可变倍率激光扩束镜

仪器信息网可变倍率激光扩束镜专题为您提供2024年最新可变倍率激光扩束镜价格报价、厂家品牌的相关信息, 包括可变倍率激光扩束镜参数、型号等,不管是国产,还是进口品牌的可变倍率激光扩束镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合可变倍率激光扩束镜相关的耗材配件、试剂标物,还有可变倍率激光扩束镜相关的最新资讯、资料,以及可变倍率激光扩束镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

可变倍率激光扩束镜相关的厂商

  • 昆山瑞博骏激光科技有限公司是一家专业从事激光行业配件产品的研发,生产和销售的高新科技企业,主要致力于激光打标机、切割机和焊接机等激光设备易损件的销售供应,主要产品有: Nd:YAG激光晶体棒、激光灯(氪灯、氙灯)、激光护目镜(激光眼镜、光子美容眼镜眼罩)、光学扫描振镜、聚焦镜、全反镜、输出镜、扩束镜、Q开关及驱动器 (声光Q开关、电光Q开关)、滤紫外管、调光相纸、倍频片、激光电源等 因为专业,所以卓越。公司始终坚持以市场为导向,以技术为核心,以服务为宗旨的方针,积极研发,生产满足客户需求的各类激光配件产品,专注于为客户提供更专业、更细致的激光技术服务。
    留言咨询
  • 本公司是一家专业从事激光产品研发的高科技公司,拥有雄厚的技术设计和生产能力,终身致力于为国内外客户提供品质优良、性能出众、价格有竞争力之产品。目前已开发出多种半导体激光产品,其中激光标线器是一种方便实用的标线工具。可广泛用于作服装钉钮点光源定位、裁布机裁布辅助标线、缝纫机/裁剪机/钉钮机/自动手动断布机辅助标线定位、裁床裁剪对格与对条、电脑开袋机标线等等。方便快捷、直观实用。。  产品主要包括:半导体激光器、激光准直光源、激光平行光管、激光标线仪、光学透镜、实验室教学光源、激光功率计等。  半导体激光器主要包括绿光(532nm)系列激光器、红光(635nm、650nm、780nm)系列激光器和红外(808nm、850nm、980nm)系列激光器。  激光准直光源主要包括:D-系列(点状光斑)激光器、L-系列(一字线)激光器、S-系列(十字线)激光器、T1-系列(功率可调)激光器、T2-系列(频率调制)激光器,P-系列(平行光管)激光器,B-系列激光标线仪。其中D-系列激光器光束发散度可达0.1mrad;L-系列激光器线宽最小可达0.3mm;调制(T2)激光器调制范围0-10KHz。P-系列激光平行光管口径可达40mm,光束发散度可达0.02mrad。  激光功率计可标定532nm、635nm、650nm、780nm、808nm、850nm、980nm、1100nm各波段,工作同时可监测电流。  我公司激光产品及光学产品可广泛应用于科研、工业、勘探、测量及医疗等领域。可以根据用户的特殊要求设计加工专用激光器及光学系统,也可以提供激光系统应用和特殊用途的批量供应。“团结、自信、坚韧、进取”是我们的企业宗旨,我们将一如既往地为用户提供高品质的产品。
    留言咨询
  • 华日激光坚持以市场需求引领新产品的研发,为客户提供纳秒、皮秒、飞秒等多种脉冲宽度,红外、绿光、紫外、深紫外等多种波长的激光器产品,所有产品均具备自主产权,同时产品通过欧盟CE质量安全认证,完全满足严苛条件下的工业加工要求,是超精细加工领域的理想光源。同时通过与全球高端激光设备制造商在电子电路、硬脆材料、半导体、新能源、生命科学等领域开展紧密合作,为用户提供全面的激光技术解决方案。
    留言咨询

可变倍率激光扩束镜相关的仪器

  • 激光扩束镜 400-628-5299
    由两个或更多透镜组成,可以改变通过它的光束的尺寸和角偏向特性。扩束镜可以被用于 1) 在光束被聚焦之前扩大光束,从而得到更小的聚焦光斑;2)提高光束的准直特性。1.LBE系列激光扩束镜选型表:型号波长(nm)扩束倍数最大入光直径(mm)最大出光直径(mm)透过率L(mm)D(mm)接口D1LBE532-453241040>95%8045M22*0.75LBE532-553251030>95%8037M22*0.75LBE532-1053210730>92%8037M22*0.75         LBE633-3632.831030>95%8337M22*0.75LBE633-4632.841030>95%8337M22*0.75LBE633-5632.851030>95%8337M22*0.75         LBE1064-3106431030>95%8037M22*0.75LBE1064-4106441030>95%8037M22*0.75LBE1064-5106451030>95%8037M22*0.752.其他规格激光扩束镜(进口)A. 扩束镜(进口) 说明: 透镜结构:伽利略式2枚; 镀膜:防反射多层膜;选型表: 型号波长(nm)扩束倍数最大入光直径(mm)A(mm)B(mm)重量(kg)LBE-3400~7003&Phi 3.862.956.90.12LBE-5400~7005&Phi 2.761.955.90.12LBE-10400~70010&Phi 1.7127.9121.90.18LBE-3L780~8303&Phi 3.863.357.30.12LBE-5L780~8305&Phi 2.762.356.30.12LBE-10L780~83010&Phi 1.7128.8122.80.18LBE-3Y10643&Phi 3.863.857.80.12LBE-5Y10645&Phi 2.763.857.80.12LBE-10Y106410&Phi 1.7129.8123.80.18 尺寸图:B. 屈光度可调式激光扩束镜(进口)尺寸图:屈光度可调激光扩束镜(SIGMA)选型表:型号设计波长(nm)扩束倍数最大A(mm)安装螺纹C(mm)直径D(mm)BE-3-266266× 3.079.5(± 4)M34 P=148BE-4-266266× 4.090.5(± 4)M34 P=148BE-10-266266× 10.0173.0(± 4)M34 P=148BE-3-355355× 3.083.0(± 4)M34 P=148BE-4-355355× 4.094.5(± 4)M34 P=148BE-5-355355× 5.0125.0(± 4)M34 P=148BE-7.5-355355× 7.5134.0(± 4)M34 P=148BE-10-355355× 10.0181.0(± 4)M34 P=148LBED-3400~700× 3.042.0(+3,-2)M22 P=0.7526BE-4.1-V400~700× 4.162.0(± 3)M22 P=0.7526LBED-5400~700× 5.050.5(± 3)M22 P=0.7526BE-6-V400~700× 6.0102.0(± 3)M22 P=0.7536LBED-10400~700× 10.0109.5(± 3)M22 P=0.7536BE-12.6-V400~700× 12.6138.0(± 3)M22 P=0.7536BE-21-V400~700× 21.0241.0(± 3)M22 P=0.7546BE-2-LD780~830× 2.0053.0(± 4)M34 P=148BE-4-LD780~830× 4.0095.5(± 4)M34 P=148BE-5-LD780~830× 5.0125.5(± 4)M34 P=148BE-10-LD780~830× 10.0186.5(± 4)M34 P=148LBED-2Y1064× 2.049.0(± 4)M34 P=148BE-7-10641064× 7.0179.5(± 4)M34 P=148BE-10-10641064× 10.0188.5(± 4)M34 P=148 C. 扩束倍数可调的激光扩束镜 尺寸图及说明: 扩束倍数可调的激光扩束镜SIGMA选型表:型号设计波长(nm)扩束倍数最大入射光直径(mm)安装螺纹(mm)重量(kg)LBEZ632.8× 2.5 ~× 10&Phi 2M30× 10.74
    留言咨询
  • LEB系列激光扩束镜: 由两个或更多透镜组成,可以改变通过它的光束的尺寸和角偏向特性。扩束镜主要用于: 1) 在光束被聚焦之前扩大光束,从而得到更小的聚焦光斑;2) 提高光束的准直特性。 LEB系列激光扩束镜结构图 选型表: 型号波长(nm) 扩束倍数最大出光直径(mm) 透过率L(mm) D(mm) 接口D1 LBE532-4 532 4 30 >95% 80 37 M22×0.75 LBE532-5 532 5 30 >95% 80 37 M22×0.75 LBE532-10 532 10 48 >92% 127 57 M22×0.75 LBE633-5 632.8 5 30 >95% 80 37 M22×0.75 LBE1064-4 1064 4 30 >95% 80 37 M22×0.75 LBE1064-5 1064 5 30 >95% 80 37 M22×0.75
    留言咨询
  • 西格玛激光扩束镜在简易实验中扩大激光光束的光束扩束器。已经调整固定在射入准直光束时,射出最佳的准直光束。所以只要直接入射激光光束,就可以得到简单扩大的准直光束。 光束扩束器的光学系统为没有胶合透镜的空气隙型透镜构造,因此,高能量激光也可以使用。 采用伽利略型透镜构造,减少了校正像差的透镜数量,缩短了光束扩束器的全长。 可见光型的扩束器,可以直接安装在He-Ne激光器(05-LHP)的射出口处。 西格玛激光扩束镜注意:?相对入射光轴倾斜方向安装光束扩束器时,从扩束器射出的光束将相对入射光轴倾斜射出。安装光束扩束器时要使入射光束垂直射入或请使用可以调整光束扩束器的倾斜角度的支架。?相反朝向使用光束扩束器时,不能形成光束口径缩小了的准直光线。请计算激光光束的发散角度或束腰的位置,使用其它适当的光学系统。?入射光束是发散光或收缩光时,射出光束可能不能变为准直光束。西格玛激光扩束镜外形图
    留言咨询

可变倍率激光扩束镜相关的资讯

  • 周光敏/丘陵AFM:亲锂设计+3D打印,实现50C倍率的锂金属电池
    第一作者:Shuyan Ni,Jinzhi Sheng通讯作者:周光敏,丘陵 通讯单位:清华大学深圳国际研究生院背景介绍:锂金属是下一代高能量密度可充电电池负极的终极选择而备受关注。然而,不可控的枝晶生长、死锂的形成以及锂金属负极的大体积变化会导致严重的安全隐患,例如短路、起火甚至爆炸。引入锂宿主材料可能是缓解上述问题的优异策略,氧化石墨烯(GO)薄膜具有优异的亲锂性,这对于在合成过程中实现均匀的熔融锂注入和电池循环中的低锂成核势垒至关重要。然而,用作锂宿主的全致密GO薄膜存在许多问题。金属锂倾向于在电极的上表面沉积和剥离,且沉积的锂金属会阻碍电解液的进入和离子传输,导致枝晶生长、SEI破裂和内部电极表面的损失。值得关注的是,电极中不那么曲折的离子传输路径会在电解液中产生低的锂离子浓度梯度和均匀的电极电流密度。成果介绍:鉴于此,清华大学深圳国际研究生院周光敏副教授和丘陵副教授等人采用连续离心铸造法制备了大面积氧化石墨烯(GO)作为锂金属的宿主,然后使用3D打印模板通过简单的冲压方法在其中制造对齐的微通道。GO基体有效地调节了锂的沉积/剥离行为,而对齐的通道均匀地分布了锂离子通量并提供了短的锂离子扩散路径。同时,Li/多孔GO复合材料具有柔韧性,其可控厚度为50至150µm,对应的容量为9.881至27.601 mAh cm-2。结果表明,所制备的负极在循环100小时后具有30 mV的低过电位,≈3538 mAh g-1的高容量(理论容量的91.4%),以及匹配LiFePO4正极在高达50 C的倍率下展现出优异的循环性能。此外,多孔GO/Li电极还与其他正极配对并用于软包电池,表明其适用于各种高能电池系统。相关论文以“Dendrite-Free Lithium Deposition and Stripping Regulated by Aligned Microchannels for Stable Lithium Metal Batteries”为题发表在Adv. Funct. Mater.。研究亮点:1. 耦合亲锂和结构设计,得到的电极具有柔韧性,可以多次折叠和展开,厚度可控。GO中排列的通道能够均匀分布锂离子通量,提供更短的扩散路径;2. 复合负极具有低于30 mV的低过电位和超过400小时的长寿命。组装了与 LiFePO4正极匹配的电池,在20 C的高倍率下具有93 mAh g-1的容量和超过600 次的长循环寿命;3. 与LiNi0.8Co0.1Mn0.1O2正极配对时,其容量为117.9 mAh g-1,并在150个循环后保持稳定;图1. GO致密薄膜的制备及表征图2. GO/Li电极的锂沉积/剥离过程图3. 循环过程中的极化测试图4. 循环前后的形貌和阻抗演变图5. 全电池测试Shuyan Ni, Jinzhi Sheng, Chang Zhang, Xin Wu, Chuang Yang, Songfeng Pei, Runhua Gao, Wei Liu, Ling Qiu,*Guangmin Zhou*,Dendrite-Free Lithium Deposition and Stripping Regulated by Aligned Microchannels for Stable Lithium Metal Batteries,2022来源:顶刊收割机,转载目的在于传递更多信息,如涉及作品内容、版权或其它问题,请于我司联系,我们将在第一时间删除内容!
  • 世界最大激光器:192束激光点燃人造太阳
    经过10余年设计制造、35亿美元投资,美国建成世界最大激光器  新浪科技讯 北京时间5月7日消息,据美国《连线》杂志网站报道,在劳伦斯利弗莫尔国家实验室(LLNL)国家点火设施(NIF)的科学家,希望利用192个激光器和一个由400英尺长的放大器及滤光器阵列构成的装置,制造出一个像太阳或者爆炸的核弹一样的自维持聚变反应堆(self-sustaining fusion reaction)。最后一批激光器安装完毕后,《连线》网站记者参观了这个点火设施。观看看世界上最先进的科学设备。  1.美国“国家点火装置”  这个大部头看起来可能很像迈克尔贝执导的《变形金刚》中的人物,但是这个大型机器很快就会成为地球上的恒星诞生地。  美国“国家点火装置” 位于加州,投资约合24亿英镑,占地约一个足球场大小。科学家希望该激光器能模仿太阳中心的热和压力。“国家点火装置”由192个激光束组成,产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。2010年,192束激光将被汇聚于一个氢燃料小球上,创造核聚变反应,打造出微型“人造太阳”,产生亿度高温。  2.庞大的靶室  庞大的靶室  在庞大的靶室里,192束激光束进入直径是33英尺的蓝色真空室,在那里跟一个胡椒瓶大小的目标物相撞。然后这些光束会以动力较低的红外线的形式,从该仪器的不同部位出来,这个部位跟DVD播放器的内部结构类似。接着激光经过一系列复杂的放大器、过滤器和镜子,以便变得足够强大和精确,可以产生自维持聚变反应堆。  3.包含放射性氢同位素、氘和氚的铍球  包含放射性氢同位素、氘和氚的铍球  这个铍球包含放射性氢同位素、氘和氚。科学家将利用这个系统的192个激光器产生的X射线轰击它。核子熔合的关键是有足够的能量把两个核子熔合在一起,在这项实验中用的是氢核子。由于把两个核子分开的斥力非常强,因此这项任务需要利用极其复杂的工程学和特别多的能量。  例如,在光束进入真空室(包含图片上方的目标物)之前,激光必须通过巨大的合成水晶,转变成紫外线。发射到真空室里的光束会进入一个被称作黑体辐射空腔(hohlraum)的豆形软糖大小的反射壳(reflective shell)里,光束的能量在这里产生高能X射线。从理论上来说,X射线的能量应该足以产生可以克服电磁力的热和压力,这样核子就能熔合在一起了。电磁力促使同位素的核子分开。  4.靶室顶部的起重机和气闸盖  靶室顶部的起重机和气闸盖  在第一张照片的靶室顶上,是用来把底部仪器放入真空室的起重机和气闸盖。如果这个仪器产生作用,它将成为未来发电厂的前身,将提高科学家对宇宙里的力的理解。当常规核试验被禁止的时候,它还有助于我们了解核武器内部的工作方式。  5.精密诊断系统  精密诊断系统  激光束将被发射到精密诊断系统里,以在它进入靶室以前,确定它能正常工作。  6.激光间  激光间  在激光间(laser bay)里眺望,会看到国家点火设施的激光间2号向远处延伸超过400英尺,激光在从这里到达靶室的过程中,会被放大和过滤。过去35年间,科学家在劳伦斯利弗莫尔国家实验室建设了另外3个激光熔合系统,然而它们都不能生成足够达到核子熔合的能量。第一个激光熔合系统——Janus在1974年开始运行,它产生了10焦耳能量。第二项试验在1977年实施,这个激光熔合系统被称作Shiva,它产生了10000焦耳能量。  最后一项实验在1984年实施,这个被称作Nova的激光熔合项目产生了30000焦耳能量,这也是它的制造者第一次相信通过这种方法可以实现核子熔合。国家点火设施科研组制造的这个最新系统有望产生180万焦耳紫外线能量,科学家认为这些能量已经足以在劳伦斯利弗莫尔国家实验室里产生一个小恒星。  7.磷酸盐放大玻璃  磷酸盐放大玻璃  国家点火设施包含3000多块混合着钕的磷酸盐放大玻璃,这是在熔合试验中用来增加激光束的能量的一种基本材料。这些放大玻璃板隐藏在密封的激光间周围的围墙里。  8.技术人员在激光间里安装光束管  技术人员在激光间里安装光束管  技术人员在激光间里安装光束管,激光通过这些管会进入调试间。激光在调试间里会被重新改变运行路线,并重新排列,然后被输送到靶室里。  9.紧急停运盘  紧急停运盘  在整个国家点火设施里,标明激光位置的紧急停运盘(emergency shutdown panels),可在激光发射时,为那些在错误的时间站在错误的地方的科学家和技术人员提供安全保障。  10.光导纤维  光导纤维  光导纤维(黄色电缆部分)把低能激光传输到能量放大器里。然后在通过混有钕的合成磷酸盐的过程中,利用强大的频闪放电管放大。  11.能量放大器  能量放大器  能量放大器隐藏在天花板上的金属覆盖物下面,它含有可增大激光能量的玻璃板。在激光刚刚进入放大玻璃前,灯管把能量吸入玻璃里,接着激光束会获得这些能量。  12.可变形的镜子  可变形的镜子  可变形的镜子隐藏在天花板上覆盖的银膜下面,这种镜子是被用来塑造光束的波阵面,并弥补它在进入调试间前出现的任何缺陷。每个镜子利用39个调节器改变镜子表面的形状,纠正出现错误的光束。你在照片中看到的电线是用来控制镜子的调节器的。  13.激光放大器  激光放大器  激光束在进入主放大器和能量放大器前,较低前置放大器会放大激光束,并给它们塑形,让它们变得更加流畅。  14.便携式洁净室  便携式洁净室  科学家利用一个独立的便携式洁净室(CleanRoom)运输和安置能量放大器和其他元件,这个洁净室就像用来装配微芯片的小室。  15.能量放大器  能量放大器  每个能量放大器都被安装在洁净室附近,然后利用遥控运输机把它们运输到梁线所在处。  16.技术人员校对能量放大器  技术人员校对能量放大器  从照片中可以看到,能量放大器在被放入梁线以前,技术人员正在对它进行校对。  17.模仿NASA的主控室  模仿NASA的主控室  照片中的主控室看起来跟美国宇航局的任务控制中心很相似,这是因为前者是模仿后者建造的。国家点火设施并不是利用这个主控室把火箭发射到外太空,而是设法通过激光,利用它把恒星的能量(核子熔合)带回地球。  18.光束源控制中心  光束源控制中心  光束源控制中心即已知的主控振荡器室,看起来跟数据中心(Server Farm)很像,但是这个控制中心不是利用电脑,而是安装了一排排架子。光束通过光纤前往能量放大器的过程中,看起来就像网络供应商使用的网络。  19.国家点火设施的激光源  国家点火设施的激光源  国家点火设施的激光是从一个相对较小、能量较低,并且比较呆板的盒子里发射出来的。这个激光器呈固体状态,跟传统激光指示器没有多大区别,不过它们发射的光波波长不一样,前者是红外线,后者是可见光。  20.高能灯管  高能灯管  高能灯管(flashlamps)跟照相机里的灯管一样,但是前者的体积超大,它可以用来激发激光。每束光束刚产生时,强度仅跟你的激光指示器发出的激光强度一样,但是它们在二十亿分之一秒内,强度就能曾大到500太拉瓦,大约是美国能量输出峰值时功率的500倍。  这一结果是能实现的,因为该实验室里拥有巨大的电容器,里面储存了大量能量。这个电容器非常危险,当它充电后,这个房间将被封闭,禁止任何人靠近,以免出现高压放电现象,伤着来访的人。  国家点火设施的外面看起来很像《半条命(Half-Life)》的拍摄现场,这种普通的外观掩饰了在里面进行的历史性科学研究。(孝文) 英刊揭秘世界最强激光产生过程(组图)  导读:2009年4月,耗资达35亿美元的美国“国家点火装置”(NIF)正式开始进行相关实验,并计划于2010年最终实现聚变反应。届时会将192束激光同时照射在一个微小的目标上,是迄今世界上性能最强大的激光装置。英国《新科学家》杂志网站13日撰文揭秘世界最强激光产生过程。以下为全文:  “国家点火装置”是美国国家核安全管理局(NNSA)的库存管理计划的关键环节。在受控实验室条件下,“国家点火装置”将进行聚变点火和热核燃烧实验,实验结果将为NNSA提供相关武器生产条件的实验手段。这些条件对NNSA在不开展地下核试验的条件下评估并验证核武库的工作至关重要。“国家点火装置”实验将研究武器效应、辐射输运、二次内爆和点火相关的物理学机理,并支持库存管理计划继续取得成功。“国家点火装置”是目前世界上最大和最复杂的激光光学系统,用于在实验室条件下实现人类历史上的第一次聚变点火。192束矩形激光束将在30英尺的靶室中实现会聚,其中靶室内含有直径为0.44厘米的氢同位素靶丸。发生聚变反应时,温度可达到1亿度,压力超过1000亿个大气压。  以下是“国家点火装置”产生最强激光的几大步骤:  1、安装球形外壳     安装球形外壳  为了产生聚变所必须的高温和高压,“国家点火装置”将汇聚其所有192束激光束同时射向一个氢燃料目标之上。“国家点火装置”呈球形(如图所示),直径约为10米,重约130吨。装置内有一个目标聚变舱,点火实验就发生于目标聚变舱内。整个球体由18块铝材外壳拼接而成,每块外壳均约10厘米厚。球体外壳上正方形窗口就是激光束的入口,而圆形窗口则是用来安装和调节诊断装置,诊断装置共有近100个分片。  2、用调节器调整靶位     用调节器调整靶位  这是目标聚变舱内部的照片。激光束通过外壳上的入口进入目标舱,把将近500万亿瓦特的能量瞄准于位置调节器的尖端。图中右侧的长形带有尖端的物体就是位置调节器,每次实验的目标氢燃料球就置放于尖端之上。当所有激光束全部投入时,“国家点火装置”将能够把大约200万焦耳的紫外线激光能量聚焦到小小的目标氢燃料球之上,它比此前任何激光系统所携带能量的60倍还要多。当激光束的热和压力达到足以熔化小圆柱目标中氢原子的时候,所释能量要比激光本身产生的能量更多。氢弹爆炸和太阳核心会发生这类反应。科学家相信,总有一天通过核聚变而不是核裂变会产生一种清洁安全的能源。  3、将燃料放入燃料舱(圆柱体)     将燃料放入燃料舱(圆柱体)  进入“国家点火装置”的所有192束激光束都将被引向图中这个铰笔刀大小的圆柱体。该圆柱体中将装有聚变实验所使用的目标燃料,目标燃料就是约为豌豆大小的球状冰冻氢燃料。实验时,激光束将通过各自窗口进入目标舱内,从各个方向压缩和加热氢燃料球,希望能够产生自给能量的聚变反应。曾经有不少科学家认为可控核聚变反应是不可能实现的。近年来,科学家找到了一些点燃热聚变反应的方法,美国研究人员找到的方法是利用高能激光。虽然科学家们也尝试了其他种核聚变发生技术,但从已完成的实验效果看,激光技术是目前最有效的手段。除激光外,利用超高温微波加热法,也可达到点燃核聚变的温度。  4、压缩并加热燃料     压缩并加热燃料  所有激光束进入这个金属舱内部时,他们将产生强烈的X光线。这些X光线不仅仅可以把豌豆大小的氢燃料球压缩成一个直径只有人类头发丝截面直径大小的小点,它还能够将其加热到大约300万摄氏度的高温。尽管激光的爆发只能持续大约十亿分之一秒,但物理学家们仍然希望这种强烈的脉冲可以迫使氢原子相互结合形成氦,同时释放出足够的能量以激活周围其他氢原子的聚变,直到燃料用尽为止。在激光点火装置内,一束红外线激光经过许多面透镜和凹面镜的折射和反射之后,将变成一束功率巨大的激光束。然后,研究人员再将该激光束转变为192束单独的紫外线激光束,照向目标反应室的聚变舱中心。当激光束照射到聚变舱内部时,瞬间产生高能X射线,压缩燃料球芯块直至其外壳发生爆裂,直到引起燃料内部的核聚变,从而产生巨大能量。  5、用磷酸二氢钾晶体转换激光束     用磷酸二氢钾晶体转换激光束  激光束在进入目标舱内之前,必须要先由红外线转换成紫外线,因为紫外线对加热目标燃料更为有效。激光转换过程必须要使用磷酸二氢钾晶体。图中的这块磷酸二氢钾晶体重约360公斤。首先将一粒籽晶放入一个高约2米的溶液桶中,经过两个月的培养才可形成如此巨型的晶体。然后将晶体切割成一个个截面积约为40平方厘米的小块。“国家点火装置”共需要大约600多块这样的晶体小块。“国家点火装置”将被用于一系列天体物理实验,但是,它的首要目的是帮助政府科学家确保美国“老年”核武器的可靠性。“国家点火装置”项目的建造计划于上世纪90年代早期提出,1997年正式开始建设。(刘妍)
  • 激光共聚焦荧光显微镜 活体荧光物质检查
    激光共聚焦荧光显微镜 活体荧光物质检查激光共聚焦显微镜,简称CLSM(Confocal Laser Scanning Microscopy),是一种利用激光共振效应进行成像的显微镜。它通过使用激光束扫描样品的不同层面,将所得到的图像合成成一幅清晰的三维图像。与传统显微镜相比,激光共聚焦显微镜具有更高的分辨率和更强的穿透能力,可以观察到更加细微的结构和更深层次的物质。在活体荧光物质的检查中,激光共聚焦显微镜发挥了重要的作用。通过标记活体细胞或组织的特定结构或分子,激光共聚焦显微镜可以实时观察到这些结构或分子的活动和分布情况。在生物医学领域,它可以用于观察细胞的生长、分裂和死亡过程,研究细胞信号传导和分子交互作用等。在药物研发中,它可以用于观察药物在活体细胞或组织中的分布情况,评估药物的疗效和毒性。此外,在神经科学领域,激光共聚焦显微镜可以用于观察神经元的活动和连接,揭示大脑的工作机制。NCF950激光共聚焦显微镜较宽场荧光显微镜的优点:&bull 能够通过荧光标本连续生产薄(0.5至1.5微米)的光学切片,厚度范围可达50微米或更大。(主要优点)&bull 控制景深的能力。&bull 能够从样品中分离和收集焦平面,从而消除荧光样品通常看到的焦外“雾霾”,非共焦荧光显微镜下无法检测到。(最重要的特点)&bull 从厚试样收集连续光学切片的能力。&bull 通过三维物体收集一系列图像,用于二维或三维重建。&bull 收集双重和三重标签,精确的共定位。&bull 用于对在不透明的图案化基底上生长的荧光标记细胞之间的相互作用进行成像。&bull 有能力补偿自发荧光。耐可视共聚焦成像效果图 尼康共聚焦成成像效果图NCF950激光共聚焦显微镜应用,共聚焦显微镜在以下研究领域中应用较为广泛:1、细胞生物学:细胞结构、细胞骨架、细胞膜结构、流动性、受体、细胞器结构和分布变化、细胞凋亡;2、生物化学:酶、核酸、FISH、受体分析3、药理学:药物对细胞的作用及其动力学;4、生理学:膜受体、离子通道、离子含量、分布、动态;5、遗传学和组胚学:细胞生长、分化、成熟变化、细胞的三维结构、染色体分析、基因表达、基因诊断;6、神经生物学:神经细胞结构、神经递质的成分、运输和传递;7、微生物学和寄生虫学:细菌、寄生虫形态结构;8、病理学及病理学临床应用:活检标本的快速诊断、肿瘤诊断、自身免疫性疾病的诊断;9、生物学、免疫学、环境医学和营养学。NCF950激光共聚焦显微镜配置NCF950激光共聚焦配置表激光器激光405 nm、488 nm、561 nm、640 nm探测器波长:400-750nm,探测器:3个独立的荧光检测通道;1个DIC透射光检测通道扫描头最大像素大小:4096 x 4096 扫描速度:2 fps(512 x 512像素,双向),18 fps(512 x 32像素,双向),图像旋转: 360°扫描模式X-T, Y-T, X-Y, X-Y-Z, X-Y-Z-T针孔无级变速六边形电动针孔;调节范围:0-1.5毫米共焦视场φ18mm内接正方形图像位深12bits配套显微镜NIB950全电动倒置显微镜光学系统NIS60无限远光学系统(F200)目镜(视野)10×(25),EP17.5mm,视度可调-5~+5,接口Φ30观察镜筒铰链式三目观察镜筒,45度倾斜,瞳距47-78mm,目镜接口Φ30,固定视度;1)目/摄切换:(100/0,50/50,0/100);2)目视/关闭目视/可调焦勃氏镜NIS60物镜10×复消色差物镜,NA=0.45 WD=4.0 盖玻片=0.1720×复消色差物镜,NA=0.75 WD=1.1 盖玻片=0.1760×半复消色差物镜,NA=1.40 WD=0.14 盖玻片=0.17 油镜100×复消色差物镜,NA=1.45 WD=0.13 盖玻片=0.17 油镜物镜转换器电动六孔转换器(扩展插槽),M25×0.75聚光镜6孔位电动控制:NA0.55,WD26;相衬(10/20,40,60选配)DIC(10X,20X/40X)选配.空孔照明系统透射柯拉照明,10W LED照明;落射照明:宽场光纤照明6孔位电动荧光转盘(B,G,U标配);电动荧光光闸;中间倍率切换手动1X,1.5X、共焦切换机身端口分光比:左侧:目视=100:0;右侧:目视=100:0;平台电动控制:行程范围130 mm x100 mm (台面325 mm x 144 mm )最大速度:25mm/s;分辨率:0.1μm - 重复精度:3μm。机械可调样品夹板调焦系统同轴粗微动升降机构,行程:焦点上7下2;粗调2mm/圈,微调0.002mm/圈;可手动和电动控制,电动控制时,最小步进0.01um;DIC插板10X,20X,40X插板;可放置于转换器插槽;选配控制摇杆,控制盒,USB连接线软件软件:NOMIS Advanced C图像显示/图像处理/分析2D/3D/4D图像分析,经时变化分析,三维图像获得及正交显示,图像拼接,多通道彩色共聚焦图像

可变倍率激光扩束镜相关的方案

可变倍率激光扩束镜相关的资料

可变倍率激光扩束镜相关的试剂

可变倍率激光扩束镜相关的论坛

  • 像元与有效放大倍率

    像元与有效放大倍率

    放大倍率:M=L/l  L显示器边长  l电子束在样品表面的扫描长度有效放大倍率:人眼明视分辨率/束斑直径  人眼明视分辨率取值不统一,0.2或0.3mm显示器解析度:设置的行数*列数。其最高设置不大于物理解析度像素:由显示器解析度确定的最小成像单元。其最高像素设置等于荧光粉的直径约0.1mm显示器相对有效放大倍率:显示器相对有效放大倍率=像素大小/电子束直径像元:指为获得充满一个像素的信息而在样品上获取信息的最小单元。像元大小与放大倍率 之间的关系为: 像元大小=像素大小/放大倍率 即r0=rp/M束斑:这里特指电子束激发试样表面而产生二次电子的区域。像元与像素之间有三种配合: a: 放大倍率小于显示器分辨率/束斑直径。此时像元总数大于像素总数行*列。此时将有一个以上像元重叠为一个像素灰度。显然一个像素小于人眼分辨率,故图像清晰。但这也是有一定限度的。过分降低放大倍率会有更多不同灰度的像元重叠为同一灰度的像素。这使图像失去细节和降低锐度。另外,随着放大倍率的降低,按照上式像元尺度r0增大,其结果是在一个像元里包含了两个以上束斑,即像元里出现了重叠束斑。如下图所示。http://ng1.17img.cn/bbsfiles/images/2012/01/201201020021_343626_1609375_3.jpg尽管有重叠束斑但像元仍未能被束斑填满,还有许多空白。像元所收集到的信息明显减弱。放大倍率越低,这种现象越严重。所以过分降低放大倍率图像会模糊。此时解决办法只有加大束斑。我们可以从新聚焦使图像清晰起来,这事实上是将束斑散大了一些。b 放大倍率等于显示器分辨率/束斑直径。像元总数=像素总数行*列,此时一个像元占据一个像素。像素尺度小于人眼分辨率,图像清晰。就一般地调节来说特别是在低倍率时,大多数情况下一个像元未必被一个束斑填满,但不影响清晰度。如果有意识的使束斑填满像元(仔细聚焦),那将是更好的照相条件。c: 放大倍率大于显示器分辨率/束斑直径。不恰当的高放大倍率并超过了有效放大倍率。这使得像元总数小于像素总数行*列,此时一个以上像素显示同一个像元。这等于将像元放大了若干倍,很容易超过人眼分辨率使图像模糊。像元在有效放大倍率下,图像分辨率设置也有三种情况a: 高分辨率设置:像元总数小于像素总数行*列。一个像元占据一个以上像素,由于像元在有效放大倍率下,因而图像清晰。b: 等分辨率设置c: 低分辨率设置:像元总数大于像素总数行*列。一个像素要重叠一个以上像元。当像元的叠加大于人眼分辨率时,这种叠加会使灰度等级不同的一个以上像元融合为一个灰度等级的像素而使图像失去细节,锐度下降,图像模糊。上面使用的是显示器分辨率。它的最高分辨率是0.1mm 。人眼只能同时看到两个融合在一起的灰度像素,故有效放大倍率至少还可以再提高一倍。

  • 【求助】关于放大倍率,有效放大倍率,像元的问题,请教各位前辈

    小弟刚接触电镜不久,看书后有很多疑惑一直无法得到解答,自己百思也不得其解。希望各位前辈能够在此传师授道解惑也。1,有效放大倍率的概念?我看书上写是 人眼分辨率比上机器分辨率。这样的话3nm分辨率钨灯丝扫描电镜,那么比出来的倍率就是大概7万倍。 但是为什么各厂家的指标都不是这么多??而是30万倍到100万倍的都有。2,放大倍率,书上放大倍率的概念是 显示器上实际大小比上样品扫描大小。请问这个和有效放大倍率有什么区别??3,像元的概念,书上是有个公式 100/M放大倍数 并且给到一个束斑孔径的关系。 像元根据计算能得出大概 10万倍的放大倍数,像元就是1nm了,这样远远小于束斑孔径,所以10万倍以上的相片是没有意义的。。这是书上讲的, 这里的疑惑是 这里的放大倍数能达到10万倍但是没有意义和 上面所讲的两个放大倍数的概念有什么区别????充满疑问,希望各位前辈能够指点迷津。。。。详细的给出解答!!

  • 【讨论】这样理解显微镜的放大倍率对吗?

    对于体视显微镜来说,其光学的物镜最多也就是5x,目镜为10x;则人眼通过目镜看到的——总放大倍率=物镜放大×目镜放大=50x然后如果物镜再添个辅助物镜2x,则最大放大100x。对于电脑总的放大倍率来讲,和目镜没有关系,只和物镜和ccd的放大有关:总放大倍数 = 物镜放大倍数 * 数字放大倍数 如果常用的1/2''ccd镜头,其对角线长度为8mm则通过计算机(14''显示器)看到的——总放大倍率=物镜的放大倍数*(电脑屏幕的对角线/ccd或者cmos的靶面尺寸)=5×(14×24.5÷8)=210倍【【【请问大侠:这样计算对吗?也就是说,按照目前的体视显微镜来物镜最大五倍的前提来说,经过摄像头的放大,一般也就是200多倍!囧的是市场上的体视显微镜四五百倍、甚至上千倍是咋计算的呢?谢谢指教】】】】ps 1英寸—靶面尺寸为宽12.7mm*高9.6mm,对角线16mm。   2/3英寸—靶面尺寸为宽8.8mm*高6.6mm,对角线11mm。   1/2英寸—靶面尺寸为宽6.4mm*高4.8mm,对角线8mm。   1/3英寸—靶面尺寸为宽4.8mm*高3.6mm,对角线6mm。   1/4英寸—靶面尺寸为宽3.2mm*高2.4mm,对角线4mm。

可变倍率激光扩束镜相关的耗材

  • 电动激光扩束镜
    这款电动激光扩束镜,电动激光扩束器是专业为激光光束扩束而研发,它采用精密马达驱动,可计算机控制实现2-12倍扩束。电动激光扩束镜,电动激光扩束器由由中国领先而专业的进口激光器件和仪器旗舰型服务商-孚光精仪进口销售!精通光学,服务科学,为中科院上海光机所,安徽光机所,西安光机所,中国工程物理研究院,哈尔滨工业大学等单位进口激光扩束器.电动激光扩束镜,电动激光扩束器特色像差最小化设计(采用像差补偿技术)即插即用,内置控制器适合飞秒激光和皮秒激光等超快激光扩束内置微控制器直接控制可选安装接口自动放大倍率可调手动放大倍率可调电动激光扩束镜,电动激光扩束器参数规格连续可调放大倍率:2.5x...12X工作波长:340-360nm, 510-540nm, 1020-1070nm材料:光学玻璃或UVFS控制接口:USB2.0, RS232软件平台:WindowsTM入射光束直径:高达10mm出射光束直径:高达48mm整体透过率:98.5%激光损伤阈值:7 J/cm2 for 10 ns pulses @ 1064 nm重量:1kg
  • 变倍激光扩束镜
    ?变倍激光扩束镜,变倍扩束镜,可调倍数扩束镜,Beam Expander由中国领先而专业的进口激光器件和仪器旗舰型服务商-孚光精仪进口销售!精通光学,服务科学,为中科院上海光机所,安徽光机所,西安光机所,中国工程物理研究院,哈尔滨工业大学等单位进口变倍激光扩束镜.这款变倍扩束镜,可调倍数扩束镜,变倍激光扩束镜采用四级设计,扩束倍数2-8倍连续可变,适合激光波长1064nn, 532nm和355nm.这 款变倍扩束镜,可调倍数扩束镜,变倍激光扩束镜放大倍率2-8倍可调,采用伽利略类型设计,包含了空气间隔(Air-Spaced)的透镜,非常适合高功 率激光应用。变倍扩束镜,可调倍数扩束镜,变倍激光扩束镜的外壳采用M27x1螺丝,可以安装到4轴或5轴安装架上使用。这款变倍扩束镜,可调倍数扩束 镜,变倍激光扩束镜适合Nd:YAG激光的几个倍频波长,我们也有适合飞秒激光使用的飞秒激光变倍扩束镜,可调倍数扩束镜,变倍激光扩束镜。变倍扩束镜,可调倍数扩束镜,变倍激光扩束镜特色波前畸变优于λ/42-8X倍率高激光损伤阈值透过率优于97%变倍扩束镜,可调倍数扩束镜,变倍激光扩束镜规格Manually Adjustable 2x - 8x Laser Beam Expander扩大倍数波长 nm入射孔径, mm出射孔径, mm外壳直径, mm外壳长度, mm型号Tunable 2X - 8X10644.5 - 113645 - 50114 - 142BE-MA-1064Tunable 2X - 8X5324.5 - 113645 - 50114 - 142BE-MA-532Tunable 2X - 8X3554.5 - 113645 - 50112 - 142BE-MA-355
  • YAG激光高性能扩束镜
    所属类别:? 光学部件 ?F-Theta透镜与扩束镜所属品牌:日本吉奥马(GEOMATEC)公司日本吉奥马(GEOMATEC)公司是一家全球知名的光学器件制造商。该公司致力于提供平板显示屏、光学薄膜、激光元器件等产品与服务。日本吉奥马公司提供YAG激光高性能扩束镜,适用波长包括1064nm、532nm与355nm,扩束倍率包括1.5X、2X、3X、4X、6X、8X、10X等,该产品是激光精细打标、微加工、激光焊接、激光切割等应用的理想选择!产品规格 (单位:mm) 类型1064nmEXP-1.5EXP-2EXP-3EXP-4EXP-6EXP-8EXP-10532nmEXP(SHG)-1.5EXP(SHG)-2EXP(SHG)-3EXP(SHG)-4EXP(SHG)-6EXP(SHG)-8EXP(SHG)-10355nm--EXP(THG)-3EXP(THG)-4EXP(THG)-6EXP(THG)-8EXP(THG)-10扩束倍率1.5×2×3×4×6×8×10×入射光束直径φ8.0φ8.5φ6.0φ5.0φ3.0φ2.0φ1.8出射光束直径φ12.0φ17.0φ18.0φ20.0φ18.0φ16.0φ18.0 L1064nm63.8 62.362.463.663.563.864.8532nm355nm--63.863.663.763.363.9综合透过率96%UP 紧凑型变焦镜头EPZ-13C(倍率1倍~3倍)EPZ-37C(倍率3倍~7倍)产品规格 (单位:mm)产品型号EPZ-13CEPZ-37C设计波长1064nm倍率1×~3×3×~7×入射光束直径φ8.0(1×)~φ3.5(3×)φ4.5(3×)~φ1.8(7×)出射光束直径φ8.0(1×)~φ10.5(3×)φ13.5(3×)~φ12.6(7×)透过率95%UP 宽幅式变焦镜头EPZ-13W(倍率1倍~3倍 )定制产品产品规格 (单位:mm)产品型号EPZ-13W设计波长1064nm倍率1×~3×入射光束直径φ8.0(1×~3×)出射光束直径φ8.0(1×)~φ24.0(3×)透过率95%UP 紧凑型变焦镜头EPZ(THG)-13C(倍率1倍~3倍)EPZ(THG)-37C(倍率3倍~7倍)定制产品产品规格 (单位:mm)产品型号 EPZ(THG)-13CEPZ(THG)-37C设计波长355nm倍率1×~3×3×~7×入射光束直径φ8.0(1×)~φ4.0(3×)φ4.7(3×)~φ2.0(7×)出射光束直径φ8.0(1×)~φ12.0(3×)φ14.0(3×~7×)透过率95%UP
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制