参考值啊?因为这些机台本身也是以光学椭偏仪量测出来的值来调整自身工艺的,当然需要一个第三方公证,也就是TEM或XPS。光学椭偏仪的原理上世纪七十年代就有了,已经非常成熟。光学椭偏仪的量测并不是像TEM一样直接观察,而是通过收集光信号再通过物理建模(调节材料本身的光学色散参数与薄膜3D结构参数)来反向拟合出来的。真正决定量测精度的是硬件水平,软件算法,以及物理建模调参时的经验。硬件水平决定信号的强弱,也就是信噪比。软件算法决定在物理建模调参时的速度。因为物理建模调参是一个最花费时间的过程: 需要人为判断计算是过拟合还是欠拟合,需要人为判断算出来的3D结构是否符合制程工艺,需要人为判断材料的光学色散参数是否符合物理逻辑。仪器原理椭偏仪是一种用于探测薄膜厚度、光学常数以及材料微结构的光学测量仪器。由于测量精度高,适用于超薄膜,与样品非接触,对样品没有破坏且不需要真空,使得椭偏仪成为一种极具吸引力的测量仪器。椭圆偏光法涉及椭圆偏振光在材料表面的反射。为表征反射光的特性,可分成两个分量:P和S偏振态,P分量是指平行于入射面的线性偏振光,S分量是指垂直于入射面的线性偏振光。菲涅耳反射系数r描述了在一个界面入射光线的反射。P和S偏振态分量各自的菲涅耳反射系数r是各自的反射波振幅与入射波振幅的比值。大多情况下会有多个界面,回到最初入射媒介的光经过了多次反射和透射。总的反射系数Rp和Rs,由每个界面的菲涅耳反射系数决定。Rp和Rs定义为最终的反射波振幅与入射波振幅的比值。椭偏法这种非接触式、非破坏性的薄膜厚度、光学特性检测技术测量的是电磁光波斜射入表面或两种介质的界面时偏振态的变化。椭偏法只测量电磁光波的电场分量来确定偏振态,因为光与材料相互作用时,电场对电子的作用远远大于磁场的作用。折射率和消光系数是表征材料光学特性的物理量,折射率是真空中的光速与材料中光的传播速度的比值N=C/V;消光系数表征材料对光的吸收,对于透明的介电材料如二氧化硅,光完全不吸收,消光系数为0。N和K都是波长的函数,但与入射角度无关。椭偏法通过测量偏振态的变化,结合一系列的方程和材料薄膜模型,可以计算出薄膜的厚度T、折射率N和吸收率(消光系数)K。市场规模据GIR (Global Info Research)调研,按收入计,2021年全球椭圆偏振仪收入大约40百万美元,预计2028年达到51百万美元,亚太地区将扮演更重要角色,除中美欧之外,日本、韩国、印度和东南亚地区,依然是不可忽视的重要市场。目前椭偏仪被广泛应用到OLED 、集成电路、太阳能光伏、化学等领域。有专家认为,随着国内平板显示、光伏等产业爆发,国内椭偏仪将形成30亿元到50亿元大市场。据专家估计,全球显示面板制造,约有六七成在我国生产。光谱椭圆偏振仪和激光椭圆偏振仪根据不同产品类型,椭圆偏振仪细分为: 光谱椭圆偏振仪和激光椭圆偏振仪。激光椭偏仪采用极窄带宽的激光器作为光源,在单波长下对纳米薄膜样品进行表面和界面的表征。激光椭偏仪作为常规的纳米薄膜测量工具,与光谱椭偏仪相比,具有如下特点:1.对材料的光学常数的测量更精确:这是由激光的窄带单色性质决定的,激光带宽通常远小于1nm,因此能够更准确地获得激光波长下的材料的材料参数。2.可对动态过程进行快速测量:激光良好的方向性使得其强度非常高,因此非常适合对动态过程的实时测量。但激光椭偏仪对多层膜分析能力不足,不如光谱型椭偏仪。椭偏仪的发展进程1887年,Drude第一次提出椭偏理论,并建立了第一套实验装置,成功地测量了18种金属的光学常数。1945年,Rothen第一次提出了“Ellipsometer”(椭偏仪)一词。之后,椭偏 仪有了长足发展,已被广泛应用于薄膜测量领域。根据工作原理, 椭偏仪主要分为消光式和光度式两类。在普通椭偏仪的基础上,又发展了椭偏光谱仪、红外椭偏光谱仪、成像椭偏仪和广义椭偏仪。典型的消光式椭偏仪包括光源、起偏器、补偿器、检偏器和探测器。消光式椭偏仪通过旋转起偏器和检偏器,找出起偏器、补偿器和检偏器的一组方位角(P、C、A), 使入射到探测器上的光强最小。由这组消光角得出椭偏参量Y和D。在椭偏仪的发展初期,作为唯一的光探测器,人眼只能探测到信号光的存在或消失,因而早期椭偏仪的类型都是消光式。消光式椭偏仪的测量精度主要取决于偏振器件的定位精度,系统误差因素较少, 但测量时需读取或计算偏振器件的方位角,影响了测量速度。所以消光式椭偏仪主要适用于对测量速度没有太高要求的场合,例如高校实验室。而在工业应用上主要使用的是光度式椭偏仪。光度椭偏仪对探测器接收到的光强进行傅里叶分析, 再从傅里叶系数推导得出椭偏参量。光度式椭偏仪主要分为旋转偏振器件型椭偏仪和相位调制型椭偏仪。其中旋转偏振器件型椭偏仪包括旋转起偏器型椭偏仪、旋转补偿器型椭偏仪和旋转检偏器型椭偏仪。光度式椭偏仪不需测量偏振器件的方位角,便可直接对探测器接收的光强信号进行傅里叶分析,所以测量速度比消光式椭偏仪快,特别适用于在线检测和实时测量等工业应用领域。对于多层薄膜,一组椭偏参量不足以确定各层膜的光学常数和厚度, 而且材料的光学常数是入射光波长的函数, 为了精确测定光学常数随入射波长的变化关系, 得到多组椭偏参量, 椭偏仪从单波长测量向多波长的光谱测量发展。1975 年,Aspnes 等首次报道了以RAE为基本结构的光谱椭偏仪。它利用光栅单色仪产生可变波长,从而在较宽的光谱范围(近红外到近紫外)内可以测量高达 1000 组椭偏参量,膜厚测量精度可以达到0.001 nm,数据采集和处理时间仅为7s。1984年,Muller 等研制了基于法拉第盒自补偿技术的光谱椭偏仪。这种椭偏仪采集400组椭偏参量仅用时 3s。为了进一步缩短系统的数据采集时间,1990年Kim 等研制了旋转起偏器类型的光谱椭偏仪,探测系统用棱镜分光计结合光学多波段分析仪(OMA) 代替常用的光电倍增管,在整个光谱范围内获取 128 组椭偏参数的时间为 40ms。紫外波段到可见波段消光系数较大或厚度在几个微米以上的薄膜,其厚度和光学常数的测量需使用红外椭偏光谱仪。红外椭偏光谱仪已经成为半导体行业异质结构多层膜相关参量测量的标准仪器。早期的红外椭偏光谱仪是在 RAE、RPE 或 PME 的基础上结合光栅单色仪构成的。常规的红外光源的强度较低,降低了红外椭偏仪的灵敏度。F. Ferrieu 将傅里叶变换光谱仪(FT) 引入到 RAE,使用常规的红外光源,其椭偏光谱可以从偏振器不同方位角连续记录的傅里叶变换光谱得到,从而能够对材料进行精确测量,提高了系统的灵敏度。其缺点是不能实现快速测量。由于集成电路的特征尺寸越来越小,一般椭偏仪的光斑尺寸较大(光斑直径约为 1 mm),为了提高椭偏仪的空间分辨率,Beaglehole将传统椭偏仪和成像系统相结合,研制了成像椭偏仪。普通椭偏仪测量的薄膜厚度是探测光在样品表面上整个光斑内的平均厚度,而成像椭偏仪则是利用 CCD 采集的椭偏图像得到样品表面的三维形貌及薄膜的厚度分布,从而能够提供样品的细节信息。成像椭偏仪的 CCD 成像单元,将样品表面被照射区域拍摄下来,一路信号输出到视频监视器显示,一路信号输入计算机进行数据处理。CCD 成像单元较慢的响应速度限制了成像椭偏仪在实时监测方面的应用。为了克服这一限制,Chien - Yuan Han 等利用频闪照明技术代替传统照明方式,成功研制了快速成像椭偏仪。与传统椭偏仪相比,由于 CCD 器件干扰了样品反射光的偏振态,且有很强的本底信号,成像椭偏仪的系统误差因素增多,使用前必须仔细校准。探测光与样品相互作用时,若样品是各向同性的,探测光的p分量和s分量各自进行反射,若各向异性,则探测光与样品相互作用后还将会发生光的 p 分量和 s分量的相互转化。标准椭偏仪只考虑探测光的 p 分量和 s 分量各自的反射情况,所以只能用于测量各向同性样品的参量,对于各向异性的样品,需使用广义椭偏仪。国内椭偏技术的研究始于20世纪70年代。70年代中期,我国第一台单波长消光椭偏仪TP-75 型由中山大学莫党教授等设计并制造。1982年,旋转检偏器式波长扫描光度型椭偏仪( TPP-1 型) 也得以问世。随后在80年代中后期西安交通大学研制出了激光光源椭偏仪,同期实现了椭偏光谱仪的自动化。复旦大学的陈良尧教授于1994年研制出了一种同时旋转起偏器和检偏器的新型全自动椭偏仪。该类型椭偏仪曾成功实现商业化,销售给包括德国在内的多家国内外单位使用。1998年,中国科学院上海技术物理研究所的黄志明和褚君浩院士等人研制出了同时旋转起偏器和检偏器的红外椭圆偏振光谱仪。2000年,中国科学院力学所靳刚研究员研制出了我国第一台椭偏光显微成像仪。该仪器可以实现纳米级测量和对生物分子动态变化及其相互作用进行实时观测。2000 年,复旦大学陈良尧和张荣君等人研制出了基于双重傅里叶变换的红外椭偏光谱系统。2013年华中科技大学张传维团队成功研发出椭偏仪原型样机。2014年,华中科技大学的刘世元教授等人使用穆勒矩阵椭偏仪测试了纳米压印光刻的抗蚀剂图案,同时还检测了该过程中遇到的脚状不对称情况,其理论和实验结果都表明该仪器具有良好的敏感性。2015年,国内首台商品化高端穆勒矩阵椭偏仪终于成功面世。主流厂商企业名称国内睿励科学仪器合能阳光复享光学量拓科技赛凡光电武汉颐光科技国外Accurion GmbHK-MacAngstrom Advanced瑟米莱伯J.A.WoollamHORIBAPhotonic LatticeAngstrom Sun大塚电子GaertnerFilm SenseHolmarc Opto-MechatronicsOnto Innovation Inc.AQUILAPARISA TECHNOLOGYDigiPol TechnologiesSentech Instruments海洋光学 以上,就是小编为大家整理的椭偏仪知识大全,附上部分市场主流厂商信息,更多仪器,请点击进入“椭偏仪”专场。 找靠谱仪器,就上仪器信息网【选仪器】栏目。它是科学仪器行业专业导购平台,旨在帮助仪器用户快速找到需要的仪器设备。栏目囊括了分析仪器、实验室设备、物性测试仪器、光学仪器及设备等14大类仪器,1000余个仪器品类。
  • 120万!清华大学高精度光谱椭偏仪采购项目
    项目编号:清设招第2022344号项目名称:清华大学高精度光谱椭偏仪采购项目预算金额:120.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01高精度光谱椭偏仪1套是设备用途介绍:拟采购的椭偏仪设备将应用于测量各类薄膜的膜厚及光学参数(n,k),对特殊结构的材料具有光学性能分析能力。简要技术指标:Psi和Delta精确度测量:直射测量空气(Psi = 45° Delta = 0°),满足:Ψ≤45°±0.02°,Δ≤0°±0.02°(1.5-5eV);光谱范围覆盖190– 2000nm;入射角:自动量角器,角度可从40°到90°变化,最小步进为0.02°。合同履行期限:合同签订后7个月内交货本项目( 不接受 )联合体投标。
  • 量拓科技激光椭偏仪在西安交通大学顺利交货验收
    热烈庆祝量拓科技激光椭偏仪在西安交通大学顺利交货验收。 量拓科技是中国唯一的专业椭偏仪器企业,专业致力于椭偏测量的方法研究、技术开发、产品制造和仪器销售,并提供纳米薄膜层构和物性参数的椭偏测试服务和椭偏测量整体解决方案的专业咨询服务。经过持续的创新发展,目前已成为国际高端激光椭偏仪和光谱椭偏仪的主要厂商。 量拓科技以发展国际领先的椭偏测量技术,提供纳米薄膜检测整体解决方案为企业使命,将通过持之以恒的不懈努力,在国际椭偏测量领域树立源自中国的高端专业椭偏品牌ELLiTOP形象,藉此提升中国在国际椭偏测量领域的实力和地位,实现中国高科技企业贡献世界的梦想。

多入射角激光椭偏仪相关的方案

多入射角激光椭偏仪相关的资料

多入射角激光椭偏仪相关的试剂

多入射角激光椭偏仪相关的论坛

  • 【讨论】关于使用椭偏仪测量薄膜厚度、吸收系数、折射率存在的缺陷

    最近工作上涉及到椭偏仪,想知道椭偏仪测量的优点与缺点都有什么?我看了一些资料,说椭偏仪测量存在如下缺点:1、薄膜基片如果是透明的,那么对样品的前处理会很麻烦,很费钱2、如果样品是有机物薄膜,椭偏仪很难测出结果来3、椭偏仪测量得到的数据需要手工处理,很复杂,非专业人员无法处理,暂时没有软件可以直接得薄膜的厚度、折射率、吸收系数值4、测量吸收系数时不能同时测量透射光与反射光,所以得到的吸收系数是有误差的不知道以上观点是不是正确? 为什么薄膜的基片不能是透明的?透明的基片对薄膜厚度测量有什么影响?为什么很难得到有机物薄膜的厚度?请指教,谢谢!不知道是否还有其他缺点?

多入射角激光椭偏仪相关的耗材

  • SpecEI 椭偏仪
    SpecEl 椭偏仪SpecEl-2000-VIS椭偏仪通过测量基底反射的偏振光,进而测量薄膜厚度及材料不同波长处的折射率。SpecEl通过PC控制来实现折射率,吸光率及膜厚的测量。集成的精确测量系统SpecEl由一个集成的光源,一个光谱仪及两个成70°的偏光器构成,并配有一个32位操作系统的PC.该椭偏仪可测量0.1nm-5um厚的单膜,并且折射率测量可达0.005%。SpecEl可通过电话问价。SpecEl软件及Recipe配置文件通过SpecEI软件,你可以配置及存贮实验设计方法实现一键分析,所有的配置会被存入recipe文件中。创建recipe后,你可以选择不同的recipe来执行你的实验。配置说明
  • 飞秒激光偏振片
    飞秒激光偏振片,皮秒激光偏振片,激光偏振片由孚光精仪进口,孚光精仪公司是中国规模最大的进口光学器件和仪器供应商!精通光学,服务科学,欢迎垂询。飞秒激光偏振片专业用于飞秒激光。优化的工作角度入射角是70-74度之间。该飞秒激光偏振片透过p光而反射s光。适合高功率激光或高能量激光应用,适合内腔和外腔应用。透射型激光偏振片:偏振片两面偏振镀膜,P光透过率可优化达到Tp94% 或最佳的偏振比Tp:Ts20:1反射型激光偏振片:仅在偏振片入射面上偏振镀膜,出射面上p光s光增透镀膜。经过优化Rs98% 或者偏振比高达Rs:Rp60:1.特点:1)飞秒激光偏振片非常适合飞秒激光应用,具有低的GVD 2)皮秒激光偏振片具有宽的工作波段,有效分开s和p光飞秒激光偏振片标准参数 材料:UVFS直径公差:+0.0/-0.12mm厚度公差: +/-0.2mm净孔径: 90%表面质量:20-10 scratch&dig表面平整度:Lambda/10 @633nm平行度:消光比Tp/Ts: 200:1入射角:72度激光损伤阈值:5J/cm210ns 1064nm现有产品:750-850nm 和 980-1090nm各种消光比的透射型和反射型薄膜偏振片。中国领先的进口精密激光光学器件旗舰型服务商--孚光精仪!
  • 光腔衰荡低色散高反射镜片,激光反射镜 3000-3500nm
    总览激光反射镜: 熔融石英 ( 红外) | pl-凹面 | Ø=25. 0(- 0. 1) mm | te=6. 35( ± 0. 10) mm | // 5min S1: Øe21 | 3/ 0. 2( 0. 2) [ L/ 10] | 5/ 1x0. 04 L1x0. 004 | 倒角 0. 3 减反射( 0° , 3000- 3500nm)0. 25% S2( ^): r=5000mm( ± 2%) CC | Øe21 | 3/-( 0. 5) [ L/ 4 reg.] | 5/ 1x0. 04 L1x0. 004 | 倒角 0. 3 Øe10 | 5/ 1x0. 016高反射( 0° , 3000- 3500nm) 99. 7% (低色散) T( 0° , 3250nm) ~0. 02%技术参数 产品名称111798类别激光反射镜激光器类别低散射激光镜片涂覆层材料(下面)114592涂覆层材料(背面)134671光学参数材质红外硅302形状圆形直径(Ø)25 mm (-0.1 mm)厚度(t)6.35 mm (±0.1 mm)平行度5ʹ 光学参数正面(S2)光学参数背面 (S1)形状凹面形状平面曲率半径5,000 mm(±2 %)测试区 Øe21倒角0.3 mm (±0.1 mm)倒角0.3 mm(±0.1 mm)测试区 Øe21曲面容差3/0.2(0.2) [L/10 @546.1nm]曲面容差3/-(0.2) [L/10 reg. @546.1nm]清洁度5/1x0.04 L1x0.004清洁度 5/1x0.04 L1x0.004内部测试区 Øe10 清洁度 5/1x0.016涂覆层规格 正面 (S2) (115246)涂覆层规格 背面 (S1) (126133)1st 工作范围 部分反射(0°,3000-3500nm)99.7%1st 工作范围 减反射(0°,3000-3500nm)0.25%类别 部分反射偏振 unpol.入射角 0°波长范围 3000 - 3500 nm高反射 99.7 %类别 减反射偏振 unpol.入射角 0°波长范围3000-3500nmAR / HT 0.25 %2nd工作范围 T(0°,3150nm)~0.015%类别 透射率偏振 unpol.入射角 0°波长范围 3150nmT ~ 0.015 %
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制