加强核磁共振

仪器信息网加强核磁共振专题为您提供2024年最新加强核磁共振价格报价、厂家品牌的相关信息, 包括加强核磁共振参数、型号等,不管是国产,还是进口品牌的加强核磁共振您都可以在这里找到。 除此之外,仪器信息网还免费为您整合加强核磁共振相关的耗材配件、试剂标物,还有加强核磁共振相关的最新资讯、资料,以及加强核磁共振相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

加强核磁共振相关的厂商

  • 夸利安公司(Qualion Ltd. )是专业的工业核磁分析仪器公司,位于以色列北部的漂亮海滨城市----海法,她是一家技术密集型的跨国企业,致力于核磁分析技术在工艺生产中的应用,尤其是炼油、乙烯及其他化工工艺中的应用。夸利安核磁共振仪首次把实验室的分析技术NMR 应用到工艺现场,它是世界上唯一一家用核磁共振技术对工艺管道中样品成分和理化特性进行实时在线分析的公司;工业核磁共振分析仪可长时间、不间断的对管道中的样品进行连续扫描测量,分析结果准确可靠,重现性和再现性非常良好,是一项独一无二的在线实验室分析技术。分析时,样品直接流入核磁分析的探头管道系统,无需对系统进行校正,无需标样做参比,就可直接得到分析结果。夸利安核磁共振分析系统稳定性好,分辨率高,分析结果准确可靠,可在数秒钟内就可以对样品的多种物理、化学性质指标做出准确的分析。建立在夸利安核磁共振波谱基础上的在线分析模型适用性强,维护量少,维护费用低。炼油厂和重质粘稠液体行业在工艺上使用夸利安核磁共振在线分析系统,能显著的降低生产能耗,延长设备的使用寿命,纯化产品的组成,提升高附加值产品的收率,提高企业的利润;该系统上的项目投资可在不到数个月的时间内全部回收。夸利安公司的产品主要集中在一个领域:样品质量指标的实时在线分析;自1995 年以来,夸利安核磁共振在线分析系统已经广泛应用于全球炼油企业的先进过程控制和在线实时分析。其用户遍布欧美30 多个发达国家和地区。夸利安公司拥有一支非常专业、、有多年现场施工经验的技术工程队伍,能从设计、施工、系统上线试车及售后的各种技术支持与维护方面提供全方位的服务;夸利安核磁共振公司拥有覆盖全球的技术支持服务中心,为用户提供全程式、低风险的在线分析技术解决方案。
    留言咨询
  • 布鲁克公司 生命科学和分析系统的市场领导者 在 50 多年的发展历程中,布鲁克始终致力于开发和生产性能强大的测量仪器,为我们客户的研究和行业发展铺平了道路。如今,布鲁克已经成为全球领先的分析技术提供商。全球超过 6,000名员工不断努力满足客户需求,扩展科学、工业和医疗分析的范围。 核磁共振(NMR)的传统 布鲁克由核磁共振(NMR)先锋人物 GüntherLaukien 创办,布鲁克的传统与 核磁共振(NMR) 波谱紧密相关。20 世纪 60 年代,布鲁克是第一家为科学和工业领域生产商用脉冲核磁共振(NMR)波谱仪的公司,从而为开发现代材料和以核磁共振(NMR) 为基础的医疗进步奠定了坚实基础。 始终如一的正确解决方案 时至今日,布鲁克仍旧保持其独特的技术专长,并坚持追求为所有分析任务提供最佳解决方案的目标。布鲁克的产品组合涵盖了所有先进的测量技术,从用于日常任务的常规分析系统到高端研究系统。 支持技术 这些出色的技术能力可以最大限度帮助客户克服所面临的时间、预算和性能限制,从而提高工作效果。布鲁克的个性化全面服务方案可以为客户提供支持,实现最佳工作效果并帮助其专注于核心业务。感谢关注!布鲁克官网:www.bruker.com布鲁克应用技术咨询:400-898-5858布鲁克售后技术支持:400-898-1088布鲁克售后技术支持邮箱:helpdesk.bbio.cn@bruker.com如有其他需求请发送邮件Marketing.BBIO.CN@bruker.com
    留言咨询
  • 400-860-5168转2770
    上海寰彤科教设备有限公司原为复旦所属企业“上海高银科技开发公司”核磁共振部,依靠自身的技术力量实现多项核磁共振教学科研产品进行研究、开发、生产、销售及售后服务。本公司于2002年组建核磁共振生产基地、研发了核磁共振50MHz、60MHz化学分析谱仪,以及核磁共振成像教学系列仪器。其中50MHz、60MHz核磁共振化学分析谱仪属于国内首创,目前国内无类似产品,也无相关的成果报道。在2009年实现90M核磁共振谱仪的研发成功,永磁体可以实现2.1T磁场强度,可以完成H、C谱的分析测试工作,当年实现销售。核磁共振成像教学仪器于2004年8月批量生产成功。2006年5月我公司成功研制高分辨三维核磁共振成像教学仪器其主要性能指标与同规格牛津MQA系列的产品相接近,其中化学位移分辨率优于进口产品。2008年成功研发了核磁共振谱成像教学仪器(四维核磁共振成像设备),当年实现销售和批量生产。2008年我公司参与了河北省科技计划项目永磁小动物核磁共振成像仪器的研制,目前该产品已完成研发工作,实现批量生产,可用于在动物(大鼠)三维核磁共振成像方面的研究。 我公司在多年的发展过程中,我公司拥有了一支具备独立自主研发能力的技术团队,包括机械制造,电路设计,线圈设计、软件开发等相关技术人员。拥有多项核磁共振技术发明专利,公司成熟掌握永磁磁体制造、核磁共振谱仪研发生产、仪器配套软件的独立自主开发的相关技术能力,并且实现全部产品批量生产和销售,实现技术创新与产销研一体化结合。在未来的工作中发展高端核磁共振产品的研发,不断完善原有技术,逐步提高公司的技术能力和研发能力,实现高端核磁共振设备的产业化。
    留言咨询

加强核磁共振相关的仪器

  • picoSpin 45波谱仪结构紧凑、价格合理,为用户提供核磁共振(NMR)波谱技术的强大功能。该仪器大大减少了成本与尺寸,使各类实验室都可使用核磁共振光谱技术。它操作简便,可让核磁共振技术使用经验有限的学生和技术人员利用该技术来鉴定化合物或分析其结构。仪器单元仅占传统核磁共振波谱仪的一小部分空间。 该仪器的毛细管进样系统包含于一个可更换的样品仓内,仅需30&mu L液体样品。其温控永久磁铁不需要液体冷冻剂,进而无需使用耗材或专用的实验室设备。此外,由于仪器的重量很轻(少于5公斤),可轻松实现在多个实验室之间的共用。核磁共振波谱数据文件为标准的JCAMP-DX格式,以便兼容标准核磁共振数据分析套件。微型45MHz 1H脉冲傅里叶变换核磁共振波谱仪高性能,高分辨率,重量轻,便于携带使用简便;无需进行专门的操作培训可更换的毛细管样品仓微线圈探头完全可自由控制的脉冲控制器以太网界面网络服务器GUI包含一年期的Mnova*核磁共振数据分析套件规格数据样品量:30µ L尺寸:7 x 5.75 x 11.5 英寸 (17.8 x 14.6 x 29.2厘米)重量:10.5磅(4.8千克)
    留言咨询
  • ECZ Luminous(JNM-ECZL 系列)是配备最先进数字和高频技术的核磁共振波谱仪。高度集成的STS(智能收发系统)采用高速、高精度数字高频控制电路,实现了谱仪的进一步微型化和高可靠性。它能够进行高磁场和固态核磁共振测试,同时保留了传统溶液核磁共振谱仪的尺寸。全新多频驱动系统支持在标准配置下进行多共振实验,提供了更广泛的解决方案。希望 ECZ Luminous 能给您带来愉快的体验。
    留言咨询
  • 操作简便,性能优越,可媲美其他分析技术 依托数十年优质核磁共振仪器的研发经验,布鲁克最新推出了经济高效、性能卓越的紧凑型核磁共振波谱仪:Fourier 80 台式核磁共振波谱仪。 Fourier 能提供可与其他分析技术相媲美的优质数据,且操作简单、软件易用,即使不是核磁共振波谱专家,也能获取相关核磁共振的明确结果。 最重要的是,Fourier 可以安装在通风柜或工作台上,不需要另建基础设施。 有了布鲁克核磁共振台式系统,任何科学家或技术人员都能成为核磁共振专家。获取核磁共振相关化学结果,从未如此轻松Fourier 采用现代化直观 GoScan 软件,只需轻触按钮,即可获取优质样品数据。Fourier 还可使用布鲁克著名的专业软件 TopSpin&trade 。 为了帮助科学家借助核磁共振获得独特且明确的答案并加以利用,布鲁克一直在针对多个应用领域的特定分析难题开发工作流程。用户还可以轻松创建自己的工作流程和协议,利用核磁共振的强大功能,在自己的专业领域提供清晰、优质的结果。Fourier 80 台式核磁共振波谱仪
    留言咨询

加强核磁共振相关的资讯

  • 核磁共振、顺磁共振、磁共振成像......你想要的都在这里
    p style="text-align: justify "  磁共振指的是自旋磁共振(spin magnetic resonance)现象,包含核磁共振(nuclear magnetic resonance, NMR)、电子顺磁共振(electron paramagnetic resonance, EPR)或称电子自旋共振(electron spin resonance, ESR)。人们日常生活中常说的磁共振成像(Magnetic Resonance Imaging,MRI),是基于核磁共振现象的一类用于医学检查的成像设备。/pp style="text-align: justify "  span style="color: rgb(255, 0, 0) "strong那么,你真正了解核磁共振(NMR)、磁共振成像(MRI) 及电子顺磁共振(EPR/ESR)吗?/strong/span/pp style="text-align: justify "  strong核磁共振波谱(NMR)/strong/pp style="text-align: justify "  核磁共振波谱法(Nuclear Magnetic Resonance Spectroscopy, NMR )研究的是原子核对射频辐射(Radio-frequency Radiation)的吸收。1945 年布洛赫(Bloch )和伯塞尔 (Purcell) 证实了原子核自旋的确实存在, 他们为此共同获得了1952 年诺贝尔物理奖。1991年诺贝尔化学奖授予了R.R.Ernst教授,以表彰他对二维核磁共振理论及傅里叶变换核磁共振的贡献。这两次诺贝尔奖的授予,充分说明了核磁共振的重要性。/pp style="text-align: justify "  自1953年出现第一台核磁共振商品仪器以来,核磁共振在仪器、实验方法、理论和应用等方面有着飞跃的进步。目前,NMR不仅是对各种有机和无机物的成分、结构进行定性分析的最强有力的工具之一,有时亦可进行定量分析,其所应用的学科已经从化学、物理扩展到了生物、医学等多个学科。/pp style="text-align: justify "  strong磁共振成像(MRI)/strong/pp style="text-align: justify "  核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。/pp style="text-align: justify "  MRI也就是磁共振成像,英文全称是:Magnetic Resonance Imaging。经常为人们所利用的原子核有: sup1/supH、sup11/supB、sup13/supC、sup17/supO、sup19/supF、sup31/supP。在这项技术诞生之初曾被称为核磁共振成像,到了20世纪80年代初,作为医学新技术的NMR成像(NMR Imaging)一词越来越为公众所熟悉。随着大磁体的安装,有人开始担心字母“N”可能会对磁共振成像的发展产生负面影响。另外,“nuclear”一词还容易使医院工作人员对磁共振室产生另一个核医学科的联想。因此,为了突出这一检查技术不产生电离辐射的优点,同时与使用放射性元素的核医学相区别,放射学家和设备制造商均同意把“核磁共振成像术”简称为“磁共振成像(MRI)”。/pp style="text-align: justify "  strong电子顺磁共振(EPR/ESR)/strong/pp style="text-align: justify "  电子顺磁共振(Electron Paramagnetic Resonance 简称EPR),或称电子自旋共振 (Electron Spin Resonance 简称ESR),是研究电子自旋能级跃迁的一门学科,是直接检测和研究含有未成对电子的顺磁性物质的现代分析方法。/pp style="text-align: justify "  自1945年物理学家Zavoisky首次提出了检测EPR信号的实验方法至今,电子顺磁共振技术的理论、实验技术和仪器结构性能等诸多方面都有了很大的发展,特别是20世纪70年代随着计算机和固体器件等电子技术的发展及其推广应用,使EPR实验技术有了许多重大的突破。随着现代科学技术的发展,EPR已经在物理学、化学、材料学、地矿学和年代学等许多领域获得了越来越广泛的应用。/pp style="text-align: justify "a href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"img style="max-width: 100% max-height: 100% width: 600px height: 131px " src="https://img1.17img.cn/17img/images/202006/uepic/675b0ee9-ba73-4bfb-892b-46b308191a24.jpg" title="ba611d21-07b1-47c9-bba0-c6989443be32.jpg!w1920x420.jpg" alt="ba611d21-07b1-47c9-bba0-c6989443be32.jpg!w1920x420.jpg" width="600" height="131" border="0" vspace="0"//a/pp style="text-align: justify "  自20世纪40年代以来,磁共振技术的持续发展对生命科学、医药、材料等多学科的发展起到了巨大的推动作用。而相关学科的快速发展,对磁共振技术也提出了更高的要求。在多方需求的碰撞下,核磁共振(NMR)、电子顺磁共振(EPR/ESR)、磁共振成像(MRI)等不同分支的磁共振技术也逐渐“百花齐放” DNP、超高转速固体核磁、液相色谱核磁联用等各种新的技术和应用层出不穷,为磁共振的发展提供了强劲的动力,其应用范围跨越了物理、化学、材料、生物等多个学科。/pp style="text-align: justify "  为了促进和加强国内外磁共振工作者的学术交流与合作,仪器信息网、北京波谱学会、《波谱学杂志》将于2020年6月9-10日联合举办“第四届磁共振网络会议”(iConference on Magnetic Resonance,简称iCMR 2020)”。本次会议开设了磁共振(MR)新技术及其应用、核磁共振(NMR)技术及其应用、顺磁共振(EPR/ESR)技术及其应用、磁共振成像(MRI)技术及其应用四个专题,更大范围涵盖了波谱相关技术及应用,共计安排了11位专家报告,并吸引了布鲁克、日本电子、国仪量子、纽迈分析、青檬艾柯等国内外的知名企业参与。/pp style="text-align: justify "  而且,特别值得一提的是,本次会议邀请到了清华大学宁永成教授分享其八本书的故事。非物理专业出身,如何深入理解和应用磁共振波谱?届时,宁永成教授和杨海军高工的专家对话环节或将让您醍醐灌顶。span style="color: rgb(255, 0, 0) "stronga href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"立即报名》》》/a/strong/span/pp style="text-align: center "strong报告日程/strong/pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"strong磁共振(MR)新技术及其应用(6月9日)/strong/a/pp style="text-align: center "span style="color: rgb(227, 108, 9) "a href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"— 我要报名 —/a/span/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytr class="firstRow"td width="14%"p style="text-align:center "09:20-09:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6597" target="_blank"开幕致辞—非物理专业出身,如何深入理解和应用磁共振波谱?/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6597" target="_blank"杨海军(清华大学)/a/p/td/trtrtd width="14%"p style="text-align:center "09:30-10:00/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6572" target="_blank"多核人体磁共振成像(MRI)新仪器及应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6572" target="_blank"周欣(中国科学院精密测量科学与技术创新研究院)/a/p/td/trtrtd width="14%"p style="text-align:center "10:00-10:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6568" target="_blank"基于量子技术的单分子磁共振谱学和成像/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6568" target="_blank"石发展(中国科学技术大学)/a/p/td/trtrtd width="14%"p style="text-align:center "10:30-11:00/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6791" target="_blank"布鲁克固体核磁新技术简介/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6791" target="_blank"王秀梅(布鲁克(北京)科技有限公司)/a/p/td/trtrtd width="14%"p style="text-align:center "11:00-11:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6570" target="_blank"“非常见”原子核的固体核磁共振研究/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6570" target="_blank"徐骏(南开大学)/a/p/td/tr/tbody/tablep style="text-align: center "br//pp style="text-align: center "stronga href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"核磁共振(NMR)技术及其应用(6月9日)/a/strong/pp style="text-align: center "span style="color: rgb(227, 108, 9) "a href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"— 我要报名 —/a/span/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytr class="firstRow"td width="14%"p style="text-align:center "14:00-14:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6563" target="_blank"基于磁共振技术的蛋白质动态调控机制研究/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6563" target="_blank"姜凌(中国科学院精密测量科学与技术创新研究院)/a/p/td/trtrtd width="14%"p style="text-align:center "14:30-15:00/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6581" target="_blank"日本电子特有核磁技术简介/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6581" target="_blank"叶跃奇(JEOL(Beijing))/a/p/td/trtrtd width="14%"p style="text-align:center "15:00-15:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6569" target="_blank"核磁共振仿真波谱仪开发与教育应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6569" target="_blank"汪红志(华东师范大学上海市磁共振重点实验室)/a/p/td/trtrtd width="14%"p style="text-align:center "15:30-16:00/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6790" target="_blank"Bruker液体核磁新进展/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6790" target="_blank"徐雯欣(布鲁克(北京)科技有限公司)/a/p/td/trtrtd width="14%"p style="text-align:center "16:00-16:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6565" target="_blank"基于密度泛函理论的高精度有机分子化学位移计算在线系统构建及其在有机分子核磁谱图指认及结构确证中的应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6565" target="_blank"李骞(中国科学院化学研究所)/a/p/td/tr/tbody/tablep style="text-align: center "br//pp style="text-align: center "stronga href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"顺磁共振(EPR/ESR)技术及其应用(6月10日)/a/strong/pp style="text-align: center "span style="color: rgb(227, 108, 9) "a href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"— 我要报名 —/a/span/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytr class="firstRow"td width="14%"p09:00-09:30/p/tdtd width="48%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6566" target="_blank"若干血红素衍生物的电子自旋顺磁共振研究/a/p/tdtd width="37%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6566" target="_blank"李剑峰(中国科学院大学)/a/p/td/trtrtd width="14%"p09:30-10:00/p/tdtd width="48%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6567" target="_blank"电子顺磁共振在研究青蒿素激活机制中的应用/a/p/tdtd width="37%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6567" target="_blank"刘国全(北京大学药学院)/a/p/td/trtrtd width="14%"p10:00-10:30/p/tdtd width="48%"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6571" target="_blank"光合作用水裂解催化中心的仿生模拟/a/p/tdtd width="37%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6571" target="_blank"张纯喜(中国科学院化学研究所)/a/p/td/trtrtd width="14%"p10:30-11:00/p/tdtd width="48%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6579" target="_blank"顺磁共振仪器——从系综到单自旋/a/p/tdtd width="37%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6579" target="_blank"许克标(国仪量子(合肥)技术有限公司)/a/p/td/trtrtd width="14%"p11:00-11:30/p/tdtd width="48%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6564" target="_blank"利用电子顺磁共振(EPR)指导有机合成/a/p/tdtd width="37%" align="center" valign="middle"pa href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6564" target="_blank"蒋敏(杭州师范大学)/a/p/td/tr/tbody/tablep style="text-align: center "br//pp style="text-align: center "stronga href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"磁共振成像(MRI)技术及其应用(6月10日)/a/strong/pp style="text-align: center "span style="color: rgb(227, 108, 9) "a href="https://www.instrument.com.cn/webinar/meetings/6832/" target="_blank"— 我要报名 —/a/span/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytr class="firstRow"td width="14%"p style="text-align:center "14:00-14:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6562" target="_blank"心脏磁共振成像中的黑血技术/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6562" target="_blank"丁海艳(清华大学)/a/p/td/trtrtd width="14%"p style="text-align:center "14:30-15:00/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6773" target="_blank"低场核磁成像在临床前科研中应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6773" target="_blank"丁皓(苏州纽迈分析仪器股份有限公司)/a/p/td/trtrtd width="14%"p style="text-align:center "15:00-15:30/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6792" target="_blank"智能集成化磁共振成像系列仪器及应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6792" target="_blank"刘化冰(北京青檬艾柯科技有限公司)/a/p/td/trtrtd width="14%"p style="text-align:center "15:30-15:40/p/tdtd width="48%"p style="text-align:center "现场讨论环节/p/tdtd width="37%"p style="text-align:center "杨海军主持/p/td/trtrtd width="14%"p style="text-align:center "15:40-16:10/p/tdtd width="48%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6613" target="_blank"我的八本书/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6613" target="_blank"宁永成(清华大学)/a/p/td/trtrtd width="14%"p style="text-align:center "16:10-16:40/p/tdtd width="48%"p style="text-align:center "专家对话/p/tdtd width="37%"p style="text-align:center "杨海军@宁永成/p/td/trtrtd width="14%"p style="text-align:center "16:40-17:00/p/tdtd width="48%"p style="text-align:center "现场答疑/p/tdtd width="37%"p style="text-align:center "全体参会人员/p/td/tr/tbody/tablep span style="color: rgb(255, 0, 0) "strong 特别惊喜:/strong/span为了提高磁共振工作者工作和学习的热情,鼓励大家积极参与会议交流环节,本次会议还特别安排了抽奖环节,将从积极提问的参会者中抽取幸运者,送出主办方精心准备的礼品(小度智能音箱、京东卡)!/pp style="text-align: center "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/aff21f8a-cd43-40a2-bb8d-8fa2d2012782.jpg" title="二维码图片_6月3日17时44分31秒.png" alt="二维码图片_6月3日17时44分31秒.png"//pp style="text-align: center "strong扫码报名,免费参会/strong/p
  • 布鲁克 2018 核磁共振 NMR 培训计划 (核磁共振高级培训课程)
    布鲁克 2018 核磁共振 NMR 培训计划详情请前往以下网址下载http://www.instrument.com.cn/netshow/SH100343/down_880258.htm布鲁克 2018 核磁共振 NMR 培训计划布鲁克 2018 核磁共振 NMR 培训计划核磁共振 NMR Avance 1D/2D (Avance 谱仪操作培训)核磁共振 NMR Advanced NMR Methods(高级 NMR 方法培训)核磁共振 NMR Avance Service and Maintenance(Avance 谱仪维护)核磁共振 NMR Avance Solid State NMR Methods(Avance 固体核磁操作培训)
  • 2015年核磁共振国际研讨会暨药物开发暑期学校举办
    2015年核磁共振国际研讨会暨药物开发暑期学校在国家蛋白质科学中心&bull 上海成功举办  &ldquo 国家蛋白质科学中心&bull 上海前沿论坛&mdash &mdash 2015年核磁共振国际研讨会暨药物开发暑期学校&rdquo 于2015年5月30日-6月2日在上海生科院生化与细胞所蛋白质中心海科路园区举行。会议旨在加强我国生物大分子核磁共振波谱学领域与国际间的交流与合作、培养应用最新核磁共振方法进行蛋白质科学研究的高技术人才及年轻后备人才,体现我国在结构生物学领域的综合实力。会议现场  核磁共振波谱学是唯一一项包揽过诺贝尔物理、化学、医学奖的技术,自1930年Rabi发现核磁共振现象开始,已有八位著名科学家因从事核磁共振或与核磁共振相关的研究而获得诺贝尔奖。现代高场液体核磁共振主要应用于生物大分子结构与功能研究,特点是可以获得原子分辨率的溶液结构、可以从不同时间跨度的动力学信息中(皮秒 - 秒)捕捉到蛋白质的位点特异性信息。蛋白质是生命活动的真正执行者,对其功能的研究具有重要的生物学意义和利用价值。而蛋白质三维结构的解析为蛋白质功能的确定提供重要线索。  核磁共振波谱在&ldquo 定量地了解细胞内部蛋白质分子动态运动过程、膜蛋白三维空间结构和动态特性、蛋白质折叠、研究弱相互作用的超大蛋白分子复合体&rdquo 等方面具有其独特的优势,与其它结构生物学研究方法如:X射线晶体衍射学、冷冻电镜等形成很好的合作互补。  近年来溶液核磁共振波谱在新的实验方法和应用上有了很大的突破,特别是基于蛋白质靶点的药物筛选,理性药物设计及研发和评价方面的应用受到越来越多的关注。  本次大会会议执行主席为蛋白质中心主任雷鸣研究员,周界文研究员和中心主任助理许琛琦研究员。参会人员包括来自美国、德国、英国和日本的核磁专家十余名,国内高校和科研单位学者,学生代表百余人,生物医药企业包括罗氏研发(中国)有限公司,礼来(中国)研发有限公司,深圳市海普瑞药业股份有限公司代表10余人,以及作为本次会议的主要赞助商布鲁克公司及相关领域重要仪器及设备公司代表10余人。  大会分为两个部分:  大会第一部分&ldquo 蛋白质核磁共振暨药物开发暑期学校&rdquo ,邀请核磁共振研究领域的多位专家讲授核磁共振基础理论、蛋白质溶液核磁共振技术、RDC,PRE和蛋白质溶液结构计算、核磁共振在基于片段的先导药物筛选和优化中的应用,使青年学者和研究生有机会与本领域权威科学家面对面交流,并得到高层次的技术培训和实际实验操作,包括快速核磁数据采集方式(非均匀采样)和波谱数据处理技术、药物分子片段核磁筛选技术、新动力学参数的测量方法和溶液三维动态结构计算软件XPLOR-NIH等。会议将为参会的国际和国内科学家提供高端学术交流平台和合作契机,提升国内蛋白质溶液核磁共振研究的整体水平,培训一批高技术核磁人才。  大会第二部分高端国际研讨会以&ldquo 生物大分子核磁共振波谱未来&rdquo 为主题,特邀美国科学院院士、美国国立卫生研究院 (NIH)Adriaan Bax 研究员, 日本东京都立大学Masatsune Kainosho教授,美国哥伦比亚大学Arthur G Palmer教授, 德国慕尼黑赫尔姆霍茨中心结构生物学研究所Michael Sattler教授,美国哈佛大学医学院Gerhard Wagner教授,美国哈佛大学医学院教授、蛋白质中心周界文研究员和中国科学院院士、中国科学技术大学施蕴渝教授等七名生物大分子溶液核磁共振研究的国际权威专家来共同交流核磁前沿领域的最新进展,包括核磁共振波谱新方法、蛋白质分子动力学与功能关系研究、膜蛋白质溶液结构与功能研究、超大分子复合体与相互作用研究、蛋白质-RNA复合体研究和综合溶液核磁共振、X射线晶体衍射研究生物学问题等,探讨和展望溶液核磁共振在蛋白质相关研究中未来5-10年的研究发展趋势,存在的机遇及可能遇到的挑战。  蛋白质中心已经建成国际先进的液体核磁共振设施,不但拥有五套 600 至 900 兆赫兹的核磁共振谱仪,而且拥有专业人员提供配套技术支撑。蛋白质中心许琛琦,欧阳波和周界文研究团队使用核磁分析系统在淋巴细胞的信号转导和膜蛋白结构与功能研究方面取得突破,成果发表在国际知名期刊如《自然》(Nature)杂志上。  此次会议将为我国生物分子溶液核磁共振技术的展示提供一个窗口,搭建平台,打造具有国际影响力、世界一流水平的生物大分子核磁共振中心,加强国内核磁同行的实效性合作,达到信息、仪器等资源共享,推动核磁共振波谱在我国蛋白质科学基础研究和药物开发领域的拓展与应用。合影  附录一:会议主席团成员简介:  雷鸣:中国科学院上海生命科学研究院生物化学与细胞生物学研究所副所长、国家蛋白质科学中心&bull 上海主任、国际蛋白质学会执委、中国生物化学与分子生物学会蛋白质专业委员会副秘书长。近期研究工作包括人类端粒结合蛋白调控端粒结构与端粒酶的分子机制、端粒与DNA修复因子的关系、表观遗产调控过程中重要蛋白质复合物的结构与功能,具有显著的国际影响力。  周界文:中国科学院上海生命科学研究院生物化学与细胞生物学研究所、国家蛋白质科学中心&bull 上海研究员,美国哈佛大学医学院教授。应用溶液核磁共振技术测定膜蛋白结构,探索他们的工作机制。近年来研发了一系列的用于膜蛋白研究的核磁共振与生物化学技术,世界上第一个用NMR测定了肌浆网受磷蛋白的溶液高分辨结构。研究组首次用NMR对丙型肝炎病毒感染宿主过程中的一个重要蛋白p7以及它与抑制剂金刚烷胺类药物结合位点的精细三维空间结构进行详细描述,这是目前使用核磁共振技术解析出的最大离子通道结构,此研究成果将有助于推动以p7为靶点的抗丙型肝炎病毒药物研究。  许琛琦:中国科学院上海生命科学研究院生物化学与细胞生物学研究所、国家蛋白质科学中心&bull 上海主任助理,研究员。研究方向为淋巴细胞的信号转导,运用多种分子生物学和结构生物学的手段研究(1)T淋巴细胞活化机制 (2) T淋巴细胞在疾病中的作用,在阐明人体免疫机制方面取得原创性和突破性进展。  附录二:学者代表简介:  Adriaan Bax: 美国国家科学院院士,美国国立卫生研究院(NIH)研究员。Bax 院士是国际蛋白质溶液核磁共振领域内最重要的推动者之一,他在多维核磁共振波谱学、发展核磁共振新方法和计算生物学方面做出了系统性贡献。  Masatsune Kainosho: 日本东京都立大学教授,发展新的蛋白质标记方法:立体阵列同位素标记(SAIL: Stereo-Array Isotope Labelling),应用于分子量为17kDa 的钙调蛋白(Calmodalin)和分子量为41kDa的麦芽糖糊精(Maltodextrin)结合蛋白质的合成。此方法所得到的NMR谱图比利用传统技术得到的NMR谱图更简单,信噪比更高,有可能将常规溶液核磁蛋白结构测定方法所能测定的分子量范围扩大两倍以上。  Arthur G. Palmer: 美国哥伦比亚大学教授, 研究方向包括核磁共振波谱方法的开发、分子动力学的计算和理论分析以及在蛋白质折叠上的应用、分子识别和催化。Palmer教授是生物核磁共振波谱学的必备教科书《Protein NMR Spectroscopy: Principles and Practice》(Academic Press, 1996 and 2007)的作者之一。他由于用多维NMR技术在测定溶液中蛋白质动力学方面的创造性学术成就获得2015年Laukien奖。(Laukien奖是核磁共振领域的最高奖项之一,创立于1999年的Laukien奖是为了纪念Bruker的创始人Gunther Laukien而设立,主要表彰杰出和前沿且有巨大潜在影响的磁共振实验研究。)  Michael Sattler:德国慕尼黑赫尔姆霍茨中心结构生物学研究所教授,主要研究方向包括多维核磁共振波谱学以及大分子量蛋白质蛋白质、蛋白质核酸相互作用。  Gerhard Wagner:美国国家科学院院士,美国哈佛大学医学院教授。近期主要工作包括大分子量蛋白质的结构解析以及蛋白蛋白的相互作用研究,以及发展核磁共振新的核磁采样方法和膜蛋白质体系实验方法。任Journal of Magnetic Resonance杂志编委,Journal of Biomolecular NMR杂志编委,Biochemistry杂志编委,Cell杂志副主编等。  施蕴渝: 中国科学技术大学教授,中国科学院院士,第三世界科学院院士。中国生物化学与分子生物学学会蛋白质科学专业委员会副主任。近期主要工作包括:用多维核磁共振波谱及计算生物学研究与重大疾病或重要生理功能相关的蛋白质结构,动力学与功能关系,以及蛋白质与蛋白质、核酸、配基的相互作用。  附录三:背景介绍  蛋白质是由基因编码、多种氨基酸聚合而成的生物大分子,是所有生命形式与生命活动的主要物质基础和功能执行者。蛋白质研究的突破将促进揭示生命现象的本质 从根本上阐明人类重大疾病的机理,为临床诊治提供新的方法和途径 推动医药、生物能源、生物材料等新型生物技术产业的发展。为此,我国&ldquo 中长期科技发展战略规划&rdquo 将蛋白质研究列为基础研究四大科学研究计划之一,并将建设蛋白质科学研究设施纳入国家重大基础设施计划予以支持。  国家蛋白质科学研究上海设施(简称&ldquo 上海设施&rdquo )围绕蛋白质科学研究的前沿领域和我国生物医药、农业等产业发展需求,建设高通量、高精度、规模化的蛋白质制取与纯化、结构分析、功能研究等大型装置,实现技术与设备的集成化、通量化和信息化,成为我国蛋白质科学研究和技术创新基地,形成具有国际一流水平和综合示范作用的蛋白质科学研究支撑体系,全面提升我国蛋白质科学研究能力。  上海设施总投资7.56亿元,主体位于上海市张江高科技园区海科路333号,总建筑面积3.3万平方米,拥有用于蛋白质结构研究的9大技术系统,即规模化蛋白质制备系统、蛋白质晶体结构分析系统、蛋白质核磁共振分析系统、集成化电镜分析系统、蛋白质动态分析系统、质谱分析系统、复合激光显微镜系统、分子影像系统和数据库与计算分析系统。其中蛋白质晶体结构分析系统与蛋白质动态分析系统依托 &ldquo 上海光源&rdquo 建设蛋白质结构分析的&ldquo 五线六站&rdquo 。上海设施是继上海光源后第二个落户浦东张江的国家重大科技基础设施。上海设施于2010年12月26日正式开工,2014年3月竣工,至今已完成各项专业组验收及工艺鉴定,即将迎来国家验收。  上海设施作为当今全球生命科学领域第一家综合性的大科学装置,集先进科学装置和大型设备之大成,是探索生命奥秘的国之利器 上海设施的建成引起了国内外同行的高度关注 为上海率先建成世界级蛋白质科学中心奠定了良好的基础。  自2014年5月上海设施开放试运行以来,上海设施的运行维护团队为用户承担的国家科技战略先导专项、973、863、和国家自然科学基金的项目任务提供了强有力的科研保障和支撑服务:共执行用户课题210个,约2200人次 用户课题组120家,涉及40多家单位,以中科院和高校科研单位为主 地域覆盖主要有北京、上海、常州、杭州、石家庄、武汉、南京、厦门、长春、广州、澳门、香港等地。同时吸引了一批国际药企和国外优秀科学家开展前沿课题研究。用户使用设施的设备和服务做出了一系列优秀的成果,并在各领域的国际知名期刊上发表论文多篇。  上海设施技术团队坚持以自主创新为主,并与国际先进技术相结合,自主研发了国内首套将软件控制、硬件设备和生物应用进行整合的规模化蛋白质制备系统,实现了蛋白质制备全流程的高度集成和流水线作业,在样品处理通量上超过半自动化和传统的人工系统10-100倍,居于国际领先水平。自主研发了高精度激光双光镊系统:采用激光辐射压对微米级粒子进行捕获,通过高精度的测量技术实现亚纳米级位移和亚皮牛级力的测量,在蛋白质折叠、RNA聚合酶等研究领域提供单分子层次的信息。  上海设施建设同步组织建设国家蛋白质科学中心&bull 上海(简称&ldquo 蛋白质中心&rdquo ),负责设施运行管理。蛋白质中心依托中科院上海生科院,委托生化与细胞所实施管理,开展科学研究和国内外交流,力争在5-10年的时间逐步建设成为一个国际一流的蛋白质科学研究中心。目前中心已经到位学术带头人(PI)17名,其中包括中组部&ldquo 千人计划&rdquo 3人(含千人计划B类1人),国家&ldquo 杰出青年&rdquo 科学基金的资助2人,中组部&ldquo 青年千人计划&rdquo 5人,中科院&ldquo 百人计划&rdquo 或&ldquo 引进杰出技术人才&rdquo 7人。中心学术带头人作为首席科学家共承担国家科技部重大科学研究计划3项,科研团队承担中科院战略性先导(B类)专项&ldquo 生物超大分子复合体结构、功能与调控&rdquo 近三分之一研究任务。近两年来,中心科研团队使用蛋白质设施开展相关研究,并取得一系列重要研究成果,发表在《自然》《癌症细胞》等一系列国际权威学术期刊上。  &ldquo 大科学中心&rdquo 建设是中国科学院实施&ldquo 率先行动&rdquo 计划的研究所分类改革举措之一。2014年11月,依托上海设施与上海光源的&ldquo 中科院上海大科学中心&rdquo 作为首批试点&ldquo 大科学中心&rdquo 正式启动筹建,努力建设成为高效率开放共享、高水平国际合作、高质量创新服务的大科学研究中心,有效集聚国内外科研院所、大学、企业,开展跨学科、跨领域、跨部门协同创新,为中科院研究所分类改革起到了示范引领作用。  未来,&ldquo 上海设施&rdquo 将围绕蛋白质科学研究的前沿领域和国家人口健康与现代农业的战略需求,打造开放、协作、创新的国际一流蛋白质科学研究平台,充分发挥大科学装置的优势,助力国内生物医药产业,为实现上海创新驱动发展战略并带动长三角地区经济发展、建设全球有影响力的科创中心提供强有力的科技支撑。

加强核磁共振相关的方案

  • 使用台式核磁共振波谱仪分析违禁药品:苯丙胺
    核磁共振谱图具有较高的结构选择性和区别能力, picoSpin 80 核磁共振在违禁药物稽查中的分析应用,将A类技术引入推定测试中,加强违禁药物的早期识别能力,对策划药进行初步识别和分类提供了一种解决方案。• 核磁共振技术(NMR)具有结构选择性和较高的区别能力,验证实验技术之一,可用于得到确定的定性和定量分析结果。高场核磁共振(1H NMR)仪器也可用于验证实验,但其价格昂贵,承担的实验任务繁重,需要集中使用且资源有限,对于样品现场快速分析来说成本昂贵。 • picoSpin 80 核磁共振波谱仪是一款价格合理、使用方便、结构紧凑,无需氘代试剂,无需锁场匀场的台式仪器, 可提供高质量核磁谱图,是对新型毒品和易制毒品进行初筛鉴定的强有力手段。核磁共振谱图数据易于分析,能够反映出分子化学结构中的微小区别。药品分子中的关键官能团能够决定药品所属种类,例如苯丙胺类物质等,这些官能团使得每类药品有独特的核磁共振特征峰,可用于药品类别的区分。改变分子官能团的种类或者位置,会使其核磁共振谱图发生相应的不同变化,在特定的灵敏性条件下,可依此对特定药品进行鉴别。 • 使用 picoSpin 80 台式核磁共振波谱仪开发出一套标准操作程序(SOP),用于采集一系列苯丙胺衍生物和甲基苯丙胺衍生物的核磁谱图,建立谱图数据库。利用化学结构特征来区别不同物质种类,进行物质结构确认。然后根据谱图数据库来检测了几种已知和未知的案例样品。 目前我们是唯一一家使用台式核磁共振波谱仪进行非法毒品检测,并建立了SOP操作流程及毒品核磁谱图数据库。
  • 应用分享 | 核磁共振 FTNMR 的基本原理
    磁矩不为零的原子核(例如 1H),在静磁场中由于磁矩和磁场的相互作用形成能级裂分,当存在合适的电磁辐射时,能级间发生跃迁,即产生核磁共振现象。
  • 60MHz同核二维核磁共振
    核磁共振波谱是通过对一系列时域数据点执行离散傅里叶变换(DFT),测定每个数据点之间的特定间隙而得到的。

加强核磁共振相关的资料

加强核磁共振相关的试剂

加强核磁共振相关的论坛

  • 关于核磁双共振

    核磁共振的相关技术有:核磁双共振、二维核磁共振、NMR 成像技术、模角旋转技术、极化转移技术。什么是核磁双共振那

  • 核磁共振的原理

    核磁共振的原理   核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。      根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同:      质量数和质子数均为偶数的原子核,自旋量子数为0   质量数为奇数的原子核,自旋量子数为半整数   质量数为偶数,质子数为奇数的原子核,自旋量子数为整数   迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P      由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。      原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。      原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的能级。当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。这种能级跃迁是获取核磁共振信号的基础。      为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号。

加强核磁共振相关的耗材

  • 核磁共振样品管
    核磁共振样品管:匹配核磁设备,定制不同尺寸。
  • 核磁共振专用无油静音空压机
    产品名称:德国原装进口 核磁共振专用无油静音空压机 400M核磁共振配套压缩机 DurrTechnik核磁专用压缩机优势:无油,静音,免维护,体积小,超长寿命(主机24小时连续运行寿命超10000小时)。多机头数字智能化控制模块,确保机器稳定运行。储气罐内部银离子涂层:出色的防腐,抗菌,杜绝二次污染。配备高精度除尘过滤器及高性能干燥设备,拥有欧洲二类A级医疗认证,确保优质的气源品质。多机头数字智能化控制模块特点:1.数字化智能控制系统提供主/备机系统自动切换,联动控制,可实现故障自动报警同时系统自动切换故障主机,且更换故障机头无需停机,确保机器连续24小时不间断运转。2.数字化智能控制系统自动选择主机启动顺序,系统合理分配主机均衡工作、延长机器使用寿命。3.维修保养自动提醒功能,电脑软件及手机APP联网跟踪机器运转状况。技术数据型号 HB-304MS流量290L/min 排气压力(bar)1~9bar可调重量kg86储气罐(L)50L功率(kw)2.2噪音水平dB (A)54电压(V/Hz)380V/50Hz体积(cm)86*85*57干燥器压力露点-40℃除尘过滤精度(um)0.01电流(A)4.7
  • 核磁共振配套使用的玻璃样品管
    本公司提供与台式核磁共振配套使用的玻璃样品管,玻璃样品管的直径有10mm (SFC,固体脂肪含量)、18mm(纤维上油率、油料种子、休闲食品、动物饲料等)、26mm(聚合物、油料种子、休闲食品)等。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制