磁畴观测克尔显微镜

仪器信息网磁畴观测克尔显微镜专题为您提供2024年最新磁畴观测克尔显微镜价格报价、厂家品牌的相关信息, 包括磁畴观测克尔显微镜参数、型号等,不管是国产,还是进口品牌的磁畴观测克尔显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁畴观测克尔显微镜相关的耗材配件、试剂标物,还有磁畴观测克尔显微镜相关的最新资讯、资料,以及磁畴观测克尔显微镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

磁畴观测克尔显微镜相关的厂商

  • 400-878-6829
    帕克(Park)公司的创始人是世界上第一台原子力显微镜发明组的一员,1986年研制了世界首台商用原子力显微镜,一直致力于原子力显微镜技术的开发与应用,帕克(Park)在原子力显微镜的发展过程中一直占有重要的一席之地。本公司作为纳米显微镜和计量技术领域的领导革新者,一直致力于新兴技术的开发。我们的总部遍及中国大陆,宝岛台湾,韩国,美国,日本,新加坡和德国等地,我们为研究领域和工业界提供世界上最精确,最高效的原子力显微镜。我们的团队正在坚持不懈的努力,力求满足全球科学家和工程师们的需求。随着全球显微镜市场的迅速增长,我们将持续创新,不断开发新的系统和功能,确保我们的产品始终得到最有效最快捷的使用!Park产品主要有以下特点: 1.非接触工作模式:全球唯一一家真实实现非接触式测量模式的原子力显微镜厂家,非接触模式使原子力针尖磨损大大降低,延长了探针寿命,提高了测量图像的重复性; 2.高端平板扫描器:所有产品型号均采用的高端平板扫描器,远远优于传统的管式扫描器 3.全球最高的测量精度:Z轴精度可达0.02nm; 4.智能扫描Smartscan:仪器操作极其简单,可实现自动扫描,对操作者无特殊要求,并且有中文操作界面; 5.简单的换针方式:换针非常方便,采用磁拖直接吸上即可,不需调整激光光斑; 6.Park拥有全球最广泛的工作模式:可用于光学,电学,热学,力学,磁学,电化学等方面的研究与测试。
    留言咨询
  • 400-860-5168转3750
    企业概况 英国工业显微镜有限公司是一家专业从事开发和生产人机工学的体视显微镜和非接触式测量系统的制造厂商。自1958年创立以来,英国Vision已成为世界上最具有创新活力的显微镜制造厂商,其分支机构遍及欧亚及北美。 世界各地的工程人员和科学家广泛地使用着我们的产品系统来从事他们在工业领域以及生物工程的日常的放大、检测和测量应用。迄今为止,已在全球各地安装 超过30万套设备系统。 英国Vision主要的生产基地设立在英国伦顿南部的沃京。商业运行及生产装配部门也设立在附近的厂房。英国Vision的北美生产分部设立在美国康州丹堡丽市,并在美国东岸和西岸的独立机构进行直销和分销网络运作。 本公司分别在日本、中国、法国、德国、意大利、以及比利时-荷兰-卢森堡经济联盟等国家建立了多个分支机构,此外加上由120多个拥有库存并经过专业技术培训的分销代理商所组成的服务网络,在所有其它发达国家里为企业提供解决问题的应用方案。同时我们根据发展,不断地扩大新代理的加盟机会。 出口和分销渠道 英国Vision的产品出口占总产值的80%%以上,所以我们认识健全分销渠道的重要性。在1991 年,英国Vision荣获出口成就的英女皇奖。公司获得的其他荣誉还包括:1997年度科技创新的威尔士亲王奖和 1974 年度技术成就的英女皇奖。 **的光学技术 英国Vision所拥有的世界**光学技术改变了在传统双目显微镜上安装目镜的必要。这些技术来源于采用英国Vision的高能光学® (Dynascope® )装置、扩大光瞳和宽阔成像光学系统、以及先进的人-机工学所带来的舒适使用、光学的清晰度、和减轻眼部疲劳。这一系列的功能改善了客户的生产效益和产品质量。Vision 的 Mantis 体视观察器在各行业得以广泛采用的实例可说明无目镜光学技术的优势效益。 在1994 年推出的第一代Mantis体视观察器主要是填补台式放大镜与显微镜之间的空白。 从此Mantis 就成了所有体视观察器的首选,超过13 万套的Mantis设备已在全球安装使用。 英国Vision的新一代Mantis系列产品于2005年开始在各行业里使用,它秉承原型产品的实用价值,并融合人机工学以进一步优化Mantis的设计。 产品研发 近年来,大量的研发投入已成为取得 成功的关键,它确保了新产品和现有产品的持续的发展,以不断满足科学界和制造领域的需求。英国Vision不断地以研发新产品和新技术在光学革新和技术前沿引领全球。
    留言咨询
  • 原FEI公司,2016年被赛默飞世尔科技收购,成为赛默飞材料与结构分析(MSD) 电镜事业部,是显微镜和微量分析解决方案的创新者和供应商。 我们提供扫描电子显微镜SEM,透射电子显微镜TEM和双束-扫描电子显微镜DualBeam?FIB-SEM,结合先进的软件套件,运用最广泛的样本类型,通过将高分辨率成像与物理、元素、化学和电学分析相结合,使客户的问题变成有效可用的数据。更多信息可在公司官网上找到:http://thermofisher.com/EM 或扫描二维码,关注我们的微信公众号
    留言咨询

磁畴观测克尔显微镜相关的仪器

  • 蔡司克尔磁光显微镜 400-860-5168转0953
    --研究磁畴快速、有效的最佳方案 品牌:卡尔蔡司型号:Axio scope(偏光) + 电磁附件Axio Imager (偏光)+ 电磁附件制造商:德国卡尔蔡司公司经销商:北京普瑞赛司仪器有限公司产地:德国联系方式:显微镜部分要求: LED照明360°可旋转起偏带λ板检偏,且λ板及检偏均可调变倍器锥光高倍偏光物镜及油镜 特点n 最高配置卡尔蔡司偏光显微镜n 可调节大小并能控制入射光方向的孔径光栅滑尺(如下图)n 可调节的补偿器及偏光器n 外置可旋转、调节电磁场,磁场达800kA/m。n 交流、直流 ,用于研究动态及静态磁化过程n 可X、Y方向移动并可锁死的特殊样品载物台n 稳定高亮度的Colibri LED照明n 专业的磁畴采集分析控制软件 主要应用磁性材料的宏观性能取决于材料磁畴结构和变化方式,对磁畴结构和变化方式的观测是铁磁学、信息科学和磁性材料与器件等学科领域的基础性研究之一。磁畴观测不但可以使我们了解铁磁体内部磁畴分布,更重要的是可以为磁化动力学研究、材料改性、新器件的开发提供理论基础。观察磁性材料自发磁畴结构。蔡司磁畴显微镜就是利用了克尔磁光现象来研究磁畴变化的系统,具体应用如下:研究连续动态加磁场下磁畴结构变化;研究连续动态外加磁场下磁畴壁位移及磁畴壁测量;观察磁性材料在磁化和退磁过程中磁畴的形成、长大或合并,畴内磁矩的转动等;研究不同磁性材料的磁滞回线,如矫顽力的测定,磁饱和强度,剩磁等测定;退磁场能的研究;居里温度的测定,不同温度下磁畴结构的研究;磁致伸缩现象的研究; 蔡司克尔磁光显微镜基本原理克尔磁光效应法磁光效应是指当一束线偏振光穿过磁性材料或在磁性材料表面反射时,透射光或反射光的偏振面相对于入射光的偏振面偏转一定角度的现象。其中对于反射的情况,称为克尔效应;对于透射的情况,称为法拉第效应。优点:(1)材料的磁畴结构几乎没有影响,不受材料性能的限制,可在不同温度下进行测量。(2)有些材料的畴壁较厚,畴与畴壁间的界限不明显,表面散磁场很小,粉纹不易集中。对于这种情况,磁光效应法是一种有效的方法。(3)磁光效应也可以动态追踪磁畴结构在外磁场作用下的变化过程,因此在磁畴观测方面被广泛采用。 显微镜部分要求:LED照明360°可旋转起偏带λ板检偏,且λ板及检偏均可调变倍器锥光高倍偏光物镜及油镜n 电磁附件:(由德国Evico公司提供)大理石底板载物台及支架电磁场及支架电磁场各附件高速CCD软件可调节大小及入射光方向的孔径光阑
    留言咨询
  • 高分辨率磁光克尔显微镜产品负责人:姓名:谷工(Givin)电话:(微信同号)邮箱:当一束线偏振光照被磁性介质反射后,反射光的偏振面相对于入射光的偏振面有一个小的角度偏转(克尔旋转角),这一现象被称为磁光克尔效应。该效应与显微成像技术结合组成磁光克尔显微镜,被广泛应用于磁性材料磁性测量,磁畴观察等。 由于该设备可进行无损探测、灵敏度高、在极端环境下原位测量等优点是被越来越多的科研人员采用。为满足日益增长的市场需求昊量光电推出了高性价比的磁光克尔显微镜。其主要原理是:一束面光源经过起偏器,转变为线偏振光,照射到样品上,由于样品内磁畴的存在使样品各个区域内磁化强度和方向不同,因此不同区域对线偏振光,偏振面的改变各不相同。因此当反射光通过检偏器后光斑的强度分布不同,从而得到样品的磁畴结构。为了获得更高的灵敏度,优异的磁畴成像效果等该系统做了以下优化。1)采用高亮度窄带LED光源。尽管理论上磁光克尔效应的对比度可以无限高,但是多个波长偏振像差的组合通常会大大降低偏振的纯度。因此传统的克尔显微镜经常报道磁光克尔对比度几乎观察不到。一个主要的原因就是因为使用宽谱的照明光源。因为磁光效应引起的克尔旋转量与光源波长数量成反比,宽谱光源会产生相同宽谱的线偏振,也就是说,光偏振不是完美的线性,观察到的磁对比度也会降低。因此为了克服由于光源带来的相差,我们经过多组测试,选取了FWHM为50nm的超亮LED光源,可获得很强的对比度,并且拥有较高的使用寿命。2)图像自动校正功能通常为了获得较弱磁性材料的对比度,市面上磁畴观察设备通常会采用图像差分处理来获得较高对比度,即使用拍摄到的图像减去背底图片。该方法通常可以将信号增强10倍以上。但是由于在施加磁场的过程中样品的位置会发生偏移,会大大影响差分处理效果,甚至出现错误。为了消除样品的移动,设备会通过快速像素相位算法确定样品漂移,然后通过压电促动器实时校正位置。同时该帧位移的图像在软件中也会实时修正,校正后的图像位移量不大于0.2个像素(8nm)3)特殊设计的电磁铁通常磁畴观察显微镜中的电磁铁设计是一个具有挑战性的话题,必须要有一些取舍。为了获得较高的分辨率,因此要使用大倍率的物镜,放置在靠近样品的位置。这对电磁铁强加以一个空间限制,并限制了生产磁场的强度。其次,磁铁产生的磁通量会通过物镜,引起法拉第效应,从而降低成像对比度。我们通过革新的磁通量闭合式设计从而巧妙的解决了这两个问题。通过对电磁铁的磁场测量,我们可以发现,磁铁的磁场提高了4倍,但是通过物镜的磁场强度却降低了8倍。产生磁场的均匀性在4mm范围内也达到了0.5%的水平。4)高灵敏度,高分辨率成像相机对于磁光克尔显微镜,样品反射的光通过检偏器,仅仅只有百分之一的入射光达到相机传感器。因此对于磁畴成像系统,相机的灵敏度就体现的尤为重要。因此为了达到成像效果,我们选取了再该波段下量子效率高达78%,并且具有20兆像素的背照式相机。从而获得高分辨率,高信噪比的图像。此外该设备不但可以获得样品磁畴图片,还可以根据样品磁畴图像同时获得样品的磁滞回线分析。产品参数:Light source2200 Lumens ultrabright LED lampCamera6.4 Megapixel @ 60FPS 78% Quantum efficiencyResolution300nmMagnetic Field 1T(Perpendicular)/0.5T(Longitudina)Power Requirement230VAC ± 10%, 13Amp Single PhaseSize / WeightMain System: 60 x 50 x 1500px, 25kgPower Supply Tower: 60 x 60 x 750px, 10kg实例:1)1nm CoFeB磁性薄膜2)4种灰度:垂直磁化磁隧道结多级磁畴(4 shades of grey: Multilevel stripe domains on a perpendicularly magnetized magnetic tunnel junction stack)3)[Pt/Co/Fe/Ir]x2 堆栈手性磁畴(Chiral stripes (and skyrmions)on a [Pt/Co/Fe/Ir]x2 stack)4)Heusler 合金薄膜中的垂直磁化的磁畴反转(Domain reversal in a perpendicularly magnetized Heusler alloy thin film)5)同时施加磁场和电流6)电流诱导的磁畴远动的准实时观测7)CoFeB多层材料退磁过程的实时观测
    留言咨询
  • 自旋电子学经过数十年的发展,在许多领域都有了卓著的表现。从传感器,到非易失性磁存储,再到新材料的特性研究,自旋电子学不仅是当前科学研究的热点,也被工业界广泛重视。磁畴的直接观测与记录,对于材料的研究有着重要的意义 对磁畴运动过程的剖析,不仅直观的展现了磁性翻转,而且有助于分析物理过程的机理。相较于传统的单点磁滞回线测量仪,磁光克尔综合测试平台,可以追踪平面内数百万点的实时磁性动态信息。结合该测试平台提供的直流探针,高频探针,样品的测试无比便捷。当下自旋电子学或磁学的研究,已经由磁性驱动的翻转,发展到了直流电流驱动、脉冲电流驱动、微波脉冲驱动、光驱动等一系列的激励源作用下的深度研究。磁光克尔显微镜综合测试设备,显微磁畴空间分辨率优于0.5微米,磁光克尔角分辨率优于0.1毫度,支持极向克尔、纵向克尔、横向克尔三种磁光克尔效应测量方式。在追踪平面内数百万点的磁畴动态信息的同时,可搭配探针台实现电学、磁学、光学同步观测。广泛应用于磁学和自旋电子学领域中磁光克尔效应,磁滞回线,磁畴翻转或扩展等观测。智能照明系统● 光源稳定且均匀● 具备极向,纵向和横向测试能力● 高亮度(4倍于市场上产品)多功能显微系统● 线偏振光和圆偏振光● 提高相差畸变矫正● 电动显微聚焦矢量磁场系统 ● 垂直磁场模式可达1.4T @1cm 间隙● 面内磁场可达1.0T @1cm,0.36T @4cm 间隙适配低温恒温器;面内矢量磁场模式可达0.35T● 面垂直磁场和面内磁场可快速切换高端相机● 超动态范围30000:1(十倍提升)● 高量子效率80%(1.2倍提升)● 高速摄像和高分辨率直流 / 交流探针● 与外接电表匹配(6221,2400等)● 配合高频电表● 配合引线键合器件高端光学平台 ●气浮隔振●电子主动反馈隔振
    留言咨询

磁畴观测克尔显微镜相关的资讯

  • Quantum Design中国合作引进 多功能高分辨率磁光克尔显微成像系统
    磁畴是铁磁体材料在自发磁化的过程中,为降低静磁能而产生分化的方向各异的小型磁化区域。它的研究可将材料的基本物理性质、宏观性质和应用联系起来。近年来,由于材料的日益完善和器件的小型化,人们对磁畴分析的兴趣与日俱增。目前市面上主要的磁畴观测设备有磁光克尔显微镜、磁力显微镜、洛伦兹电镜、以及近兴起的NV色心超分辨磁学显微镜等,其中,磁光克尔显微镜可以灵活的结合外加磁场、电流及温度环境等来对材料进行面内、面外的动态磁畴观测,成为目前常用的磁畴观测设备,可用于多种磁性材料的研究,如铁磁或亚铁磁薄膜、钕铁硼等硬磁材料、硅钢等软磁材料。 2020年11月,Quantum Design中国与致真精密仪器(青岛)有限公司签署了中国区战略合作协议,合作推出多功能高分辨率磁光克尔显微成像系统。通过此次战略合作,Quantum Design中国希望能够为磁学及自旋电子学等领域的研究提供更多的可能。图1 多功能高分辨率磁光克尔显微成像系统 多功能高分辨率磁光克尔显微成像系统由北京航空航天大学集成电路学院张学莹老师带领团队,根据多年的磁畴动力学实验技巧积累和新的磁学及自旋电子学领域的热点课题研究需求研发。它采用先进的点阵LED光源技术,能够在不切换机械结构的情况下,同时进行向和纵向克尔成像,不仅能同时检测样品垂直方向和面内方向的磁性,成像分辨率还能够达到270 nm,逼近光学衍射限。与传统的磁光克尔显微镜相比,多功能高分辨率磁光克尔显微成像系统配置了多功能磁铁探针台,能够在保证450 nm高分辨率的前提下,向被测样品同时施加面磁场、垂直磁场、电流和微波信号。 此外,多功能高分辨率磁光克尔显微成像系统拥有专门的智能控制系统,用户界面友好,无需复杂设置,一键触发既能实现多维度磁场、电学信号与克尔图像的同步操控。该系统的另一亮点是配置了反应速度高达1 μs的超快磁场,为微米器件中磁畴的产生、磁畴的高速运动捕捉等提供了可能。 张学莹老师师从北航赵巍胜教授和法国巴黎萨克雷大学Nicolas Vernier教授,从2015年开始研究磁光克尔成像技术和磁畴动力学,其有关磁性材料性质的论文获得北京航空航天大学博士学位论文。经过3年潜心研究,该团队于2018年完成了台克尔显微镜样机的集成,并创立致真精密仪器(青岛)有限公司。至2020年初,在北航青岛研究院和北航集成电路学院经过两轮迭代和打磨,已经完成了产品的稳定性验证,目前,该设备已经被清华大学、中科院物理所、北京工业大学等多家单位采购。 产品磁畴成像照片案例图2 CoFeB(1.3 nm)/W(0.2)/CoFeB(0.5)薄膜中的迷宫畴图3 斯格明子磁畴观测 多重信号的叠加,能够满足客户多种前沿课题的实验需求面内磁场和垂直磁场的叠加可以进行Dzyaloshinskii-Moriya作用(DMI)的测试[1,2]图4 样品Pt(4 nm)/Co(1 nm)/MgO(t nm)/Pt(4 nm)DMI作用测量[1] 自旋轨道矩(spin-orbit torque,简称SOT)是近年来发展起来的新一代电流驱动磁化翻转技术,如何更好的表征SOT翻转,在当今自旋电子学领域具有重要的理论和应用价值。 多功能高分辨率磁光克尔显微成像系统配置的面内磁场和电学测试系统,不但可以实现这个过程的电学测试,还可以利用相机与信号采集卡同步的功能,逐点解析翻转曲线对应的磁畴状态 [3,4]。图5 面内磁场和电流的叠加用于sot驱动的磁性变化过程研究 在某些材料中,无法观测到纯电流驱动的磁畴壁运动。这时,可以利用多功能高分辨率磁光克尔显微成像系统微秒别的超快磁场脉冲与电流同步,观测垂直磁场与电流共同驱动的畴壁运动,从而解析多种物理效应,如重金属/ 铁磁体系的自旋化率由于自旋散射降低的效应 [5]。图6 垂直磁场和电流的叠加可用于观测单磁场或者电流无法驱动的磁性动力学过程 克尔成像下磁场和微波的叠加则能够为自旋波和磁畴壁的相互作用研究提供可能[6]。图7 自旋波驱动的磁畴壁运动[6] 多功能高分辨率磁光克尔显微成像系统还可进行多种磁性参数的微区测量局部饱和磁化强度Ms表征[7]由于偶作用,磁畴壁在靠近时会相互排斥。通过观察不同磁场下磁畴壁的距离,可以提取局部区域的饱和磁化强度Ms。此方法由巴黎- 萨克雷大学Nicolas Vernier 教授(致真技术顾问)在2014 年先提出并验证,与VSM测量结果得到良好吻合。图8 局部饱和磁化强度Ms表征及与其他测试方法Ms结果对比 海森堡交换作用刚度[8]采用系统的磁场“自定义波形”功能,将样品震荡退磁,再将得到的迷宫畴图片进行傅里叶变换,能够得知磁畴宽度,从而提取海森堡交换作用刚度Aex。图9 海森堡交换作用刚度提取 自旋电子薄膜质量的表征、自旋电子器件的损坏检测等[9]图10 磁性薄膜质量检测 除此之外,该系统还开发了性价比超高的变温系统。针对永磁材料研究的用户,开发了能够兼容克尔成像的高温强磁场模块。针对硅钢等软磁材料研究用户,开发了大视野面内克尔显微镜。 动态磁畴成像案例图11 cofeb薄膜动态磁畴图12 sot磁场+电流驱动磁畴翻转图13 钕铁硼永磁动态磁畴观测图14 磁性材料内钉扎点的观测,可与巴克豪森噪声同步匹配 产品基本参数✔ 向和纵向克尔成像分辨率可达300 nm;✔ 配置二维磁场探针台,面内磁场高达1 t,垂直磁场高达0.3 t(配置磁场增强模块后可达1.5 t);✔ 快速磁场选件磁场反应速度可达1 μs;✔ 可根据需要选配直流/ 高频探针座及探针;✔ 可选配二次谐波、铁磁共振等输运测试;✔ 配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;✔ 4k~800k,80k~500k 变温选件可选。 小结多功能高分辨率磁光克尔显微成像系统除了拥有超高分辨的动态磁畴观测能力外,还能结合多功能磁场探针台提供的外加电流、面内/面外磁场等对多种磁学参数进行提取。 样机体验目前,致真精密仪器(青岛)有限公司可对相关领域感兴趣的科学工作者提供了测样体验,欢迎感兴趣的老师或同学拨打电话010-85120280或发送邮件至info@qd-china.com体验磁光克尔显微成像全新技术! 参考文献[1] A. Cao et al., Nanoscale 10, 12062 (2018).[2] A. Cao et al., Nanotechnology 31, 155705 (2020).[3] X. Zhao et al., Appl. Phys. Lett. 116, 242401 (2020).[4] G. Wang et al., IEEE Trans. Circuits Syst. I Regul. Pap. 66, 215 (2019).[5] X. Zhang et al., Phys. Rev. Appl. 11, 054041 (2019).[6] J. Han et al., Science (80-. ). 366, 1121 (2019).[7] N. Vernier et al., Appl. Phys. Lett. 104, 122404 (2014).[8] M. Yamanouchi et al., IEEE Magn. Lett. 2, 3000304 (2011).[9] Y. Zhang et al., Phys. Rev. Appl. 9, 064027 (2018).
  • 全国首套多功能高分辨率磁光克尔显微成像系统成功落户清华大学
    2021年5月,多功能高分辨率磁光克尔显微成像系统在清华大学顺利完成安装和调试,并获得用户的高度认可。该系统是由北京航空航天大学集成电路学院赵巍胜教授指导,张学莹老师带领团队根据多年积累的磁畴动力学实验技巧和 新的磁学及自旋电子学领域的热点课题研究需求设计的,也是Quantum Design中国与致真精密仪器(青岛)有限公司合作推出后在国内完成的套安装和验收。 致真精密仪器(青岛)有限公司工程师与用户的现场合影 安装精彩瞬间相比于传统的磁光克尔显微镜,该系统除了拥有高达300 nm的纵向和向克尔成像(分别对应面内和垂直各向异性样品磁畴测量),还增加了灵活的磁场探针台及面内旋转的磁场和高度智能化的软件控制系统。其中磁场探针台可以同时施加面内和垂直的磁场,通过智能控制系统,能够让用户利用软件定义电、磁等多种想要的波形,一键触发后,在样品上可同步施加垂直/面内磁场、电流脉冲、微波信号,进行磁光克尔成像及微区磁滞回线提取、局部饱和磁化强度Ms表征、局部各项异性能K的表征、海森堡交换作用常数Aex,Dzyaloshinskii-Moriya作用的表征等,在磁性薄膜材料和自旋电子器件动力学分析领域有着突出的优势。这套多功能高分辨率磁光克尔显微成像系统历经5年多的研发历程,在北航集成电路学院、北航青岛研究院的支持下,经过了3轮迭代和试用,在致真精密仪器(青岛)有限公司团队进行工程化之后,形成了性能稳定,功能多样,多场景适配改装方便的系统。该产品还获得了青岛市市长杯创新创业大赛一等奖。北航团队在该设备的强大功能支撑下,在DMI测量[1]、自旋轨道矩(SOT)效应研究[2]、磁畴壁动力学[3-4]、磁性材料和自旋电子器件研究[5]等方面,取得了丰富的成果。同时,该设备还可用于永磁材料和硅钢等软磁材料的磁畴分析等。该设备的成功落户标志着国产商用磁光克尔显微镜领域的长期空白得以弥补。作为北航集成电路学院工艺与装备系孵化的公司,致真精密仪器(青岛)有限公司传承了北航文化,响应在高端科研设备方面的需求,与时俱进,精益求精,敢于啃硬骨头,做高品质高可靠性产品。同时,作为本土企业,致真精密仪器会始终与用户保持良好沟通,紧密追踪前沿热点,以用户的需求和科学发展方向为指引,将 新的测试技术融入到产品中去,为新老用户持续做好服务,支持中国甚至全球更多的科研者的科学探索。目前,该系统已经更新至三代,感谢所有提出过建议的老师和同学们,也欢迎大家继续提供宝贵的意见!在此,特别感谢清华大学的老师对我们的信任与支持,祝他们科研顺利,硕果累累!目前,这款多功能高分辨率磁光克尔显微成像系统已经获得了清华大学、中国科学院物理研究所、北京工业大学、上海科技大学等客户多套订单。 产品基本参数: ☛ 向和纵向克尔成像分辨率可达300 nm;☛ 配置二维磁场探针台,面内磁场 高达1 T,垂直磁场 高达0.3 T(配置磁场增强模块后可达1.5 T);☛ 快速磁场选件磁场反应速度可达1 μs;☛ 可根据需要选配直流/ 高频探针座及探针;☛ 可选配二次谐波、铁磁共振等输运测试;☛配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;☛ 4K~800K,80K~500K 变温选件可选。 样机体验:目前,致真精密仪器(青岛)有限公司可对相关领域感兴趣的科学工作者提供测样体验,欢迎感兴趣的老师或同学通过拨打电话010-85120280或发送邮件至info@qd-china.com体验磁光克尔显微成像全新技术! 参考文献:[1]. Cao, A. et al. Tuning the Dzyaloshinskii–Moriya interaction in Pt/Co/MgO heterostructures through the MgO thickness. Nanoscale 10, 12062–12067 (2018).[2]. Zhao, X. et al. Ultra-efficient spin–orbit torque induced magnetic switching in W/CoFeB/MgO structures. Nanotechnology 30, 335707 (2019).[3]. Zhang, X. et al. Low Spin Polarization in Heavy-Metal–Ferromagnet Structures Detected Through Domain-Wall Motion by Synchronized Magnetic Field and Current. Phys. Rev. Appl. 11, 054041 (2019).[4]. Zhang, Y. et al. Domain-Wall Motion Driven by Laplace Pressure in CoFeB/MgO Nanodots with Perpendicular Anisotropy. Phys. Rev. Appl. 9, 064027 (2018).[5]. Zhang, X. et al. Spin‐Torque Memristors Based on Perpendicular Magnetic Tunnel Junctions for Neuromorphic Computing. AdvancedScience 8, 2004645 (2021).
  • Advanced Science:多功能高分辨率磁光克尔显微成像系统助力自旋忆阻器研究取得突破性进展
    忆阻器是一类表示磁通与电荷关系的基础电路元件,也是构建人工神经网络的理想元件。传统忆阻器多数是基于材料内部的离子迁移和价带变化实现的,存在工作寿命短和反应速度慢等缺陷,无法支撑持续训练学习的神经网络的长时间工作[2]。与之相反,自旋电子器件基于材料内部的磁性变化工作,具有工作寿命长、反应速度快等优势[3-7]。长期以来,科学和产业界在不断地探索如何将磁隧道结等自旋器件应用于神经网络计算[8]。然而,经典的磁隧道结仅具有高、低二值阻态,无法在神经网络计算方面发挥优势。 2021年3月7日,北京航空航天大学集成电路科学与工程学院赵巍胜教授团队教师张学莹、博士生蔡文龙、教师王梦醒及潘彪以共同位作者,赵巍胜教授为通讯作者在Advanced Science期刊在线发表了题为“Spin‐Torque Memristors Based on Perpendicular Magnetic Tunnel Junctions for Neuromorphic Computing” 的学术论文[1]。赵巍胜教授团队设计了一种带有特自由层结构的磁隧道结,即在自由层中插入了单原子层的W,然后利用退火技术,让W形成聚簇效应,实现了一种基于垂直各向异性磁隧道结的自旋忆阻器,并在百纳米的器件中实现了稳定的近乎连续的多态,也是国际上次实现百纳米尺寸的可全电学操控的自旋忆阻器(如图1所示),有望为自旋电子器件在人工智能领域的应用打开道路。图 1 (a,b)该工作实现的自旋忆阻器件通过电压脉冲序列激励诱导的阻态变化;(c-e)器件的脉冲时序依赖可塑性验证。 该研究对这种新型器件的性质进行了全面的实验表征,验证了这种器件阻态的脉冲时序依赖可塑性(简称STDP,是脉冲神经网络的基础),证明了其构成的系统能够高效率、低功耗地实现手写数字识别等功能。 此外,该研究次发现了一种立体的手性涡旋结构(图2d):在CoFeB/W/CoFeB构成的自由层中,CoFeB/W界面和W/CoFeB界面产生的Dzyaloshinskii-Moriya作用(DMI)相反,同时,两层CoFeB之间的耦合作用则随着W的厚度变化出现强度涨落或铁磁/反铁磁耦合交替。在局部区域W出现聚簇效应,反铁磁耦合与反向DMI联合作用,促使磁畴壁演变成手性涡旋结构,形成能量势阱。在磁隧道结自由层翻转过程中,这种涡旋结构会将运动的畴壁牢牢地钉扎住,从而形成了稳定的多阻态。图 2 (a)论文所用MTJ膜层中W原子的分布;(b)在反向DMI和不同RKKY耦合强度下CoFeB/W/CoFeB双磁层中可能存在的磁畴壁形态;(c)不同磁畴壁形态对应的能量;(d)在W原子聚簇区域由反向DMI和RKKY反铁磁耦合共同促进形成的立体涡旋结构示意图。 值得一提的是,Quantum Design中国与致真精密仪器(青岛)有限公司合作推出的多功能高分辨率磁光克尔显微成像系统对解析自旋忆阻器的工作原理分析和多态来源方面发挥了重要作用。 先,作者通过高分辨率磁光克尔显微镜观察了MTJ膜层自由层的磁性翻转过程,与磁滞回线测量结果进行了对照,发现文章所用膜层存在较强的磁畴钉扎作用(如图3)。同时,作者测量了该材料自由层中磁畴壁移动速度,通过蠕行公式(creep mode motion)拟合,提取了一个重要的参数:本征磁畴壁钉扎磁场Bdep,如图4a所示。这个磁场是表征磁性薄膜磁畴壁钉扎强度的标志性参数,低于该临界磁场,不考虑热扰动的情况下,磁畴壁无法运动。经对比发现,薄膜中提取的该磁场与忆阻器件中多态在低温下的临界稳定磁场几乎相等,由此确定了自旋忆阻器件的多态来源于磁畴钉扎(图4b)。以磁光克尔显微镜为工具,通过磁畴壁速度测量提取磁畴壁本征钉扎磁场强度,是少有的能够定量评估磁性薄膜质量和畴壁钉扎强度的方法,在开发新材料,优化自旋电子器件性能方面得到广泛应用[7][9]。 图 3 利用高倍磁光克尔显微镜观察到的该自旋忆阻器自由层中磁畴扩张状态与磁滞回线的对应关系。图 4 (a) 磁光克尔显微镜测量的CoFeB/W/CoFeB磁性薄膜(蓝)与普通CoFeB薄膜(红)中磁畴中磁畴壁运动速度的比较;以及CoFeB/W/CoFeB中内禀钉扎磁场(16.3 mT)与(b)器件在低温下的多态稳定磁场(去除偏置后为15.5 mT)的比较。 在CoFeB/W/CoFeB自由层薄膜中,为什么会有如此强的磁畴壁钉扎作用呢?作者利用磁光克尔显微镜,从DMI、海森堡交换作用强度等多个角度进行了细致表征。先,分别定量测量了sub/MgO/CoFeB/W薄膜、sub/W/CoFeB/MgO两种镜面对称薄膜结构的DMI,发现两种膜层的DMI手性相反且强度相当(图5)。随后,测量了多态器件所用的自由层薄膜CoFeB/W/CoFeB的DMI,强度几乎为零。由此推测,CoFeB/W界面和W/CoFeB的DMI被中和。另一方面,通过透射电镜,作者观察到了CoFeB/W/CoFeB中W原子的分布并不均匀,局部出现了聚簇,W原子垒叠成2层甚至3层,而多数区域W原子则为单层甚至出现断裂。依据S. Parkin测量结果[10],双原子层的W能够使上下两层铁磁材料发生RKKY反铁磁耦合。进一步,作者通过微磁仿真,结合磁光克尔成像获得了关于DMI,海森堡交换作用(测量方法见该文章附加材料[1])等参数,证明在具有W聚簇的区域,能够形成上下层手性相反的的垂直涡旋结构。而且,这种涡旋结构具有较低能量,在磁畴壁经过之时,能够形成强烈的钉扎作用。图 5 利用磁光克尔显微镜测量不同薄膜结构中磁畴壁运动的速度以及DMI的提取。 磁光克尔显微镜除了能够获得高分辨率的动态磁畴观测外,在磁性薄膜材料和自旋电子器件动力学分析领域也有着突出的优势,它能够直观、高效、无损地测量多种参数,包括饱和磁化强度、各向异性强度、海森堡交换作用强度和DMI强度等。通用型的磁光克尔显微镜很难对这些磁学参数进行直接的测量,为了降低使用门槛,使磁光克尔成像和磁畴动力学分析技术在磁学和自旋电子学中发挥更大作用,张学莹老师在多年积累的测试经验和仪器配置方案基础上,开发出了一款多功能、智能化的多场高分辨率磁光克尔成像系统。该系统能够让用户利用软件定义电、磁等多种想要的波形,一键触发后,在样品上同步施加垂直/面内磁场、电流脉冲、微波信号,可同时进行磁光克尔成像和电阻等参数的测量。这种多功能的设备将电输运测试和磁光克尔成像结合,预期将在自旋轨道矩、斯格明子磁泡动力学等方面发挥更大作用。 目前,这款多场高分辨率磁光克尔成像系统已经获得了清华大学、中国科学院物理研究所、北京工业大学、上海科技大学等客户多套订单。 图6多功能高分辨率磁光克尔显微成像系统 产品基本参数:向和纵向克尔成像分辨率可达300 nm;配置二维磁场探针台,面内磁场高达1 T,垂直磁场高达0.3 T(配置磁场增强模块后可达1.5 T);快速磁场选件磁场反应速度可达1 μs;可根据需要选配直流/ 高频探针座及探针;可选配二次谐波、铁磁共振等输运测试;配置智能控制和图像处理系统,可同时施加面内磁场、垂直磁场和电学信号同步观测磁畴翻转;4K~800K,80K~500K 变温选件可选。 参考文献 [1] X. Zhang#, W. Cai#, M. Wang#, B. Pan#, K. Cao, M. Guo, T. Zhang, H. Cheng, S. Li, D. Zhu, L. Wang, F. Shi, J. Du, and W. Zhao*, Adv. Sci. 2004645, 2004645 (2021).[2] M. A. Zidan, J. P. Strachan, and W. D. Lu, Nat. Electron. 1, 22 (2018).[3] X. Lin, W. Yang, K. L. Wang, and W. Zhao*, Nat. Electron. 2, 274 (2019).[4] M. Wang, W. Cai, K. Cao, J. Zhou, J. Wrona, S. Peng, H. Yang, J. Wei, W. Kang, Y. Zhang, J. Langer, B. Ocker, A. Fert, and W. Zhao*, Nat. Commun. 9, 671 (2018).[5] M. Wang#, W. Cai#, D. Zhu#, Z. Wang#, J. Kan, Z. Zhao*, K. Cao, Z. Wang, Y. Zhang, T. Zhang, C. Park, J. P. Wang, A. Fert, and W. Zhao*, Nat. Electron. 1, 582 (2018).[6] S. Peng#, D. Zhu#, W. Li, H. Wu, A. J. Grutter, D. A. Gilbert, J. Lu, D. Xiong, W. Cai, P. Shafer, K. L. Wang, and W. Zhao*, Nat. Electron. 3, 757 (2020).[7] X. Zhao#, X. Zhang#, H. Yang#, W. Cai, Y. Zhao, Z. Wang, and W. Zhao*, Nanotechnology 30, 335707 (2019).[8] X. Zhang, W. Cai, X. Zhang, Z. Wang, Z. Li, Y. Zhang, K. Cao, N. Lei, W. Kang, Y. Zhang, H. Yu, Y. Zhou, and W. Zhao*, ACS Appl. Mater. Interfaces 10, 16887 (2018).[9] X. Zhao et al., Appl. Phys. Lett. 115, (2019).[10] S. S. P. Parkin, Phys.Rev.Lett. 67, 3598(1991)

磁畴观测克尔显微镜相关的方案

  • 高性能低温恒温器在磁光克尔效应研究中的应用
    科研中MOKE常用来表征材料的电子和磁学特征,例如磁畴结构、自旋态密度、磁相变动力学。在高质量纳米结构和2D材料中新的实验进展表明,有望在集成的光子或自旋电子器件中利用磁光效应在纳米尺度上加强对光的控制。MOKE实验需要灵活的光路与电学通道以及磁场环境。样品需要一个超稳定的低温环境并且能够调整配置以适应实验需求的多种几何光路。Cryostation基础系统与成熟的选件库可为MOKE提供多种解决方案。通过不同的搭配组合我们可以轻松实现磁光克尔效应、光磁测量、光致发光、偏振分辨测量、自旋输运与动力学、磁畴壁移动、磁阻研究、电学和高频测量、输运性质等方面的研究。以下是部分低温磁光克尔效应实验举例:
  • 扫描探针显微镜(SPM)用于CoCrFeNi基高软磁熵薄膜的磁畴结构表征
    磁畴是指铁磁体材料在自发磁化的过程中为降低静磁能而产生分化的方向各异的小型磁化区域。磁畴的存在对铁磁材料的磁性具有重要影响。由于配位数、晶格常数和价电子分布等的差异,目前关于块状软磁高熵合金的理论推导结果不能直接应用于软磁高熵合金薄膜,因此需要深入的研究来揭示软磁高熵合金薄膜(HEATFs)的磁性。本文采用扫描探针显微镜SPM-9700HT的磁力模式测试了软磁高熵合金薄膜的磁畴结构,发现其呈现典型的迷宫状磁畴分布。这一方法直观地反映了薄膜厚度及成分对磁畴大小的影响。
  • 岛津扫描探针显微镜观测诱导多能干细胞和海拉细胞
    诱导多能干细胞在再生医学中的应用已获得巨大进步,且已有相关临床报道。研究表明,诱导多能干细胞的特征,如菌落形状、增殖速率,取决于细胞系来源及培养方法,且在特定情况下可形成癌细胞。因此可推测诱导多能干细胞的差异,即个体性,是决定其分化为不同细胞的重要因素之一。阐明该细胞的个体性有望成为再生医学的创新技术。然而,目前仍存在许多对细胞的个体性产生影响的不确定性因素,这已阻碍了诱导多能细胞的应用。本文借助扫描探针显微镜(SPM)观测细胞形状,所用样品为无差别的诱导多能干细胞,同时以癌变的海拉细胞(Hela Cells)作为反例。实验证明海拉细胞为圆形,而诱导多能干细胞呈扁平状且细胞间的黏连作用使之形成网络结构。

磁畴观测克尔显微镜相关的资料

磁畴观测克尔显微镜相关的试剂

磁畴观测克尔显微镜相关的论坛

  • Science: 低温强磁场磁力显微镜—调控拓扑绝缘体磁畴壁手性边界态

    Science: 低温强磁场磁力显微镜—调控拓扑绝缘体磁畴壁手性边界态

    拓扑绝缘体,顾名思义是绝缘的,有趣的是在它的边界或表面总是存在导电的边缘态,这是拓扑绝缘体的独特性质。近期,理论预测存在的拓扑绝缘体在实验上被证实存在于二维与三维材料中,引起了科研界的大量关注。通常二维电子气体系中存在着量子霍尔效应,实验中观测到了手性边界态存在于材料的边界。在三维体材料的拓扑绝缘体中实验上可观测到反常量子霍尔效应。 K. Yasuda, Y. Tokura等人利用德国attocube公司的低温强磁场磁力显微镜attoMFM在0.5K温度与0.015T磁场环境下,证实了拓扑绝缘体磁畴壁的手性边界态的可调控性能,不同于之前实验上观测到的拓扑绝缘体中自然形成随机分布的磁畴中的手性边界态。Y. Tokura等人基于Cr-掺杂 (Bi1-ySby)2Te3制备了拓扑绝缘体薄膜,基底是InP(如图1C)。图1D为在0.5K极低温下使用MFM测量的材料中的磁畴分布,可以清晰看到自然形成的随机分布的大小与形貌不一的磁畴。通过使用MFM磁性探针的针尖在0.015T的磁场环境下扫描样品区域成功实现了对材料磁畴的调控。图1F为调控后样品的磁畴情况,被探针扫描过的区域,磁畴方向保持一致。[align=center][img=,500,273]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311331396935_7457_981_3.jpg!w690x378.jpg[/img][/align][align=center]图1: A&B 拓扑绝缘体磁畴调控示意图;C 拓扑绝缘体材料结构;D attoMFM实验观测自然形成多个磁畴; E&F MFM探针调控磁畴[/align][align=center][/align][align=center] 该拓扑绝缘体磁畴反转的性能随磁场大小变化的结果也被仔细研究。通过缓慢改变磁场,不同磁场下拓扑绝缘体样品的磁畴方向可清楚地被证实发生了反转(见图2)。通过观察,随机分布气泡状磁畴(0.06T磁场附近)一般的大小在200纳米左右。[/align][align=center][/align][align=center][img=,500,206]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311339098931_5066_981_3.jpg!w690x285.jpg[/img][/align][align=center]图2: A 霍尔器件电测量结果;B attoMFM观测不同磁场下拓扑绝缘体的磁畴情况[/align][align=center][/align][align=center] 不仅通过attoMFM直观观测分析磁畴手性边界态调控,电学输运结果也证实手性边界态的调控。图3为在温度0.5K的时候,拓扑绝缘体电学器件以及相应的电学测量数据。数据表明,霍尔电阻可被调控为是正负h/e2的数值,证实了不同磁畴的手性边界态的调控被实现。作者预见,该实验结果对于低消耗功率自旋电子器件的研究提供了一种可能的途径。[/align][align=center][/align][align=center][img=,500,565]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311333567372_456_981_3.jpg!w690x780.jpg[/img][/align][align=center]图3:拓扑绝缘体制备器件反常量子霍尔效应结果证实磁畴手性边界态调控[/align][align=center][/align][align=center][img=,500,303]http://ng1.17img.cn/bbsfiles/images/2018/07/201807311334450730_967_981_3.jpg!w690x419.jpg[/img][/align][align=center]图4:拓扑绝缘体磁畴手性边界态调控相关设备—低温强磁场原子力磁力显微镜[/align][align=center][/align][align=center][/align]低温强磁场原子力磁力显微镜attoAFM/MFM主要技术特点:-温度范围:mK...300 K-磁场范围:0...12T (取决于磁体)-样品定位范围:5×5×5 mm3-扫描范围: 50×50 μ㎡@300 K, 30×30μ㎡@4 K-商业化探针-可升级PFM, ct-AFM, SHPM, CFM等功能参考文献:“Quantized chiral edge conduction on domain walls of a magnetic topological insulator” K. Yasuda, Y. Tokura et al, Science 358, 1311-1314 (2017)

  • 解决显微镜被观测物体反光的办法

    被观测物体反光通常会出现在工业显微镜的使用上,一般来说,金属工件都会出现反光的问题。比较常见的是金属表面,焊点,显微镜观察的时候没有光,看不清楚,有光线,反光的现象马上就出现,这个问题很头疼,其实像这样的问题可以很好的解决,那就是运用显微镜上的偏振片,推荐的产品是单筒显微镜+CCD+环型光源+偏振片,通过减弱光线的锐度减少反光,同样也可以调整光照的角度和亮度来调整反光的角度。不同产品的反光解决方法是不一样的,比如金属表面,我们可以使用偏振片,焊点我们可以使用不同的光源也就是更换光照角度,还有就是使用同轴光,等等的方法。

  • 【分享】英研制分辨率最高光学显微镜 可观测50纳米物体

    【分享】英研制分辨率最高光学显微镜 可观测50纳米物体

    http://ng1.17img.cn/bbsfiles/images/2011/03/201103062216_281178_2193245_3.jpg英研制分辨率最高光学显微镜 可观测50纳米物体  英国曼彻斯特大学科学家近期研制出了世界上分辨率最高的光学显微镜,能够观测50纳米大小的物体。这是世界上第一个能在普通白光照明下直接观测纳米级物体的光学显微镜。  他们的成果发表在最新一期的《通信与自然》杂志上。由于光的衍射特性的限制,光学显微镜的观测极限通常约为1微米。研究人员通过为光学显微镜添加一种特殊“透明微米球透镜”,克服了上述障碍,使这一极限达到50纳米,观测能力提高了20倍。(注:1微米等于1000纳米)  这项成果的核心是利用物体发散出的一种逐渐消失的“隐失波”。顾名思义,“隐失波”是一种逐步消失的光波,但很重要的是,它不受限于光的衍射极限,所以如果我们能捕捉住这种光,就很有希望观测到比传统成像办法高清许多的图像。曼彻斯特大学科研人员在“透明微米球透镜”的帮助下,收集到“失波”并把它转到传统显微镜,这样科学家用肉眼就可看到通常需要其它间接方法才能观测到的细微之处,譬如通过原子力显微镜或扫描电子显微镜观测。  曼彻斯特大学激光加工研究中心的李琳教授认为,这项技术在生物学研究方面的应用前景广阔,特别是对细胞、细菌甚至是病毒的研究。  李琳教授表示:“目前应用于生物学研究领域的显微镜技术特别费时,举个例子,如果我们用荧光显微镜进行观测,需要花两天时间准备一个观测所需的样品,而这些准备好的样品只有10%到20%有用。因此,直接观察细胞技术的引进将能带来潜在的收益。”

磁畴观测克尔显微镜相关的耗材

  • 多功能显微镜配件
    多功能显微镜配件是生命科学和医学领域的最佳性价比万能显微镜,提供40X-1000X的放大倍率,特别适合实验室科研等高级应用。 多功能显微镜配件特点: 欧洲生产制造,秉承欧洲百年精密光学优势,具有突出的优势和性价比 可升级到偏光显微镜,暗场显微镜,相衬显微镜,也可添加相机组成显微成像系统。 具有6V 20W的卤素灯照明,适合220V/50Hz的中国电力标准。 并且具有LED配置供用户选择 多功能显微镜配件特色: * 观察筒:30度倾角圆弧形管,360度可旋转,缓解颈部肌肉,长时间观察也不疲劳。可以屈光度补偿地调节瞳距,调节范围48-75mm. * 目镜非常适合佩戴眼镜的人员观察。 * 四位物镜转换器方便使用不同放大倍数的物镜观测。 * 低位同轴粗调聚焦和标定级的微调聚焦控制。 * 聚焦自动终止安全防护功能。 * 双层样品台配带可更换的超硬玻璃板,防止样品台划伤,污染等. * 高级暗场显微镜克勒照明系统 20W卤素灯。 * 可升级为2人共用显微镜 可选配件: 各种高级相衬显微镜目镜, 相衬(phase contrast), 偏光,暗场,数字相机等。 多人共览配置---可配置成侧面或后面观察型,两人同时观测。 多功能显微镜配件参数 放大率:40x-1000x 显微镜镜体:坚固耐用,300mm×270mm,橡胶支点 物镜转换器:滚珠轴承四孔转换器 目镜筒:双目圆弧形观察筒,防霉设计,30度倾斜,360度可旋转,瞳距调节:48-75mm 样品载物台: 双层155x135mm载物台, X,Y位移行程范围76x30mm,超硬玻璃覆盖,防止划伤或污染。 聚焦:低位粗调和细调(步进2微米),总对焦范围20mm。具有自动聚焦停止的安全功能。 集光器: Abbe 明视野集光器, 数值孔径(n.A) 1.25,集成虹膜光阑 目镜:EW10X/20宽视场目镜 物镜:ICO Plan 4x/0.10 ICO Plan 10x/0.25 ICO Plan 40x/0.65 弹簧加载 ICO Plan 100X/1.25 浸油,弹簧加载 照明光源:内置电源20W卤素灯,电源电压110V/220V,频率50/60HZ。 标准附件:防尘罩,蓝光虑光片,浸油,用户手册,2根保险丝, 20W飞利浦卤素灯 可选附件:铝制工具箱,多型号目镜,目镜锁定工具,暗视野滤光片(中心光阑) 加热台:可选加热台,提供恒定温度,观察活细胞样品。孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括凝胶成像仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。更多关于多功能显微镜报价等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
  • 高级显微镜配件
    高级显微镜配件特点: 欧洲生产制造,秉承欧洲百年精密光学优势,具有突出的优势和性价比 可升级到偏光显微镜,暗场显微镜,相衬显微镜,也可添加相机组成显微成像系统。 具有6V 30W的卤素灯照明,适合220V/50Hz的中国电力标准。 并且具有LED配置供用户选择 高级显微镜配件特色: * 观察筒:30度倾角圆弧形管,360度可旋转,缓解颈部肌肉,长时间观察也不疲劳。可以屈光度补偿地调节瞳距,调节范围55-75mm. * 目镜非常适合佩戴眼镜的人员观察。 * 五位物镜转换器方便使用不同放大倍数的物镜观测。 * 低位同轴粗调聚焦和标定级的微调聚焦控制。 * 聚焦自动终止安全防护功能。 * 双层样品台配带可更换的超硬玻璃板,防止样品台划伤,污染等. * 高级暗场显微镜克勒照明系统 30W卤素灯。 * 可升级为2人共用显微镜和3人共用显微镜 可选配件: 各种高级相衬显微镜目镜, 相衬(phase contrast), 偏光,暗场,数字相机等。 多人共览配置---可配置成侧面或后面观察型,两人同时观测。 高级显微镜配件参数 放大率:40x-1000x 显微镜镜体:坚固耐用,300mm×295mm,橡胶支点 物镜转换器:五孔转换器 目镜筒:双目圆弧形观察筒,防霉设计,30度倾斜,360度可旋转,瞳距调节:55-75mm 样品载物台: 双层155x135mm载物台, X,Y位移行程范围76x30mm,超硬玻璃覆盖,防止划伤或污染。 聚焦:低位粗调和细调(步进2微米),总对焦范围26mm。具有自动聚焦停止的安全功能。 集光器: 多系统Abbe 明视野集光器, 数值孔径(n.A) 1.25,集成虹膜光阑 目镜:EW10X/20宽视场目镜,具有屈光度调节功能,适合戴眼镜者使用。 物镜:ICO Plan 4x/0.10 ICO Plan 10x/0.25 ICO Plan 40x/0.65 弹簧加载 ICO Plan 100X/1.25 浸油,弹簧加载 照明光源:内置电源20W卤素灯,电源电压110V/220V,频率50/60HZ。 可选附件:加热台:可选加热台,提供恒定温度,观察活细胞样品。孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括凝胶成像仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。更多关于高级生物显微镜价格,高级显微镜品牌等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
  • 病理显微镜配件
    病理切片显微镜配件为欧洲原产,创立了进口病理显微镜世界级标准,进口病理显微镜高端具有无限远矫正光学技术,为用于提供高标准的丰富的对比度和清晰的图像.病理切片显微镜配件为欧洲原产,创立了进口病理显微镜世界级别新标准,进口病理显微镜高端无限远矫正光学技术,为用于提供高标准的丰富的对比度和清晰的图像,而且还把Infinitive ICO2 Plan 物镜列为标准配件供用户使用。双目病理切片显微镜是我们奥地利生命科学显微镜中病理切片显微镜的一种,秉承欧洲精密光学高端设计和制造优势, 具有绝佳的光学性能和性价比,非常适合 各种医院,医学院校和研究所以及各种医疗机构的使用。病理切片显微镜显配件特色:3年保质期 Pure ICO2 Plan infinity optics 4/10/40物镜先进的LED光源系统人体工程学免疲劳观察镜筒智能感应节能系统,自动熄灯聚焦自动停止功能适合佩戴眼镜工作者使用,不需要额外眼罩非机架式载物台进口病理显微镜高科技紧凑设计多系统聚光病理切片显微镜配件参数镜体: MCX51型镜体 203x145mm 带有LED 照明系统, 适合电源为110-220VAC,50/60HZ. 具有智能感应系统,15分钟不用就自动关闭照明系统,全面节能。四孔转角物镜转盘:显微镜聚焦:具有低位聚焦(low position), 粗调聚焦(coaxial coarse )以及校准的微调聚焦功能,总体聚焦范围20mm, 具有安全自动聚焦停止功能和装置。观察镜筒: ARCTYPE型双目型, 头部30度倾斜, 360度可旋转,瞳距48-75mm可调,固定于镜体上。载物台:非机架式双层机械载物台,150x133mm尺寸,行程范围:76x30mm (X-Y), 载物台可上下移动20mm,单手操作样品架 (specimen holder) ,固定于显微镜镜体上。多系统聚光器(Multisystem-Condenser): Abbe明视场聚光器孔径虹膜N.A 1.25, 快速使用技术,对于不同物镜快速达到最佳照明状态。目镜 (Eyepieces, 2pcs): 3WF 10x18Widefield, 适合戴眼镜用户使用,不需要额外的眼罩。无限远光学矫正技术ICO2 Plan 4/0.10, WD 23.5mm, CC 0.17ICO2 Plan 10/0.25, WD 10.0 mm, CC 0.17ICO2 Plan 40/0.65, WD 0.54 mm, CC 0.17病理切片显微镜可选附件---相衬配件Brightfield and Phase Contrast 10/40Brightfield, Darkfield and Phase Contrast 10/40进口病理显微镜加热台我们针对特殊样品(如活细胞)需要稳定的温度,我们特意设计了显微镜的加热台或显微镜温控台,与我们的显微镜精密匹配。病理切片显微镜配件显著的产品优势:先进的LED光学光源系统:我们的进口病理显微镜采用具有世界一流水平的全新LED光照系统,确保以超低功耗高亮度均匀照明整个目标样品. 这种LED光源节能,以更低能耗提供更高亮度的照明,而且照明的均匀度大幅度提高。 ARC型镜筒:这个系列的病理切片显微镜创立了“输入工作”的新标准,使用双目Arctype tube技术,从而为目镜提供两个不同的位置,全面照顾到身高不同的用户,实现人体工程学姿势长时间工作而不感到劳累。 瞳距48-75mm可调,屈光度可调,每个用户都能找到自己最佳的使用状态; 目镜设计适合佩戴眼镜的用户,不需要佩戴额外的眼罩即可使用。 智能感应(smart sense)技术--节能利器:病理切片显微镜具有全新超高灵敏度智能感应系统, 安装于显微镜底座的前部,15分钟没有使用,该感应系统将自动光比显微镜照明光源,全面节能并提高照明效率。 四孔物镜转换器 Quadruple nosepiece: 采用转角物镜转换器,转为4个物镜的使用而设计,并具有后视功能,为载物台上提供更多空间,观测样品视场大大优化,操作更为舒服而简单。病理显微镜载物台-stage: 独具奥地利专利技术的“玻璃覆盖”技术,采用可更换,超硬,防划,耐腐蚀的玻璃覆盖载物台,保护载物台免受刻划、磨损、腐蚀。病理显微镜多系统聚光器-Multisystem-Condenser: 采用Abbe明视场聚光器,孔径虹膜NA 1.25.,对于不同数值的物镜,确保快速呈现最佳观测结果,并且支持显微镜升级到各种暗视场/明视场,明视场/相衬等配置。进口病理显微镜零部件固定设计: 这是显著以特色之一,为显微镜各个部件提供了保安系统,观察镜筒,物镜,目镜,载物台,聚光器固定到显微镜镜体上,确保所有零部件不分离而丢失. 抗真菌处理--适合恶劣工作环境: 可以再温度较高,湿度较大的气候或环境中工作,采用特殊的抗真菌处理,确保光学系统不受损坏,图片保持明亮而清晰。进口病理显微镜便携实用: 采用了“节省空间“的理念设计, 适合小空间工作实用。而超轻的重量又适合运输、携带和存储。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制