土壤管式剖面水分仪

仪器信息网土壤管式剖面水分仪专题为您提供2024年最新土壤管式剖面水分仪价格报价、厂家品牌的相关信息, 包括土壤管式剖面水分仪参数、型号等,不管是国产,还是进口品牌的土壤管式剖面水分仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合土壤管式剖面水分仪相关的耗材配件、试剂标物,还有土壤管式剖面水分仪相关的最新资讯、资料,以及土壤管式剖面水分仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

土壤管式剖面水分仪相关的厂商

  • 冠亚集团主导的三大系列水分仪已被个人、企业、大专院校、科研机构、质监部门广泛应用于粮食收购、食品加工、畜禽肉类、农副产品、生物医药、化工原料、环保电力、塑胶橡胶、无机粉体、陶瓷建材、纺织纤维、造纸包装等行业;三大系列中的多个产品已处于国际领先地位,如塑胶水分测定仪、碳酸钙水分仪、石膏结晶水测定仪、食品水分检测仪、肉类快速水分仪、粮食水分仪、饲料水分测定仪、医药快速水分仪、化工原料水分仪、污泥含水率检测仪、电池浆料水分仪、固含量快速测定仪等填补了国内高端水分仪应用领域的空白,并已逐渐替代进口产品,打造了业内知名的“冠亚”品牌和“SFY”品牌。是同行业中唯一通过ISO9001质量体系认证的高科技集团公司。
    留言咨询
  • 深圳市艾格瑞仪器有限公司是国内目前专注于便携式水分仪的研发、生产、销售、服务及出口的国际性技术企业。公司在引进国外技术的基础上开创了电场感应器与主机合为一体技术,使仪器能在测试探头周围产生对水分子敏感的电磁场,利用水分子吸收能量的特性产生固定的电场能与失去的电场能进行比较得出准的水分值。并且针对含水量不同的物品,仪器根据其吸收的能量不同从而得出不同的水分值来。公司生产的高场能系列水分仪、数字式系列水分仪涵盖行业广,如:粮食、化工、塑胶、肥料、土壤、木材、地板、瓷砖、陶瓷、污泥、烟草、纤维板、刨花板、洗涤剂、肥皂粉、化肥、纸张、油菜籽、谷物、饲料、碳酸钙、锯末、茶叶、食品(面粉、淀粉、奶粉、大豆粉)、原油、石英、水泥、煤炭、煤油、石油等。艾格瑞水分仪机身小巧、设有专用档位,携带方便、操作简单、水分测试范围大,速度快,整个测试过程只需几秒钟。可实现实验室、野外、生产线及在线产品的水分监控,并且设备在零下20℃工作时对测试结果不会产生任何影响。产品目前被广泛应用于企业、政府部门及高校研究等领域并远销至东南亚、英国、俄罗斯、加拿大等国家。
    留言咨询
  • 武汉汉林苑科技有限公司坐落于湖北省武汉市中南国际城,公司主要以研发、生产、销售一体的经营模式,主要致力于土壤检测仪器,植物检测仪器和环境检测仪器方面的研发销售,是一家集科、工、贸为一体的综合型技术企业。主营产品有主营产品有土壤养分测定仪、土壤温湿度测定仪、土壤水分仪、土壤电导率仪,土壤盐度计,土壤水分温度盐分测定仪、土壤ph测定仪、土壤三参数测定仪、土壤墒情监测系统、土壤土钻,土钻综合套装、根钻套装、原装土壤取样器等;植物光合仪、植物叶片蒸腾速率测定仪、植物呼吸测定仪、植物冠层测量仪、植物根系扫描分析系统、植物叶绿素测定仪、植物叶面积仪、植物茎秆强度仪、植物叶片厚度仪等;物联网自动气象站、手持式气象仪、大棚环境监测站、大棚环境记录仪、温湿度记录仪、CO2记录仪、雨量记录仪、太阳辐射记录仪等仪器。 公司产品主要应用于农业、林业、教学、科研、气象、环境等领域,目前已经有多家农业高校、科研机构、农业推广站、土肥站、农林局等在使用我公司产品,并得到了广大客户一致的好评。公司坚持以优质的售后服务,对销售的每台仪器进行技术培训,定期回访,答疑解惑,深受用户信赖和支持。
    留言咨询

土壤管式剖面水分仪相关的仪器

  • 土壤管式剖面水分仪 400-860-5168转4652
    土壤管式剖面水分仪能够实时监测土壤的水分含量和温度,及时发现土壤墒情的变化,为农业生产提供及时、准确的信息。采用自动化监测技术,无需人工干预,降低了劳动强度,提高了工作效率。通过传输设备,土壤墒情监测系统可以实现远程监测,使农业生产者能够随时随地了解土壤墒情情况。一、产品简介土壤管式剖面水分仪是用于监测土壤剖面温度、土壤剖面湿度、土壤剖面电导率的在线监测设备,集土壤温度、水分、电导率可广泛应用于智慧大棚、智慧果园、智慧灌溉等农业工程领域。二、产品参数太阳能板功率:8W太阳能板标准工作电压:DC5V内置锂电池容量:5000mAh传感器启动时间:60S传感器供电电压:DC12V传感器供电电流:22mA传感器功耗:0.26W通讯方式:485 Modbus RTU协议测量参数:可同时测量5层(10层以下可定制层数)测量原理:通过测量土壤介电常数建立数学模型,设计螺旋式测量电极测量土壤体积含水率数据。参数测量范围精度分辨率单位土壤温度-30~70℃±0.3(-10~70℃)0.01℃土壤湿度0~100%±3%(壤土)高有机质土壤(土壤有机碳含量12%)高粘粒含量土壤(粘粒含量45%)由于其介电弛豫特性,可能需要针对特定土壤类型进行标定0.1%---土壤电导率0~20000us/cm±3%(0~10000us/cm)±5%(全量程)1us/cm 三、优势与特点★单个土壤管式传感器可以同时测量多个深度的土壤参数,监测深度可定制(小于1M)。★传感器采用低功耗设计,功耗低至0.26W,适用于野外长期无人监测。★传感器每层都可以独立测量温度、湿度、电导率参数。★传感器外壳采用进口PC材质,强度高、耐腐蚀、对环境无污染。★传感器防水等级达到IP67,应对长期室外监测。★传感器测量一定区域内的平均湿度,弥补了单点测量具有局限性的问题。★传感器采用自主设计的螺旋式测量电极,改善传感器与土壤之间的接触,尽量避免空气间隙造成的测量误差。 四、使用注意事项a.传感器使用应严格按照安装使用说明书进行。b.多个传感器同时工作时,必须间隔3米以上距离。c.传感器测量原理限制,传感器测量地为中心半径3米范围内不应有电磁线缆和强磁辐射干扰,避免造成传感器测量的巨大误差和损坏。d.传感器的安装环境应该符合传感器的测量范围,避免超量程等不规范行为。e.传感器安装应避开强酸强碱、重油污重金属环境进行。f.传感器为土壤测量传感器,禁止使用本传感器对其他物质进行测量。g.传感器安装环境不能有强振动。h.传感器不能有过强外力作用。i.禁止拆卸,私自拆卸视为不合规行为,后续将不再提供任何服务行为。 五、结构图 六、尺寸图 七、安装方法钻孔法:1. 取土钻钻头、手柄、支杆,完成后将取土钻竖直于地面,双手紧握手柄顺时针下压慢速转动。(注意:不要太用力,务必慢速多转几圈,防止钻头跑偏至孔洞打歪) 2. 将取土钻从孔洞中取出,放到盆子里,用工具把钻出的土收集到盆子里以用来和泥浆。(注意:第一钻土因为杂质过多,不做收集) 3. 反复持续上述打孔、取土,并在此过程中尝试性地将传感器轻放入孔洞中(请勿将设备用力触底),以测试孔洞的深度是否合适 若有卡顿,则使用取土钻修正,保证传感器放入、取出都比较顺畅 直到孔深与传感器所标识的安装位置齐平(零刻度线),打孔完成。4. 挑出盆中土壤杂质,石子、根、不容易溶解的土块等。将土壤搓细,以便和泥浆。5. 倒入适量水,充分搅拌至粘稠状 壤土泥浆一般不能稠于“芝麻酱”状。 6. 将泥浆慢慢倒入孔洞,大概到孔洞1/2的位置 可根据实际情况酌情增减。 7.将传感器慢慢放入孔洞中,顺时针转动并下压,速度过快可能会导致气泡不能被完全排出。(注意:再转动下压的过程中不可以上拔传感器,防止气体再次吸入孔中)8.当传感器安装到正确的深度后,设备周围会溢出一些泥浆,灌浆完成 此时传感器安装深度与洞口齐平。(注意:将传感器周围3CM以外多余的泥浆清除,防止结块影响水分下渗)掩埋法:使用镐子挖一个埋传感器的深坑,和泥浆将传感器掩埋,处理细节参照钻孔法。
    留言咨询
  • 管式土壤剖面水分仪 400-860-5168转1490
    产品简介: 托普云农研发生产管式土壤剖面水分仪是一种可以同时检测多层土壤层的水分仪。该仪器可直接测量土壤中的水分、温度。并能够将同时测量不同深度的相关土壤参数并通过通过4G/2G网络上传至数据中心。管式土壤剖面水分仪目前可以广泛的应用于抗旱监测、土壤研究、智能灌溉、农产墒情干旱监控预测和山体滑坡等。功能特点:1、全密封结构,防水IP67,PVC外壳,可长期放置于田间、土地中进行不间断测量;2、不同深度土壤参数同时监测,监测深度最深达2米,深度可以定制;3、长度根据检测段位需求确定;智能定位防盗,内置GPS,实时经纬度地理位置信息通过4G/2G网络方式发送到后台;4、通讯方式灵活,可选4G/2G或RS485通讯方式;5、开放数据接口,便于根据需要获取数据;6、低功耗设计,三种外部供电方案:太阳能供电、220V供电及内置长效锂电池持续供电;7、振动防盗:内置振动传感器,当设备发生振动、移除等外力操作时设备立即自动向APP端推送报警信息;8、标配四层土壤温度和土壤水分传感器;9、自带数据管理云平台和APP,可通过网页或手机查看数据。管理云平台功能:1、自带仪器云管理平台包含C/S架构,可将所有便携式设备及在线设备数据进行汇总分析,数据备份不丢失,查看操作方式包括网页端及手机端(安卓/苹果系统均可用);2、显示每种传感器采集到的数据、检测时间、采集地点GPS坐标信息;3、数据可通过4G/2G网络方式或者USB数据线导入方式上传至管理云平台。平台内数据可下载,分析,打印;4、平台支持设备数据存储,提供足够容量可不限量保存;5、平台为设备数据提供曲线与表格等报表形式,且数据可导出与导入;6、平台可以结合数据进行报表制作,报表打印,报表导出功能;7、软件可在线升级。技术参数:土壤水分测量范围:干土~水分饱和土(0~100%)土壤水分测量精度:±3%(免率定直接出数据)土壤温度测量范围:-20℃~70℃,精度±0.5℃监测深度:最大70cm(>70cm可定制)土层监测间距:最小10cm间距数据采集间隔:5min~12h数据采集设置:远程APP或网页设置RS485有线通讯:通讯距离>100m
    留言咨询
  • 土壤剖面水分仪 400-860-5168转1218
    Profile 土壤剖面水分检测仪 使用先进的FDR技术,在一根探杆上同时分布4或6个土壤水分探头,实现同一地点不同深度的土壤剖面含水量测试。能对半米或一米深的土壤进行固定间距的土壤剖面水分测量,使用方便,成本低,不受土壤盐分影响。系统组成:1)HH2水分读表:读取探头水分测量值,可读取和储存数据2)水分探头:圆柱式防水探头,两种型号选择 PR1/4有4个传感器,分布于10cm,20 cm,30 cm,40 cm PR1/6有6个传感器,分布于10 cm,20 cm,30 cm,40 cm,60 cm,100 cm3)软件:数据下载与储存,储存文件直接可以导入EXCEL。4)DL6土壤水分数据采集器:9通道设计,其中包含1个报警通道,1个计数通道,可以连接ML2X单点土壤水分探头,雨量杯等,成为一个完整的灌溉决策系统。技术指标:探头测量范围: 0 - 1.0 m3.m-3(0 - 100%Vol.)探头精度: ± 3%(特殊标定后)探头重复性: ± 1%探头工作温度: -20 - 70℃探头标准电缆长度: 2米(最长可至100米)探头尺寸: PR1/4 长度: 637mm 重量: 0.55kg 直径: 28mm PR1/6 长度: 1246mm 重量: 0.95kg 直径: 28mmHH2 手持读表精度: 1mvHH2 手持读表内存: 1100 个读数HH2 手持读表电池寿命:6500 个读数HH2读数表显示:显示4种输出,m3.m-3、% Vol.、mm、mV
    留言咨询

土壤管式剖面水分仪相关的资讯

  • 中科院地理所刘远团队揭示基质可用性调和不同土壤剖面SOC矿化的温度响应
    2018年,由北京普瑞亿科科技有限公司研发的PRI-8800全自动变温培养土壤温室气体在线测量系统,一经推出便得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达24篇。 今天与大家分享的是中国科学院地理科学与资源研究所刘远团队在调查基质可用性(根系分泌物)的变化如何影响不同土壤剖面中土壤有机碳(SOC)矿化的温度响应(Q10)方面取得的进展,在该项研究中,研究团队利用PRI-8800对SOC矿化率进行高频测量,为研究结果提供了有力的数据支撑。 土壤有机碳(SOC)矿化是导致大量碳从土壤流失到大气中的一个主要过程,而温度会极大地影响这一过程。预计在下个世纪,底土和表土都将经历类似程度的变暖。气候变暖预计会产生土壤碳-气候正反馈,从而加速气候变化。这种正反馈的大小在很大程度上取决于不同深度SOC矿化的温度敏感性(Q10)。因此,更好地了解不同深度的Q10变化及其内在机制,对于准确预测气候变化情景下的土壤碳动态至关重要。尽管在理解全球变暖对底土碳动态影响方面取得了进展,但对于Q10在土壤剖面不同深度的变化方式仍未达成共识。 为了更好地理解气候变化背景下土壤碳动态,刘远团队从三个地点采集了土壤剖面的土壤样品,包括四个深度区间(0-10厘米,10-30厘米,30-50厘米和50-70厘米):两个地点具有典型的矿物质土壤,一个地点是埋藏土壤。研究团队在实验室中使用这些土壤来探讨随着土壤深度的增加SOC矿化的Q10对底物可利用性变化的响应。葡萄糖是一种容易获得的底物,因为它是根分泌物的重要组成部分。土壤在10-25°C的温度下孵育,以0.75°C的温度间隔进行了24小时。然后,在孵育1天后,通过高频率连续测量SOC矿化速率,避免了底物限制和微生物群落的变化对结果的影响,估算Q10。 值得注意的是,针对SOC矿化速率的测量,研究团队使用的是由北京普瑞亿科科技有限公司研发的PRI–8800全自动变温培养土壤温室气体在线测量系统,该系统允许在一定时间内逐步提高孵育温度并与SOC矿化速率的高频测量同步进行,为该项研究提供了更准确的Q10估计。图1:不同土壤深度和不同站点下,控制组(CK)和底物添加组(S+)的土壤有机碳(SOC)矿化的温度响应,使用指数拟合表示。站点:Liangshui(LS)、Huinan(HN)和Hongyuan(HY)。***代表P0.001的显著差异。图2 a:在控制组(CK)和底物添加组(S+)中,土壤有机碳(SOC)矿化速率(R22)在22°C下随深度增加的变化。b:不同站点下不同土壤深度的底物可利用性指数(CAI);c:在CK和S+处理中,SOC矿化的温度敏感性(Q10)随深度增加的变化;d:不同站点下不同土壤深度中CK和S+处理之间Q10的差异(ΔQ10)。 研究结果表明,在典型的矿质土壤中,Q10随深度的增加而降低,但在埋藏土壤中,Q10则先降低后增加。不出所料,在不同的土壤深度,基质的添加会明显增加Q10;但是,增加的幅度(ΔQ10)随土壤深度和类型的不同而不同。出乎意料的是,在典型的矿质土壤中,表土中的ΔQ10比底土中的高,反之亦然。ΔQ10与土壤初始基质可用性(CAI)呈负相关,与土壤无机氮呈正相关。总体而言,气候变化情景下基质可用性的增加(即二氧化碳浓度升高导致根系渗出物增加)会进一步加强SOC矿化的温度响应,尤其是在无机氮含量高的土壤或氮沉积率高的地区。 相关研究成果以“Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles”为题在线发表于期刊《Journal Of Soils And Sediments》上(中科院三区Top,IF5 =3.8)。相关论文信息:Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.原文链接:https://doi.org/10.1007/s11368-023-03602-y 截至目前,以PRI-8800为关键设备发表的相关文章已达24篇,分别发表在10余种影响因子较高的国际期刊上——数据来源:https://sci.justscience.cn/ 很荣幸PRI-8800可以为这些高质量学术研究贡献一份力量,感谢各位老师对普瑞亿科产品的支持和信任。如果您成功发表文章,并且在研究过程中使用了普瑞亿科的国产仪器设备,请与我们公司联络,我们为您准备了一份小礼物,以感谢您对国产设备以及普瑞亿科的信任和支持! 自2018年上市以来,PRI-8800全自动变温培养土壤温室气体在线测量系统得到了广泛关注。该系统在土壤有机质分解速率、Q10及其调控机制方面提供了一整套高效的解决方案,为科研人员提供室内变温培养模拟野外环境的条件,让科研可以更广、更深层次地开展。目前以PRI-8800为关键设备发表的相关文章已达23篇。 为响应国家“双碳”目标,针对国内“双碳”行动有效性评估,普瑞亿科全新升级了PRI-8800 全自动变温培养土壤温室气体在线测量系统,结合了连续变温培养和高频土壤呼吸在线测量的优势,模式的培养与测试过程非常简单高效,这极大方便了大量样品的测试或大尺度联网的研究,可以有效服务科学研究和生态观测。PRI-8800的成功推出,为“双碳”目标研究和评价提供了强有力的工具。 土壤有机质分解速率(R)对温度变化的响应非常敏感。温度敏感性参数(Q10)可以刻画土壤有机质分解对温度变化的响应程度。Q10是指温度每升高10℃,R所增加的倍数;Q10值越大,表明土壤有机质分解对温度变化就越敏感。Q10不仅取决于有机质分子的固有动力学属性,也受到环境条件的限制。Q10能抽象地描述土壤有机质分解对温度变化的响应,在不同生态类型系统、不同研究间架起了一个规范的和可比较的参数,因此其研究意义重大。 以往Q10研究通过选取较少的温度梯度(3-5个点)进行测量,从而导致不同土壤的呼吸对温度变化拟合相似度高的问题无法被克服。Robinson最近的研究(2017)指出,最低20个温度梯度拟合土壤呼吸对温度的响应曲线可以有效解决上述问题。PRI-8800全自动变温土壤温室气体在线测量系统为Q10的研究提供了强有力的工具,不仅能用于测量Q10对环境变量主控温度因子的响应,也能用于测量其对土壤含水量、酶促反应、有机底物、土壤生物及时空变异等的响应。PRI-8800为Q10对关联影响因子的研究,提供了一套快捷、高效、准确的整体解决方案。可设定恒温或变温培养模式;温度控制波动优于±0.05℃;平均升降温速率不小于1°C/min;150ml样品瓶,25位样品盘;大气本底缓冲气或钢瓶气清洗气路;一体化设计,内置CO2 H2O模块;可外接高精度浓度或同位素分析仪。 为了更好地助力科学研究,拓展设备应用场景,普瑞亿科重磅推出「加强版」PRI-8800——PRI-8800 Plus全自动变温培养土壤温室气体在线测量系统。 1)原状土冻融过程模拟:气候变化改变了土壤干湿循环和冻融循环的频率和强度。这些波动影响了土壤微生物活动的关键驱动力,即土壤水分利用率。虽然这些波动使土壤微生物结构有少许改变,但一种气候波动的影响(例如干湿交替)是否影响了对另一种气候(例如冻融交替)的反应,其温室气体排放是如何响应的?通过PRI-8800 Plus 的冻融模拟,我们可以找出清晰答案。 2)湿地淹水深度模拟:在全球尺度上湿地甲烷(CH4)排放的温度敏感性大小主要取决于水位变化,而二氧化碳(CO2)排放的温度敏感性不受水位影响。复杂多样的湿地生态系统不同水位的变化及不同温度的变化如何影响和调控着湿地温室气体的排放?我们该如何量化不同水位的变化及不同温度的变化下湿地的温室气体排放?借助PRI-8800 Plus,通过淹水深度和温度变化的组合测试,可以查出真相。 3)温度依赖性的研究:既然温度的变化会极大影响土壤呼吸,基于温度变化的Q10研究成为科学家研究中重中之重。2017年Robinson提出的最低20个温度梯度拟合土壤呼吸对温度响应曲线的建议,将纠正以往研究人员只设置3-5个温度点(大约相隔5-10℃)进行呼吸测量的做法,该建议能解决传统方法因温度梯度少而导致的不同土壤的呼吸对温度变化拟合相似度高的问题,更能提升不同的理论模型或随后模型推算结果的准确性。而上述至少20个温度点的设置和对应的土壤呼吸测量,仅仅需要在PRI-8800 Plus程序中预设几个温度梯度即可完成多个样品在不同温度下的自动测量,这将极大提高科学家的工作效率。 除了上述变温应用案例外,科学家还可以依据自己的实验设计进行诸如日变化、月变化、季节变化、甚至年度温度变化的模拟培养,通过PRI-8800 Plus的“傻瓜式”操作测量,将极大减少科学家实验实施的周期和工作量,并提高了工作效率。 PRI-8800 Plus除了具有上述变温培养的特色,还可以进行恒温培养,抑或是恒温/变温交替培养,这些组合无疑拓展了系统在不同温度组合条件下的应用场景。 4)水分依赖性的研究:多数研究表明,在温度恒定的情况下,Q10很容易受土壤含水量的影响,表现出一定的水分依赖特性。PRI-8800 Plus可以通过手动调整土壤含水量的做法,并在PRI-8800 Plus快速连续测量模式下,实现不同水分梯度条件下土壤呼吸的精准测量,而PRI-8800 Plus的逻辑设计,为短期、中期和长期湿度控制条件下的土壤呼吸的连续、高品质测量提供了可能。 5)底物依赖性的研究:底物物质量与Q10密切相关,这里的底物包含不限于自然态的土壤,如含碳量,含氮量,易分解/难分解的碳比例、土壤粘粒含量、酸碱盐度等;也可能包含了某些外源底物,如外源的生物质碳、微生物种群、各种肥料、呼吸促进/抑制剂、同位素试剂等。通过PRI-8800快速在线变温培养测量,能加速某些研究进程并获得可靠结果,如生物质炭在土壤改良过程中的土壤呼吸研究、缓释肥缓释不同阶段对土壤呼吸的持续影响、盐碱土壤不同改良措施下的土壤呼吸的变化响应等等。 6)生物依赖性的研究:土壤呼吸包含土壤微生物呼吸(90%)和土壤动物呼吸(1-10%),土壤微生物群落对Q10影响重大。通过温度响应了解培养前后的微生物种群和数量的变化以及对应的土壤呼吸速率的变化有重要意义。外源微生物种群的添加,或许帮助科学家找出更好的Q10对土壤生物依赖性的响应解析。1.Li C, Xiao C, Li M, et al. The quality and quantity of SOM determines the mineralization of recently added labile C and priming of native SOM in grazed grasslands[J]. Geoderma, 2023, 432: 116385.2.Ma X, Jiang S, Zhang Z, et al. Long‐term collar deployment leads to bias in soil respiration measurements[J]. Methods in Ecology and Evolution, 2023, 14(3): 981-990.3.He Y, Zhou X, Jia Z, et al. Apparent thermal acclimation of soil heterotrophic respiration mainly mediated by substrate availability[J]. Global Change Biology, 2023, 29(4): 1178-1187.4.Mao X, Zheng J, Yu W, et al. Climate-induced shifts in composition and protection regulate temperature sensitivity of carbon decomposition through soil profile[J]. Soil Biology and Biochemistry, 2022, 172: 108743.5.Pan J, He N, Liu Y, et al. Growing season average temperature range is the optimal choice for Q10 incubation experiments of SOM decomposition[J]. Ecological Indicators, 2022, 145: 109749.6.Li C, Xiao C, Guenet B, et al. Short-term effects of labile organic C addition on soil microbial response to temperature in a temperate steppe[J]. Soil Biology and Biochemistry, 2022, 167: 108589.7.Jiang ZX, Bian HF, Xu L, He NP. 2021. Pulse effect of precipitation: spatial patterns and mechanisms of soil carbon emissions. Frontiers in Ecology and Evolution, 9: 673310.8.Liu Y, Xu L, Zheng S, Chen Z, Cao YQ, Wen XF, He NP. 2021. Temperature sensitivity of soil microbial respiration in soils with lower substrate availability is enhanced more by labile carbon input. Soil Biology and Biochemistry, 154: 108148.9.Bian HF, Zheng S, Liu Y, Xu L, Chen Z, He NP. 2020. Changes in soil organic matter decomposition rate and its temperature sensitivity along water table gradients in cold-temperate forest swamps. Catena, 194: 104684.10.Xu M, Wu SS, Jiang ZX, Xu L, Li MX, Bian HF, He NP. 2020. Effect of pulse precipitation on soil CO2 release in different grassland types on the Tibetan Plateau. European Journal of Soil Biology, 101: 103250.11.Liu Y, He NP, Xu L, Tian J, Gao Y, Zheng S, Wang Q, Wen XF, Xu XL, Yakov K. 2019. A new incubation and measurement approach to estimate the temperature response of soil organic matter decomposition. Soil Biology & Biochemistry, 138, 107596.12.Yingqiu C, Zhen Z, Li X, et al. Temperature Affects new Carbon Input Utilization By Soil Microbes: Evidence Based on a Rapid δ13C Measurement Technology[J]. Journal of Resources and Ecology, 2019, 10(2): 202-212.13.Cao Y, Xu L, Zhang Z, et al. Soil microbial metabolic quotient in inner mongolian grasslands: Patterns and influence factors[J]. Chinese Geographical Science, 2019, 29: 1001-1010.14.Liu Y, He NP, Wen XF, Xu L, Sun XM, Yu GR, Liang LY, Schipper LA. 2018. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biology and Biochemistry, 121: 35-42.15.Liu Y, Wen XF, Zhang YH, Tian J, Gao Y, Ostle NJ, Niu SL, Chen SP, Sun XM, He NP. 2018.Widespread asymmetric response of soil heterotrophic respiration to warming and cooling. Science of Total Environment, 635: 423-431.16.Wang Q, He NP, Xu L, Zhou XH. 2018. Important interaction of chemicals, microbial biomass and dissolved substrates in the diel hysteresis loop of soil heterotrophic respiration. Plant and Soil, 428: 279-290.17.Wang Q, He NP, Xu L, Zhou XH. 2018. Microbial properties regulate spatial variation in the differences in heterotrophic respiration and its temperature sensitivity between primary and secondary forests from tropical to cold-temperate zones. Agriculture and Forest Meteorology, 262, 81-88.18.He N P, Liu Y, Xu L, Wen X F, Yu G R, Sun X M. Temperature sensitivity of soil organic matter decomposition:New insights into models of incubation and measurement. Acta Ecologica Sinica, 2018, 38(11): 4045-4051.19.Li J, He NP, Xu L, Chai H, Liu Y, Wang DL, Wang L, Wei XH, Xue JY, Wen XF, Sun XM. 2017. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. Soil Biology & Biochemistry, 106: 18-27.20.Liu Y, He NP, Xu L, Niu SL, Yu GR, Sun XM, Wen XF. 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China’s forests and grasslands. Global Change Biology, 23: 3393-3402.21.Wang Q, He NP*, Liu Y, Li ML, Xu L. 2016. Strong pulse effects of precipitation event on soil microbial respiration in temperate forests. Geoderma, 275: 67-73.22.Wang Q, He NP, Yu GR, Gao Y, Wen XF, Wang RF, Koerner SE, Yu Q*. 2016. Soil microbial respiration rate and temperature sensitivity along a north-south forest transect in eastern China: Patterns and influencing factors. Journal of Geophysical Research: Biogeosciences, 121: 399-410.23.He NP, Wang RM, Dai JZ, Gao Y, Wen XF, Yu GR. 2013. Changes in the temperature sensitivity of SOM decomposition with grassland succession: Implications for soil C sequestration. Ecology and Evolution, 3: 5045-5054.24.Liu Y, Kumar A, Tiemann L K, et al. Substrate availability reconciles the contrasting temperature response of SOC mineralization in different soil profiles[J]. Journal of Soils and Sediments, 2023: 1-15.
  • 3523万!兰州大学土壤剖面CO2浓度测量设备等仪器采购项目
    项目编号:LZU-2022-363-HW-GK项目名称:兰州大学土壤剖面CO2浓度测量设备等仪器采购项目预算金额:3523.0000000 万元(人民币)采购需求:标段号序号标的名称数量预算金额(万元)是否进口第一标段1土壤剖面CO2浓度测量设备37套362.6是第二标段1区域土壤水观测系统(中子仪)7套175否2区域降雪测量系统36套298.4否第三标段1泥沙含量固定观测系统20套800否2流量流速观测系统23套192否第四标段1多参数水质观测系统23套1035是第五标段1蒸渗仪6套660否详见采购文件第三章项目采购需求合同履行期限:合同签订之日起进口设备180日历日,国产设备2022年12月31日前完成验收并交付使用;本项目( 不接受 )联合体投标。
  • 共378人!土壤三普 剖面土壤调查与采样技术领队第三批名单公布
    为深入推进和规范各地剖面土壤调查与采样工作,国务院第三次全国土壤普查领导小组办公室在遴选前两批720名剖面土壤调查与采样技术领队的基础上,根据各省需求,指导省级培训,组织统一考核,遴选了第三批378名剖面土壤调查与采样技术领队,其名单及证书编号公布如下,剖面技术领队资格全国通用。附: 第三批剖面技术领队名单及证书编号(全国通用)序号姓名单位证书编号省份1吕云浩东北农业大学QGWY(PM)202300648黑龙江2张明聪黑龙江八一农垦大学QGWY(PM)202300649黑龙江3姜佰文东北农业大学QGWY(PM)202300650黑龙江4刘瑞东北地理所农业技术中心QGWY(PM)202300651黑龙江5侯萌东北地理所农业技术中心QGWY(PM)202300652黑龙江6嵩博东北农业大学QGWY(PM)202300653黑龙江7姚钦黑龙江八一农垦大学QGWY(PM)202300654黑龙江8马亮乾东北地理所农业技术中心QGWY(PM)202300655黑龙江9郝磊东北地理所农业技术中心QGWY(PM)202300656黑龙江10刘炜东北林业大学QGWY(PM)202300657黑龙江11张娟东北农业大学QGWY(PM)202300658黑龙江12宋金凤东北林业大学QGWY(PM)202300659黑龙江13于贺东北地理所农业技术中心QGWY(PM)202300660黑龙江14李鹏飞东北农业大学QGWY(PM)202300661黑龙江15王辰黑龙江八一农垦大学QGWY(PM)202300662黑龙江16刘宝东东北林业大学QGWY(PM)202300663黑龙江17郭亚芬东北林业大学QGWY(PM)202300664黑龙江18孙宝根黑龙江八一农垦大学QGWY(PM)202300665黑龙江19姜泊宇东北地理所农业技术中心QGWY(PM)202300666黑龙江20王殿尧东北农业大学QGWY(PM)202300667黑龙江21刘金彪黑龙江八一农垦大学QGWY(PM)202300668黑龙江22米刚农科院黑土院QGWY(PM)202300669黑龙江23桑英东北林业大学QGWY(PM)202300670黑龙江24蒋雨洲黑龙江八一农垦大学QGWY(PM)202300671黑龙江25娄鑫东北林业大学QGWY(PM)202300672黑龙江26匡恩俊农科院黑土院QGWY(PM)202300673黑龙江27袁佳慧农科院黑土院QGWY(PM)202300674黑龙江28于洪久农科院黑土院QGWY(PM)202300675黑龙江29周宝库农科院黑土院QGWY(PM)202300676黑龙江30葛壮东北林业大学QGWY(PM)202300677黑龙江31王里根东北地理所农业技术中心QGWY(PM)202300678黑龙江32李伟群农科院黑土院QGWY(PM)202300679黑龙江33王晓军农科院黑土院QGWY(PM)202300680黑龙江34郑子成四川农业大学QGWY(PM)202300681四川35李冰四川农业大学QGWY(PM)202300682四川36徐小逊四川农业大学QGWY(PM)202300683四川37兰婷四川农业大学QGWY(PM)202300684四川38罗由林四川农业大学QGWY(PM)202300685四川39杨刚四川农业大学QGWY(PM)202300686四川40陈光登四川农业大学QGWY(PM)202300687四川41蔡艳四川农业大学QGWY(PM)202300688四川42崔俊芳中国科学院水利部成都山地灾害与环境研究所QGWY(PM)202300689四川43李婷四川农业大学QGWY(PM)202300690四川44夏建国四川农业大学QGWY(PM)202300691四川45晏朝睿四川农业大学QGWY(PM)202300692四川46李阳四川农业大学QGWY(PM)202300693四川47秦鱼生四川省农业科学院农业资源与环境研究所QGWY(PM)202300694四川48黄容四川农业大学QGWY(PM)202300695四川49王永东四川农业大学QGWY(PM)202300696四川50唐晓燕四川农业大学QGWY(PM)202300697四川51盛响元中国科学院水利部成都山地灾害与环境研究所QGWY(PM)202300698四川52张锡洲四川农业大学QGWY(PM)202300699四川53蔡恺四川省农科院资源与环境研究所QGWY(PM)202300700四川54邓石磊四川省农业科学院农业资源与环境研究所QGWY(PM)202300701四川55凌静四川农业大学QGWY(PM)202300702四川56李启权四川农业大学QGWY(PM)202300703四川57王宏四川省农业科学院农业资源与环境研究所QGWY(PM)202300704四川58李一丁四川农业大学QGWY(PM)202300705四川59徐文四川农业大学QGWY(PM)202300706四川60雷斌四川农业大学QGWY(PM)202300707四川61胡玉福四川农业大学QGWY(PM)202300708四川62王贵胤四川农业大学QGWY(PM)202300709四川63蒋俊明四川省林业科学研究院QGWY(PM)202300710四川64王小国中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300711四川65徐鹏中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300712四川66李远伟四川农业大学QGWY(PM)202300713四川67周子军四川省农业科学院农业资源与环境研究所QGWY(PM)202300714四川68魏锴中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300715四川69赵淼中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300716四川70杨远祥四川农业大学QGWY(PM)202300717四川71陈超四川农业大学QGWY(PM)202300718四川72刘祥龙中国科学院成都山地灾害与环境研究所QGWY(PM)202300719四川73周明华中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300720四川74徐明四川省林业科学研究院QGWY(PM)202300721四川75章熙锋中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300722四川76王涛中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300723四川77李堃四川省林业科学研究院QGWY(PM)202300724四川78吴小波四川农业大学QGWY(PM)202300725四川79曾建四川农业大学QGWY(PM)202300726四川80吴英杰四川农业大学QGWY(PM)202300727四川81贾永霞四川农业大学QGWY(PM)202300728四川82严坤中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300729四川83范继辉中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300730四川84喻华四川省农业科学院农业资源与环境研究所QGWY(PM)202300731四川85郭松四川省农业科学院农业资源与环境研究所QGWY(PM)202300732四川86刘定辉四川省农业科学院农业资源与环境研究所QGWY(PM)202300733四川87汪涛中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300734四川88况福虹中国科学院、水利部成都山地灾害与环境研究所QGWY(PM)202300735四川89鲜骏仁四川农业大学QGWY(PM)202300736四川90姚致远中科学院、水利部山地灾害与环境研究所QGWY(PM)202300737四川91刘涛四川农业大学QGWY(PM)202300738四川92张世熔四川农业大学QGWY(PM)202300739四川93赵鑫涯四川省林业科学研究院QGWY(PM)202300740四川94林超文四川省农业科学院农业资源与环境研究所QGWY(PM)202300741四川95张庆玉四川省农业科学院农业资源与环境研究所QGWY(PM)202300742四川96周伟四川农业大学QGWY(PM)202300743四川97上官宇先四川省农业科学院农业资源与环境研究所QGWY(PM)202300744四川98魏雅丽四川农业大学QGWY(PM)202300745四川99吴德勇四川农业大学QGWY(PM)202300746四川100王方甘肃省农业科学院QGWY(PM)202300747甘肃101郭慧慧甘肃省地质调查院QGWY(PM)202300748甘肃102冯备战甘肃省地质调查院QGWY(PM)202300749甘肃103谢 娜甘肃省地质调查院QGWY(PM)202300750甘肃104焦翻霞甘肃省地质调查院QGWY(PM)202300751甘肃105朱利辉甘肃省地质调查院QGWY(PM)202300752甘肃106邓 伟甘肃省地质调查院QGWY(PM)202300753甘肃107张 元甘肃省地质调查院QGWY(PM)202300754甘肃108姚志龙陇东学院QGWY(PM)202300755甘肃109王文丽甘肃省农业科学院土壤肥料与节水农业研究所QGWY(PM)202300756甘肃110吕 彪河西学院QGWY(PM)202300757甘肃111张 磊甘肃省地质调查院QGWY(PM)202300758甘肃112师伟杰甘州区农业技术推广中心QGWY(PM)202300759甘肃113康 蓉榆中县农业技术推广中心QGWY(PM)202300760甘肃114宋 蓉甘肃省地质调查院QGWY(PM)202300761甘肃115李元茂甘肃省地质调查院QGWY(PM)202300762甘肃116尤泽华甘肃省地质调查院QGWY(PM)202300763甘肃117马 剑陇东学院QGWY(PM)202300764甘肃118祝 英甘肃省科学院生物研究所QGWY(PM)202300765甘肃119张 鹏兰州市农业科技研究推广中心QGWY(PM)202300766甘肃120苏彦平陇南市土壤普查办QGWY(PM)202300767甘肃121丁素婷兰州大学QGWY(PM)202300768甘肃122张连科甘肃省科学院地质自然灾害防治研究所QGWY(PM)202300769甘肃123刘金山甘肃省地质矿产勘查开发局水文地质工程地质勘察院QGWY(PM)202300770甘肃124张 亮陇东学院QGWY(PM)202300771甘肃125吴永强甘肃省地质调查院QGWY(PM)202300772甘肃126黄艺江西省地质局地理信息工程大队QGWY(PM)202300773江西127李豪江西省地质局能源地质大队QGWY(PM)202300774江西128夏金文南昌工程学院QGWY(PM)202300775江西129李亮江西省科学院微生物研究所QGWY(PM)202300776江西130张浩然江西核工业环境保护中心有限公司QGWY(PM)202300777江西131孙景玲赣南师范大学QGWY(PM)202300778江西132李伟峰江西吉新勘察规划工程咨询有限公司QGWY(PM)202300779江西133刘煜江西省科学院微生物研究所QGWY(PM)202300780江西134王妍九江市测绘地理信息有限公司QGWY(PM)202300781江西135尧波江西师范大学QGWY(PM)202300782江西136方瑛江西省吉新勘察规划工程咨询有限公司QGWY(PM)202300783江西137邓邦良南昌工程学院QGWY(PM)202300784江西138赖玉莹江西省地质调查勘查院基础地质调查所(江西有色地质矿产勘查开发院)QGWY(PM)202300785江西139刘亚南速度科技股份有限公司QGWY(PM)202300786江西140陈知富江西金达地矿工程有限责任公司QGWY(PM)202300787江西141朱新伟江西核工业环境保护中心有限公司QGWY(PM)202300788江西142蒙智宇江西省地质局第十地质大队QGWY(PM)202300789江西143胡启武江西师范大学QGWY(PM)202300790江西144赵苗苗速度科技股份有限公司QGWY(PM)202300791江西145刘雪梅江西省梦保美环境检测技术有限公司QGWY(PM)202300792江西146林建平赣南师范大学QGWY(PM)202300793江西147乐丽红江西省吉新勘察规划工程咨询有限公司QGWY(PM)202300794江西148陈志江西省地质局地理信息工程大队QGWY(PM)202300795江西149高雷北华大学QGWY(PM)202300796吉林150傅民杰延边大学QGWY(PM)202300797吉林151曹志远延边大学QGWY(PM)202300798吉林152王兴安东北师范大学QGWY(PM)202300799吉林153朱瑞杰吉林大学QGWY(PM)202300800吉林154尹秀玲吉林农业科技学院QGWY(PM)202300801吉林155吴琼吉林大学QGWY(PM)202300802吉林156李宏卿吉林大学QGWY(PM)202300803吉林157杨峰田吉林大学QGWY(PM)202300804吉林158鲍新华吉林大学QGWY(PM)202300805吉林159周静雅延边大学QGWY(PM)202300806吉林160张春鹏吉林大学QGWY(PM)202300807吉林161于海燕吉林农业科技学院QGWY(PM)202300808吉林162杨镇吉林大学QGWY(PM)202300809吉林163郭平吉林大学QGWY(PM)202300810吉林164梁运江延边大学农学院QGWY(PM)202300811吉林165熊毅东北林业大学QGWY(PM)202300812吉林166刘振吉林农业科技学院QGWY(PM)202300813吉林167李鸿凯东北师范大学QGWY(PM)202300814吉林168高纪超吉林省农业科学院QGWY(PM)202300815吉林169肖玉亮吉林省第五地质调查所QGWY(PM)202300816吉林170陈静吉林省第五地质调查所QGWY(PM)202300817吉林171陈健吉林省第五地质调查所QGWY(PM)202300818吉林172曾年发吉林省第五地质调查所QGWY(PM)202300819吉林173王军吉林大学QGWY(PM)202300820吉林174彭靖吉林农业科技学院QGWY(PM)202300821吉林175刘明吉林农业科技学院QGWY(PM)202300822吉林176宋金红吉林农业大学QGWY(PM)202300823吉林177吕伟超吉林省第五地质调查所QGWY(PM)202300824吉林178黄一格吉林省第五地质调查所QGWY(PM)202300825吉林179刘龙飞扬州大学QGWY(PM)202300828江苏180张楚中国科学院南京土壤研究所QGWY(PM)202300829江苏181张梓良中国科学院南京土壤研究所QGWY(PM)202300830江苏182刘琦南京林业大学QGWY(PM)202300831江苏183李冬雪中国科学院南京土壤研究所QGWY(PM)202300832江苏184钱睿中国科学院南京土壤研究所QGWY(PM)202300833江苏185张昊哲中国科学院南京土壤研究所QGWY(PM)202300834江苏186柏彦超扬州大学QGWY(PM)202300835江苏187孙海军南京林业大学QGWY(PM)202300836江苏188樊亚男中国科学院南京土壤研究所QGWY(PM)202300837江苏189赵晨浩扬州大学QGWY(PM)202300838江苏190左文刚扬州大学QGWY(PM)202300839江苏191王小治扬州大学QGWY(PM)202300840江苏192钱晓晴扬州大学QGWY(PM)202300841江苏193樊建凌南京信息工程大学QGWY(PM)202300842江苏194张晶中国科学院南京土壤研究所QGWY(PM)202300843江苏195周宏伟扬州大学QGWY(PM)202300844江苏196李云龙扬州大学QGWY(PM)202300845江苏197高璐璐中国科学院南京土壤研究所QGWY(PM)202300846江苏198沈贝贝扬州大学QGWY(PM)202300847江苏199叶明亮中国科学院南京土壤研究所QGWY(PM)202300848江苏200郭刚江苏省地质调查研究院QGWY(PM)202300849江苏201李奇祥江苏华东有色深部地质勘查有限责任公司(江苏省有色金属华东地质勘查局资源调查与评价研究院)QGWY(PM)202300850江苏202冯文娟中国科学院南京土壤研究所QGWY(PM)202300851江苏203丁琪洵中国科学院南京土壤研究所QGWY(PM)202300852江苏204李程南京农业大学QGWY(PM)202300853江苏205胡瑾中国科学院南京地理与湖泊研究所QGWY(PM)202300854江苏206王小兵扬州大学QGWY(PM)202300855江苏207斯天任南京农业大学QGWY(PM)202300856江苏208孙越琦中国科学院南京土壤研究所QGWY(PM)202300857江苏209龚可杨中国科学院南京土壤研究所QGWY(PM)202300858江苏210黄启为南京农业大学QGWY(PM)202300859江苏211朱福斌南京农业大学QGWY(PM)202300860江苏212陆海鹰南京林业大学QGWY(PM)202300861江苏213蒋洪毛上海数喆数据科技有限公司QGWY(PM)202300862江苏214李久海南京信息工程大学QGWY(PM)202300863江苏215刘晓雨南京农业大学QGWY(PM)202300864江苏216文慧颖中国科学院南京土壤研究所QGWY(PM)202300865江苏217郑聚锋南京农业大学QGWY(PM)202300866江苏218李兆富南京农业大学QGWY(PM)202300867江苏219张焕朝南京林业大学QGWY(PM)202300868江苏220姚粉霞扬州大学QGWY(PM)202300869江苏221程增涛江苏华东有色深部地质勘查有限责任公司(江苏省有色金属华东地质勘查局资源调查与评价研究院)QGWY(PM)202300870江苏222董歌南京农业大学QGWY(PM)202300871江苏223徐萍江苏华东有色深部地质勘查有限责任公司(江苏省有色金属华东地质勘查局资源调查与评价研究院)QGWY(PM)202300872江苏224李学林南京农业大学QGWY(PM)202300873江苏225许哲中国科学院南京土壤研究所QGWY(PM)202300874江苏226王敬南京林业大学QGWY(PM)202300875江苏227程琨南京农业大学QGWY(PM)202300876江苏228刘志伟南京农业大学QGWY(PM)202300877江苏229程瑜江苏省地质调查研究院QGWY(PM)202300878江苏230欧阳凯湖南农业大学QGWY(PM)202300879湖南231段勋中国科学院亚热带农业生态研究所QGWY(PM)202300880湖南232翟世斌湖南中核建设工程有限公司QGWY(PM)202300881湖南233曹俏湖南经地科技发展有限公司QGWY(PM)202300882湖南234张鹏博湖南经地科技发展有限公司QGWY(PM)202300883湖南235周伟军湖南省泽环检测技术有限公司QGWY(PM)202300884湖南236陈建国中南林业科技大学QGWY(PM)202300885湖南237李洪斌湖南经地科技发展有限公司QGWY(PM)202300886湖南238曾思磊湖南省农林工业勘察设计研究总院QGWY(PM)202300887湖南239王宝隆佛山市铁人环保科技有限公司QGWY(PM)202300888湖南240赵双飞中南林业科技大学QGWY(PM)202300889湖南241龚飞湖南中核建设工程有限公司QGWY(PM)202300890湖南242段良霞湖南农业大学QGWY(PM)202300891湖南243龙坚中南林业科技大学QGWY(PM)202300892湖南244王维湖南省泽环检测技术有限公司QGWY(PM)202300893湖南245肖艳虹中大智能科技股份有限公司QGWY(PM)202300894湖南246李乐佛山市铁人环保科技有限公司QGWY(PM)202300895湖南247陈峪霭佛山市铁人环保科技有限公司QGWY(PM)202300896湖南248杜辉辉湖南农业大学QGWY(PM)202300897湖南249肖栋湖南中核建设工程有限公司QGWY(PM)202300898湖南250李国满中国科学院亚热带农业生态研究所QGWY(PM)202300899湖南251舒相石湖南省易净环保科技有限公司QGWY(PM)202300900湖南252丰明佳湖南省遥感地质调查监测所QGWY(PM)202300901湖南253田宇湖南经地科技发展有限公司QGWY(PM)202300902湖南254张亮湖南农业大学QGWY(PM)202300903湖南255胡玮中大智能科技股份有限公司QGWY(PM)202300904湖南256汪景宽沈阳农业大学QGWY(PM)202300905辽宁257裴久渤沈阳农业大学QGWY(PM)202300906辽宁258张国显沈阳农业大学QGWY(PM)202300907辽宁259黄文韬沈阳农业大学QGWY(PM)202300908辽宁260可欣沈阳建筑大学QGWY(PM)202300909辽宁261张明亮辽宁省地质矿产调查院有限责任公司QGWY(PM)202300910辽宁262王大鹏辽宁省地质矿产调查院有限责任公司QGWY(PM)202300911辽宁263刘灵芝沈阳农业大学QGWY(PM)202300912辽宁264隋真龙辽宁省地质矿产调查院有限责任公司QGWY(PM)202300913辽宁265刘亚龙沈阳农业大学QGWY(PM)202300914辽宁266于成广辽宁省地质矿产调查院有限责任公司QGWY(PM)202300915辽宁267李嘉琦沈阳农业大学QGWY(PM)202300916辽宁268任彬彬沈阳农业大学QGWY(PM)202300917辽宁269王天豪大连大学QGWY(PM)202300918辽宁270彭金皓辽宁省地质矿产调查院有限责任公司QGWY(PM)202300919辽宁271王萍沈阳农业大学QGWY(PM)202300920辽宁272边振兴沈阳农业大学QGWY(PM)202300921辽宁273张大庚沈阳农业大学QGWY(PM)202300922辽宁274刘宁沈阳农业大学QGWY(PM)202300923辽宁275王冰沈阳农业大学QGWY(PM)202300924辽宁276刘国昊辽宁省地质矿产调查院有限责任公司QGWY(PM)202300925辽宁277王诚煜辽宁省地质矿产调查院有限责任公司QGWY(PM)202300926辽宁278姜春宇辽宁省地质矿产调查院有限责任公司QGWY(PM)202300927辽宁279关峰辽宁省地质矿产调查院有限责任公司QGWY(PM)202300928辽宁280史金生辽宁省地质矿产调查院有限责任公司QGWY(PM)202300929辽宁281关旭辽宁省地质矿产调查院有限责任公司QGWY(PM)202300930辽宁282杨丽娟沈阳农业大学QGWY(PM)202300931辽宁283党秀丽沈阳农业大学QGWY(PM)202300932辽宁284王帅沈阳农业大学QGWY(PM)202300933辽宁285金鑫鑫沈阳农业大学QGWY(PM)202300934辽宁286李玉超辽宁省地质矿产调查院有限责任公司QGWY(PM)202300935辽宁287张吉星辽宁省地质矿产调查院有限责任公司QGWY(PM)202300936辽宁288毛永涛辽宁省地质矿产调查院有限责任公司QGWY(PM)202300937辽宁289孔繁昕辽宁省地质矿产调查院有限责任公司QGWY(PM)202300938辽宁290王展沈阳农业大学QGWY(PM)202300939辽宁291杨明沈阳农业大学QGWY(PM)202300940辽宁292罗培宇沈阳农业大学QGWY(PM)202300941辽宁293李道林安徽农业大学QGWY(PM)202300942安徽294廖霞安徽农业大学QGWY(PM)202300943安徽295王世航安徽理工大学QGWY(PM)202300944安徽296李孝良安徽科技学院QGWY(PM)202300945安徽297魏俊岭安徽农业大学QGWY(PM)202300946安徽298李涛安徽中青检验检测有限公司QGWY(PM)202300947安徽299吕成文安徽师范大学QGWY(PM)202300948安徽300史春鸿安徽省地质调查院(安徽省地质科学研究所)QGWY(PM)202300949安徽301赵旭广电计量检测(合肥)有限公司QGWY(PM)202300950安徽302张平究安徽师范大学QGWY(PM)202300951安徽303索改弟安徽科技学院QGWY(PM)202300952安徽304张纯安徽友诚地理信息技术有限公司QGWY(PM)202300953安徽305陈皓龙安徽省地质矿产勘查局327地质队QGWY(PM)202300954安徽306刘健健安徽科技学院QGWY(PM)202300955安徽307赵悦安徽省地球物理地球化学勘查技术院QGWY(PM)202300956安徽308童心安徽中青检验检测有限公司QGWY(PM)202300957安徽309荚伟安徽友诚地理信息技术有限公司QGWY(PM)202300958安徽310梁先龙安徽中青检验检测有限公司QGWY(PM)202300959安徽311王翔翔广电计量检测(合肥)有限公司QGWY(PM)202300960安徽312杨立辉安徽师范大学QGWY(PM)202300961安徽313梁红霞安徽省地质调查院(安徽省地质科学研究所)QGWY(PM)202300962安徽314杨阳广电计量检测(合肥)有限公司QGWY(PM)202300963安徽315梁宏旭安徽农业大学QGWY(PM)202300964安徽316金宝枝广电计量检测(合肥)有限公司QGWY(PM)202300965安徽317唐贤安徽科技学院QGWY(PM)202300966安徽318王永香安徽省地质调查院(安徽省地质科学研究所)QGWY(PM)202300967安徽319李廷强浙江大学QGWY(PM)202300968浙江320丁枫华丽水学院QGWY(PM)202300969浙江321杨静丽水学院QGWY(PM)202300970浙江322张奇春浙江大学QGWY(PM)202300971浙江323周银浙江财经大学QGWY(PM)202300972浙江324潘艺浙江财经大学QGWY(PM)202300973浙江325程中一浙江大学QGWY(PM)202300974浙江326邹湘浙江大学QGWY(PM)202300975浙江327关浩然浙江大学QGWY(PM)202300976浙江328杨雪玲浙江大学QGWY(PM)202300977浙江329汤胜浙江大学环境与资源学院QGWY(PM)202300978浙江330马斌浙江大学QGWY(PM)202300979浙江331张涛浙江省农业科学院QGWY(PM)202300980浙江332张明中国计量大学QGWY(PM)202300981浙江333邵帅浙江农林大学环境与资源学院QGWY(PM)202300982浙江334王繁杭州师范大学QGWY(PM)202300983浙江335刘扬浙江省农业科学院QGWY(PM)202300984浙江336王童浙江大学QGWY(PM)202300985浙江337袁国印丽水学院QGWY(PM)202300986浙江338张佳雯浙江大学QGWY(PM)202300987浙江339泮莞坤浙江大学环境与资源学院QGWY(PM)202300988浙江340王卫平浙江省农业科学院QGWY(PM)202300989浙江341祝锦霞浙江财经大学QGWY(PM)202300990浙江342方凯凯浙江大学QGWY(PM)202300991浙江343吕豪豪浙江省农业科学院QGWY(PM)202300992浙江344李文瑾浙江大学QGWY(PM)202300993浙江345王铭烽浙江大学QGWY(PM)202300994浙江346刘秒杭州师范大学QGWY(PM)202300995浙江347邓明位浙江大学QGWY(PM)202300996浙江348李昌娟浙江省农业科学院QGWY(PM)202300997浙江349韦国春浙江省农业科学院QGWY(PM)202300998浙江350程敏浙江财经大学QGWY(PM)202300999浙江351戴之希中国计量大学QGWY(PM)202301000浙江352梁欣浙江省农业科学院QGWY(PM)202301001浙江353邱瑜青海省第五地质勘查院QGWY(PM)202301002青海354刘允文江西省瑞华国土勘测规划工程有限公司QGWY(PM)202301003青海355赵胜楠青海省第四地质勘查院QGWY(PM)202301004青海356乔明强青海省有色第二地质勘查院QGWY(PM)202301005青海357肖涛江西省瑞华国土勘测规划工程有限公司QGWY(PM)202301006青海358杨映春青海省第五地质勘查院QGWY(PM)202301007青海359郑雅之青海省有色第三地质勘查院QGWY(PM)202301008青海360曹有全青海省第五地质勘查院QGWY(PM)202301009青海361晁海德青海省第四地质勘查院QGWY(PM)202301010青海362薛发明青海省有色第二地质勘查院QGWY(PM)202301011青海363马有为青海九零六工程勘察设计院有限责任公司QGWY(PM)202301012青海364张增艺青海省第三次全国土壤普查领导小组办公室QGWY(PM)202301013青海365徐崇荣江西省瑞华国土勘测规划工程有限公司QGWY(PM)202301014青海366张子龙四川省西南大地集团有限公司QGWY(PM)202301015青海367张永升四川省西南大地集团有限公司QGWY(PM)202301016青海368白文洪青海九零六工程勘察设计院有限责任公司QGWY(PM)202301017青海369何鹏青海省水文地质工程地质环境地质调查院QGWY(PM)202301018青海370马志强甘肃省地质矿产勘查开发局第四地质矿产勘查院QGWY(PM)202301019青海371徐玺萍青海岩土工程勘察院有限公司QGWY(PM)202301020青海372殷海燕青海农田建设和土地整治中心QGWY(PM)202301021青海373郝源中国冶金地质总局青海地质勘查院QGWY(PM)202301022青海374黄来明中国科学院地理科学与资源研究所QGWY(PM)202300826北京375袁承程中国农业大学QGWY(PM)202300827北京376赵华甫中国地质大学(北京)QGWY(PM)202300053北京377郝士横中国地质大学(北京)QGWY(PM)202300108北京378胡雪峰上海大学QGWY(PM)202300022上海

土壤管式剖面水分仪相关的方案

土壤管式剖面水分仪相关的资料

土壤管式剖面水分仪相关的论坛

  • 【转帖】浅谈土壤剖面水分仪的开发意义与应用

    一、土壤含水量测试方法概述:土壤水分贮存量及其变化规律的监测是农业气象、生态环境及水文环境监测的基础性工作之掌握土壤水分变化规律,对农业生产、墒情监测预测和其化相关生态环境监测预测服务和理论都具有重要意义。二、目前国内主要使用的测定水分的方法:1、 传统的土钻取样然后烘干称重法(重量比):虽然能够较准确地度量土壤水分含量,但工作量大,耗时耗力,特别是当天气条件恶劣时,农业工作人员将付出更大的工作量。另外取样会破坏土壤,深层取样困难,定点测量时不可避免由取样换位而带来误差,在很多情况下不可能长期定点监测,受土壤空间变异性影响也比较大。2、 FDR单点采集法(容积比):利用FDR的原理来测定土壤的容积含水量,测试精确度与以上第一种有所差距,但是快速简便,但只能一定测定一个点。3、 TDR单点采集法(容积比):利用TDR的原理来测定土壤的容积含水量,测试精确度与以上第一种有所差距,但是比第二种的稳定性要好一些。三、国内墒情与旱情的概念与监测的特点:1、 长期性:单一的探头测量可称作是土壤容积含水量,而长期的土壤水分的动态监测存储一段时间以来的水分变化被水利及气象部门称为土壤的墒情。也就是说有意义的墒情监测是长期的,动态的。2、 多点性:对于植物生长来说,真正测量土壤表面的水分是不够的,正常的植物都需要深一度的水分值才能表明他是否可以吸收,在水利国家标准里要求,实验站必须要长期监测多层多点水分,有些地区要求为分布于地面10 cm,20 cm,40 cm,60 cm,80cm,100 cm处的水分的长期动态的监测,以了解墒情与旱情的情况 四、现在国内快速土壤水分仪器的情况:在我国的农田指导水利灌溉方面,FDR和TDR容积法快速水分仪很受欢迎,因为这两种水分仪可以长期将传感器埋于地下,实现长期监测。不受实验条件的影响,而精度也达到了指导农业生产的作用,对作业人员素质无任何要求,属于非常适用于进行田间推广的一种便携式快速仪器(具体参见http://www.top17.net/product/2029.html )。优点:快速,也可长期监测,将数据保存缺点:单点采集,如需多点就必须要将土壤切开,在剖面10 cm,20 cm,40 cm,60 cm,80cm,100 cm上多插几个探头。费力费时,前期工作量大。由以上分析看来,在墒情监测方面国内需求的要点是:携带方便;精确度高;插入方便,无需大量前期工作的仪器。但这种仪器只在国外有做,国内所有生产的企业都没有做出能满足以上所有要求的土壤水分速测仪现浙江托普仪器有限公司也开发出一种剖面水分仪,这个产品市场前景很好,这就是我们要强调的重点,也是我们以后推广的重点。现在我们要对这款仪器有所了解:土壤剖面水分测定仪用途:可用来测量土壤等被测物的不同深度剖面含水量。原理:利用FDR原理(Frequency Domain Reflectometry),根据探测器发出的电磁波在不同介电常数物质中的反射不同。计算出被测物含水量。功能特点:l 完全遵循ISO9001质量体系标准要求进行产品设计、开发、生产和服务;l 在硬件元器件方面以最大限度的延长产品寿命和和稳定性为前提,充分考虑降额和冗余设计;l 在电源和通讯接口加装防雷和电涌保护设备;l 软件设计充分考虑界面操作的友好性、系统的兼容性、容错性和健壮性,具有数据自动补抄、自动上传功能;l 生产使用的元器件全部进行环境应力老炼、筛选;l 出厂设备根据需要要进行环境防护三防(防潮湿、防盐雾和防霉菌)设计,并进行温度、冲击和振动试验。组成:探头:圆柱式土壤水分探头(标配为4或6个点位),这些点位可以自由定位用户想测的深度,自由固定操作软件:Windows友好操作界面,用于数据的存储和下载预埋探管:由PVC材质制成,重量轻,抗腐蚀,除标配长度外,还可选长度0.9米、1.2米、1.5米 基本技术指标:传感器测量原理 高频电容 测量范围 0~100%Vol(土壤体积含水量) 准确度 +2%土壤体积含水量 分辨率 0.1%体积含水量 输出选项 RS232和RS485 电流消耗 400uA 静态100mA 采样 校准时的精度 R2 = 0.992 精度 +/- 2.5% 有效温度 +/-3% ,5-35℃ 工作温度 0~75℃ 感应范围 99%是从管子外部10cm以内的范围读取 采集数据 1000组 传感器直径 50.5毫米 管道直径 56.5毫米 仪器组成图: 五、我们的土壤剖面水分仪与国外土壤剖面水分仪对比的优势 国内产品 国外产品 价格 价格合理 价格奇高 专业性 有专业的人员进行指导 国内没有特别熟悉的技术人员进行指导 适用性 全中文软件,适用性广 全英文软件,不适用于基层人员操作 合理性 探头点位可按自己的要求定位,可以随意改动,线长可按客户要求定做 探头点位距离固定化,不能改动,线长不能定做 精度 出厂前进行标定,精度高。也可以按客户提供的土壤进行重新标定 国外土质与国内不太一样,所以出厂前标定不适用于中国,精度会有影响

  • 【实战宝典】如何开展土壤三普的剖面土壤调查与采样?

    【实战宝典】如何开展土壤三普的剖面土壤调查与采样?

    [font=黑体]解答:[/font][font=宋体]剖面样由预设样点的外业定位核查结果确认采样位置,同时剖面位置所处田块、样区、景观单元中应具有最大代表性。[/font][font=宋体]如果人为影响在该地区处于主导地位,选择位置应体现人为过程影响的强度;如果人为影响较少,选择位置应尽量避开居民点、交通道路、沟渠等易受人为干扰的地段。[/font][font=宋体]剖面挖掘应遵循以下原则:(1)基于若干观察剖面反复核查而确认的剖面挖掘地点,应该在景观部位、土壤类型、土地利用方面具有代表性;(2)观察面应向着阳光照射的方向,避免出现阴影遮挡;(3)观察面上部严禁人员走动或堆置物品,以防止土壤压实或土壤物质发生位移而干扰观察和采样;(4)挖出的表土和心底土应分开堆放于土坑的左右两侧,观察完成后按土层原次序回填,以保持表层的地力。[/font][font=宋体]在相对平整的平原、微起伏的缓岗、梯田、园地,剖面尺度见图[/font]6-1[font=宋体],需要注意观测面深的挖掘过程中,如遇岩石,则挖到岩石面以下[/font]10 cm [font=宋体]处。[/font][font=宋体]受地形和林灌植被的影响,在无法选取相对平缓、植被少遮挡的样地挖掘剖面时,可以选择裸露的断面或坡面作为剖面挖掘的点位,但是为了保证剖面的完整性和样品免受污染,自然断面或坡面上修葺的剖面,应尽可能向坡面或断面内部[/font][font=宋体]延伸[/font] 20[font=宋体]~[/font]40cm[font=宋体],直至裸露出新鲜、原状土壤。[/font][img=,608,252]https://ng1.17img.cn/bbsfiles/images/2023/03/202303241331231547_9181_3389662_3.jpg!w583x257.jpg[/img][align=center][font=黑体]图[/font]6-1[font=黑体]土壤三浦标准土壤剖面示意图[/font][/align][font=宋体]观察剖面的过程需要对剖面拍照,标准剖面照作为土壤单个土体的[/font]“[font=宋体]身份证件照[/font]”[font=宋体],直观地反映了土壤的发生层及其形态学特征,是野外认识和理解土壤发生过程和土壤类型的直接证据。因此,标准剖面照应当清晰、真实、完整地呈现土壤形态学描述特征,并做到描述记录与之相对应。[/font][font=宋体]标准剖面照的具体要求如下:[/font][font=宋体]剖面挖掘完成后,由左边[/font] 1/3[font=宋体]~[/font]1/4 [font=宋体]宽度用剖面刀自上而下修成自然结构面,右边的部分保留为光滑面。凹凸不平的自然面,直观反映了土壤不同的发育阶段形成的土壤结构、[/font][font=宋体]质地、新生体类型及其差异,以及根系丰度、孔隙状况、土壤动物痕迹等;相对应而言,右边光滑面更加清晰地反映了土壤发生层厚度、边界过渡特征、颜色差异、紧实状况等特征。[/font][align=center][img=,377,333]https://ng1.17img.cn/bbsfiles/images/2023/03/202303241331291712_1183_3389662_3.jpg!w438x352.jpg[/img][/align][align=center][font=黑体]图[/font]6-2[font=黑体]土壤剖面照片示意图[/font][/align][font=宋体]拍摄时,应自上而下垂直放置和固定好帆布标尺,剖面摄影时镜头尽可能与观察面垂直。摄影者可能需要趴在地面进行拍摄,保持镜头视角与剖面方向水平、居中。拍摄的照片包括全剖面照片(如图6-2)和各个发生层照片、局部新生体特写照片、侵入体或土壤动物活动痕迹照片等(如图 6-3)。晴天拍摄要注意遮住观察面的阳光,避免曝光过强,影 响画质,并避免出现部分阴影。 剖面照片建议用专业相机拍摄,如果用手机拍摄,必须 用外业 App 集成的摄影模块,避免出现颜色失真。[/font][align=center][img=,498,372]https://ng1.17img.cn/bbsfiles/images/2023/03/202303241331345041_2722_3389662_3.jpg!w475x356.jpg[/img][/align][align=center][font=黑体]图[/font]6-3[font=黑体]新生体照片示例[/font][/align]

  • 土壤剖面中金属迁移受那些因素影响?

    想做个冶炼企业土壤剖面重金属调查项目,请问:1.大家土壤(剖面)中金属的迁移受那些因素影响?2.采集土壤样时,现场应了解那些参数? 3.顺便请大家推荐这方面的实战专家,给我们做顾问。

土壤管式剖面水分仪相关的耗材

  • PR2 土壤剖面水分探管
    用途:配套PR2土壤剖面水分速测仪使用,为测量用探管。产品规格:序号名称型号规格描述1PR2/6探管QT-ATL11154mm长纤维管外径28*内径26mm,带锥形堵头、1个橡胶盖、一个橡胶环2PR2/4探管QT-ATS1554mm长纤维管外径28*内径26mm,带锥形堵头、1个橡胶盖、一个橡胶环产地:中国
  • PR2/4土壤剖面水分探头/传感器
    PR2/4土壤剖面水分探头/传感器, 土壤剖面水分传感器技术规格测量深度:10、20、30、40厘米测量单位:土壤体积含水量(m3.m-3 或%vol)量程:0~0.4 m3.m-3 保证精度,0~1 m3.m-3 全量程精度:±0.04 m3.m-3(0~+40℃)针对土壤进行特殊标定;±0.06 m3.m-3(0~+40℃)使用通用的标定曲线盐分:50~400ms/m (孔隙水电导率)PR2/4土壤剖面水分探头/传感器, 土壤剖面水分传感器可测量点上下测量范围:探点直径250px,上下高度高125px 的圆柱体样土壤决定的了测量值95%的灵敏度,所以在这个圆柱体积内不能有金属、石头和根系,以免影响测量结果PR2/4土壤剖面水分探头/传感器, 土壤剖面水分传感器基本介绍工作环境0~+40℃防护等级:IP67反应时间:1秒供电:最小:5.5V DC (2米缆线时),7.5V DC (100米缆线);最大:15V DC功耗:输出:SDI-12或者4个模拟电压值:0~1V 对应0~60m3.m-3缆线:标配5米、可选10米、25米,最长100米材质:聚碳酸脂和不锈钢尺寸:长度750毫米×直径25.4毫米重量:0.6公斤
  • PR2土壤剖面水分传感器
    PR2土壤剖面水分速测仪可以迅速、精确、可靠的测量土壤剖面体积含水量。使用先进的FDR技术,在一根探杆上同时分布4或6个土壤水分探头,实现同一地点不同深度的土壤剖面含水量测试。技术参数:传感器型号PR2/4PR2/6探测深度10, 20, 30, 40 cm10, 20, 30, 40, 60, 100 cm测量土壤体积含水量(m3.m-3 或%vol)量程0-0.4 m3.m-3 保证精度0-1 m3.m-3 全量程精度±0.04 m3.m-3(0-40℃)针对土壤进行特殊标定±0.06 m3.m-3(0-40℃)使用通用的标定曲线盐分影响50-400ms.m-1 (孔隙水电导率)测量点测量范围探点直径10cm,上下高度高5cm 的圆柱体样土壤决定的了测量值95%的灵敏度,所以在这个圆柱体积内不能有金属、石头和根系,以免影响测量结果。工作环境0-40℃ 保证精度指标-20到70℃ 可操作范围,IP67防水等级反应时间1秒电源最小:5.5V DC (2米缆线时);7.5V DC (100米缆线)最大:15V DCPR2/4 耗电 ;PR2/6 耗电 输出4(PR2/4)或6(PR2/6)个模拟电压值。0-1V 对应0-60m3.m-3缆线屏蔽 9 芯线,标配 2 米缆线,和 M12(IP68 接头)扩展缆线:5米,10米,25米,最长100米材质25.4mm 聚碳酸脂,不锈钢尺寸和重量PR2/4:长:750mm 重量:0.6KgPR2/6:长:1350mm 重量:0.9Kg产地:英国
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制