土壤碳通量监测系统

仪器信息网土壤碳通量监测系统专题为您提供2024年最新土壤碳通量监测系统价格报价、厂家品牌的相关信息, 包括土壤碳通量监测系统参数、型号等,不管是国产,还是进口品牌的土壤碳通量监测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合土壤碳通量监测系统相关的耗材配件、试剂标物,还有土壤碳通量监测系统相关的最新资讯、资料,以及土壤碳通量监测系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

土壤碳通量监测系统相关的厂商

  • 400-860-5168转6184
    奥影检测科技(上海)有限公司,可选多种射线源与探测器的组合,适合扫描大小小型有色金属芯片、复合材料电子器件、化石生物样本岩心、渗透模拟土壤岩石样品等。奥影检测提供工业CT系统OEM/ODM生产,研发生产了高能加速器工业CT、双源双探测器工业CT、微焦点CT、计量型工业CT、纳米CT、平板快速CT、原位加载CT等等。
    留言咨询
  • 山东赛锐特检测仪器自成立以来就致力于纺织类色牢度,刮擦,透气性,磨耗,燃烧,汗渍,物性,拒水性,防水,皮革,等测试标准推广,涵括测试仪器、实验消耗品,及专业测试标准、测试方法手册。主要经营的产品包括:颜色及色彩评价、显微及法政检验、床垫测试仪器、地毯测试仪器、玩具测试仪、湿度测量控制系统、土壤温湿度计附件、透气性测试仪、单向耐磨仪、皮革及鞋材测试仪、过滤材料测试仪、交通工具类测试仪、 耐候及老化测试仪、高加速老化测试系统、烘箱环境设备、轻工及包装材料测试仪、电子电器测试仪、光化光谱及其它测试仪。致力于提供材料测试方面的实验室整体解决方案,并为质量检测机。全面负责中国大陆及亚太地区的销售及售后服务,维修中心,有专业的培训和设备维护工程师,在测试领域的雄厚实力和丰富的经验,为各个领域的客户提供了切合实际的检测需求的检测设备和测试解决方案,包括实验室设计、仪器配置、标准培训、实验室认证以及售后服务。
    留言咨询
  • 简介:华谨检测致力于检测认证行业的发展,专业从事各种物料检测与认证服务,凭借公司强大的技术力量和经济实力,不断开发出具有国际先进技术水平的一流实验室。服务范围广泛适用于金属、矿产、水质、油品、纺织、塑料、橡胶、冶金、建筑、农产品、化工、制药、铸造、食品、土壤等各行业的产品检测与认证。检测项目:金属检测、矿石检测、水质检测、油品检测、环保检测、煤炭检测、产品认证、工厂验货、无损探伤、纺织检测、环评检测、配方分析。
    留言咨询

土壤碳通量监测系统相关的仪器

  • 土壤碳通量监测系统 400-860-5168转1218
    ACE 土壤碳通量监测系统 土壤碳通量:碳收支研究中一个重要的数据空气中CO2的快速升高对未来的气候会产生巨大的影响,这个问题逐渐成为了国际政治和经济研究的一个焦点问题。土壤呼吸研究土壤产生的净CO2的量,土壤产生的气体的量是土壤微生物活性的一个重要指标,同时也是土壤健康的指标。土壤的碳通量受到各种环境因子的干扰,如:有机物含量,土壤水份,土壤温度。自然届土壤中生物体的呼吸是主要的碳源。理解土壤碳通量及其它与其他的元素流量间的关系,有利于我们研究全球气候问题。为了方便研究者长期在野外监测土壤的碳通量,我们特开发了ACE土壤碳通量监测系统,在监测碳通量的同时,我们还可以对一些干扰碳通量的环境因子进行监测,有利于研究者准确的判断土壤碳通量的数据。 一、ACE性能:呼吸室内置整合式CO2分析器每一个呼吸室都有一个内置式高精度红外气体分析器,有效减少气路呼吸室与气路间的距离,避免由气路引起的误差,可以更快的反应呼吸室内的CO2浓度变化。试验操作因此变的简单,野外使用就更方便。 野外长期无人值守操作ACE在设计上非常自动化和人性化,呼吸室在测量周期中可以自动开合。研究者可以设定采样时间间隔,测量时,自动闭合呼吸室,不测量时,自动打开呼吸室,把测量对土壤的扰动降倒最低。呼吸室打开时,系统自动调整到低耗电状态,确保野外长期使用。独特的手臂式设计,适合野外测量,确保呼吸室的密封,保证研究者拿到可靠的数据。 完善的系统每个ACE工作站是一个完整的、整合式的土壤碳通量系统,包含一个铝合金呼吸室、叶室手臂和控制单元,控制单元可以记录和显示数据。因此,每个工作站都可以独立使用。ACE工作站可以使用电池、太阳能板和风力作为电源,一个40Ah的铅蓄电池,足够使用约28天。 易安装ACE系统高度整合,没有任何气路连接管暴露在外,因此无需在实验开始前进行气路连接。控制单元由一个大的液晶屏和五个按键组成,方便单机操作,无需连接电脑。气体交换的数据、碳通量的数据以及其他环境因子的传感器数据可以通过ACE的控制单元记录下来,保存到机器的闪存内。 开路和闭路模式ACE测量可以开路式测量,也可以闭路测量。测量时,呼吸室处于关闭状态,进入呼吸室的参比气体的浓度差反应了土壤呼吸情况。 湿度和温度等数据 PAR传感器至于呼吸室内 可接高达6个土壤温度和4个土壤湿度传感器 二、ACE 网络化工作站(多点)ACE系统仅适合单点测量,多个ACE系统可以组成一个网络化工作站,一个中央控制单元可以连接32个的ACE工作站,同时适合32个点监测,每个ACE系统离中央控制单元的距离可达到100m。我们内置分析器在ACE呼吸室内,所以,ACE系统与中央控制单元的连接,仅一根信号线,所以安装非常简单,适合野外测量。不需要将远处的呼吸室内的气体泵到中央控制单元测量,避免了误差。每个ACE系统与中央控制单元支持热插拔。 三、ACE系统的技术指标CO2:测量范围: 0-600ppm (26.8mmols m-3), 精度2ppm测量模式:开例或闭路PAR测量范围: 0 - 3000µ mols m-2 sec-1 硅膜土壤温度:6热点偶传感器土壤湿度: FDR土壤水分传感器呼吸室气体流速r:100-500ml min-1气体流速精度: +/- 2% of f.s.d.显示单元: 240 x 64 点 LCD显示屏操作: 五个按键操作.数据: 闪存存储数据内置电池: 12V standby 1.0Ah 电池供电系统: 外接铅蓄电池,太阳能板,风力电源RS232 输出: 19200 baud.电气连接:3针接头,防水,适合野外使用尺寸: 82 x 33 x 13 cms闭路叶室大小:2.7L开路叶室大小: 1.0L呼吸室直径: 23cm重量: 7.0 kg 中央控制单元结构: 铁质密封系统连接: 32个ACE接口,两个外接电源接口尺寸: 30 x 30 x 15 cms 四、应用土壤呼吸、土壤单位体积微生物数量判断、植物呼吸 、森林冠层CO2剖面 、根系呼吸 、生长室或温室监测、动物及昆虫呼吸生理、微生物活动与生物降解、生态生理学(碳平衡)、气候变化、环境控制
    留言咨询
  • DJ-6217强制扩散式土壤碳通量监测系统用途:DJ-6217 强制扩散式土壤碳通量监测系统使用了点将公司的“强制扩散”技术,是一款能直接测量土壤气体碳通量的创新型系统。DJ-6217是一款可以完全独立运行的呼吸室,仅需很少的电量,就可以野外正常工作,也可以作为一个土壤碳通量传感器,接到其他生态观测仪器的采集器上使用。为科研者测量提供了很大的空间自由和各种可能。产品特点:不受空间约束;真正的便携;高时间分辨率;防风雨;可外接其他系统,当土壤碳通量传感器使用。技术规格:强制扩散土壤碳通量分析仪CO2测量范围0-5000ppm,可以满足例如大棚内等特殊用户要求。CO2精度在370 ppm二氧化碳(CO2)时的噪音(可重复性)无输出平均 ±3 ppm CO2CO2测量原理一种硅基非漫射型红外线传感器(NDIR)自动补偿可同时提供数值过滤处理后数据以及原始测量数据,它还能使用内部温度测量值进行补偿。土壤碳通量测量范围0-10umol/m2/s★测量精度0.05umol/m2/s分辨率0.01umol/m2/s土壤气体交换室体积501.67cm3测量土壤面积78.5cm2★扩散膜土壤气体交换室四周分布4个面积714 mm2扩散膜用于气体强制扩散交换。气体泵内置气泵流量1.8L/min土壤碳通量监测周期5分钟一个碳通量数据。土壤碳通量输出信号0-2.5V线缆长度10米土壤碳通量分析仪尺寸高430mm,直径160mm仪器重量3.96kg使用环境温度-10℃到50℃使用环境湿度0-100%(无凝结)采集器参数★多通道测量同时连接3个测量室(有特殊需要可拓展至64个测量室),实现了对多点土壤碳通量的长期、连续监测。另外,通过连接其它环境传感器,如太阳辐射、土壤温度和土壤水分传感器等,可研究环境条件与土壤温室气体通量的相关性。环境传感器输入适合市面上通用的气象,土壤相关传感器,2路SID12数字通道,3路模拟通道.通讯端口USB Micro B接口和RS232通讯协议PakBus, Modbus, DNP3, SDI-12, TCP, UDP和其他互联网协议以太网、PPP、RNDIS、ICMP/Ping、自动IP(APIPA)、IPv4、IPv6、UDP、TCP、TLS(1.2版)、DNS、DHCP、SLAAC、NTP、Telnet、HTTP(S)、FTP(S)、SMTP/TLS、POP3/TLS★CPU参数ARM Cortex M4,运行频率144MHz,最大扫描速度10Hz,ADC24-bit内部存储可存储100万条以上碳通量测量数据。实时时钟精度1分钟供电电压11-24VDC供电系统12V40A铅酸免维护蓄电池及12V40W太阳能板。无线传输单元全网通/4G/3G/2.5G全线兼容;支持RS232,RS485通信等;超低功耗;一体化终端数据透传;支持多种上下触发模式;支持多数据中心同步传输;支持远程管理。云平台账号管理。
    留言咨询
  • 仪器简介:土壤通量长期测量系统主要用于长期监测土壤碳通量(CO2和CH4)和H2S通量以及超音风速、风向,降雨量,空气温湿度,土壤温湿度,大气压等参数。广泛适用于农业、森林、草地、沼泽、湿地等的土壤呼吸研究,生物气(沼气)散失、垃圾掩埋研究,火山和地热研究等。该系统能够对土壤通量进行长期测量和短期测量,是世界上唯一一款同步进行CO2/CH4/H2S测量的仪器。 订购信息: 标准配置包括:主机,长期叶室,太阳能板及充电电池,操作手册,软件等。其它传感器可选 产地:意大利 WEST Systems公司技术参数:技术指标 CO2通量测量 测量原理:双波长非散射红外固态分析仪 测量量程:2000 ppm~100%操作者定义 准确度:350ppm时为读数的3% 信号噪音:1%读数,4~20mA线性输出 工作温度:-20~65℃ 相对湿度:0~95% 电源需求:14-24 V DC典型300mA @ 24V 大气压传感器 型号:VAISALA,PT100B 海拔:最高4000m 范围:600-1060 Hpa (mBar) 准确度:0.5 Hpa 输出:0-5 V 电源:4 mA @ 12 Volt CH4通量测量 测量原理:红外分光光度计 量程:10000ppmV 精度:读数的3% 重复性1.5% 零点漂移:0.3% CH4通量测量范围:0.5~150molm2day-1 H2S通量测量 测量原理:电化室 量程:50ppmV 精度:读数的3% 重复性1.5% 零点漂移:0.3% H2S通量测量范围:0.0025~0.5molm2day-1 空气温度和相对湿度 温度范围:-30 to 70 ° C 准确度:0.1° C 相对湿度测量范围:0-100 % 准确度:1% 电源需求:14-24 V DC 典型 300mA @ 24V 土壤湿度 范围:5-50 % 准确度:3% 土壤温度 测量范围:0~200 ° C 准确度:0.3° C 探针长度:300mm 探针直径:6mm 线长:3m,PTFE和硅绝热 风速风向 风速范围:0~60m/s 准确度:4% 分辨率:0.01m/s 风向:0~360度,无死角 准确度:3% 分辨率:1度
    留言咨询

土壤碳通量监测系统相关的资讯

  • 理加联合土壤温室气体通量监测系统应用
    1 摘要陆地生态系统中土壤温室气体排放或吸收过程极其复杂。实现多种土壤温室气体的同步原位监测已成为土壤温室气体研究人员的迫切需求。基于此,北京理加联合科技有限公司(以下简称理加)研发了土壤呼吸系列产品。其中PS-9000便携式土壤碳通量自动测量系统(以下简称“PS-9000”)用于测量土壤CO2通量,LGR UGGA+PS-3000便携式土壤呼吸系统(以下简称“PS-3000”)用于测量土壤CO2和CH4通量,LGR MGGA+PS-3010超便携CH4/ CO2土壤呼吸系统(以下简称“PS-3010”)用于测量土壤CO2和CH4通量,PS-3020便携式土壤呼吸系统(以下简称“PS-3020”)用于测量土壤N2O/CH4或N2O/CO通量。SF-9000多通道土壤碳通量自动测量系统(以下简称“SF-9000”)可连接多达18个呼吸室,多点测量土壤CO2通量,实现土壤碳通量的连续长期监测。SF-3500多通道土壤气体通量自动测量系统(以下简称“SF-3500”旧型号:SF-3000)可以连接多种气体分析仪来测量CO2,CH4,N2O,NH3和其他气体通量,也可以连接同位素分析仪来测量13CO2,12C18O16O,15N14NO同位素值。SF-3500可以收集多达18个呼吸室的连续数据集,以表征研究区域气体交换的时空变化。2 应用案例2.1 PS-9000中国科学院沈阳应用生态研究所,利用PS-9000测量果树园土壤CO2排放。2.2 PS-30001. 中国科学院大气物理研究所,在长白山森林生态系统的应用。2. 海南大学,在热带雨林的应用2.3 PS-3010中国科学院成都山地灾害与环境研究所,利用ABB LGR MGGA+LICA PS-3010监测海拔约4600 m的青藏高原五道梁土壤CO2和CH4排放。2.4 PS-3020上海市环境科学研究院,在崇明水稻田进行便携式N2O/CH4通量测量。2.5 SF-9000中国科学院西北高原生物研究所,在海北站高寒草地进行研究。2.6 SF-3000ABB LGR 分析仪+SF-3000可在不同生态系统中使用:森林、草地、湿地、沙漠和农业生态系统。也可在不同环境条件下使用:高海拔地区或低海拔地区、高温地区或低温地区、高湿地区或干旱地区。在国内有许多的应用案例:1 青藏高原(若尔盖草原),海拔超过3300 m。中国科学院地理科学与资源研究所。利用N2O/CO+UGGA+SF-3000长期监测土壤CO2,CH4, N2O,CO,H2O通量。2 内蒙古草原生态系统。北京师范大学。利用UGGA+SF-3000长期监测草地土壤CO2,CH4和H2O通量。3 天山(沙漠生态系统)。中国科学院新疆生态与地理研究所。利用CCIA+ SF-3000长期监测沙漠生态系统土壤CO2,δ13C,δ18O,H2O。4 长白山(森林生态系统),海拔超过2000 m,冬季寒冷。利用CCIA+ SF-3000长期监测森林生态系统土壤CO2,δ13C,δ18O,H2O。5 清原森林生态系统观测研究站。中国科学院沈阳应用生态研究所。SF-3000土壤通量系统用于清远林业站NOx的长期监测。6 青藏高原(湿地生态系统)。中国林业科学研究院湿地研究所。利用UGGA+ SF-3000监测青藏高原湿地生态系统的土壤CO2和CH4通量。7 云南哀牢山(森林生态系统)。中国科学院西双版纳热带植物园。利用CCIA+UGGA+SF-3000长期监测CO2, δ13C, δ18O, CH4, H2O。8 兰州市农田生态系统。兰州大学。利用N2O分析仪+SF-3000监测苜蓿地土壤的N2O通量。3 应用文章从研发生产至今,已经有许多科学家利用理加的土壤呼吸系列产品进行了诸多研究。例如,中国林科院湿地研究所湿地与气候变化团队以四川若尔盖高原泥炭地为研究对象,依托模拟极端干旱的野外控制实验平台,通过原位观测和室内试验相结合,利用PS-9000研究了若尔盖高原泥炭地生态系统碳排放(生态系统呼吸和土壤呼吸)对植物生长季不同时期极端干旱事件的响应,并揭示了植物和土壤酶活性对泥炭地碳排放变化的驱动机理;一组研究人员在青藏高原风火山利用PS-3000测量了两个生长季节(2017年和2018年)不同坡向(北向(阴坡)和南向(阳坡))和不同海拔的生态系统呼吸(Re)和CH4通量,旨在阐明其Re和CH4通量模式并量化生物和非生物因子调节Re和CH4通量的相对贡献;来自中国科学院地理科学和资源研究所的研究团队利用SF-3500研究了青藏高原高寒草甸CO2、CH4和N2O通量及其总平衡对3个增温水平的响应(环境、+1.5℃、+3.0℃),以理解(a)CO2与CH4和N2O通量对增温响应的差异,(b)年GHG通量对不同增温水平的短期敏感性以及(c)生长季和非生长季GHG通量对增温响应的差异。4 小结理加公司专注国产生态仪器的研发和生产,相信随着加大研发的投入和市场及时间的积累,理加公司一定会生产出更多、更好的生态仪器,给更多的国内外客户提供更有价值的产品。理加将继续努力以全新的面貌迎接更多的挑战和机遇,以更大的热情服务新老客户,为科研人员的科研事业保驾护航。5 Published Literature1.Yan ZQ, Kang EZ, Zhang KR et al. 2021. Plant and Soil Enzyme Activities Regulate CO2 Efflux in Alpine Peatlands After 5 Years of Simulated Extreme Drought[J]. Frontiers in Plant Science, 12: 756956. (PS-9000)2.Li Y, Wang GW, Bing HJ et al. 2021. Watershed scale patterns and controlling factors of ecosystem respiration and methane fluxes in a Tibetan alpine grassland[J]. Agricultural and Forest Meteorology, https://doi.org/10.1016/j.agrformet.2021.108451. (PS-3000)3.Rong YP, Ma L, Johnson DA. 2015. Methane uptake by four land-use types in the agro-pastoral region of northern China[J]. Atmospheric Environment, 116: 12-21. (SF-3000)4.Rong YP, Ma L, Johnson DA et al. 2015. Soil respiration patterns for four major land-use types of the agro-pastoral region of northern China[J]. Agriculture, Ecosystems and Environment, 213: 142-150. (SF-3000)5.Pan ZL, Johnson DA, Wei ZJ et al. 2016. Non-growing season soil CO2 efflux patterns in five land-use types in northern China[J]. Atmospheric Environment, 144: 160-167. (SF-3000)6.Pan ZL, Wei ZJ, Ma L et al. 2016. Effects of various stocking rates on grassland soil respiration during the non-growing season[J]. Acta Ecologica Sinica, 36: 411-416. (SF-3000)7.Ma L, Zhong MY, Zhu YH et al. 2018. Annual methane budgets of sheep grazing systems were regulated by grazing intensities in the temperate continental steppe: A two-year case study[J]. Atmospheric Environment, 174: 66-75. (SF-3000)8.Su CX, Zhu WX, Kang RH et al. 2021. Interannual and seasonal variabilities in soil NO fluxes from a rainfed maize field in the Northeast China[J]. Environmental Pollution, 286, 117312. (SF-3000)9.Yang L, Zhang QL, Ma ZT et al. 2021. Seasonal variations in temperature sensitivity of soil respiration in a larch forest in the Northern Daxing’an Mountains in Northeast China[J]. Journal of Forestry Research, 3. (SF-3000)10.Jia Z, Li P, Wu YT et al. 2020. Deepened snow cover alters biotic and abiotic controls on nitrogen loss during non-growing season in temperate grasslands[J]. Biolog11.Wang JS, Quan Q, Chen WN et al. 2021. Increased CO2 emissions surpass reductions of non-CO2 emissions more under higher experimental warming in an alpine meadow[J]. Science of the Total Environment, https://doi.org/10.1016/j.scitotenv.2020.144559. (SF-3500)12.庄静静, 张劲松, 孟平等. 2015. 华北低山丘陵区土壤CH4通量对脉冲降雨的响应[J]. 东北林业大学学报, 43(10): 72-78. (SF-3000)13.庄静静, 张劲松, 孟平等. 2015. 华北低山丘陵区人工林土壤CH4通量测定代表性时段研究[J]. 生态环境学报, 24(11): 1791-1798. (SF-3000)14.刘博奇, 牟长城, 邢亚娟等. 2016. 小兴安岭典型温带森林土壤呼吸对强降雨的响应[J]. 北京林业大学学报, 38(4): 77-85. (SF-3000)15.庄静静, 张劲松, 孟平等. 2016. 非生长季刺槐林土壤CH4通量的变化特征及其影响因子[J]. 林业科学研究, 29(2):274-282. (SF-3000)16.何方杰, 韩辉邦, 马学谦等. 2019. 隆宝滩沼泽湿地不同区域的甲烷通量特征及影响因素[J]. 生态环境学报, 28(4): 803-811. (SF-3000)17.何可宜, 沈亚文, 冯继广等. 2021. 植物残体输入改变对樟子松人工林土壤呼吸及其温度敏感性的影响[J]. 北京大学学报(自然科学版), 57(2): 361-370. (PS-2000)
  • “高通量土壤成分智能检测机器人装备”项目成果通过专家鉴定
    2月7日,中科院合肥研究院智能所与中科合肥智慧农业谷公司合作完成的“高通量土壤成分智能检测机器人装备”项目通过了安徽省科技成果转化服务中心组织的成果鉴定。   由4名中国工程院院士,以及来自中国科学技术大学、中科院南京土壤研究所、中国农业大学、南京农业大学、全国土壤普查办等单位的7位专家组成的评审专家一致同意该项目成果通过鉴定,并建议在我国土壤检测实验室推广应用。   长丰县党委书记李命山、中科院合肥研究院院长刘建国出席此次会议并致辞讲话。本次会议由智能所党委书记吴丽芳主持。   项目负责人王儒敬研究员从系统总体方案、主要功能平台、测试与验证、产品创新与优势等几个方面对高通量土壤成分智能检测机器人装备进行了详细汇报。在安徽省科技厅重大专项的支持下,项目研制成功国内首个高通量、低成本、自动化、快速土壤成分智能检测机器人装备,融合了机器视觉、多臂协同以及优化调度算法等核心控制技术,构建了一整套覆盖土壤检测过程的检测方法体系,实现了对土壤样本42项指标(涵盖35项“三普”项目)的全流程自动化检测。   目前,该装备已通过第三方检测测试,结果重复性较好,准确度较高,满足国家及部委标准对土壤养分、重金属检测精密度和准确度的要求。   以张福锁院士为组长的专家组听取了项目组的汇报、实地观看了成果演示、查阅了相关资料。经质询和讨论,专家组一致认为该项目创制了土壤样本自动化加热、浸提、消解、定容、移液、滴定等系列核心元器件,研制完成整装装备,并定型量产;突破了机器人代人实现复杂测土工作的核心控制算法,形成机器人代人稳定、准确、高效的土壤检测新模式,有效解决了土壤检测全程周期长、易受人工操作误差影响等难题。专家组一致同意该成果总体技术达到国际先进、国内领先水平,并建议在我国土壤检测实验室推广应用。   长丰县委常委方捷、县科技局领导,合肥研究院相关处室领导、智能所及农业谷相关科研骨干测试与用户单位代表等参会。
  • 物联网土壤墒情监测系统-关注土壤-发展农业
    物联网土壤墒情监测系统-关注土壤-发展农业【FT-TS600】土壤含水量是农业生产中的重要信息,快速准确地测定农田土壤含水量,不仅对研究土壤含水量和作物生长发育期对我来说意义重大,而且还可以按照科学的灌溉时间调节,实现自动灌溉精细化,节约宝贵的水资源,更好地发展农业生产。  FT-TS600土壤墒情监测站是一款高度集成、低功耗、可快速安装、便于野外监测使用的高精度自动气象观测设备。  该设备支持有线、GPRS、蓝牙等传输方式,免调试,可快速布置,广泛应用于农业、林业、地质、高校、科研等方面。主要针对土壤水分含量和土壤温度进行监测,通过水分传感器和温度传感器测量土壤的体积含水量(VWC)和温度值。同时,根据用户需求,可以扩展配置土壤电导率、土壤PH、空气温度、空气湿度、太阳辐射、雨量等气象传感器。技术参数  1)土壤水分:测量范围:0-100%,精度:±3%,探针长度:5.5cm,探针直径:3mm,探针材料:不锈钢  2)土壤温度:测温范围 -40+125℃,测量精度±0.5℃,分 辨 率:0.1℃  3)土壤电导率:测量范围 可选量程:0-5000us/cm,10000us/cm,20000us/cm,测量精度0-10000us/cm范围内为±3% 10000-20000us/cm范围内为±5%,分辨率0-10000us/cm内10us/cm, 100000-20000us/cm内50us/cm(选配)  4)土壤PH:测量范围:0-14 分辨率:0.1 测量精度:±0.2%(选配)  5)空气温度:测量原理二极管结电压法,-40℃~85℃(±0.3℃)(选配)  6)空气湿度:测量原理电容式,0~100%RH(±2%RH)(选配)  7)太阳辐射:测量原理光电效应,0-2000W/m2(0.1W/m2)(选配)  8)光学雨量:测量原理光电式,0~4mm/min(选配)  9)数据存储:不少于50万条   10布设时间:1人,不大于30分钟完成布设   11)生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证  12)生产企业具有和土壤墒情软件注册证书  13)生产企业为3A级信用企业

土壤碳通量监测系统相关的方案

  • 土壤碳研究监测技术
    土壤表层 CO2 通量(CO2 efflux),或称土壤呼吸,是生物圈碳循环的主要组成部分,约占整个生态系统呼吸的四分之三(Law et al., 2001)。由于土壤呼吸在全球变暖中的潜在和富有争议的角色地位,土壤 CO2 通量已成为当前气候变化研究的热点。另一方面,全球FLUXNET 网络涡度相关 CO2 通量测量数据也需要通过土壤呼吸监测来解析和解释。土壤呼吸测量方法一般有气体抽样分析法、林冠下层涡度相关法及呼吸室法,由于前两种方法存在一些缺陷,呼吸室法(Chamber technique)已越来越被得到广泛的应用,另外近几年来土壤剖面 CO2 连续测量监测技术也越来越引起高度重视。有研究报道认为,土壤呼吸与总初级生产力(GPP)和冠层光合作用呈相关关系,同时与根系动态也呈很强的相关关系,但有关直接的野外测量数据仍然缺乏(Tang et al.,2005)。为了对我国土壤碳研究提供方法技术支撑,易科泰生态技术公司特与国外先进仪器技术研发公司合作,就目前国际通用的有关研究技术方法汇总如此,详细内容可咨询易科泰生态技术公司 Ecolab 实验室:info@eco-lab.cn或 info@eco-tech.com.cn.
  • 北温带干旱地区土壤剖面二氧化碳通量的变化特征
    摘 要:采用开放式样杆方法,对干旱土纲的4 种土壤类型进行了土壤剖面CO2 通量的观测研究,主要结果为:①干旱地区土壤剖面CO2 通量的变化趋势是:在0-60 cm 深度范围内随土壤深度增加而增加,60 cm 为转折点,之后,随土壤深度增加而减小。②土壤剖面CO2碳通量平均值为660 μmol/(m2h),在-9076-16 988 μmol/(m2h)范围内变化,如果土地利用/土地覆盖发生改变(0-70 cm 深度),将可能有254.6 t CO2/(km2a)从土壤向大气释放。③土壤种类不同,CO2 通量明显不同,森林土壤释放量大于草原土壤。④在通量-深度曲线中,各土壤类型均出现1-2 个拐点,变化原因与土壤剖面结构和根系分布有关,钙积层的有无、厚度起决定作用。⑤存在季节变化,植物生长季节的CO2 通量远大于其他季节,其他季节可能有土壤吸收二氧化碳现象。由此应避免在植物生长季节施工动土,以减少土壤CO2向大气中释放。⑥本研究建议:善待土壤,谨慎动土。关键词:土地利用和覆盖变化;二氧化碳气体释放和吸收;气候变暖;栗钙土;灰钙土;山地灰褐土;粗骨土
  • 易科泰土壤呼吸与碳通量专题—欧洲最先进的高通量堆肥/土壤呼吸测量系统助力生态系统生物降解研究
    英国开放大学(The Open University,简称OU)是一所公立研究型大学,也是国际知名的远程教育大学。OU大学的环境、地球和生态系统科学学院拥有7套独立的16通道SSI模块式堆肥/土壤呼吸测定系统, 可处理和分析一系列环境材料,包括土壤、水、大气气体、植物、堆肥和可生物降解废物等。

土壤碳通量监测系统相关的资料

土壤碳通量监测系统相关的论坛

  • 土壤中吡虫啉的检测

    土壤中吡虫啉的检测

    前言吡虫啉又名咪蚜胺、蚜虱净,是[url=https://baike.baidu.com/item/%E7%83%9F%E7%A2%B1/4832691%22 \t %22https://baike.baidu.com/item/%E5%90%A1%E8%99%AB%E5%95%89/_blank]烟碱[/url]类超高效杀虫剂,主要通过选择性控制昆虫神经系统烟碱型乙酰胆碱酶受体,阻断昆虫中枢神经系统的正常传导,从而导致害虫出现麻痹进而死亡。该类杀虫剂具有高效、低毒、低残留,害虫不易产生抗性,对人、畜、植物和天敌安全等特点,并有触杀、胃毒和内吸多重药效,且其防治对象广,可广泛用于水稻、棉花、蔬菜等各种农作物。为了对农作物中的农药残留进行实时的监督管理,保障人民健康,建立合理、快速的检测方法是非常有必要的。传统的土壤中吡虫啉萃取方法为液液萃取方法,费时费力,本文使用全自动高效快速溶剂萃取系统对土壤中的吡虫啉进行萃取,最后经[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]检测,建立了一套高效快捷的土壤中吡虫啉萃取检测方法。经过实验,使用本方法土壤中吡虫啉回收率为93.02%~98.32%,RSD为2.31%,实验得到较高的回收率和良好的重现性。关键词:土壤,吡虫啉,Flex-HPSE,M64,SPE 10001实验过程1.1仪器与试剂Flex-HPSE 全自动高效快速溶剂萃取系统;[color=black]高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url][/color];SPE 1000全自动固相萃取系统;M64高通量平行浓缩系统;吡虫啉标准工作液标液:10μg/mL;固相萃取柱:Labtech CARB石墨炭黑固相萃取柱500mg/6mL;乙腈(色谱纯);甲苯(分析纯);固相萃取洗脱液:乙腈:甲苯=3:1(体积比);硅藻土:置于马弗炉中450℃烘4h,冷却后贮于玻璃瓶中于干燥器内保存。1.2实验方法1.2.1土壤样品提取准确称量10g土壤样品和5g硅藻土,混合均匀,装入22mL萃取罐中。同样方法装填好两个萃取罐后,置于Flex-HPSE中(双通道同时运行,可自动连续萃取多个样品),萃取方法如下图。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091019086670_3030_5237388_3.png[/img][/align][align=center]图1 土壤中吡虫啉快速溶剂萃取方法[/align]1.2.2净化及浓缩将萃取后的样品置于M64高通量平行浓缩系统氮吹浓缩,待样品浓缩至大约1mL时取出,待净化。使用SPE 1000全自动固相萃取系统进行净化实验,固相萃取方法如图2。净化完成后,将样品再次置于M64高通量平行浓缩系统氮吹浓缩,浓缩至近干,用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]流动相定容至1mL后上机检测。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091019089336_889_5237388_3.png[/img][/align][align=center]图2 土壤中吡虫啉固相萃取净化方法[/align]1.2.3样品加标回收率实验按1.2.1方法装填样品的过程中,加入50μL吡虫啉标准工作液,加标浓度为50μg/kg,然后按照1.2.1~1.2.2方法进行实验,共进行两组4个平行样品,最后用流动相定容至1mL,用来测定加标回收率。1.3.3[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]检测条件色谱柱:C18,柱长250mm,内径4.6mm,粒径5μm,或性能相当者;流动相:乙腈:水=25:75;流速:1.0mL/min;紫外检测波长:270nm;柱温:30℃;进样量:20μL。2实验结果2.1吡虫啉色谱图2.1.1吡虫啉标品色谱图下图为吡虫啉标品色谱图。[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091019090254_4222_5237388_3.png[/img][align=center]图3 吡虫啉标品色谱图[/align]2.1.2土壤中吡虫啉加标样品色谱图下图为土壤中吡虫啉加标样品色谱图。[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091019091104_4837_5237388_3.png[/img][align=center]图4 土壤中吡虫啉加标样品色谱图[/align]2.1.3土壤中吡虫啉空白样品色谱图下图为土壤中吡虫啉空白样品色谱图。从图中可以看出空白样品中没有吡虫啉检出。[img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210091019091983_6955_5237388_3.png[/img][align=center]图5 土壤中吡虫啉空白样品色谱图[/align]2.2 土壤中吡虫啉加标回收率用[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]检测土壤中吡虫啉加标回收率计算结果如下表,加标回收率为93.02%~98.32%,RSD为2.31%。[align=center]表1 土壤中吡虫啉回收率[/align][table][tr][td=1,2][align=center]标样[/align][/td][td=1,2][align=center]出峰时间(min)[/align][/td][td=1,2][align=center]加标浓度([size=13px]μg/kg[/size])[/align][/td][td=7,1][align=center]回收率(%)[/align][/td][td][align=center]平均值(%)[/align][/td][td][align=center]RSD(%)[/align][/td][/tr][tr][td][align=center]1[/align][/td][td=2,1][align=center]2[/align][/td][td=2,1][align=center]3[/align][/td][td=2,1][align=center]4[/align][/td][/tr][tr][td][align=center][color=black]吡虫啉[/color][/align][/td][td][align=center][color=black]8.60[/color][/align][/td][td][align=center][color=black]50[/color][/align][/td][td=2,1][align=center][color=black]93.02[/color][/align][/td][td=2,1][align=center][color=black]98.32[/color][/align][/td][td=2,1][align=center][color=black]96.57[/color][/align][/td][td][align=center][color=black]95.53[/color][/align][/td][td][align=center][color=black]95.86[/color][/align][/td][td=2,1][align=center][color=black]2.31[/color][/align][/td][/tr][/table]3结论与讨论使用全自动高效快速溶剂萃取系统对土壤中的吡虫啉进行萃取,高通量平行浓缩系统浓缩,全自动固相萃取系统净化,最后经[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]检测,建立了一套高效快捷的土壤中吡虫啉萃取检测方法。经检测,使用本方法土壤中吡虫啉的加标回收率为93.02%~98.32%,RSD为2.31%,回收率高,重现性良好。参考标准1、GB/T 19649-2006 谷粮中475种农药及相关化学品残留量的测定 [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱法

  • 【转帖】全国耕地土壤监测技术规程

    1 范围本规程规定了实施土壤监测过程中监测点的建立、监测的内容、观测记载、分析测试及编写报告的技术规程。本规程适用于全国耕地的土壤监测。2.术语2.1 土壤监测土壤监测指土壤基础地力监测。是通过土壤调查、化验,植株分析,田间作业及作物生长情况与产量记载等方法,对土壤的理化性状和生产能力,进行动态监测。2.2 土壤基础地力耕地土壤的地形地貌、成土母质特征,农田基础设施及培肥水平,土壤理化性状等综合构成的耕地生产能力。2.3 监测点为进行土壤长期定位监测而设置的观测、试验、取样的地块。3 监测点的处理3.1 不施肥处理(空白区)旱地小区面积0.1亩以上,用设置保护行、垒区间小埂等方法隔离 。水稻土小区面积0.05-0.1亩,用水泥板或其它材料作隔板,防止肥、水渗透,隔板高0.6-0.8m,厚0.05m.埋深0.3-0.5m,露出地面0.3m。该处理连续进行三年后停止。蔬菜不设置无肥区。3.2 常规措施处理面积不小于0.5亩或直接用大田定点观测。以当地主要种植制度、种植方式为主(见附录B),耕作、栽培等管理方式、施肥能代表当地一般水平。4 土壤监测内容4.1 气象调查收集气象台哨或记载监测点所在地常年的几项主要气象要素数据。按表1的项目调查与记载。4.2 监测点基本情况的调查与记载4.2.1 土壤环境与农业生产情况拍摄景观照片。按表1的项目调查与记载。4.2.2 基础剖面的观察与记载挖掘基础剖面,采集剖面样,拍摄剖面彩色照片。按表2要求进行剖面形态描述与记载。4.2.3 基础剖面样的采集与化验按剖面发生学层次取样。建点时取样化验一次。化验项目见表24.3 监测农化样的采集与化验农化样分为五年一次和每年一次采集与化验两种形式,在本年度最后一季作物收获后,立即在监测地块采集土样。4.3.1 五年一次农化样采集与化验建点时不分处理区采集土样。以后每五年一次,在常规施肥区采集土样。水稻土按耕层和犁底层,旱地按耕层、亚耕层分层采取混合土样,每一个样要求有20个以上的取样点采土混匀。化验项目见表3。4.3.2 每年一次农化样采集与化验在每年度最后一季作物收获后,立即在监测地块的常规施肥区采集土样。水稻土、旱地只采集耕层,蔬菜地采集耕层和亚耕层土样。每个样要求有20个以上取样点采土混合。化验项目见表34.4 植株样的采集与分析选择主要作物的主栽品种(各大区主要作物见附录B),每种作物在每季作物收获前采集常规施肥区有代表性的植株样本。大株作物取5株以上,小株作物20株以上。果实与茎叶分别分析。(蔬菜不测定养分含量)化验项目见表34.5 测定方法土壤监测测试方法表分析项目 引用标准 测试方法土壤 机械组成 吸管法或比重计法(质地分类参见附录D)容重 环刀法酸碱度 pH计法(水土比1:1)碳酸钙 GB 9835?8 气量法、重量法或容量法交换量 EDTA-铵盐快速法或其它方法有机质 GB 9834?8 重铬酸钾滴定法全氮 GB 7173?7 硫酸-硫酸钾-硫酸铜消煮蒸馏滴定法碱解氮 扩散法全磷 GB 9837?8 氢氧化钠熔融-钼锑抗比色法有效磷 GB 12297?0 碳酸氢钠浸提-钼锑抗比色法全钾 GB 9836?8 氢氧化钠熔融-火焰光度计法缓效钾 硝酸煮沸浸提-火焰光度计法速效钾 醋酸铵浸提-火焰光度计法速 Cu DTPA浸提-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计法效 Zn DTPA浸提-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计法微 Fe DTPA浸提-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计法量 Mn DTPA浸提-[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度计法元 B GB 12298?0 沸水浸提-姜黄素比色法素 Mo 极普法或硫氰酸钾比色法植株 全氮 过氧化氢消煮蒸馏法或扩散法全磷 过氧化氢消煮钼锑抗比色法全钾 过氧化氢消煮火焰光度计法主要参考资料:1、《土壤理化分析》,南京土壤研究所,上海科学技术出版社2、《农化分析》,南京农业大学,农业出版社3、《土壤农业化学常规分析方法》,中国土壤学会农业化学专业委员会,科学技术出版社4.6 监测年度的计算方法对于一年两熟、一年三熟或两年三熟制地区,年度计算以冬作前一年的播种整地的时间为始到当年最后一季作物收获为止。对于一年一熟制地区,只种一季冬作(冬小麦)实行夏季休闲或只种一季春作(玉米、谷子、高粱、棉花、中稻)实行冬季休闲的,年度计算以前季作物收获后开始,到该季作物收获为止。种植绿肥与种植其它作物一样处理、观测和记载。4.7 田间作业记载监测员对全年度当日田间作业情况记载在表4上,主要作业内容包括:4.7.1 作物种植记载一年度内每季作物的名称、品种(注明是常规品种或杂交品种)、播期、播种方式、收获期等。4.7.2 耕作耕、耙、中耕、除草时间、次数。4.7.3 施肥基肥、追肥次数和用量,施肥的时间与所处的作物生育时期、方式 (撒施、穴施、条施、根外施等)、肥料品种、化肥有效养分的百分数等。4.7.4 灌排灌溉设施(井、渠、提)、灌水次数、时间、水量,排水方式 (明沟或暗沟)和效果,地面连续降水量(mm)和排除的时间、地下水位降低深度。4.7.5 病虫害防治病虫害种类、发生时间、危害程度、防治方法与防治效果。4.7.6 风、雨、雹、旱、涝、霜、冻、冷等灾害出现的时间及强度。4.7.7 其他对监测地块有影响的自然、人为因素。4.8 作物产量的测定对处理区的每季作物分别进行果实与茎叶产量的测定。果实产量测定可以去边行后实打实收。也可以随机取样测定,全田块取五个以上面积1-2m2(小麦)、5-10m2(玉米)的样方实脱测产。为便于取样,把1-2m2或5-10m2换算成穴数或米垄数。茎叶产量根据小样本进行果实与茎叶重量比的考种数据换算。保证有足够的单株数量,一般穴播作物考种取10穴;条播细秆作物取1米垄;条播粗秆作物取5-10米垄(蔬菜不测产,棉花分籽棉和秸秆测产,并把籽棉折成皮棉)。产量按表5中项目填写4.9 施肥整理与计算一年度内每季作物的施肥情况分别进行整理和计算,按表4中项目填写4.10 监测点年度资料汇总表按监测点年度资料汇总表3项目填写。5 建立耕地土壤监测数据管理系统5.1 国家级耕地土壤监测数据管理系统建立与要求全国农业技术推广服务中心建立国家级耕地土壤监测数据管理系统,该系统要有录入、修改、查询、统计、输出等功能,包括表1、表2、表3中的全部内容。5.2 省级耕地土壤监测数据管理系统建立与要求各地按照全国农业技术推广服务中心建立的国家级土壤监测数据管理系统建立省级耕地土壤监测数据管理系统,内容要包括表1、表2、表3中的全部内容。省级耕地土壤监测数据管理系统主要是为各省录入国家级土壤监测点数据,并上报全国农业技术推广服务中心,并且把省、地、县三级监测点也应当纳入计算机统一管理,以加快数据的传输与处理。6 编写报告6.1 土壤监测年度报告内容6.1.1 主要指当年耕地质量现状评估,并与上年耕地质量状况比较。如土壤养分(有机质、氮、磷、钾)、施肥量(有机肥和化肥)、作物产量的变化分析。6.1.2 通过对各级土壤监测点、肥料试验及有关统计资料等的分析,提出区域性的配方施肥方案,合理利用耕地以及保持和提高耕地质量的措施和对策。6.2 中、长期(五年、十年)耕地质量报告内容6.2.1 不同等级耕地类型的数量变化及现状评估:如吨粮田建设标准和现有的数量;中低产田的标准和现有数量等。6.2.2 耕地质量变化趋势评估,如土壤肥力变化规律,尤其是土壤有机质、氮、磷、钾养分的消长情况;改造中低产田的数量和投入;施肥量(有机肥和化肥)的变化;几种主要耕作制度对耕地质量的影响;作物产量变化;氮、磷、钾肥的肥效变化;耕地增产潜力分析等。6.2.3 提出合理利用耕地以及保持和提高耕地质量的措施和对策。

土壤碳通量监测系统相关的耗材

  • HL6303土壤酸度检测仪
    HL6303土壤酸度检测仪 HL6303土壤酸度检测仪又名土壤酸湿度计 土壤酸碱度计 便携式土壤酸度计 土壤酸碱度测量土壤酸碱度是限制作物生产及品质的重要因素,该仪器使用简单方便,可直接插入土壤。土壤酸度计技术参数:PH范围:3-8 PH;水分范围:1-8%PH精度:± 0.2PH;水分精度:± 1%环境温度:5-50℃可测深度:6cm 适用于地表酸度的测量 适用于深度土壤酸度的测量使用方法:第一次使用时, 把探头在土里插几次, 去掉上面的油和杂质, 测土壤PH值和湿度时,先将探头尽量深地插到土里, 大约10分钟后读取PH值, 按下旁边的白色按钮, 仪表将显示水份.使用时注意插电极时不能碰到石头,不要用力过猛,否则容易伤害电极 不要将仪器和磁性材料放在一起, 不要一直放在土壤里超过1小时.用完后把电极洗干净.使用时注意插电极时不能碰到石头,不要用力过猛,否则容易伤害电极.用完后把电极洗干净.分析土壤之前&mdash &mdash 种植前,最好采集土地不同位置的土壤进行分析,以保证所取土样具有代表性,分析土壤pH值是否满足作物的酸碱度要求。如何测定pH值1.先移去被测土壤表土约5厘米;然后向下将土壤捣碎至15厘米深。并清理土壤中一切会影响测试结果的有机杂质,如叶子、根系等;2.将土壤用水浸透,调匀成泥状。(最好使用雨水或蒸馏水);3.将此装置功能键向上拨至pH处;4.湿润探棒。用购买时随附的特殊清洁棉片将探棒擦净;5.将探棒完全插入被测土壤中;6.等待1分钟后即可读取数据;7.测试结束后,将探棒擦净并晾干;8.如需继续分析其他土壤,请重复以上步骤。
  • HFP01 土壤热通量板
    HFP01是一种传统的土壤热性能测试仪,用于测量流过其附和的主体中的热。HFP01中的实际探头是一个热电偶。 该热电偶测量 HFP01塑料体上下的差温。完全被动工作,产生一微小的、与该差温正比于的电压输出。假定热通量是稳定的,而塑料体的热导率是常数,且其对热流类型的影响可以忽略,则HFP01的信号与该地热通量成正比。HFP01使用简便。欲读出结果仅需一个在MV范围精确工作的电压计。电压通过标定常数转变为热通量;每个板都有带有专用仪器提供各自的标定常数。HFP01 是防水型探头,符合CE标准。推荐使用:环境、农、林、大气等科研领域中蒸腾的评估和波文比的测量。HFP01 特点■ 易于操作■ 防水,连接5米电缆■ 特别适用于高热导率,适于土壤和墙体使用技术参数灵敏度大约50 μV/ W.m-2电阻 (额定)2 W温度范围-30~70℃反应时间± 4 分钟 (类似于土壤)测量范围+2000~2000 W.m-2温度依存度℃产地:美国
  • ZYD-TF土壤化肥,ZYD-TF土壤化肥速快速检测仪
    ZYD-TF土壤化肥,ZYD-TF土壤化肥速快速检测仪,试剂耗材,办事处,说明书,特点:* 可检测土壤、植株、化学肥料、生物肥料等样品中的速效氮(包括铵态氮、硝态氮)、速效磷、速效钾、尿素氮、有效磷、全钾、氯离子、有机质含量,土 PH值(酸碱度)等。* 5寸大屏幕中文液晶显示器,人性化界面,中文操作提示。操作及读取数据方便直观。* 配备《ZYD测土配方施肥系统》软件,其中包括数十种常见作物的单位产量所需要养分的数据。* 仪器通过 USB接口将检测数据同步传输到电脑。* 仪器内置微型热敏打印机,打印检测结果快速,清晰。* 光源采用超高亮发光二极管,具有低功耗、可靠性高,响应速度快等优点。* 采用闭环回路光源自动校准系统,避免了长时间使用,或者外部条件变化导致的光源过强或过弱等现象,保证光源始终工作在最佳状态。* 光源预热及恒温管理系统,有效避免漂移,保证长时间测量的稳定性。* 12组独立检测单元,每单元均由一组光源系统,一个样品仓,一组检测系统构成。* 仪器自动校正 0%及 100%,不需要人工进行此校正操作。* 仪器具备自检功能。能判断故障并给予提示,帮助人员对仪器进行维护。* 内置大容量可充电电池,无外接电源时可连续工作 5小时以上。* 全金属喷塑外壳,坚固,美观,耐用。ZYD-TF土壤化肥,ZYD-TF土壤化肥速快速检测仪,试剂耗材,办事处,说明书,特点,技术指标* 通道数量:12通道* 波长: 410nm, 535nm, 589nm, 640nm* 显示:5寸大屏幕全中文液晶显示* 存储:10000个以上测试结果* 接口:USB* 打印:内臵热敏打印机* 漂移:≤0.003Abs/3min* 透射比准确度:±2%* 透射比测重复性:≤0.3%* 各通道误差:±1.0%* 电源输入:16V DC 3A* 仪器重量:2.5Kg* 仪器尺寸:340X240X120mmZYD-TF土壤化肥,ZYD-TF土壤化肥速快速检测仪,试剂耗材,办事处,说明书,特点,土壤养分检测项目* 检出下限铵态氮:2ppm硝态氮:2ppm速效磷:2ppm速效钾:20ppm有机质:0.2%* 检测范围铵态氮:(0~50)ppm硝态氮:(0~75)ppm速效磷:(0~60)ppm速效钾:(0~750)ppm有机质:(0~4)%* 测量误差:10%化肥检测项目* 检出下限铵态氮:0.5%尿素氮:1%硝态氮:0.5%有效磷:1.5%钾:2% 氯离子:0.2%* 检测范围铵态氮:(0~25)%尿素氮:(0~50)%硝态氮:(0~20)%有效磷:(0~60)%钾:(0~50)%氯离子:(0~10)%* 测量误差:10%ZYD-TF土壤化肥,ZYD-TF土壤化肥速快速检测仪,试剂耗材,办事处,说明书,特点
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制