推荐厂家
暂无
暂无
一、原理 原子力显微镜(Atomic Force Microscopy, AFM)是由IBM 公司的Binnig与史丹佛大学的Quate 于一九八五年所发明的,其目的是为了使非导体也可以采用扫描探针显微镜(SPM)进行观测。 [img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191623_119371_1601358_3.jpg[/img] 图1、原子与原子之间的交互作用力因为彼此之间的距离的不同而不同,其之间的能量表示也会不同。 原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子隧道效应,而是利用原子之间的范德华力(Van Der Waals Force)作用来呈现样品的表面特性。假设两个原子中,一个是在悬臂(cantilever)的探针尖端,另一个是在样本的表面,它们之间的作用力会随距离的改变而变化,其作用力与距离的关系如“图1” 所示,当原子与原子很接近时,彼此电子云斥力的作用大于原子核与电子云之间的吸引力作用,所以整个合力表现为斥力的作用,反之若两原子分开有一定距离时,其电子云斥力的作用小于彼此原子核与电子云之间的吸引力作用,故整个合力表现为引力的作用。若以能量的角度来看,这种原子与原子之间的距离与彼此之间能量的大小也可从Lennard –Jones 的公式中到另一种印证。 img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191628_119373_1601358_3.gif[/img] 为原子的直径 为原子之间的距离 从公式中知道,当r降低到某一程度时其能量为+E,也代表了在空间中两个原子是相当接近且能量为正值,若假设r增加到某一程度时,其能量就会为-E 同时也说明了空间中两个原子之距离相当远的且能量为负值。不管从空间上去看两个原子之间的距离与其所导致的吸引力和斥力或是从当中能量的关系来看,原子力式显微镜就是利用原子之间那奇妙的关系来把原子样子给呈现出来,让微观的世界不再神秘。 在原子力显微镜的系统中,是利用微小探针与待测物之间交互作用力,来呈现待测物的表面之物理特性。所以在原子力显微镜中也利用斥力与吸引力的方式发展出两种操作模式: (1)利用原子斥力的变化而产生表面轮廓为接触式原子力显微镜(contact AFM ),探针与试片的距离约数个?。 (2)利用原子吸引力的变化而产生表面轮廓为非接触式原子力显微镜(non-contact AFM ),探针与试片的距离约数十个? 到数百个?。 [img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811191628_119373_1601358_3.gif[/img]
原子力显微镜(atomic force microscope,简称AFM)利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不足。原子力显微镜是由IBM公司苏黎世研究中心的格尔德?宾宁与斯坦福大学的Calvin Quate于一九八五年所发明的,其目的是为了使非导体也可以采用类似扫描探针显微镜(SPM)的观测方法。原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子穿隧效应,而是检测原子之间的接触,原子键合,范德瓦耳斯力或喀希米尔效应等来呈现样品的表面特性。1. 工作原理原子力显微镜的原理示意图: Detector and Feedback Electronics 侦检器及回馈电路; Photodiode 感光二极管; Laser 激光器; Sample Surface 样品表面; Cantilever & Tip 微悬臂及探针; PZT Scanner 压电扫描器 AFM的关键组成部分是一个头上带有一个用来扫描样品表面的尖细探针的微观悬臂。这种悬臂大小在数十至数百微米,通常由硅或者氮化硅构成,其上载有探针,探针之尖端的曲率半径则在纳米量级。当探针被放置到样品表面附近的地方时,悬臂会因为受到探针头和表面的引力而遵从胡克定律弯曲偏移。在不同的情况下,这种被AFM测量到的力可能是机械接触力、范德华力、毛吸力、化学键、静电力、磁力(见磁力显微镜)喀希米尔效应力、溶剂力等等。通常,偏移会由射在微悬臂上的激光束反射至光敏二极管阵列而测量到,较薄之悬臂表面常镀上反光材质( 如铝)以增强其反射。其他方法还包括光学干涉法、电容法和压电效应法。这些探头通常由采用压电效应的变形测量器而制得。通过惠斯登电桥,探头的形变何以被测得,不过这种方法没有激光反射法或干涉法灵敏。 当在恒定高度扫描时,探头很有可能撞到表面的造成损伤。所以通常会通过反馈系统来维持探头与样品片表面的高度恒定。传统上,样品被放在压电管上并可以在z方向上移动以保持与探头之间的恒定距离,在x、y方向上移动来实现扫描。或者采用一种“三脚架”技术,在三个方向上实现扫描。扫描的结果S(x,y)就是样品的表面图。AFM可以在不同模式下运行。这些模式可以被分为接触模式(Contact Mode)、非接触(Non-Contact Mode)、轻敲模式(Tapping Mode)、侧向力(Lateral Force Mode)模式。2. 优点与缺点 相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。和扫描电子显微镜(SEM)相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812311440_127077_1664664_3.jpg[/img]
基本原则的原子力显微镜 在原子力显微镜基本上是一个微型悬臂式(一小束停泊在一端,而另一项目进入太空像跳水板) ,以纤巧,指出探针(同一个极为精细陶瓷或半导体尖端这是衡量规模的纳米)底下的一端,就像笔就测谎,甚至是地震。 不同的笔在纸上打印或其他媒介,一个原子力显微镜有几项改进,使原子级测量的吸引力或令人厌恶的部队之间的“笔”尖和样品的表面。 作为小费是吸引或排斥的样品的表面,是悬臂偏转。 的严重性挠度测量激光反映在斜角月底的调查。 绘图激光挠度对冰山上的立场样品表面创造了“地图”的丘陵和山谷的表面。 这提供了一个高分辨率图像的样品的表面。 在原子力显微镜有两种扫描模式。 在接触模式下,原子力显微镜的探针接触样品的表面。 作为文书拖累冰山的表面,检测设备的措施悬臂的垂直挠度和说明了当地的样品高度-实际上,衡量'排斥'势力之间的尖端和样品。 在非接触模式下,原子力显微镜的探针没有触及表面的样本,它的措施有吸引力的部队之间的冰山,表面画地形图的表面。 利弊原子力显微镜 一个原子力显微镜具有优势了扫描电子显微镜( SEM ) 。 其中之一是,一个原子力显微镜可以功能的空气或液体的环境不同,电子显微镜,要求所有探头进行在真空中进行。 鉴于此,研究人员已经开始测试原子力显微镜的适宜用于研究活生物体在纳米尺度(例如,扫描和研究生物大分子如DNA等) 。 另一方面,一个原子力显微镜可以绘制三维图像 的扫描电镜只能提供二维图像或投影的抽样调查。 另一方面,一个主要的缺点是原子力显微镜是该地区它可以扫描和图像分辨率,它可以产生。 电子显微镜可以扫描面积测量毫米 一个原子力显微镜的扫描涵盖微米(纳米,事实上) 。 从这个角度看,可以很容易地看到,电子显微镜可以扫描的区域面积更广,速度超过了原子力显微镜。 原子力显微镜是相当新的,仍然有一些错误,但它是目前使用广泛的研究在电子,化学和生物领域包括深奥的学科磨损和粘附,清洗和腐蚀,以及作为东道主的其他应用软件。