当前位置: 仪器信息网 > 行业主题 > >

磁畴观测克尔显微镜

仪器信息网磁畴观测克尔显微镜专题为您提供2024年最新磁畴观测克尔显微镜价格报价、厂家品牌的相关信息, 包括磁畴观测克尔显微镜参数、型号等,不管是国产,还是进口品牌的磁畴观测克尔显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合磁畴观测克尔显微镜相关的耗材配件、试剂标物,还有磁畴观测克尔显微镜相关的最新资讯、资料,以及磁畴观测克尔显微镜相关的解决方案。

磁畴观测克尔显微镜相关的仪器

  • 蔡司克尔磁光显微镜 400-860-5168转0953
    --研究磁畴快速、有效的最佳方案 品牌:卡尔蔡司型号:Axio scope(偏光) + 电磁附件Axio Imager (偏光)+ 电磁附件制造商:德国卡尔蔡司公司经销商:北京普瑞赛司仪器有限公司产地:德国联系方式:显微镜部分要求: LED照明360°可旋转起偏带λ板检偏,且λ板及检偏均可调变倍器锥光高倍偏光物镜及油镜 特点n 最高配置卡尔蔡司偏光显微镜n 可调节大小并能控制入射光方向的孔径光栅滑尺(如下图)n 可调节的补偿器及偏光器n 外置可旋转、调节电磁场,磁场达800kA/m。n 交流、直流 ,用于研究动态及静态磁化过程n 可X、Y方向移动并可锁死的特殊样品载物台n 稳定高亮度的Colibri LED照明n 专业的磁畴采集分析控制软件 主要应用磁性材料的宏观性能取决于材料磁畴结构和变化方式,对磁畴结构和变化方式的观测是铁磁学、信息科学和磁性材料与器件等学科领域的基础性研究之一。磁畴观测不但可以使我们了解铁磁体内部磁畴分布,更重要的是可以为磁化动力学研究、材料改性、新器件的开发提供理论基础。观察磁性材料自发磁畴结构。蔡司磁畴显微镜就是利用了克尔磁光现象来研究磁畴变化的系统,具体应用如下:研究连续动态加磁场下磁畴结构变化;研究连续动态外加磁场下磁畴壁位移及磁畴壁测量;观察磁性材料在磁化和退磁过程中磁畴的形成、长大或合并,畴内磁矩的转动等;研究不同磁性材料的磁滞回线,如矫顽力的测定,磁饱和强度,剩磁等测定;退磁场能的研究;居里温度的测定,不同温度下磁畴结构的研究;磁致伸缩现象的研究; 蔡司克尔磁光显微镜基本原理克尔磁光效应法磁光效应是指当一束线偏振光穿过磁性材料或在磁性材料表面反射时,透射光或反射光的偏振面相对于入射光的偏振面偏转一定角度的现象。其中对于反射的情况,称为克尔效应;对于透射的情况,称为法拉第效应。优点:(1)材料的磁畴结构几乎没有影响,不受材料性能的限制,可在不同温度下进行测量。(2)有些材料的畴壁较厚,畴与畴壁间的界限不明显,表面散磁场很小,粉纹不易集中。对于这种情况,磁光效应法是一种有效的方法。(3)磁光效应也可以动态追踪磁畴结构在外磁场作用下的变化过程,因此在磁畴观测方面被广泛采用。 显微镜部分要求:LED照明360°可旋转起偏带λ板检偏,且λ板及检偏均可调变倍器锥光高倍偏光物镜及油镜n 电磁附件:(由德国Evico公司提供)大理石底板载物台及支架电磁场及支架电磁场各附件高速CCD软件可调节大小及入射光方向的孔径光阑
    留言咨询
  • 高分辨率磁光克尔显微镜产品负责人:姓名:谷工(Givin)电话:(微信同号)邮箱:当一束线偏振光照被磁性介质反射后,反射光的偏振面相对于入射光的偏振面有一个小的角度偏转(克尔旋转角),这一现象被称为磁光克尔效应。该效应与显微成像技术结合组成磁光克尔显微镜,被广泛应用于磁性材料磁性测量,磁畴观察等。 由于该设备可进行无损探测、灵敏度高、在极端环境下原位测量等优点是被越来越多的科研人员采用。为满足日益增长的市场需求昊量光电推出了高性价比的磁光克尔显微镜。其主要原理是:一束面光源经过起偏器,转变为线偏振光,照射到样品上,由于样品内磁畴的存在使样品各个区域内磁化强度和方向不同,因此不同区域对线偏振光,偏振面的改变各不相同。因此当反射光通过检偏器后光斑的强度分布不同,从而得到样品的磁畴结构。为了获得更高的灵敏度,优异的磁畴成像效果等该系统做了以下优化。1)采用高亮度窄带LED光源。尽管理论上磁光克尔效应的对比度可以无限高,但是多个波长偏振像差的组合通常会大大降低偏振的纯度。因此传统的克尔显微镜经常报道磁光克尔对比度几乎观察不到。一个主要的原因就是因为使用宽谱的照明光源。因为磁光效应引起的克尔旋转量与光源波长数量成反比,宽谱光源会产生相同宽谱的线偏振,也就是说,光偏振不是完美的线性,观察到的磁对比度也会降低。因此为了克服由于光源带来的相差,我们经过多组测试,选取了FWHM为50nm的超亮LED光源,可获得很强的对比度,并且拥有较高的使用寿命。2)图像自动校正功能通常为了获得较弱磁性材料的对比度,市面上磁畴观察设备通常会采用图像差分处理来获得较高对比度,即使用拍摄到的图像减去背底图片。该方法通常可以将信号增强10倍以上。但是由于在施加磁场的过程中样品的位置会发生偏移,会大大影响差分处理效果,甚至出现错误。为了消除样品的移动,设备会通过快速像素相位算法确定样品漂移,然后通过压电促动器实时校正位置。同时该帧位移的图像在软件中也会实时修正,校正后的图像位移量不大于0.2个像素(8nm)3)特殊设计的电磁铁通常磁畴观察显微镜中的电磁铁设计是一个具有挑战性的话题,必须要有一些取舍。为了获得较高的分辨率,因此要使用大倍率的物镜,放置在靠近样品的位置。这对电磁铁强加以一个空间限制,并限制了生产磁场的强度。其次,磁铁产生的磁通量会通过物镜,引起法拉第效应,从而降低成像对比度。我们通过革新的磁通量闭合式设计从而巧妙的解决了这两个问题。通过对电磁铁的磁场测量,我们可以发现,磁铁的磁场提高了4倍,但是通过物镜的磁场强度却降低了8倍。产生磁场的均匀性在4mm范围内也达到了0.5%的水平。4)高灵敏度,高分辨率成像相机对于磁光克尔显微镜,样品反射的光通过检偏器,仅仅只有百分之一的入射光达到相机传感器。因此对于磁畴成像系统,相机的灵敏度就体现的尤为重要。因此为了达到成像效果,我们选取了再该波段下量子效率高达78%,并且具有20兆像素的背照式相机。从而获得高分辨率,高信噪比的图像。此外该设备不但可以获得样品磁畴图片,还可以根据样品磁畴图像同时获得样品的磁滞回线分析。产品参数:Light source2200 Lumens ultrabright LED lampCamera6.4 Megapixel @ 60FPS 78% Quantum efficiencyResolution300nmMagnetic Field 1T(Perpendicular)/0.5T(Longitudina)Power Requirement230VAC ± 10%, 13Amp Single PhaseSize / WeightMain System: 60 x 50 x 1500px, 25kgPower Supply Tower: 60 x 60 x 750px, 10kg实例:1)1nm CoFeB磁性薄膜2)4种灰度:垂直磁化磁隧道结多级磁畴(4 shades of grey: Multilevel stripe domains on a perpendicularly magnetized magnetic tunnel junction stack)3)[Pt/Co/Fe/Ir]x2 堆栈手性磁畴(Chiral stripes (and skyrmions)on a [Pt/Co/Fe/Ir]x2 stack)4)Heusler 合金薄膜中的垂直磁化的磁畴反转(Domain reversal in a perpendicularly magnetized Heusler alloy thin film)5)同时施加磁场和电流6)电流诱导的磁畴远动的准实时观测7)CoFeB多层材料退磁过程的实时观测
    留言咨询
  • 一, 磁畴观察显微镜 BH-742系列高灵敏度克尔显微镜,用于在短时间内动态(实时)观察磁场下的磁畴。磁畴观察显微镜 BH-742系列,磁畴观察显微镜 BH-742系列通用参数光源高亮度白光观察克尔效应极向克尔效应纵向克尔效应频域分辨率(Domain Resolution) 1μm*带 x50 放大倍数,Polar Kerr 观察可用放大倍率×20、×50*也可提供其他放大倍数。可用磁场平面外方向:Max。±20kOe (±2T)面内方向:Max。±20kOe (±2T)观察示例永磁体永磁体非晶带坡莫合金(镍铁)电磁钢板铁磁薄膜二,紧凑型克尔显微镜 BH-753 系列专为软磁材料灵敏磁畴观察设计的台式克尔显微镜。紧凑型克尔显微镜 BH-753 系列,紧凑型克尔显微镜 BH-753 系列通用参数光源高亮度白光 LED目标克尔效应纵向克尔效应频域分辨率Domain Resolution3μm*x50 放大倍数可用放大倍率×20、×50可用磁场面内方向:Max. ±1kOe (±0.1T)观察示例三, 极紫外和软x射线辐射EUV显微镜 (Metrology计量学 无损亚纳米级次表面成像)三维无损成像技术在材料科学和医学等许多应用领域都非常重要。我们开发了一种成像技术,利用极紫外和软x射线辐射来获得纳米分辨率的横截面图像。例如,我们能够无损地研究硅片或生物样品中的近表面结构。在下边的图片中,你可以看到几个埋在硅下的金层。它们的位置可以用我们的计量仪测量,精度低于1nm。这些层位于表面下的110 nm和128 nm处。极紫外和软x射线辐射EUV显微镜 (Metrology计量学 无损亚纳米级次表面成像),极紫外和软x射线辐射EUV显微镜 (Metrology计量学 无损亚纳米级次表面成像)通用参数关键信息● 无损成像● 反射成像● 轴向分辨率(厚度)30nm● 轴向位置精度1nm● Max深度1µ m● 高材料对比度● 易于安装样品
    留言咨询
  • 磁光克尔显微镜综合测试设备,显微磁畴空间分辨率优于0.5微米,磁光克尔角分辨率优于0.1毫度,支持极向克尔、纵向克尔、横向克尔三种磁光克尔效应测量方式。在追踪平面内数百万点的磁畴动态信息的同时,可搭配探针台实现电学、磁学、光学同步观测。广泛应用于磁学和自旋电子学领域中磁光克尔效应,磁滞回线,磁畴翻转或扩展动态等观测。相较于传统的单点磁滞回线测量仪,磁光克尔综合测试平台,可以追踪平面内数百万点的实时磁性动态信息。结合该测试平台提供的直流探针,高频探针,样品的测试无比便捷。当下自旋电子学或磁学的研究,已经由磁性驱动的翻转,发展到了直流电流驱动、脉冲电流驱动、微波脉冲驱动、光驱动等一系列的激励源作用下的深度研究。托托科技(苏州)有限公司提供的标准系统按照性能优先,稳定性优先的设计思路,可以满足实验室研究及工业生产中各种相关材料的测试需求。标准设备中提供了磁场激励、电流激励等多种选项,是客户在自旋特性研究中的得力测试平台。更多的选项可以根据客户需求选择升级。【产品特点】l 智能照明系统l 光源稳定且均匀l 适配面内磁各向异性薄膜l 高亮度(4倍于市场上产品) (a)面内磁各向异性样品,纵向-磁光克尔测试装置示意图。(b)为样品Pt(4 nm)/Co (5 nm)/Ta(2 nm)在磁场的驱动实现磁畴运动和翻转,磁矩“1”和“0”信息状态清晰可见。(c)为样品的磁滞回线,纵坐标为归一化的磁光克尔信号,横坐标为面内扫描磁场。(a)为样品Ta(4 nm)/CoFeB (0.7 nm)/MgO(2 nm)/Ta(2 nm)在磁场的驱动实现磁畴运动和翻转,树枝状磁畴,磁矩“1”和“0”信息状态清晰可见。彩色环带表示磁畴壁,白色小箭头表示的是奈尔畴壁中磁矩方向,表示磁畴运动方向。(b)为样品CoTb(6 nm)/SiN(4 nm)在零磁场附近出现迷宫畴以及孤立斯格明子磁泡结构(Skyrmions Bubble),图中单个稳定的Skyrmions Bubble的尺寸为1μm。为研究基于SK-RM赛道存储器提供光学无损伤探测支持。(a) M-H磁滞回线(b) VAHE-H 反常霍尔回线(c) Kerr-H 磁光克尔回线CoFeB(0.8 nm)/Ta 样品,枝晶状磁畴结构SiN/CoTb(6 nm),迷宫畴,斯格明子磁泡结构
    留言咨询
  • 多功能高分辨率磁光克尔显微成像系统——眼见为实:让磁学测试可视化!致真精密仪器(青岛)有限公司生产的多功能高分辨率磁光克尔显微成像系统,以自主设计的光路结构及奥林巴斯、索莱博光电元件为基础制造,适用于磁性材料/ 自旋电子器件的磁畴成像和动力学研究。★ 多功能探针台,能够提供面内、垂直磁场及多对直流/ 高频探针- 磁光成像与自旋输运测试结合!★ 高达1.8T 垂直磁场,1 T 面内磁场,4K-800K 变温,可用于硬磁材料成像研究。多功能控制系统测试信号控制- 垂直/ 面内磁场/ 电流/ 微波等多路信号 μs 别同步施加;- 各信号的波形、幅度、频率、相对延时等参数轻松调节。图像处理- 实时作差消背底噪声;- 自动纠正震动漂移等。信号解析- 电流、磁场测试信号的实时显示;- 基于克尔图像分析,对样品局域 (300 nm) 或全局做磁滞回线扫描。磁场探针台面内磁场★ 高达1 T,反应速度50 ms,度0.1 mT。三路垂直磁铁任意切换★ 磁场1:高达1.8 T,反应速度50 ms,度0.1 mT;★ 磁场2:高达30 mT,反应速度50 μs,度0.01 mT;★ 磁场3:高达50 mT,反应速度1 μs, 度0.01 mT;★ 可配置6 个直流/ 高频探针,配置10 V,20 MHz任意波形信号源。成像效果★ 克尔成像分辨率300 nm (100 倍物镜);★ 视野:1.2 mm×1 mm (5 倍物镜);★ 能检测2 个原子层薄膜的磁性变化。CoFeB(1.3 nm)/W(0.2)/CoFeB(0.5) 薄膜中的迷宫畴图像处理★ 以任意图像为背底,实时作差消噪声;★ 图像漂移校正,自动添加比例尺等功能。CoFeB(20 nm) 薄膜中,[ 面内磁场20mT] 驱动磁畴翻转CoTb 亚铁磁微米线中SOT 驱动的磁性翻转CoFeB/W/CoFeB薄膜中的微米大小的磁泡200 nm 宽的Ta/CoFeB/MgO 线中,[120 mT, 5 μs] 磁场脉冲驱动畴壁移动其他功能★ 分析全局或者局部 (300 nm) 克尔图像,获得磁滞回线;★ 磁滞回线的横轴可以为面内、垂直磁场或者电流等任意激励信号;★ 可配置变温系统:4K-800K 温度可调;★ 搭配ST-FMR,二次谐波等测试系统和软件;★ 预留各种接口,可根据实验需求自主改装。应用案例■ 局部磁本征参数表征克尔显微镜有一套表征几乎所有磁学本征参数的方法。与其它表征方法相比,优势是可以进行微小区域内(300 nm) 的局部性质表征,为各种磁性调控实验 (如辐照、压控、光控磁)、以及性质不均一的材料表征提供了可能性。局部饱和磁化强度MS表征由于偶作用,磁畴壁在靠近时会相互排斥。通过观察不同磁场下畴壁的距离,可以提取局部区域的饱和磁化强度MS。此方法由巴黎- 萨克雷大学Nicolas Vernier 教授(本公司技术顾问)在2014 年先提出并验证。与VSM 测量结果得到良好吻合[1]。局部各向异性能 K 的表征通过分析局域克尔图像明暗变化,可以获得磁滞回线,从而提取局部区域等效各向异性场强度。海森堡交换作用常数Aex用我们的磁场“自定义波形”功能,将样品震荡退磁,再将得到的迷宫畴图片进行傅里叶变换,能够得知磁畴宽度,从而提取海森堡交换作用刚度[2]。退磁状态下的薄膜材料的磁畴结构Dzyaloshinskii-Moriya 作用( DMI) 的表征利用面内磁场和垂直磁场共同作用下的磁畴壁非对称性扩张,能够测量薄膜材料的DMI 作用强度。基于此款设备的得到的成果发表在Nanoscale 杂志[3]。 参考文献:[1] Yu Zhang et al. Phys. Rev. Appl. 9, 064027 (2018).[2] M. Yamanouchi et al., IEEE Magn. Lett. 2, 3000304 (2011). [3] Anni Cao et al., Nanoscale 10, 12062 (2018).■ 磁畴壁动力学研究磁场、电流或者其它激励下磁畴壁的移动速度测量方法:施加幅度为B, 宽度为t 的磁场/ 电流脉冲,在脉冲前后分别拍摄克尔图像并作差,获得畴壁移动距离d,则速度v=d/t。备注:有限视野范围内,超快畴壁运动的测量需要超短信号脉冲。本系统配置的 μs 反应速度的磁场可实现200m/s畴壁速度的测量。10ms 力波磁场脉冲4 μs 超快磁场脉冲磁畴壁张力效应的观测利用微秒别超快磁场脉冲,可在微小样品中创造出磁泡。利用此款高分辨率克尔显微镜,次观察到了磁畴壁在自身张力作用下的自发收缩过程[1-3]。磁畴壁Hall bar 处的钉扎作用利用磁场脉冲,我们控制磁畴壁在纳米线中的位置。观察磁畴壁的钉扎过程并测量解钉扎磁场[1]。参考文献:[1] Xueying Zhang et al., Phys. Rev. Appl. 9, 024032 (2018).[2] Xueying Zhang et al. Nanotechnology 29, 365502 (2018).[3] Anni Cao et al., IEEE Magn. Lett. 9, 1 (2018).■ 自旋输运性质测试+成像STT 电流驱动的磁畴壁运动通过配备的探针和主控系统的任意波形发生器,可向样品施加50 ns–s 别的方波,观察磁畴壁运动并测量速度。STT 电流与垂直磁场共同作用下的磁畴壁运动在某些材料中,无法观测到纯电流驱动的磁畴壁运动。这时,可以利用此设备μs 别的超快磁场脉冲与电流同步,观测垂直磁场+ 电流共同驱动的畴壁运动,从而解析多种物理效应,如重金属/ 铁磁体系的自旋化率由于自旋散射降低的效应[1]。微秒同步的磁场和电流方波脉冲电流与面内磁场共同作用下的磁畴壁运动Hall 自旋流与面内磁场共同作用,诱导磁矩翻转,即所谓的SOT 翻转。本设备配置的面内磁场和电学测试系统,不但可以实现这个过程的电学测试,还可以利用相机与信号采集卡同步的功能,逐点解析翻转曲线对应的磁畴状态[2]。参考文献:[1] Xueying Zhang et al., Phys. Rev. Appl. 11, 054041 (2019). [2] Xiaoxuan Zhao et al., Nanotechnology 30, 335707 (2019).测试数据1. 检测磁性材料质量MgO/Co/Pt 样品:MgO 晶格错位导致的Co 薄膜缺陷。在微小磁场作用下,缺陷周围即出现磁性翻转。质量不好磁性薄膜,磁性翻转过程中出现雪花状磁畴。质量优良的磁性薄膜,磁畴结构均匀,边缘光滑。2. 检测缺陷位置缺陷处,磁畴壁运动变形,形成钉扎效。利用高分辨率物镜,可以直接观察缺陷位置(红圈)。3. 自旋电子器件损伤检测自旋电子器件中,在微加工过程中,样品边缘出现损伤,导致在磁场作用下稳定性下降,边缘先出现翻转[1]。4. 解析磁滞回线结果磁光克尔显微镜由于具有空间分辨优势,可以解析磁滞回线对应的磁畴状态。如右图,由于偶作用比各向异性占优势,样品出现自发退磁。参考文献:[1] Yu Zhang et al. Phys. Rev. Appl. 9, 064027 (2018).
    留言咨询
  • 产品介绍: LSKM-200柯尔显微镜是一种基于磁光柯尔效应原理设计的用于样品磁畴动态/静态观测的设备,Kerr系统架 构不仅具备观测待测物的磁区结构的功能,亦可同时量测出磁化曲线,并且透过切换两道光(L-MOKE/T MOKE)及选择偏振型态(P mode/S mode)的功能,可以使用四种不同型态的磁光柯尔效应来进行实验。柯尔显 微镜通过相机拍摄不同磁场下形成的图案,经过背景消除,对比增强,灰度计算等可量测磁性材料、磁性微结构 的局部磁特性。产品特点:包含多道线偏振入射光,可对不同 类型的磁光克尔效应进行量测;可调整起偏器与检偏器角度,选择 不同类型的偏振光;采用独特的图像处理技术,增强不同偏振状态的成像对比。参数:
    留言咨询
  • 柯尔显微镜 LSKM-200 400-860-5168转6073
    产品介绍:柯尔显微镜 LSKM-200: LSKM-200柯尔显微镜是一种基于磁光柯尔效应原理设计的用于样品磁畴动态/静态观测的设备,Kerr系统架 构不仅具备观测待测物的磁区结构的功能,亦可同时量测出磁化曲线,并且透过切换两道光(L-MOKE/T MOKE)及选择偏振型态(P mode/S mode)的功能,可以使用四种不同型态的磁光柯尔效应来进行实验。柯尔显 微镜通过相机拍摄不同磁场下形成的图案,经过背景消除,对比增强,灰度计算等可量测磁性材料、磁性微结构 的局部磁特性。柯尔显微镜 LSKM-200产品特点: 包含多道线偏振入射光,可对不同 类型的磁光克尔效应进行量测;可调整起偏器与检偏器角度,选择 不同类型的偏振光;采用独特的图像处理技术,增强不同偏振状态的成像对比。柯尔显微镜 LSKM-200参数:
    留言咨询
  • 一, 克尔环路测量和域观测系统 BH-1071 系列用于动态(实时)磁畴观测和显微克尔环测量的组合系统。克尔环路测量和域观测系统 BH-1071 系列,克尔环路测量和域观测系统 BH-1071 系列通用参数光源二极管激光器(408nm 或 650nm)高亮度白光 LED目标克尔效应极向克尔效应纵向克尔效应空间分辨率φ2μm*带 x50 放大倍率,极地克尔效应可用放大倍率×20、×50*也可提供其他放大倍数。可用磁场平面外方向:Max. ±10kOe (±1T)面内方向:Max. ±10kOe (±1T)数据示例二, 微型克尔环路测量系统 BH-PI920 系列基于二极管激光器的克尔环路测量系统。可进行几微米尺度的显微局部测量。微型克尔环路测量系统 BH-PI920 系列,微型克尔环路测量系统 BH-PI920 系列通用参数光源二极管激光器 (408nm) *可提供其他波长。测量克尔效应极向克尔效应纵向克尔效应激光光斑直径φ2μm *带 x50 放大倍率,极坐标克尔测量可用放大倍率×20、×50 *也可提供其他放大倍数。可用磁场平面外方向:Max. ±20kOe (±2T)面内方向:Max. ±7kOe (±0.7T)测量示例克尔滞后环(带 x50 物镜)
    留言咨询
  • 磁光克尔显微镜综合测试设备,显微磁畴空间分辨率优于0.5微米,磁光克尔角分辨率优于0.1毫度,支持极向克尔、纵向克尔、横向克尔三种磁光克尔效应测量方式。在追踪平面内数百万点的磁畴动态信息的同时,可搭配探针台实现电学、磁学、光学同步观测。广泛应用于磁学和自旋电子学领域中磁光克尔效应,磁滞回线,磁畴翻转或扩展动态等观测。相较于传统的单点磁滞回线测量仪,磁光克尔综合测试平台,可以追踪平面内数百万点的实时磁性动态信息。结合该测试平台提供的直流探针,高频探针,样品的测试无比便捷。当下自旋电子学或磁学的研究,已经由磁性驱动的翻转,发展到了直流电流驱动、脉冲电流驱动、微波脉冲驱动、光驱动等一系列的激励源作用下的深度研究。托托科技(苏州)有限公司提供的标准系统按照性能优先,稳定性优先的设计思路,可以满足实验室研究及工业生产中各种相关材料的测试需求。标准设备中提供了磁场激励、电流激励等多种选项,是客户在自旋特性研究中的得力测试平台。更多的选项可以根据客户需求选择升级。
    留言咨询
  • 磁光克尔效应系统-NanoMOKE3英国Durham公司是依托于英国Durham大学的高科技企业。与Durham大学强大的磁光学研究相对应,Durham公司的Russell Cowburn教授(英国剑桥大学卡文迪许实验室主任,英国皇家科学院院士)设计并制造了灵敏度能到10-12emu且间距动态磁畴观测的磁光克尔效应系统——NanoMOKE3。NanoMOKE3是新一代超高灵敏度磁强计和克尔显微镜。在NanoMOKE2巨大成功的基础上,Nano-MOKE3在一套系统中集成了高品质激光磁强计和动态克尔显微镜。对于纵向、横向以及向磁光克尔效应都非常灵敏,使得NanoMOKE3成为研究磁性薄膜以及磁性微结构理想的测量工具。广泛应用于诸如磁性纳米技术、自旋电子学和磁性薄膜等磁学领域。NanoMOKE3具有高的灵敏度和强大的测量功能,同时系统灵巧的设计以及专用的操作软件让复杂的实验过程变得简单,使您能够快速的实现自己珍贵的研究思路、获得可靠实验数据。NanoMOKE3进行了全新的升,增加了超快速的CCD,更加方便您的测试。主要技术指标: 温度范围:4.2-500 K 大磁场: 5000 Oe 推荐样品大小:1-2.5 cm 小克尔转角检出角:0.5 mdeg 小反射率变化率检出量:0.02% 主要特点:1、非常高的灵敏度和稳定性,非常低的噪音,可以探测到低至 10-12 emu 的磁矩。2、高度聚焦的激光,激光束斑达到 2 μm,可以轻松进行样品的局部或单个结构的性能检测。3、先进的样品定位技术。光路中集成光学显微镜以观测激光束斑的聚焦点和大小;扫描克尔显微镜可以探测样品的交流磁化率图像以及反射率图像,帮助用户选择样品的精细测量区域。4、灵活开放的系统设计。所有的光学器件都安装在一个标准光学平台上,允许用户对光学器件进行调整,满足自己的科研需要。5、任意的磁场波形控制。可以选配多种电磁体:四磁体、偶磁体以及螺线管磁体,能够轻松地在样品表面产生各种复杂的磁场。6、简单易用的专用操作控制软件 LX Pro。该软件基于微软的 Windows 系统,能够自动完成所有实验以及实验数据的处理。几种不同测试手段对比: 测试手段SQUIDVSMMFMMOKE样品要求液体,粉末,块材,薄膜液体,粉末,块材,薄膜薄膜,表面抛光的块材薄膜,表面抛光的块体测量内容MT,MHMT,MH磁畴图像磁滞回线,磁畴图像,材质分布测试精度非常高较高较高M不可定量,灵敏度高,磁畴形貌不及MFM宏观/微观宏观磁性宏观磁性微观微观磁畴不能不能静态静态/动态磁畴各向异性可以转角测试不能测试不可以可以NanoMOKE3丰富的测试功能:单点loop功能区域mapping功能Rastering磁畴成像功能高速CCD磁畴成像功能反射率成像功能原理变化磁场下对单点快速进行向或纵向克尔信号扫描测量在变化磁场下,对待测区域内各点进行loop测量,然后对loop面积积分进而得出区域各点磁性性质,进而获得磁性分布图在固定磁场下以矩阵扫描的方式对区域内各点进行克尔信号测量在固定磁场下,用快速扫描的激光照在待测区域,通过光学CCD对整个待测区域的所有点的克尔信号测量在进行其他测的同时,获得样品表面的反射光强信号。获得同磁畴形貌同一区域的外观形貌特点不同温度下,直接获得克尔信号随磁场变化的Loop不同温度下,获得区域磁性分布信息,可以进行向或纵向克尔效应的测量不同温度下,获得区域磁畴分布信息,可以进行向或纵向克尔效应的测量不同温度下,快速获取磁畴分布信息,可以进行向或纵向克尔效应的测量无需时间专门测量,跟其他形貌图形同时获得应用可判断易/难磁化轴,矫顽力,磁学性质获得区域各点的磁性信息、可用于研究各向异性。变温测量区域静态磁畴、动态磁畴的测量。变温变场测量快速观测静态磁畴和动态磁畴与磁畴形貌做对比分析,进行光功率扰动磁畴图像修正,判断克尔信号的噪声等精度利用光电转换器测量,精度非常高利用光电转换器测量,精度非常高利用光电转换器测量,精度非常高利用CCD转换器利用光电转换器测量,精度非常高部分测试数据:Pattern,磁畴和动态磁畴的观测: ◆ 使用快速的rastering模式来探测样品表面的Pattern ◆ 通过测试Loop功能来检测样品的难/易轴 ◆ 不同的颜色代表不同的磁畴,利用NanoMOKE3可以观测动态磁畴 ◆ 不同的颜色代表不同的磁性能,从中我们可以检测样品的mapping各项异性 开放灵活的设计:我公司为客户提供多种拓展选件,预留光源输入窗,可使用其他光源;另外配备了低温和高磁场下的磁光克尔效应测试选件,下图为我公司为客户配备的Montana恒温器。在软件上的接口同样丰富,用户可以轻松的完成与其他实验设备的对接和控制。
    留言咨询
  • 磁光克尔效应系统-NanoMOKE3英国Durham公司是依托于英国Durham大学的高科技企业。与Durham大学强大的磁光学研究相对应,Durham公司的Russell Cowburn教授(英国剑桥大学卡文迪许实验室主任,英国皇家科学院院士)设计并制造了灵敏度能到10-12emu且间距动态磁畴观测的磁光克尔效应系统——NanoMOKE3。NanoMOKE3是新一代超高灵敏度磁强计和克尔显微镜。在NanoMOKE2巨大成功的基础上,Nano-MOKE3在一套系统中集成了高品质激光磁强计和动态克尔显微镜。对于纵向、横向以及向磁光克尔效应都非常灵敏,使得NanoMOKE3成为研究磁性薄膜以及磁性微结构理想的测量工具。广泛应用于诸如磁性纳米技术、自旋电子学和磁性薄膜等磁学领域。NanoMOKE3具有高的灵敏度和强大的测量功能,同时系统灵巧的设计以及专用的操作软件让复杂的实验过程变得简单,使您能够快速的实现自己珍贵的研究思路、获得可靠实验数据。NanoMOKE3进行了全新的升,增加了超快速的CCD,更加方便您的测试。主要技术指标: 温度范围:4.2-500 K 大磁场: 5000 Oe 推荐样品大小:1-2.5 cm 小克尔转角检出角:0.5 mdeg 小反射率变化率检出量:0.02% 主要特点:1、非常高的灵敏度和稳定性,非常低的噪音,可以探测到低至 10-12 emu 的磁矩。2、高度聚焦的激光,激光束斑达到 2 &mu m,可以轻松进行样品的局部或单个结构的性能检测。3、先进的样品定位技术。光路中集成光学显微镜以观测激光束斑的聚焦点和大小;扫描克尔显微镜可以探测样品的交流磁化率图像以及反射率图像,帮助用户选择样品的精细测量区域。4、灵活开放的系统设计。所有的光学器件都安装在一个标准光学平台上,允许用户对光学器件进行调整,满足自己的科研需要。5、任意的磁场波形控制。可以选配多种电磁体:四磁体、偶磁体以及螺线管磁体,能够轻松地在样品表面产生各种复杂的磁场。6、简单易用的专用操作控制软件 LX Pro。该软件基于微软的 Windows 系统,能够自动完成所有实验以及实验数据的处理。几种不同测试手段对比: 测试手段SQUIDVSMMFMMOKE样品要求液体,粉末,块材,薄膜液体,粉末,块材,薄膜薄膜,表面抛光的块材薄膜,表面抛光的块体测量内容MT,MHMT,MH磁畴图像磁滞回线,磁畴图像,材质分布测试精度非常高较高较高M不可定量,灵敏度高,磁畴形貌不及MFM宏观/微观宏观磁性宏观磁性微观微观磁畴不能不能静态静态/动态磁畴各向异性可以转角测试不能测试不可以可以NanoMOKE3丰富的测试功能:单点loop功能区域mapping功能Rastering磁畴成像功能高速CCD磁畴成像功能反射率成像功能原理变化磁场下对单点快速进行向或纵向克尔信号扫描测量在变化磁场下,对待测区域内各点进行loop测量,然后对loop面积积分进而得出区域各点磁性性质,进而获得磁性分布图在固定磁场下以矩阵扫描的方式对区域内各点进行克尔信号测量在固定磁场下,用快速扫描的激光照在待测区域,通过光学CCD对整个待测区域的所有点的克尔信号测量在进行其他测的同时,获得样品表面的反射光强信号。获得同磁畴形貌同一区域的外观形貌特点不同温度下,直接获得克尔信号随磁场变化的Loop不同温度下,获得区域磁性分布信息,可以进行向或纵向克尔效应的测量不同温度下,获得区域磁畴分布信息,可以进行向或纵向克尔效应的测量不同温度下,快速获取磁畴分布信息,可以进行向或纵向克尔效应的测量无需时间专门测量,跟其他形貌图形同时获得应用可判断易/难磁化轴,矫顽力,磁学性质获得区域各点的磁性信息、可用于研究各向异性。变温测量区域静态磁畴、动态磁畴的测量。变温变场测量快速观测静态磁畴和动态磁畴与磁畴形貌做对比分析,进行光功率扰动磁畴图像修正,判断克尔信号的噪声等精度利用光电转换器测量,精度非常高利用光电转换器测量,精度非常高利用光电转换器测量,精度非常高利用CCD转换器利用光电转换器测量,精度非常高部分测试数据:Pattern,磁畴和动态磁畴的观测: ◆ 使用快速的rastering模式来探测样品表面的Pattern ◆ 通过测试Loop功能来检测样品的难/易轴 ◆ 不同的颜色代表不同的磁畴,利用NanoMOKE3可以观测动态磁畴 ◆ 不同的颜色代表不同的磁性能,从中我们可以检测样品的mapping各项异性 开放灵活的设计:我公司为客户提供多种拓展选件,预留光源输入窗,可使用其他光源;另外配备了低温和高磁场下的磁光克尔效应测试选件,下图为我公司为客户配备的Montana恒温器。在软件上的接口同样丰富,用户可以轻松的完成与其他实验设备的对接和控制。
    留言咨询
  • 自旋电子学经过数十年的发展,在许多领域都有了卓著的表现。从传感器,到非易失性磁存储,再到新材料的特性研究,自旋电子学不仅是当前科学研究的热点,也被工业界广泛重视。磁畴的直接观测与记录,对于材料的研究有着重要的意义;对磁畴运动过程的剖析,不仅直观的展现了磁性翻转,而且有助于分析物理过程的机理。相较于传统的单点磁滞回线测量仪,磁光克尔显微综合测试设备,可以追踪平面内数百万点的实时磁性动态信息。结合该成像系统提供的直流探针,高频探针,样品的测试无比便捷。当下自旋电子学或磁学的研究,已经由磁性驱动的翻转,发展到了直流电流驱动、脉冲电流驱动、微波脉冲驱动、光驱动等一系列的激励源作用下的深度研究。实现在室温条件下测试垂直各向异性/面内各向异性材料材料的磁畴反转过程,成像清晰,拍摄速度达到30 帧/秒。赫智科技提供的标准系统按照性能优先,稳定性优先的设计思路,可以满足实验室研究及工业生产中各种相关材料的测试需求。标准设备中提供了磁场激励、电流激励等多种选项,是客户在自旋特性研究中的得力测试平台。
    留言咨询
  • 产品简介当前通用的磁光克尔测试方法主要分为两种,一种是以激光和光电探测为主的MOKE高精度磁滞回线扫描,另一种是将光学成像技术与磁光克尔效应结合,形成高分辨率磁光克尔显微镜。前者具有高精度优势,但不具备空间成像能力和微区定点探测能力 后者则具有高分辨率成像和微区探测能力,但由于采用相机作为信号采集单元,探测精度不如前者。低温强磁场激光克尔显微成像系统-二维铁磁材料表征利器是针对二维铁磁材料磁性弱样品尺寸小、部分样品不导电、矫顽场高、居里温度低等特性开发的一款功能强大的表征系统,低温强磁场激光克尔显微成像系统-二维铁磁材料表征利器磁性探测精度高、能够微区定点测量和光斑位置定位、具备较高磁场和宽温区变温,可以满足大部分维铁磁材料的磁特性表征需求。主要技术指标激光光斑:5 umMOKE测试:可测试面内和垂直磁各向异性样品,克尔转角分辨率优于1mdeg磁场范围:最大1.4T变温范围:5 K-800 K
    留言咨询
  • 多功能磁光克尔显微成像系统-综合测试平台是利用磁光克尔效应,直接观测磁性材料和器件中的磁化状态的光学显微成像设备。与传统的电学测试相比,磁光克尔显微成像测试能清晰直观了解样品内的磁化状态空间分布和时间演化,适用于磁性材料和自旋电子器件的测试和产品研发。多功能探针台多功能磁光克尔显微成像系统-综合测试平台能够提供面内、垂直磁场及多对直流/高频探针-磁光成像与自旋输运测试完美结合!最大1.4 T垂直磁场,1T面内磁场,4.2 K-835 K变温,可用于硬磁材料成像研究。多功能控制系统1、测试信号控制垂直/面内磁场/电流/微波等多路信号 μS级别同步施加各信号的波形、幅度、频率、相对延时等参数轻松调节2、图像处理实时作差消背底噪声自动纠正震动漂移等3、信号解析电流、磁场测试信号的实时显示基于克尔图像分析,对样品局域(220 nm)或全局做磁滞回线扫描磁场探针台 多功能磁光克尔显微成像系统-综合测试平台面内磁场:最大1T,控制精度1 uT三路垂直磁铁任意切换:磁场1:最大1.4T,控制精度1 uT磁场2:最大30 mT,反应速度50 μs磁场3:最大50 mT,反应速度0.5 us最多可配置4个直流/高频探针,可配置6221/2182仪表,兼容电输运测试,配置输运与次成像同步软件其他功能分析全局或者局部(220 nm)克尔图像,获得磁滞回线磁滞回线的横轴可以为面内、垂直磁场或者电流等任意激励信号可配置变温系统:4.2 K-835K温度可调搭配磁电阻测量等输运测试系统和软件预留各种接口,可根据实验需求自主改装
    留言咨询
  • 多功能磁光克尔显微成像系统KMPL-Spin-X是利用磁光克尔效应,直接观测磁性材料和器件中的磁化状态的光学显微成像设备。与传统的电学测试相比,磁光克尔显微成像测试能清晰直观了解样品内的磁化状态空间分布和时间演化,适用于磁性材料和自旋电子器件的测试和产品研发。多功能探针台多功能磁光克尔显微成像系统KMPL-Spin-X能够提供面内、垂直磁场及多对直流/高频探针-磁光成像与自旋输运测试完美结合!最大1.4 T垂直磁场,1T面内磁场,4.2 K-835 K变温,可用于硬磁材料成像研究。多功能控制系统1、测试信号控制垂直/面内磁场/电流/微波等多路信号 μS级别同步施加各信号的波形、幅度、频率、相对延时等参数轻松调节2、图像处理实时作差消背底噪声自动纠正震动漂移等3、信号解析电流、磁场测试信号的实时显示基于克尔图像分析,对样品局域(220 nm)或全局做磁滞回线扫描磁场探针台 多功能磁光克尔显微成像系统KMPL-Spin-X面内磁场:最大1T,控制精度1 uT三路垂直磁铁任意切换:磁场1:最大1.4T,控制精度1 uT磁场2:最大30 mT,反应速度50 μs磁场3:最大50 mT,反应速度0.5 us最多可配置4个直流/高频探针,可配置6221/2182仪表,兼容电输运测试,配置输运与次成像同步软件其他功能分析全局或者局部(220 nm)克尔图像,获得磁滞回线磁滞回线的横轴可以为面内、垂直磁场或者电流等任意激励信号可配置变温系统:4.2 K-835K温度可调搭配磁电阻测量等输运测试系统和软件预留各种接口,可根据实验需求自主改装
    留言咨询
  • 基于NV色心的超分辨量子磁学显微镜磁性材料的显微观测有助于材料的微观结构及其形成机理的研究,随着科研的发展,磁性材料研究的尺度已经趋向于亚微米甚至纳米。因此,超高分辨和超高灵敏度的测试有助于对这些小尺寸的材料进行研究。源自瑞士苏黎世联邦理工大学自旋物理实验室的Qzabre公司,结合多年的NV色心的磁测量技术与扫描成像技术开发出的QSM系统,能够实现高灵敏度和高分辨率的磁学成像,并且可以实现定量的磁学分析,使得它成为下一代扫描探针显微镜— —基于NV色心的超分辨量子磁学显微镜。相比于传统的显微观测设备如克尔显微镜(分辨率~300 nm),磁力显微镜MFM(分辨率~50 nm ),该设备除了拥有优于30 nm的磁学分辨率外,还可以进行样品表面磁场大小的定量测试,而且NV色心作为单自旋探针, 所产生的磁场不会对待测样品有扰动,在磁学显微成像上有着显著的优势。QSM超分辨量子磁学显微镜-典型应用√ 磁性纳米结构分析√ 铁磁/反铁磁磁畴成像√ 磁畴壁分析√ 电流分布成像√ 纳米尺度的温度测量√ 多铁材料扫描√ 磁场任意波形时间分辨QSM超分辨量子磁学显微镜-扫描成像原理简介金刚石NV色心为金刚石中一个氮原子取代碳原子同临近的空位形成的缺陷,它的电子能为自旋三重态,其基态ms=0与ms=±1(简并态)存在2.87GHz的零场分裂,在外磁场B作用下,ms=±1解除简并发生分裂。NV色心的自旋状态可通过激光和微波实现操作和探测,通常采用光学探测磁共振(ODMR)的方法测量外加磁场,此时NV色心处于微波作用下,当微波能量刚好等于ms=±1基态电子与ms=0基态电子的能差时发生共振,此时荧光探测表现为低谷。Ms=+1和Ms=-1基态的能差为△f=2γB,△f可以通过ODMR谱的两个共振峰谱得出,γ为NV色心的电子旋磁比,γ=28 MHz/mT ,这样可以计算出外磁场B大小。通过扫描探针持续对样品表面的磁场进行探测后,可以得出样品表面的磁场分布成像图。基于NV色心的超分辨量子磁学显微镜扫描成像原理示意图QSM超分辨量子磁学显微镜-主要特点√ 超高磁学分辨率及灵敏度√ 可定量测量样品表面磁场大小及空间分布√ 优化的光学系统获得更大的光通过率√ 多种成像模式√ 交钥匙系统√ 易更换的探针设计√ 矢量磁场选件 QSM超分辨量子磁学显微镜-技术参数√ 操作模式: NV 模式,NV quenching模式,AFM模式,MOKE模式;√ NV模式:磁场空间分辨率:30nm~70nm, 磁场灵敏度:1-10 μT/Hz^(1/2),(取决于选用探针);√ AFM模式:使用Qzabre探针分辨率~250nm,使用Akiyama探针分辨率<30nm;√ MOKE模式:使用向克尔显微模式快速获取感兴趣区域,视场150μm;√ 扫描范围:90 μm x 90 μm x 15 μm (闭环控制, 0.15nm分辨率);~6mm粗调(100nm分辨率);√ 可放置样品大小:25mm直径(标准型),大可到50mm×50mm(定制);√ 漂移率:6nm/h , 0.3℃温度稳定性;√ 优化光学系统:NA=0.75,>87% 的光通过率(600~850nm),比传统的共聚焦系统增加了>10% 的光通过率;√ 矢量电磁铁选项提供任意方向的矢量场高至75 mT;√ 定制样品托扩展直流或微波连接、加热功能等。QSM超分辨量子磁学显微镜-部分应用案例■ 反铁磁磁畴观测 反铁磁材料器件拥有电学或光学激发翻转的性能,在新型磁存储上有着潜在的应用前景,本文通过使用基于NV色心的超分辨量子磁学显微镜研究了电流脉冲注入CuMnAs微器件后弛豫过程中和弛豫后反铁磁畴织构产生的磁杂散场,研究表明大的电阻变化与写入电流脉冲引起的畴的纳米碎裂有关。通过对具有交叉几何结构的微器件中电流密度分布的成像,进一步证明了电流引起的畴结构的变化是不均匀的。在不同延迟时间获得的磁杂散场图像显示,碎片化的磁畴模式保持着对它们放松的原始状态的记忆。该研究揭示了导致金属反铁磁体电开关的微观机制,并为今后反铁磁自旋电子学领域的研究指明了方向。参考文献:Current-induced fragmentation of antiferromagnetic domains, M. S. W?rnle, P. Welter, Z. Ka?par, K. Olejník, V. Novák, R. P. Campion, P. Wadley, T. Jungwirth, C. L. Degen, P. Gambardella, arXiv:1912.05287(2019).■ 磁畴壁研究通常SOT(自旋轨道力矩)诱导的磁畴翻转强烈依赖于磁畴臂的结构,2019年Saül Vélez等人使用NV色心磁学显微镜来揭示TmIG和TmIG/Pt层的磁畴臂磁化情况。如图所示,作者对TmIG和TmIG/Pt层进行了磁学显微测试,并对图b中的两个不同位置TmIG/Pt和TmIG区域的磁畴边界d/e进行了磁场扫描,经过同模拟结果对比发现位置d处的磁畴臂处于Left Néel-Bloch中间结构,而到了位置e处的磁畴臂转变成了Left Néel 结构,这些结果表明磁性石榴石中存在界面Dzyaloshinskii-Moriya相互作用,为稳定中心对称磁性缘体中的手性自旋织构提供了可能。 参考文献:Saül Vélez, et al. High-speed domain wall racetracks in a magnetic insulator. Nature Communications (2019) 10:4750. ■ 场成像微波场的成像和探测对于未来微波器件的工程以及在原子和固体物理中的应用具有重要意义。例如,利用原子和超导量子比特进行的腔量子电动力学实验,或者量子磁体和量子点的相干控制,都是基于利用微波电场或磁场操纵量子系统。因此,控制和了解微波近场的空间分布是获得佳器件性能的关键。本文通过使用基于NV色心的超分辨量子磁学显微镜对微波电流产生的磁场空间分布进行了探测。参考文献:P. Appel, New J. Phys.17(2015)112001 ■ 斯格明子研究 “斯格明子(skyrmion)”是一种具有拓扑保护性的准粒子。由于受到拓扑保护,相比于传统的磁存储基本单元(磁畴),磁斯格明子可以被压缩到更小的尺寸,而且具有更高的稳定性;同时,它可以被很低的电流所驱动,因此,被广泛认为是未来实现高速度,高密度,低能耗磁(自旋)存储器件的基本单元。2016年,Y. Dovzhenko等人通过NV色心磁学显微镜对磁性斯格明子表面的磁场进行了测试,重构出表面杂散磁场的分布,对斯格明子的类型具有指导意义。在Bloch 型斯格明子的假定下重构出的磁化分布中,中心处z 方向磁化几乎为零, 也就是磁化方向在面内, 这样的结构无法形成一个完整的斯格明子。而Néel 型假定给出的磁化分布更加符合理论模型中斯格明子的磁化分布. 因此, Néel 型的斯格明子更加符合实验结果. 对一些新颖的磁性斯格明子结构, 如纳米条带的边缘态和双斯格明子,基于NV 色心的磁成像能够为解析其磁化结构提供帮助。参考文献:Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Büttner F, Walsworth R L, Beach G S D, Yacoby A 2016 arXiv:1611.00673 [cond-mat]. ■ 磁性涡旋结构研究磁性vortex是一种具有手性的磁性结构, 在自旋动力学和磁存储器件等方面有重要研究价值。该研究实验表明,基于NV色心的超分辨磁学显微镜能够与微磁模拟进行强有力的比较,是纳米磁性和更普遍的纳米科学基础研究的有力工具。事实上,直接测量弱磁场,不受扰动,具有纳米的分辨率,可以解决一些重要的问题,例如垂直各向异性薄膜中磁畴壁的性质,这些磁畴壁控制着薄膜的电流感应运动。参考文献:Rondin, L., Tetienne, J., Rohart, S. et al. Stray-field imaging of magnetic vortices with a single diamond spin. Nat Commun 4, 2279 (2013).■ 纳米结构中的电流分布测试纳米结构和薄膜中的电荷输运是许多科学技术现象和过程的基础,由于这种结构的纳米尺寸和电流的流动性质,直接显示这种结构中的电荷流具有挑战性。本次研究使用基于NV色心的超分辨磁学显微镜对二维导体网络(包括金属纳米线和碳纳米管)中电流密度进行磁成像。在电流密度噪声为~2×104A/cm2的情况下,对直流电流进行低至几个μA的检测。重建图像的空间分辨率通常为50nm,小为22nm。电流密度成像为研究二维材料和器件中的电子输运和电导变化提供了一条新的途径。参考文献:Chang et al., Nano Lett. 17 (2017) ■ 磁场任意波形时间分辨 基于NV色心的超分辨量子磁学显微镜除了进行过空间的磁学分辨外,还可以直接记录与时间相关的磁场,而不需要信号重建。J. Zopes & C. Degen等人使用自旋回波来差分检测波形的短片段,同时获得高的磁场灵敏度(~4μT/Hz1/2)和高的时间分辨率(~20ns),能进行任意波形的检测。可能的应用包括微型射频发射器的现场校准、集成电路中的信号映射检测、脉冲光电流的检测和薄膜中的磁开关等。 参考文献:J. Zopes & C. Degen, Phys. Rev. Appl. 12, 054028 (2019)
    留言咨询
  • 磁光克尔效应系统 400-860-5168转2623
    μ-Kerr Effect Measurement System磁光克尔效应系统优势1.基于微观局部磁性分析 极向和纵向克尔效应(非同步量测)2.适合敏感分析μm大小磁模式和磁性薄膜 规格测量的方向Magneto-Optical Kerr Effect(Polar and Longitudinal Kerr Effect) 主要功能Kerr Loop Measurement光源Diode Laser探测光斑φ2-5μm磁场Max. ±10kOe (1T)可选In-Plane Electromagnet μ-Kerr Effect Measurement and Magnetic Domain Observation System克尔效应测量和磁畴观测系统优势1.微观测量克尔效应和磁畴观测2.适合敏感分析μm大小磁模式和磁性薄膜 规格测量的方向Magneto-Optical Kerr Effect (Polar and Longitudinal Kerr Effect)主要功能Kerr Loop Measurement and Magnetic Domain Observation光源Diode Laser and Mercury Lamp探测光斑φ2-5μm观察分辨率1μm (Typ.) with x50 objective lens磁场Max. ±10kOe (1T)可选Cryostat and others Polar Kerr Effect Measurement System极向磁光克尔效应系统规格测量的方向Magneto-Optical Kerr Effect (Polar Kerr Effect)主要功能Kerr Loop Measurement光源Diode Laser探测光斑φ1mm (Typ.)磁场Max. ±20kOe (2T) Longitudinal Kerr Effect Measurement System纵向磁光克尔效应设备规格测量的方向Magneto-Optical Kerr Effect (Longitudinal Kerr Effect)主要功能Kerr Loop Measurement光源Diode Laser探测光斑φ1mm (Typ.)磁场Max. ±100 Oe (0.01T) Faraday Effect Measurement System法拉第磁光克尔效应设备规格测量的方向Faraday Effect主要功能Faraday Measurement光源Diode Laser探测光斑φ2mm (Typ.)法拉第角范围:45 degree磁场Max. ±10kOe (1T) Perpendicular Magnetic Anisotropy Analysis垂直磁各向异性分析优势1.磁光克尔效应与机动旋转电磁铁磁场应用于角度依赖性分析规格测量的方向Magneto-Optical Kerr Effect主要功能Kerr Loop Measurement光源Diode Laser探测光斑φ1mm (Typ.)磁场Max. ±25kOe (2.5T)磁场旋转范围-10-100 degree
    留言咨询
  • 探秘磁性材料的神奇之光——磁光克尔01 磁光克尔效应的时代背景图1 光在不同维度的解析应用一个美妙的推论,h/p=λ,光具有粒子性和波动性。——德布罗意光具有波动性和粒子性,磁光克尔效应是利用光的波动性质。利用光作为媒介实现检测及检验,是生活和科学研究中常见的技术手段,例如利用光的散射原理,分析物体表面的微观纹理特征;利用不同波长的光强分布实现光学成像技术,将物体表面的细节和特征以图像的形式记录下来;利用光的干涉衍射,分析间隙或者薄膜的厚度以及形貌分析;利用光的空间分布调制,完成投影图像的放大或微缩。磁性材料一直以来都是科学家和工程师们的研究热点,因为它们在数据存储、传感器技术、电子设备等领域有着广泛的应用。而磁光克尔效应(MOKE)作为一种重要的表征和研究磁性材料的方法,推动着这一领域的发展。在这篇推文中,我们将简单介绍磁光克尔效应,探索它在科学和工程中的奇妙应用。本文中的磁光克尔效应,主要展现光在偏振方面的应用。 02 磁光克尔效应是什么?图2 偏振光被磁性介质反射后,其偏振方向发生一个小的角度变化磁光克尔效应是一种物理现象,它描述了光入射到介质材料后,其偏振相关的物理属性会发生的变化。这个效应是根据法国物理学家约翰克尔(John Kerr)于1877年首次观察到的,他发现当光线照射在铁磁体表面时,反射光的偏振状态会发生改变。这一现象后来被称为克尔效应,而磁光克尔效应则是一种使用偏振光来研究材料磁性质的技术。03 奇妙的MOKE技术及其应用领域MOKE技术的原理非常简单,但却异常强大。它使用带有偏振光束照射在磁性材料表面,然后检测反射光的偏振状态。根据反射光的偏振状态变化,我们可以获得关于材料磁性的丰富信息。MOKE技术的应用非常广泛,包括但不限于以下领域:1. 数据存储图3 大数据对逻辑器件高密度高速非易失的需求(图源合肥新闻中心)MOKE技术在硬盘驱动器等数据存储设备中发挥着重要作用。它可以帮助检测和控制磁性材料的磁翻转,从而实现高密度的数据存储。2. 材料研究磁光克尔效应被广泛用于研究磁性材料的性质和行为。科学家可以使用MOKE来测量材料的磁滞回线、磁导率和磁畴结构等信息,这对于开发新型磁性材料具有重要价值。图4 CuCrTe二维磁性材料磁场翻转(拍摄于托托科技的磁光克尔设备)3.磁性传感器MOKE技术还应用于制造高灵敏度的磁性传感器,用于测量磁场的强度和方向。这些传感器在导航、医学影像、矿业勘探等领域中都有广泛应用。图5 条形磁铁的磁场分布(来源于百度图片)4.磁性薄膜图6 磁性薄膜磁畴检测(拍摄于托托科技的磁光克尔设备)对于磁性薄膜的研究和应用,MOKE技术是不可或缺的工具。它可用于调查薄膜中的自旋结构和磁各向异性,这对于开发磁性储能器件和传感器至关重要。04 托托科技磁光克尔的发展路线托托科技(苏州)有限公司是一家快速成长的技术驱动型企业,是专注于光学显微加工及光学显微检测的光学仪器设备制造厂商。托托科技自主研发生产的磁光克尔综合测试平台具有高质量磁畴成像、多激励源/多功能测试平台以及高稳定性,操作便捷的优点。相较于传统的单点磁滞回线测量仪,托托科技的磁光克尔显微综合测试设备,可以追踪平面内数百万点的实时磁性动态信息。结合该成像系统提供的直流探针,高频探针,样品的测试无比便捷。实现在室温条件下测试垂直各向异性/面内各向异性材料,材料的磁畴反转过程,成像清晰,拍摄速度达到 30 帧/秒。 托托科技提供的标准系统按照性能优先,稳定性优先的设计思路,可以满足实验室研究及工业生产中各种相关材料的测试需求。标准设备中提供了磁场激励、电流激励等多种选项,是客户在自旋特性研究中的得力测试平台。05 托托科技磁光克尔综合测试平台图7 托托科技磁光克尔显微镜综合测试设备随着科技的不断进步,MOKE技术也在不断发展和演进。研究人员正在不断改进MOKE实验装置,以提高其灵敏度和分辨率。同时,MOKE技术也被应用于新兴领域,如自旋电子学和磁性拓扑材料研究。总而言之,磁光克尔效应(MOKE)是一项令人惊叹的技术,它为我们提供了深入研究和理解磁性材料的机会。通过MOKE技术,我们能够在磁性世界中揭示更多的奥秘,并将其应用于各种领域,从数据存储到磁性传感器,再到未来的科学探索。MOKE,是探索磁性世界的神奇之光。
    留言咨询
  • TTT-磁光克尔显微综合测试平台介绍Q: 什么是磁光克尔显微系统,其基本功能有哪些?A: 磁光克尔技术是唯一几种无损的探测磁性介质磁畴状态的方法托托科技(苏州)有限公司提供的标准系统按照性能优先,稳定性优先的设计思路,可以满足实验室研究及工业生产中各种相关材料的测试需求。标准设备中提供了磁场激励、电流激励等多种选项,是客户在自旋特性研究中的得力测试平台。2020年6月28日,Advanced Materials(《先进材料》)在线发表同济大学物理科学与工程学院丘学鹏教授课题组有关单层铁磁层电驱动存储器的最新研究成果。(a) FePt(10 nm)样品电输运表征与磁光克尔实现同步测试装置示意图。(b)和(c)电流驱动磁矩翻转和磁畴运动。沿FePt薄膜生长方向出现分层,呈现阶段式翻转,如同神经突触收到多个阈值信息产生信息传递。施加不同方向辅助场Hx,样品磁畴翻转极性发生转变,如上图(b)所示。磁畴成像辅助测量,有助于实现多角度解释电输运信号中的反常信号,以及阈值电流下的磁畴取向与状态。2022年9月6日,Nature Communications(《自然&bull 通讯》)在线发表武汉大学物理院何军教授课题组有关室温二维磁性半导体的最新研究成果。二维铁磁材料的发现为基础物理和下一代自旋电子学打开了大门,其单晶层状结构给磁性表征带来了极大的挑战,磁光克尔效应是表征其磁畴状态的高效技术手段。右图为120K下二维磁性材料CrTe2在磁场驱动下实现翻转,显著发现不同层数CrTe2的矫顽力场(Hc)存在较大差异。TTT-02-Kerr Microscope兼容低温,覆盖5K-500K范围的样品测试环境。
    留言咨询
  • 低温强磁场原子力/磁力/扫描霍尔显微镜 - attoAFM/attoMFM/attoSHPM系统 纳米尺度下的磁学图像对于研究磁性材料和超导样品是非常重要的,利用attocube公司attoAFM/attoMFM/atoSHPM系统,科学家可以在无以伦比的空间分辨率(20nm)和磁场敏感性下分析样品磁性,工作温度从低温、强磁场到室温。attoAFM/attoMFM/attoSHPM采用模块化的设计。利用标配的控制器和样品扫描台,用户仅需要更换扫描头和对应的光学部件即可实现不同功能之间的切换。低温强磁场磁力显微镜 - attoMFM I系统 attoMFM I采用紧凑设计,其主要用于低温和低温环境中。在扫描时,探针是固定的,而进行样品扫描。样品与探针之间的磁力梯度由光纤干涉的模式,通过测量共振频率或相位变化而确定。 在实验过程中,样品和探针保持一定的距离,典型值为10-100nm。工作在共振频率模式时,PLL用于激发微悬臂,进行闭环扫描,实现高的空间分辨率(10.7nm,如下图)。attoMFM I特点与技术优势+ 工作模式:MFM、接触式/半接触式/非接触模式AFM、导电AFM、EFM+ 可升到SHPM、共聚焦显微镜、SNOM和STM+ 5X5X5mm粗定位范围,4K+ 30umX30um扫描范围,4K+ MFM高空间分辨率:好于11nm+ 变温范围:mK - 373K+ 兼容强磁场:可达15Tesla+ 兼容1"和2"孔径的磁体与恒温器,如Quantum Design-PPMS系统 + 其紧凑和可靠MFM扫描头设计+ 闭环式扫描模式+ 外置CCD,用于检测低温环境中样品的位置 + 用于超导体的vortex分布与定扎测量+ 磁性颗粒的局域场测量+ 磁化率和磁滞回线测量+ 超导、磁畴、材料科学研究attoMFM I技术参数+ 样品定位范围:5 X 5 X 5mm,4K+ 样品位移步长:0.05 -3um @ 300K, 10 -500nm @ 4K+ 扫描范围:40X40 um @300K;30X30 um @4K+ 磁场强度: 0 -15Tesla (取决于磁体)+ 变温范围:mK - 300K (取决于恒温器)+ 工作真空环境:1X10-6mbar - 1bar(He交换气氛) + MFM侧向分辨率:好于20nm+ RMS z-noise水平(4K):0.05nm+ z bit分辨率(全范围内):7.6pm+ z bit分辨率(扫描范围内):0.12pm低温强磁场扫描霍尔显微镜- attoSHPM系统 attoSHPM采用紧凑设计,其主要用于低温和低温环境中。其探针是采用MBE生长的GaAs/AlGaAs霍尔传感器。局域测量通过霍尔探针在样品表面进行扫描而实现,将测得的霍尔电压进行转换,即可计算出局域磁场强度。attoSHPM特点与技术优势+ 可升到MFM、接触式/半接触式/非接触模式AFM、导电AFM、EFM、共聚焦显微镜、SNOM和STM+ 5X5X5mm粗定位范围,4K+ 30umX30um扫描范围,4K+ 变温范围:mK - 373K+ 兼容强磁场:可达15Tesla+ 兼容1"和2"孔径的磁体与恒温器,如Quantum Design-PPMS系统 + 其紧凑和可靠SHPM扫描头设计+ 定量和非破坏性磁性测量,mK温度+ 闭环式扫描模式 + 用于超导体的vortex分布与定扎测量+ 磁性颗粒的局域场测量+ 磁化率和磁滞回线测量+ 超导、磁畴、材料科学研究attoSHPM技术参数+ 利用STM原理/音叉模式探测样品与探针之间的距离+ 样品定位范围:5 X 5 X 5mm,4K+ 样品位移步长:0.05 -3um @ 300K, 10 -500nm @ 4K+ 扫描范围:40X40 um @300K;30X30 um @4K+ 磁场强度: 0 -15Tesla (取决于磁体)+ 变温范围:mK - 300K (取决于恒温器)+ 工作真空环境:1X10-6mbar - 1bar(He交换气氛) + SHPM探针:MBE生长的GaAs/AlGaAs异质结+ 分辨率:250nm超高分辨 + z bit分辨率,300K :0.065nm,4.3um扫描范围+ 侧向(xy)bit分辨率,4K:0.18nm,12um扫描范围+ z bit分辨率,4K:0.030nm,2um扫描范围应用案例:PPMS-MFM vortex测量高分辨磁畴测量315mK下vortex测量300mK下SHPM测量AFM在脉冲管制冷机中使用300mK-9T下AFM/STM测量
    留言咨询
  • 磁滞回线实验,YGP-6230简介YGP-6230型磁滞回线实验是一款专门用于测量磁性材料磁学性能的实验项目。它主要利用电磁感应法,通过测量铁磁材料在外加磁场下的磁化特性,来确定磁滞回线、饱和磁感应强度、矫顽力等参数。磁滞回线是铁磁材料最明显的特征,根据磁滞回线的形状,可将铁磁材料分成软磁和硬磁两类(前者磁滞回线狭长,矫顽力、剩磁和磁滞损耗均较小;后者磁滞回线较宽,矫顽力大,剩磁强)。特点采用高稳定性和准确度的DDS信号发生器采用高精度频率显示器采用编码器调节频率,经久耐用提供两种不同的实验样品实验内容理解磁性材料的磁滞回线和磁化曲线的原理。测绘磁性材料的基本磁化曲线和磁滞回线。计算磁性材料的饱和磁感应强度Bs、剩磁Br和矫顽力Hc。研究比较不同频率的磁滞回线。研究比较不同磁性材料的磁滞回线形状居里温度实验,YMP-6118简介YMP-6118型居里温度实验装置是一种专门用于测量磁性材料居里点的实验仪器。对于铁磁物质来讲,由于有磁畴的存在,因此在外加的交变磁场的作用上将产生磁滞现象,磁滞回线就是磁滞现象的主要表现。如果将铁磁物质加热到一定的温度,由于金属点阵中的热运动的加剧,磁畴遭到破坏时,铁磁物质将转变为顺磁物质,磁滞现象消失,铁磁物质这一转变温度称为居里点。本实验装置就是将环形铁磁材料,其上绕有两个线圈N1和N2,其中N1为励磁线圈,给其中通入交变电流,提供使环形样品磁化的磁场。将绕有线圈的环形样品置于温度可控的温控装置中以改变样品的温度,通过观察样品的磁滞回线是否消失来判断其铁磁性消失,或者通过测定次级积分电路感应电动势随温度变化的曲线来推断其铁磁性消失,从而确定样品的居里温度。特点采用高稳定性和准确度的DDS信号发生器采用数字编码器调节频率,经久耐用提供多种不同的实验样品温控系统利用半导体制冷片进行加热及制冷,可以快速升温和降温开放式设计,提供多个通用的温度插孔,用户可用来测量多种温度传感器,具有很好的拓展性。实验内容理解磁性材料的磁滞回线和磁化曲线的原理。了解铁磁物质由铁磁性转变为顺磁性的微观机理。学习测定居里温度的原理和方法。测定铁磁样品的居里温度。巨磁电阻效应实验装置,YMP-6110简介巨磁阻效应是指磁性材料的电阻率在有不同大小外磁场作用时存在巨大差异的现象。巨磁阻是一种量子力学效应,它产生于层状的磁性薄膜结构,它是由铁磁材料和非铁磁材料薄层交替叠合而成。当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料电阻最小。当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料电阻变大。YMP-6110巨磁电阻实验装置包含4个实验模块:巨磁电阻基本特性测量模块、巨磁电阻测量电流模块、巨磁电阻角位移测量模块和巨磁电阻磁卡读写模块。学生可以通过此实验的学习了解并掌握巨磁阻效应原理及常见应用。特点丰富的实验模块,涵盖巨磁阻效应原理学习及巨磁电阻常见应用学习采用通用实验电源,操作简便可升级为数字化实验实验内容了解GMR效应的原理;测量GMR模拟传感器的磁电转换特性曲线;测量GMR的磁阻特性曲线;测量GMR开关(数字)传感器的磁电转换特性曲线;学习巨磁电阻传感器定标方法,计算巨磁电阻传感器灵敏度;用GMR传感器测量通电螺线管的磁场分布曲线;用GMR传感器测量导线电流;用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理;了解通过GMR传感器实现磁卡记录与读出的原理。微波光学综合实验,YMP-6112简介微波是一种频率范围在300MHz-3000GHz的电磁波,具有波的特性。本实验装置通过微波的衍射、干涉和偏振等特性,来研究微波的波动特性。YMP-6112微波光学综合实验装置正是利用微波的产生、传输和接收,配合分光计结构以及一些附件来进行微波波动特性的研究。从信号源发出的微波,经过中心平台上的单/双缝,偏振板等结构后,出现衍射、干涉和偏振等现象,再由接收器接收信号,验证微波的波动特性。特点丰富的实验内容几乎囊括波动特性的所有实验氧化发白的铝型材框架结构设计,易于安装和拆解,且方便安装各种实验模块采用数字式微波功率计,测量精准便捷设计采用cm级别的微波,提升了尺度,便于实验的观测和分析微波功率衰减器,可自主调节微波发射强弱采用小功率微波,确保实验安全实验内容通过微波的反射实验来学习与掌握微波的波动理论微波的单缝衍射实验微波的干涉特性和波长计算实验微波的驻波和波长计算实验微波的折射和材料的折射率计算实验微波的偏振实验微波的劳埃德镜测波长实验微波的布里-珀罗干涉和波长计算实验微波的迈克尔逊干涉和波长计算实验微波的偏振特性和布儒斯特角实验微波的布拉格衍射的实验微波在纤维中的传播特性实验原子力显微镜,YMP-6114描述原子力显微镜(AFM)采用对微弱力极其敏感的微悬臂作为力传感器(微探针),利用针尖与样品之间相互作用的原子力,最终获得样品表面的微观形貌。YMP-6114原子力显微镜采用特有的卧式探头结构,克服了原有粗调与微调逼近机构的垂直蠕动,使仪器性能更加稳定可靠。特点特有的卧式探头结构,克服了原有粗调与微调逼近机构的垂直蠕动稳定的三轴压电扫描器,保证扫描图像的保真与快速成像优化的检测与控制系统,获得更高的扫描分辨率、更好的重复性和更佳的图像质量完善的软件界面与功能,支持三维立体成像与纳米标注操作便捷、高速扫描、高稳定性与抗干扰能力应用同时适用于科学研究、本科生和研究生的教学实验及纳米技术产品的检测,广泛适用于各种金属/非金属、导体/非导体、磁性/非磁性材料样品的扫描检测。更多详情,请关注!
    留言咨询
  • 在以前,实验室使用电子显微镜观测样品做实验使用的耗材,这些氮化硅薄膜观测窗口基本都是从国外进口。耗材成本先不说,就购买的时间成本是非常长的。如果实验数据不是很理想,还要花时间和费用去购买耗材,非常不便捷。 为了打破这种垄断,在电镜氮化硅薄膜观测窗口的国产化上,国内科研人员也是花费了时间和精力去开发和生产。目前,原位芯片提供的显微镜氮化硅薄膜观测窗口已经可以取代进口,广泛用于高校、科研机构,也远销国外,成为实验室“好帮手”。原位芯片可以提供多种电镜氮化硅薄膜观测窗口,其中微孔氮化硅薄膜窗口主要是ME/NE系列。 ME/NE系列原位芯片生产的微孔/纳米孔氮化硅薄膜窗口均在百级洁净环境中制备,在窗口薄膜上利用MEMS工艺制备不同孔径大小的阵列,方便研究人员用于特殊样品观测。目前苏州原位芯片已推出以下标准微孔/纳米孔氮化硅薄膜窗口,如客户有其他微孔/纳米孔薄膜窗口需求,原位芯片可提供开发定制。 定制服务原位芯片拥有一支超过10年MEMS工艺经验的团队,拥有完整的设计,制造和测试能力。如您的实验需要更多定制化,高质量,高可靠性的氮化硅薄膜窗口,欢迎随时联系我们。为什么要选择原位芯片定制服务
    留言咨询
  • 晶圆级磁光克尔测量仪利用极向磁光克尔效应(MOKE),快速全局检测晶圆膜堆的磁性。非接触式测量,避免了传统磁性表征对晶圆的破坏,可应用于图形化前后的样品检测。晶圆级垂直磁光克尔测量仪样品尺寸:最大支持12 英寸及以下晶圆碎片测试:磁场:最大垂直磁场优于2.5T,磁场分辨率1 μT 磁性检测灵敏度:克尔转角检出度优于0.3mdeg(RMS),适用多层膜堆的磁性表征 样品重复定位精度:优于1um,静态抖动0.25 um。晶圆级面内磁光克尔测量仪样品尺寸:最大支持12 英寸及以下晶圆碎片测试,磁场:最大面内磁场优于1.4T,磁场分辨率1 μT 磁性检测灵敏度:克尔转角检出度优于0.3mdeg(RMS),适用多层膜堆的磁性表征 样品重复定位精度:优于1 um,静态抖动0.25 um 样品360°任意角度旋转。功能及应用场景垂直/面内MRAM磁性存储器、磁传感器膜堆的磁滞回线测量 自动提取磁滞回线信息,,如自由层和钉扎层Hc、Hex、Ms等 可自动进行连续逐点扫描,生成晶圆磁特性分布图 系统预置多点扫描模式:单点、阵列、径向分布,自定义位置列表 系统提供手动加载或全自动操作方式,满足研发/生产需求。
    留言咨询
  • 从当下主流的机械硬盘,到未来的磁性存储单元,磁滞回线测量都是评估薄膜性质的重要手段。相较于电学霍尔测量和震动磁强计,光磁克尔效应具有测量速度快,精度高,非侵入,且不需要对样品进行加工或切片等操作的特点。通过对磁滞回线的分析,用户不但可以得到矫顽力及相对磁化强度等信息,亦可了解磁性薄膜磁各向异性等性质。针对不同矫顽力的多层磁性薄膜结构,磁光克尔测量可以分析出逐层的磁滞回线信息。托托科技提供的标准系统按照性能优先,稳定性优先的设计思路,可以满足实验室研究及工业生产中各种磁性薄膜材料的测试需求。针对不同磁各向异性材料的光学响应,我们提供两种测试组件:PMA Checker 以及IMA Looper,两种系统共享一套数据采集系统,切换方便。“控制盒+光磁主体+电脑”的套装(如上图所示)即是完整的设备,无需任何外置仪表(电源,锁相放大器)客户即可快速完成磁滞回线的测量;此外,客户可以自主选择使用锁相放大器(SR830/810,Zurich MFLI)进行数据采集,该设备预留了与锁相放大器匹配的接口。该产品提供基于LabView的程序,方便客户快速上手。基于C,Python的控制程序也可应客户要求提供。【应用示例】1.自旋/磁电子学2.磁性纳米技术3.非易失性磁性随机存储器4.磁阻研究5.磁性薄膜6.磁性传感器【产品定位/推荐】该系统的定位是为客户提供稳定、快捷、超高性价比的磁滞回线测量设备,最简单的也是最可靠的。如需更多附加功能,例如:磁畴成像,微区测量,集成温控设备,集成电学测量设备,集成样品扫描成像等选项,我们建议客户考虑TTT-Mag-Kerr Microscope 系列产品。TTT-Mag-PMA Checker不具备空间分辨能力,光斑直径为1毫米。【敬告】1.精密设备,轻拿轻放。2.在恶劣环境中使用该产品可能会导致产品性能下降。3.擅自拆解模组视为放弃质保。
    留言咨询
  • 产品详情德国Attocube低温强磁场原子力/磁力/扫描霍尔显微镜attoAFM/attoMFM/attoSHPM 纳米尺度下的磁学图像对于研究磁性材料和超导样品是非常重要的,利用attocube公司attoAFM/attoMFM/atoSHPM系统,科学家可以在无以伦比的空间分辨率(20nm)和磁场敏感性下分析样品磁性,工作温度从极低温、强磁场到室温。 attoAFM/attoMFM/attoSHPM采用模块化的设计。利用标配的控制器和样品扫描台,用户仅需要更换扫描头和对应的光学部件即可实现不同功能之间的切换。 attoMFM I采用紧凑设计,其主要用于低温和极低温环境中。在扫描时,探针是固定的,而进行样品扫描。样品与探针之间的磁力梯度由光纤干涉的模式,通过测量共振频率或相位变化而确定。 在实验过程中,样品和探针保持一定的距离,典型值为10-100nm。工作在共振频率模式时,PLL用于激发微悬臂,进行闭环扫描,实现极高的空间分辨率(10.7nm,如下图)。 attoMFM I特点与技术优势 + 工作模式:MFM、接触式/半接触式/非接触模式AFM、导电AFM、EFM+ 可升级到SHPM、共聚焦显微镜、SNOM和STM+ 5X5X5mm粗定位范围,4K+ 30umX30um扫描范围,4K+ MFM极高空间分辨率:好于11nm+ 变温范围:mK - 373K+ 兼容强磁场:可达15Tesla+ 兼容1"和2"孔径的磁体与恒温器,如Quantum Design-PPMS系统 + 极其紧凑和可靠MFM扫描头设计+ 闭环式扫描模式+ 外置CCD,用于检测低温环境中样品的位置+ 用于超导体的vortex分布与定扎测量+ 磁性颗粒的局域场测量+ 磁化率和磁滞回线测量 + 超导、磁畴、材料科学研究 attoMFM I技术参数 + 样品定位范围:5 X 5 X 5mm,4K+ 样品位移步长:0.05 -3um @ 300K, 10 -500nm @ 4K+ 扫描范围:40X40 um @300K;30X30 um @4K+ 磁场强度: 0 -15Tesla (取决于磁体)+ 变温范围:mK - 300K (取决于恒温器)+ 工作真空环境:1X10-6mbar - 1bar(He交换气氛)+ MFM侧向分辨率:好于20nm+ RMS z-noise水平(4K):0.05nm+ z bit分辨率(全范围内):7.6pm+ z bit分辨率(扫描范围内):0.12pm 低温强磁场扫描霍尔显微镜- attoSHPM系统 attoSHPM采用紧凑设计,其主要用于低温和极低温环境中。其探针是采用MBE生长的GaAs/AlGaAs霍尔传感器。局域测量通过霍尔探针在样品表面进行扫描而实现,将测得的霍尔电压进行转换,即可计算出局域磁场强度。 attoSHPM特点与技术优势+ 可升级到MFM、接触式/半接触式/非接触模式AFM、导电AFM、EFM、共聚焦显微镜、SNOM和STM + 5X5X5mm粗定位范围,4K+ 30umX30um扫描范围,4K+ 变温范围:mK - 373K+ 兼容强磁场:可达15Tesla+ 兼容1"和2"孔径的磁体与恒温器,如Quantum Design-PPMS系统 + 极其紧凑和可靠SHPM扫描头设计 + 定量和非破坏性磁性测量,mK温度+ 闭环式扫描模式+ 用于超导体的vortex分布与定扎测量+ 磁性颗粒的局域场测量+ 磁化率和磁滞回线测量 + 超导、磁畴、材料科学研究 attoSHPM技术参数+ 利用STM原理/音叉模式探测样品与探针之间的距离+ 样品定位范围:5 X 5 X 5mm,4K+ 样品位移步长:0.05 -3um @ 300K, 10 -500nm @ 4K+ 扫描范围:40X40 um @300K;30X30 um @4K+ 磁场强度: 0 -15Tesla (取决于磁体)+ 变温范围:mK - 300K (取决于恒温器)+ 工作真空环境:1X10-6mbar - 1bar(He交换气氛)+SHPM探针:MBE生长的GaAs/AlGaAs异质结+ 分辨率:250nm超高分辨 + z bit分辨率,300K :0.065nm,4.3um扫描范围+ 侧向(xy)bit分辨率,4K:0.18nm,12um扫描范围+ z bit分辨率,4K:0.030nm,2um扫描范围
    留言咨询
  • 晶圆级磁光克尔测量仪利用极向磁光克尔效应(MOKE),快速全局检测晶圆膜堆的磁性。非接触式测量,避免了传统磁性表征对晶圆的破坏,可应用于图形化前后的样品检测。晶圆级垂直磁光克尔测量仪样品尺寸:最大支持12 英寸及以下晶圆碎片测试:磁场:最大垂直磁场优于2.5T,磁场分辨率1 μT 磁性检测灵敏度:克尔转角检出度优于0.3mdeg(RMS),适用多层膜堆的磁性表征 样品重复定位精度:优于1um,静态抖动0.25 um。晶圆级面内磁光克尔测量仪样品尺寸:最大支持12 英寸及以下晶圆碎片测试,磁场:最大面内磁场优于1.4T,磁场分辨率1 μT 磁性检测灵敏度:克尔转角检出度优于0.3mdeg(RMS),适用多层膜堆的磁性表征 样品重复定位精度:优于1 um,静态抖动0.25 um 样品360°任意角度旋转。功能及应用场景垂直/面内MRAM磁性存储器、磁传感器膜堆的磁滞回线测量 自动提取磁滞回线信息,,如自由层和钉扎层Hc、Hex、Ms等 可自动进行连续逐点扫描,生成晶圆磁特性分布图 系统预置多点扫描模式:单点、阵列、径向分布,自定义位置列表 系统提供手动加载或全自动操作方式,满足研发/生产需求。
    留言咨询
  • 德国Attocube低温强磁场原子力/磁力/扫描霍尔显微镜 attoAFM/attoMFM/attoSHPM 纳米尺度下的磁学图像对于研究磁性材料和超导样品是非常重要的,利用attocube公司attoAFM/attoMFM/atoSHPM系统,科学家可以在无以伦比的空间分辨率(20nm)和磁场敏感性下分析样品磁性,工作温度从极低温、强磁场到室温。 attoAFM/attoMFM/attoSHPM采用模块化的设计。利用标配的控制器和样品扫描台,用户仅需要更换扫描头和对应的光学部件即可实现不同功能之间的切换。 低温强磁场磁力显微镜 - attoMFM I 系统 attoMFM I采用紧凑设计,其主要用于低温和极低温环境中。在扫描时,探针是固定的,而进行样品扫描。样品与探针之间的磁力梯度由光纤干涉的模式,通过测量共振频率或相位变化而确定。 在实验过程中,样品和探针保持一定的距离,典型值为10-100nm。工作在共振频率模式时,PLL用于激发微悬臂,进行闭环扫描,实现极高的空间分辨率(10.7nm,如下图)。 attoMFM I特点与技术优势 + 工作模式:MFM、接触式/半接触式/非接触模式AFM、导电AFM、EFM+ 可升级到SHPM、共聚焦显微镜、SNOM和STM+ 5X5X5mm粗定位范围,4K+ 30umX30um扫描范围,4K+ MFM极高空间分辨率:好于11nm+ 变温范围:mK - 373K+ 兼容强磁场:可达15Tesla+ 兼容1"和2"孔径的磁体与恒温器,如Quantum Design-PPMS系统 + 极其紧凑和可靠MFM扫描头设计+ 闭环式扫描模式+ 外置CCD,用于检测低温环境中样品的位置+ 用于超导体的vortex分布与定扎测量+ 磁性颗粒的局域场测量+ 磁化率和磁滞回线测量 + 超导、磁畴、材料科学研究 attoMFM I技术参数 + 样品定位范围:5 X 5 X 5mm,4K+ 样品位移步长:0.05 -3um @ 300K, 10 -500nm @ 4K+ 扫描范围:40X40 um @300K;30X30 um @4K+ 磁场强度: 0 -15Tesla (取决于磁体)+ 变温范围:mK - 300K (取决于恒温器)+ 工作真空环境:1X10-6mbar - 1bar(He交换气氛)+ MFM侧向分辨率:好于20nm+ RMS z-noise水平(4K):0.05nm+ z bit分辨率(全范围内):7.6pm+ z bit分辨率(扫描范围内):0.12pm 低温强磁场扫描霍尔显微镜- attoSHPM系统 attoSHPM采用紧凑设计,其主要用于低温和极低温环境中。其探针是采用MBE生长的GaAs/AlGaAs霍尔传感器。局域测量通过霍尔探针在样品表面进行扫描而实现,将测得的霍尔电压进行转换,即可计算出局域磁场强度。 attoSHPM特点与技术优势+ 可升级到MFM、接触式/半接触式/非接触模式AFM、导电AFM、EFM、共聚焦显微镜、SNOM和STM + 5X5X5mm粗定位范围,4K+ 30umX30um扫描范围,4K+ 变温范围:mK - 373K+ 兼容强磁场:可达15Tesla+ 兼容1"和2"孔径的磁体与恒温器,如Quantum Design-PPMS系统 + 极其紧凑和可靠SHPM扫描头设计 + 定量和非破坏性磁性测量,mK温度+ 闭环式扫描模式+ 用于超导体的vortex分布与定扎测量+ 磁性颗粒的局域场测量+ 磁化率和磁滞回线测量 + 超导、磁畴、材料科学研究 attoSHPM技术参数+ 利用STM原理/音叉模式探测样品与探针之间的距离+ 样品定位范围:5 X 5 X 5mm,4K+ 样品位移步长:0.05 -3um @ 300K, 10 -500nm @ 4K+ 扫描范围:40X40 um @300K;30X30 um @4K+ 磁场强度: 0 -15Tesla (取决于磁体)+ 变温范围:mK - 300K (取决于恒温器)+ 工作真空环境:1X10-6mbar - 1bar(He交换气氛)+SHPM探针:MBE生长的GaAs/AlGaAs异质结+ 分辨率:250nm超高分辨 + z bit分辨率,300K :0.065nm,4.3um扫描范围+ 侧向(xy)bit分辨率,4K:0.18nm,12um扫描范围+ z bit分辨率,4K:0.030nm,2um扫描范围
    留言咨询
  • 磁光克尔效应测量系统JMTS-816磁光克尔效应测量系统产品概述:磁光克尔效应装置是一种基于磁光效应原理设计的超高灵敏度磁强计,是研究磁性薄膜、磁性微结构的理想测量工具。旋转磁光克尔效应(RotMOKE)是在磁光克尔效应测量基础上的一种类似于转矩测量各向异性的实验方法,可以定量的得到样品的磁各向异性的值。但由于电磁铁磁场大小的限制,只适合于测量磁各向异性的易轴在膜面内而且矫顽场不太大的磁性薄膜材料。结合源表可以进行样品的磁输运性能测量。RotMOKE具有以下特点:测量精度高、测量时间短;非接触式测量,是一种无损测量;测量范围为一个点,可以测量同一样品不同部位的磁化情况;可以产生平滑、稳定的受控磁场,并且磁场平滑过零。应用领域:广泛应用于诸如磁性纳米技术、自旋电子学、磁性薄膜、磁性随机存储器、GMR/TMR等磁学领域。可测试材料:记录磁头,磁性薄膜,特殊磁介质,磁场传感器 磁光克尔效应测量系统产品特点:1测量灵敏度高,稳定性好,噪音低2非接触式测量,是一种无损测量3可以测量同一样品厚度不等的楔形磁性薄膜4可以将样品放到真空中原位测量5可以测量同一样品不同部位的磁化情况6纵向、横向和极向克尔效应测试7三百六十度电动旋转样品,可测试样品各向异性8手动左右和上下位移样品,可测试样品表面不同点的克尔效应9样品座有电接口,可加入磁电耦合测试。磁光克尔效应测量系统技术指标:1 样品尺寸:大Φ10mm的圆 2 克尔角分辨率(δ):0.001度;3椭偏率分辨率(ε):0.1%;4小光斑(Φ):10微米;5 大磁场:单维0.26特斯拉;6 样品电动角度步进0.1度,手动位移步进10微米;7噪音:1%。磁光克尔效应测量系统技术参数:1光学平台: 刚性隔震,不锈钢贴面,1200*800*800mm,M6螺孔,25mm阵距,150mm台板厚度,带脚轮。台面平整度0.1/1000mm,平台载荷300Kg,固有频率≤2.5Hz,阻尼比0.12~0.13R/S。2矢量电磁铁:锦正茂二维矢量电磁铁,每维大磁场0.26T,极面直径30mm,磁场间隙40mm,中心10mm正方体内均匀区1%。3电磁铁电源:锦正茂单相双极性恒流,大10A,小分辨率0.1mA,稳定性50ppm/h,对应小分辨率0.1Gauss。 4激光器: Newport 632.8nm,2mW,2%稳定度,噪音1% rms(30Hz~10MHz),通过聚焦透镜光斑小为10μm的圆。5起偏/检偏器:格兰-汤普森棱镜,外径25.4mm,通光孔径10mm,消光比5*10^-5,角度范围14~16°,波长范围350~2300nm。6聚焦透镜:K9双凸,设计波长633nm,外径25.4mm,焦距150mm,焦距误差±0.5%,面精度X方向λ/4,Y方向λ/2。7四分之一波片:?25.4mm,波长632.8nm,投射波前畸变λ/8,相位延迟精度λ/100。8光电传感器:15mm2感应面积,0.21A/W响应度,暗电流1nA,对430~900nm波长光敏感,分流电阻200Mohm。9电流放大器:1pA/V大增益,1MHz带宽,大输入±5mA,大输出±5V,增益精度为输出的±0.05% 10高精度电压表:六位半,小分辨率0.1μV,90天准确度达到0.002%,四位半精度下最快2000 readings/second11手动位移和电动旋转样品杆: XYZ三维位移,XY行程25mm,Z行程13mm,转动360度,样品座为直径11mm的圆,上有电接头。12计算机: 联想商用,集成多串口卡。
    留言咨询
  • 成贯仪器提供NIKON生物显微镜Ci-E报价,同时包括尼康显微镜Ci-L图片、尼康荧光显微镜Ci-E参数、尼康正置显微镜Ci-S使用说明书、尼康显微镜Ci-S价格、尼康正置荧光显微镜Ci-S维修、尼康生物显微镜Ci-L经销商价格等信息,为您购买尼康显微镜Ci-E提供有价值的产品因为有我,所以会更好,成贯专业、诚信、值得信赖成贯仪器——显微系统、生命科学仪器、外科手术设备、无损检测设备、实验室耗材等专业供应商成贯仪器(上海)有限公司是尼康显微镜(中国区)供应中心,是显微系统、生命科学仪器、外科手术设备、无损检测设备、实验室耗材专业供应商,常年提供原装日本(Japan)进口的NIKON尼康显微镜,客户遍及上海,江苏(苏州、昆山、无锡、常州、南通、泰州、扬州、南京、淮安、徐州),浙江(嘉兴、湖州、杭州、绍兴、宁波、台州、温州、义乌、金华、衢州),安徽(黄山、宣城、芜湖、合肥、蚌埠、阜阳),湖北(武汉、荆州、宜昌),湖南(长沙、株洲、湘潭),江西(九江、南昌、樟树、赣州),福建(宁德、三明、龙岩、福州、厦门、泉州),广东(汕头、惠州、深圳、东莞、广州、佛山、中山、珠海),广西(南宁、桂林),海南(海口、三亚),贵州(贵阳、遵义),云南(昆明、大理、丽江),西藏(拉萨)、新疆(乌鲁木齐)、青海(西宁)、甘肃(兰州、酒泉)、宁夏(银川)、青海(西宁)、陕西(西安)、重庆、四川(成都、绵阳)、河南(焦作、郑州、许昌、商丘、洛阳),山西(太原、临汾)、山东(威海、烟台、青岛、潍坊、淄博、济南、泰安、临沂),天津、河北(石家庄、邯郸、秦皇岛、唐山),北京、内蒙古(呼和浩特、包头、鄂尔多斯)、辽宁(大连、丹东、营口、沈阳、葫芦岛),吉林(吉林、长春)、黑龙江(哈尔滨、大庆、牡丹江、鸡西)等国内大中城市。NIKON生物显微镜Ci-E它采用了电动物镜转换和自动调节光强功能,ECLIPSE Ci-E也大幅提高了使用效率,需要频繁切换放大实验室检测。查看图像,样本变化和捕捉图像都与一个自然的姿势进行。高发光,环保的LED照明减少了频繁更换灯泡。各种各样的附件可支持各种成像技术。 Ci-E LED照明电动型 NIKON生物显微镜Ci-L为了满足临床实验室的专家和研究人员的需求,尼康审查显微镜可用性的各个方面制定了ECLIPSE C-L显微镜,平衡出众的功能与操作简便。查看图像,样本变化和捕捉图像都与一个自然的姿势进行。高发光,环保的LED照明减少了频繁更换灯泡。各种各样的附件可支持各种成像技术。Ci-L与LED照明手动型号(配置了摄像头) NIKON生物显微镜Ci-S为了满足临床实验室的专家和研究人员的需求,尼康结合了这几十年设计的显微镜可用性各方面开发了Eclipse CI-S显微镜,卓越的功能和易操作性的平衡。查看图像,样本变化和捕捉图像都与一个自然的姿势进行。各种各样的附件可支持各种成像技术。Ci-S手动型号采用卤素灯照明 电动切换放大倍率只需轻轻一按即可完成物镜的切换,Eclipse Ci-E镜身或远程控制面板上的触摸来很容易地改变,DS-L3对摄像机控制及触摸屏。两个特定的物镜位置可以改变,并切换与单独的按钮。用户定义的光强度每个倍率会被自动保存,当放大倍率改变而改变,无需再进行调节光强度 物镜转换器旋转按钮 遥控面板 明亮而均匀的环保照明新开发的高发光LED能够产生分布均匀的照明,降低了成本和更换灯泡,得益于超长寿命60000小时,低功率消耗,特别环保光源。通过将准直透镜,复眼光学器件和LED照明,明亮而均匀的图像可达外围即使在高放大倍率来获得。 LED照明灯设有低发热体,每一放大倍率下提供相同的色温 使用操作简便一个自然的观察姿势使用人体工学双目镜筒,其特征是可以从10°倾斜至30°,并延长至40mm的目镜,显微镜可以调整,以适应自然的姿势。此外,照相机可以通过在DSC端口被安装。所述眼平提升管升降25毫米的增量目镜管(高达100毫米*)和增加的灵活性不同眼点高度的多个用户*多达50毫米,符合人体工程学的双目镜筒。 符合人体工程学的双目镜筒 眼点提升管 用户友好的载物台操作通过加入一物镜转换器间隔件,该载物台从标准位置的高度可以被降低20个毫米,便于频繁标本变化。载物台手柄高度是可以改变的,以确保舒适的手的位置。该载物台的高度可以通过重新调整旋钮和锁定,使试样更改后重新调整。载物台涂覆有高耐久性防刮陶瓷涂层。 高度可调台手柄 陶瓷涂层载物台 轻松的图像捕捉一个简单的操作,通过显微镜镜体的按钮,可以图像捕捉的过程中观察使数字视摄像头捕捉到样本图像。(来源:成贯仪器) 图像拍摄按钮 DS-L3摄像机控制单元 病理学通过网络数字化 多功能观测技术相差,简易偏光,NIKON显微镜CI-E和NIKON显微镜C-L采用高强度环保照明提供足够的光照强度。 相差高对比度的图像与中性背景着色与放大倍数无关的范围,可以被捕获。这一观察技术适合于观察未染色结构。 相差附件和物镜 简易偏光这是理想的观测双折射的样品,如胶原蛋白,淀粉样蛋白和结晶。*有两种类型的分析仪可供选择:中间管式和物镜转换器滑盖式。2.8-Dihydroxyadenine结晶,简易偏光,CFI Plan Fluor 40X,图片来自日本大学板桥医院临床检验科(来源:成贯仪器) 灵敏的彩色偏光这使得通过改变干涉色形成生物体内部尿酸结晶的鉴定。它是理想的痛风和假性痛风的检测。*有两种类型的分析仪可供选择:中间管式和消防水枪滑盖式。 钠尿酸盐结晶,灵敏的彩色偏光,CFI Plan Fluor 40X,图片来自日本大学板桥医院临床检验科 暗场使清楚观察血液或鞭毛的微小结构。干法和油型聚光镜可用。扩束镜是用来捕获亮的照明。 落射荧光紧凑型落射荧光附件采用了专用的噪声终结机制,允许弱荧光标本与巨大的清晰度和亮度抓获。该过滤器的炮塔可以容纳四个过滤立方体,并改变它们很简单。高光学性能的物镜的落射荧光成像,包括CFI Plan Apochromat Lambda系列和CFI Plan Fluor系列,是可用的。 落射荧光附件和激发块规格参数型号Ci-ECi-LCi-S镜体光学系统CFI60 无限远光学系统照明高发光白色 LED 照明灯 (节能照明)6V30W 卤素灯内置 ND4,ND8,NCB11 过滤器光强自动记忆功能-控制图像捕捉按钮(来源:成贯仪器)物镜转盘的旋转按钮远程Pad控制-ND滤镜/开关目镜(F.O.V. mm)CFI 10x (22)CFI 10xM photomask (22)CFI 12.5x (16)CFI 15x (14.5)CFI UW 10x (25)CFI UW 10xM photomask (25)聚焦同轴粗、 细聚焦、 聚焦行程: 30mm,粗: 9.33mm/转,细: 0.1mm/转粗调焦旋钮可调,在聚焦功能观察筒F.O.V. 22 mm(目镜/端口)C-TB 双目观察筒C-TE2 人体工程学双目观察筒(100/0、50/50通过可选C-TEP2 DSC端口)倾角:10 - 30度,扩展:40mm F.O.V. 25 mm(目镜/端口)C-TF 三目观察筒(100/0, 0/100)C-TT三目观察筒(100/0, 20/80, 0/100)物镜转盘电动6孔物镜转盘与分析槽(建于主体)两个物镜之间转换功能C-N 六孔物镜转盘C-NA六孔物镜转盘与分析槽载物台矩形载物台,交叉行程78 X(*)54(Y)mm与游标刻度,带可调节手柄C-SR2S 右手载物台带双玻片标本夹C-CSR1S 右手载物台带单玻片标本夹C-CSR C-CSR右手陶瓷载物台(C-H2L标本夹,2L或C-H1L的样品夹连接器可以连接)聚光镜电动CI-C-E电动摇出式聚光镜,聚焦行程:27毫米-(来源:成贯仪器)手动聚焦行程:27毫米C-C阿贝聚光镜NA 0.9C-C 消色差聚光镜 NA 0.9暗场聚光镜,X/Y (油 or 干)C-C 相差聚光镜C-C 消色差/消球差聚光镜 NA 1.4C-C 消色差滑动式聚光镜 2-100xC-C消色差摇摆式聚光镜1-100x消色差摇摆式聚光镜 2-100xX LWD聚光镜观察方式*明场,免疫荧光,暗视野,相差,简单的偏光,色彩灵敏的偏光落射荧光附件4个安装过滤器位置,ND4 / ND8 / ND16过滤器,噪声的终止机制落射荧光光源C-HGFI/HGFIE 130W汞灯光纤照明100W汞灯灯室和电源控制器 75W氙灯灯室和电源控制器 耗电量13W(明场配置)6W(明场配置)38W(明场配置)重量(约)15.4 kg(双目标准配置)13.4 kg(双目标准配置)13.4 kg(双目标准配置)
    留言咨询
  • 无液氦低温强磁场共聚焦显微镜 - attoCFM系统经过多年的发展,德国attocube公司生产的低温强磁场共聚焦显微镜attoCFM系统,成为了在纳米尺度研究量子点、量子器件光学性质的标准设备。为提高图像质量,共聚焦显微镜需要在低温环境中工作,从而达到提高图像高分辨率、清晰光学谱图、锐化谱线和降低噪音的目的。同时,低温下散射和非辐射效应的减少,以及量子效率的提高,都有助于提高光学信号的强度,使得的研究发射能量与其他因素的关系成为可能。attoCFM配备了全新的attoDRY系列无液氦的恒温器和磁场,以及全新扫描头attoCFM-MC。它简单易用,其模块化的设计满足了光学实验开放性与灵活性的要求。由于attoCFM可提供“温度、磁场、电场、光学与样品位置”各个实验参数的广泛变化范围,因此在科学实验领域的应用范围十分广泛。可以测量的样品种类包括量子点、一维纳米线、石墨烯、二维晶体材料等各种材料。应用领域涵盖量子、二维材料磁学、光学光致发光光谱、电致发光光谱、Raman光谱、光电流、电学输运性质研究等等范围。产品特点 无液氦,闭路可循环系统 超低振动,优异稳定性,可进行长时间实验测量 温度范围:1.8K-300K 磁场:7T, 9T,12T, 矢量磁体可选 工作真空:1×10-6mBar ~ 1大气压 共聚焦光学测量:光致发光/电致发光/光电流/拉曼 低温物镜: NA值0.82,低温消色差 光学分辨率:~550 nm 样品粗定位范围:5×5×5 mm3 扫描精细范围:30×30 μm2@4K 可升:AFM/MFM/PFM/KPFM/ct-AFM/cryoRamanattoCFM I主要技术特点+ 显微镜光路:多三个光路(1个激发光路/1个探测光路/可选光路),每个光路中的光学部件可自由快速更换+ 应用范围广泛,涵盖了从典型的CFM实验,到拉曼光谱测量等+ 可升到AFM/MFM/PFM/KPFM/ct-AFM/cryoRaman功能+ 粗位移范围:5mm x 5mm x 5mm,4K+ 精细扫描范围:30×30μm2 @4K,50×50μm2 @300K+ 变温范围:1.8K-300K(取决于恒温器)+ 兼容磁场,0-12T(取决于磁体)+ 工作真空:1X10-6mbar - 1atm + 兼容1"和2"孔径的恒温器和磁体,包括Quantum Design-PPMS+ 低温物镜:NA=0.82,WD=0.7mm,confocal分辨率~550nm(@635nm激光)+ 外置CCD,用于在低温下观测样品位置,视野范围75μm+ 样品定位步长:0.05-3μm @ 300K 10-500nm @ 4K+ 变温范围:mK - 300K(取决于恒温器配置)■ 强的拓展性、灵活性和稳定性光学头可配置双通道光路,简单易用,模块化的设计满足了光学实验开放性与灵活性的要求 。左图:光学头配置1. 准直器2. FC/APC光纤接口3. 分束器4. 过滤器空位5. 分束器可选立方块或者平板6. 偏振分束器7. 非偏振分束器8. 过滤器空位9. 反射镜右图:共聚焦显微镜工作示意图,光学头多可配置三路光学通道。 1. FC/APC光纤接口2. 准直器3. 反射镜4. 过滤器空位5. 分束器6. LED 灯7. CCD相机8. 分束器9. 反射镜10. 低温物镜11. 样品12. XYZ位移台 与 XY扫描器■ attoCFM无液氦低温强磁场共聚焦显微镜面包板定制面包板与attocube公司的低温恒温器attoDRY1000/2100结合,保证了光学实验的高度稳定性。因此,用户可以基于面包板搭建自由光路进行低温光学实验。■ 无液氦低温强磁场适用光学插杆除了购买完整的CFM共聚焦显微镜,德国attocube公司也提供了光学插杆来方便专家学者自行搭建低温光学实验。光学插杆包含:-设计-配置36 个电学接线-部具有光学窗口(25mm直径)-提供温度传感器与加热器-位移器底座-低温物镜固定架■ 特殊设计的低温消色差物镜市场上通用的常温物镜在低温环境下会发生光轴变化,色差等等问题。德国attocube公司次推出了可在低温磁场下使用的消色差物镜。特殊设计的低温物镜具有高数值孔径,收光效率高,优化光路后激光光斑直径小于1微米等特点。左:高NA,消色差低温物镜;中:长工作距离,消色差低温物镜;右:非消色差低温物镜■ attoCFM I 的两种配置:Faraday与Voigt Geometry低温强磁场共聚焦显微镜的研究中,一般有磁场方向与样品表面垂直与平行两种实验架构。德国attocube公司的attoCFM I新设计的样品托与低温物镜结合可以有Faraday与Voigt Geometry两种配置(如下图)来实现磁场方向与样品表面垂直或者平行两种实验架构,以挖掘更多的样品性质。上图:图左为Faraday Geometry(磁场方向与样品表面垂直),右图为Voigt Geometry(磁场方向与样品表面平行)上图: Faraday Geometry与Voigt Geometry两种配置的光路图与样品托用户单位attocube公司产品以其稳定的性能、高的精度和良好的用户体验得到了国内外众多科学家的认可和肯定,在全球范围内有超过了130多位低温强磁场显微镜用户。attocube公司的产品在国内也得到了低温、超导、真空等研究领域著名科学家和研究组的欢迎......国内部分用户:北京大学中国科技大学中科院物理所中科院武汉数学物理所中科院上海应用技术物理研究所复旦大学清华大学南京大学中科院半导体所上海同步辐射中心北京理工大学哈尔滨工业大学中国科学院苏州纳米技术与纳米仿生研究所……
    留言咨询
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制