激光诱导荧光光谱仪

仪器信息网激光诱导荧光光谱仪专题为您提供2024年最新激光诱导荧光光谱仪价格报价、厂家品牌的相关信息, 包括激光诱导荧光光谱仪参数、型号等,不管是国产,还是进口品牌的激光诱导荧光光谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光诱导荧光光谱仪相关的耗材配件、试剂标物,还有激光诱导荧光光谱仪相关的最新资讯、资料,以及激光诱导荧光光谱仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

激光诱导荧光光谱仪相关的厂商

  • 北京赛诺飞拓科技有限公司是一家致力于光学仪器的研发、生产、销售的高科技企业。 现有自主研发的一系列产品,包括:便携激光拉曼光谱仪、激光共聚焦显微拉曼光谱仪、激光诱导击穿光谱仪(LIBS)、激光诱导荧光光谱仪、激光扫描共聚焦显微镜等。公司产品可广泛应用于食品安全、化工分析、生命科学、环境检测、宝石鉴定、地质勘探、考古刑侦、危化检验、半导体、光伏产业等诸多行业和领域,并为高校、科研院所和实验室研究分析工作提供支持。公司持续研发多种不同类型的光学检测仪器,以满足不同客户的需要,以创新技术引领卓越品质,以优质服务赢得市场口碑。 我们秉承严谨的管理体系和严格的产品质量控制,竭诚服务客户,衷心希望与您携手共进,开创美好的未来。
    留言咨询
  • 400-860-5168转1446
    北京欧兰科技发展有限公司专业代理、销售世界知名品牌的激光光谱探测系统;燃烧和流体诊断系统;激光多普勒测试系统;材料形变应力分析系统;太赫兹实验系统和组件;表面形貌测量;界面特性分析;液滴气泡分析仪;激光和光电子器件,包括皮秒,纳秒,飞秒,连续波激光器,固体激光器,气体激光器,半导体激光器,染料激光器,光学元件,精密位移台,压电陶瓷纳米制动器,纳米位移台,CCD相机,激光参数测量等仪器和设备。 主要产品有:和频光谱测量系统,四波混频光谱测量系统,皮秒时间分辨光谱测量系统,纳秒激光光谱测量系统;激光差分雷达 粒子成像测速系统(PIV);平激光诱导荧光PLIF分析系统,激光诱导白炽光LII分析系统;激光喷雾诊断系统;激光多参量联合测量系统;激光相位多普勒干涉仪PDI(PDPA, PDA), 激光多普勒测速仪(LDV);光学(激光)应力和形变分析系统;太赫兹时域光谱测量系统,太赫兹发射器和接受器组件;椭偏仪,布儒斯特角显微成像分析仪,表面等离子体共振成像分析仪,波导模分析仪,接触角测量仪,液滴气泡分析仪;高/中/低功率半导体泵浦和闪光灯泵浦的调Q/锁模飞秒/皮秒/纳秒固体激光器 准分子激光器,二氧化碳激光器,通讯用激光器 超快、超高帧频(增强型)CCD相机,增强型及特种CCD相机;各种光学材料和镜片,特种衍射光学元件;非线性晶体,红外晶体,激光晶体;各种电控和手动精密位移台,纳米位移台;激光能量计,功率计,激光光束品质分析仪;激光器电源及附件。 这些产品已经被广泛应用于物理、化学、材料、通讯、制造、能源、航空航天等领域。 我公司的产品技术先进,质量可靠,性能稳定。所代理的厂家不仅具有一流的产品和技术,还具备极强的产品研发能力,可以针对用户的实际应用需求提供最佳设计及配套硬件系统,高性价比的完整解决方案。 我公司始终坚持“诚信、合作,效率”的经营原则,竭诚为国内广大用户提供专业咨询以及快捷、优质、完善的产品应用咨询和技术支持服务。 “您的需求永远是我们的动力;您的满意永远是我们的目标!”
    留言咨询
  • 苏州华谱科学仪器有限公司是一家高科技分析仪器企业,总部坐落于风景秀丽的江南水乡花园城市苏州。是一家专业从事以进口设备的销售为主导,为客户提供具有国际竞争力的产品及配套服务。在分析仪器行业尤其是光谱分析领域享有盛誉主要产品包括:手持式X荧光光谱仪,台式X荧光光谱仪,波长色散X射线光谱仪,直读光谱仪,移动式光谱仪,X射线涂镀层测厚仪,电感耦合等离子体发射光谱仪,原子吸收光谱仪,激光诱导击穿光谱仪等等。
    留言咨询

激光诱导荧光光谱仪相关的仪器

  • 前言作为物质存在的第四种状态的等离子体通常由电子、离子和处于基态以及各种激发态的原子、分子等中性粒子组成。等离子体中带电离子间库伦相互作用的长程特性,是带电粒子组分的运动状态对等离子体特性的影响起决定性作用,其中的电子是等离子体与电磁波作用过程中最重要的能量与动量传递粒子,因此,等离子体中最重要的基本物理参数是电子密度及其分布以及描述电子能量分布的函数以及相应的电子温度。而对于中高气压环境下产生的非热低温等离子体来说,等离子体中的主要组分是处于各种激发态的中性粒子,此时除了带电粒子外,中性粒子的分布和所处状态对等离子体电离过程和稳定性控制也起着非常重要的作用,尤其是各种长寿命亚稳态离子的激发。为了可以充分描述等离子体的状态,在实验上不仅要对带电粒子的分布和运动状态进行诊断,如电子温度、电子密度、电离温度等参数,还需要对等离子体中的中性粒子进行必要的实验测量,来获得有关物种的产生、能量分布以及各个激发态布居数分布等信息,如气体温度、转动温度、振动温度、激发温度等参数。基于这种要求,结合相关学科的各种技术形成了一个专门针对等离子体开展诊断研究的技术门类,如对等离子体中电子组分的诊断技术有朗缪尔探针法(Langmuir Probe),干涉度量法(Interferometer),全息法(Holographic Method),汤姆逊散射法(Thomason Scattering, TS),发射光谱法(Optical Emmission Spectroscopy, OES)等,对离子组分的光谱诊断技术有光腔衰减震荡(Cavity Ring-Down Spectroscopy, CRDS)和发射光谱法(OES),而对中性粒子的光谱诊断技术包括了吸收光谱法(Absorption Spectroscopy, AS),发射光谱法(OES),单光子或者双光子激光诱导荧光(Laser Induced Fluorescence, LIF)等。 二、激光诱导荧光(LIF or TALIF)LIF在等离子体上的应用诊断开始于1975年左右,首先是由R.Stern和J.Johnson提出的利用LIF装置可以测量中性基团和离子的相对速度、速度分布函数等。90年代后,LIF被陆续应用到了ECR、ICR、磁控管、螺旋波HELIX、ICP以及微波驱动CVD等等离子体源中。2.1、 等离子体 LIF诊断的基本模型处于基态或亚稳态的粒子吸收具有一定能量的光子后被激发,再从激发态衰变为自旋多重度相同的基态或低能态时,就会发出荧光辐射。而荧光光强与粒子数成正比,因此,通过测量荧光光强,可以确定处于基态或亚稳态的粒子密度。由于这种荧光发射的时间长度低于微妙量级,必须采用脉冲宽度在纳秒量级的激光来激发荧光,这种诊断方法因此被称作激光诱导荧光(LIF)。图1. LIF基本原理图图1[1]为LIF的基本原理图,在一个三能级系统中:离子处于亚稳态时,当照射激光能量等于跃迁激发的能量,离子被泵浦到激发态。由于激发态不稳定,离子又会迅速退激到基态并辐射出荧光。在激发态上停留时间很短暂(一般只有几纳秒宽度)。由于离子不是静止的,根据多普勒效应可知,在激光传输方向上存在一个速度选择,只有在激光传输方向上满足一定速度的离子才能被特定频率的激光诱导激发:窄带激光束(ωlaser,κlaser)入射,在入射方向上,只有离子速度 和激光频率满足关系式 时,才能通过相应的激光激发被泵浦到激发态。对入射激光频率进行扫描变换,测量相应的荧光光强变化,就能得到亚稳态离子速度分布函数在入射激光方向上的投影。如果假定亚稳态离子温度和主体基态离子温度一致,离子速度分布函数等动力学参数即可获得。2.2、 典型LIF实验架构与世界上的LIF架构参考如图2所示,为典型的等离子体装置LIF诊断实验架构图。图2 典型的等离子体LIF诊断架构图因为基团和粒子的激发波长不同,因此我们选择了波长可调谐的纳秒脉宽染料激光器,通过添加不同的染料,输出不同的波长对被测试的粒子和基团进行激发,从而得到激光诱导的荧光衰减与光谱信号,这些信号经由相关的搜集光路被捕获到光谱仪与ICCD探测器组成的光谱探测系统中,从而得到光谱、强度与时间尺度的三维荧光光谱,让研究人员进行相关的分析。图中所用的DG535/645作为整个实验系统的时序控制装置。图3到图4为世界上比较典型的不同等离子体装置的LIF诊断情况。图3. University of Greifswald LIF诊断系统(H原子)图4. IHP LIF诊断系统2.3、典型的LIF波长选择举例对Ar等离子体和He等离子体放电,常用的激光器波长可调谐范围不需要太宽要测H(氢)等离子体,激光波长需要205nm测CF等离子体 需要261nm同时测 Ar等离子体的LIF,因为观测另一条谱线,所用的激光波长又是611nm的所以LIF的波长范围应该根据要观测的等离子体放电的气体种类及观测那条谱线来决定2.4、硬件配置推荐 根据用户需求,一般推荐的配置如下:1、染料可调激光器:可选配置从200-4500nm 宽范围调谐2、 光谱仪:Ø Zolix 北京卓立汉光仪器有限公司的Omni-500I 或750I光谱仪搭配1200l/mm和1800l/mm的全息光栅Ø 207或者205高光通量光谱仪,搭配110*110mm 的大尺寸1200l/mm光栅和1800l/mm光栅2、 探测器: ICCD, 18mm 增强器,13*13mm 探测面;DG645:用于系统触发控制的时序单元其他光学平台及光路设计等 光电倍增管PMT/锁相放大器/ Boxcar 模块 等请咨询卓立汉光销售人员!参考文献[1] 赵岩, 柏洋, 金成刚, 等.激光诱导荧光在低温等离子体诊断中的应用[J]. 激光与红外, 2012, 4(42): 365-371.
    留言咨询
  • 作为一套现代化、模块化的数据采集分析和成像系统,平面激光诱导荧光(PLIF) 是对燃烧实验进行诊断的独特工具。通过对燃烧自由基、污染物、燃料示踪剂等的测量,该系统可以对诸如燃料注入、点火现象和火焰锋面等现象进行研究,从而加深对燃烧过程的理解。PLIF 中的LIF- 激光诱导荧光(LIF) 技术LIF 技术的工作原理为:调谐激光波长,使激光的光子输出频率和燃烧场内待探测离子的某一对上下能级间的跃迁频率相同,形成共振吸收,将下能态粒子泵浦到上能态,当相应的上能态粒子向下跃迁时,会产生荧光信号,然后通过分析荧光信号的强度或光谱形态,获得燃烧场内探测分子浓度、分布及温度等燃烧参量信息。激光诱导荧光LIF 技术对燃烧诊断的优点调谐激光实现待测分析或离子的共振吸收,选择性激发荧光,选择性探测荧光,极大的提升探测灵敏度与信噪比。可通过后数据分析获得被探测分子浓度,分布场和温度等丰富的燃烧参量信息。该系统具有如下特点1、激光辅助光学诊断,是光学非侵入式燃烧组分分析与成像的手段, 配套标准化光学测试系统,可用于航空航天、先进能源等燃烧过程检测2、集成一体式可调谐染料激光系统,稳定,易操作,易维护3、宽动态范围的高灵敏度的影像强化ICCD 实现纳秒级别的影像或光谱采集4、PLIF 系统具有亚纳秒级的同步时间精度5、具有系统搭建、数据采集、数据分析、结果可视化的完整软件平台6、系统具备燃烧自由基LIF 和燃料示踪剂LIF 的专用分析软件7、可实现单组份及多组份测试需求8、可根据用户实际需求, 提供个性化光学实验方案9、可扩展离子图像测速技术(PIV)平面激光诱导荧光(PLIF)PLIF: (Planar Laser Induced Fluorescence) 即所谓的“平面激光诱导荧光”,平面激光诱导荧光实验系统为二维测量系统。如下图所示:实验中通过柱面透镜,将激光光束厚度进行整形,形成激光片(laser sheet), 激光片穿过火焰与火焰相交,形成一个二维截面,通过光学成像的办法,测量火焰中探测粒子的二维荧光图像,从而求出探测粒子在火焰中的浓度分布及温度场的分布等信息。小结:平面激光诱导荧光PLIF 是在LIF 基础上,将激光整形成片状光,切入到燃烧场内,从而激发并探测二维的燃烧场信息。本公司代理ICCD 拍摄的PLIF 图像OH LIF, CO LIF, reaction rate (RR), temperature (T),and mixturefraction (f)平面激光诱导荧光(PLIF)系统架构&bull 染料激光系统:可以根据测试对象的不同,调谐输出不同的输出波长与能量;&bull 激光整形与传输光路:用于把激光变成可以用于PLIF 系统的片状光;&bull 探测系统:根据要求采用合适的ICCD,进行适当的延迟后得到特定时刻的荧光信息;同时还可以加上光谱仪等设备,进行光谱分析,以便得到更丰富的信息;&bull 时序控制装置:对整个实验的时序进行控制;&bull 附属设备:附属设备主要包括用于搭建光路所必须采用的光学平台,光具座,调整架以及反射镜,激光功率能量计等光学配件;&bull 数据采集与分析软件:可以对温度以及浓度场进行分析研究。PLIF图像处理框图配套推荐设备分项参数可调谐染料激光器及片光源整形传输光路&bull 激发波长:220-780nm 连续可调,可以根据要求延展到200-4500nm&bull 线宽: 0.06cm-1&bull 单脉冲能量:110mJ@560nm&bull 柱面镜焦距:50mm&bull 球形聚焦透镜:焦距500mm&bull 片光厚度:0.1-0.3mm&bull 重复频率:10Hz常用激发波长对应测试自由基及本设备对应激光能量时间延迟同步装置&bull 时间延时范围:0-2000s&bull 时间延迟精度5ps&bull 延迟同步通道:4 通道,可根据要求延展到8 通道超快探测器本公司提供多种纳秒超快探测器ICCDiStar 系列ICCD 采用高品质二代或三代像增强器,采用光纤锥高效耦合科学级CCD。 iStar 系列影像ICCD 是目前高端科研市场上应用*为广泛的带有时间闸门的增强型CCD。真实光学门宽小于2ns,该系列产品主要用于燃烧过程、生物发光机制、化学反应过程等研究领域,利用其信号增强功能和时间闸门控制特点,实现极弱信号采集、纳秒时间分辨影像捕捉等实验功能。主要特点&bull 18mm 或25mm 像增强器可选&bull 提供P43 和P46 两种类型的荧光屏&bull *短时间闸门宽度: 2ns( 真正光学闸门宽度)&bull 光阴极重复频率高达500KHz&bull 半导体制冷温度-40℃&bull 内置多通道数字延时发生器,可轻松同步多台设备&bull 内置数字延迟发生器&bull 10ps 的延迟分辨率&bull *低的传输延迟:19ns&bull In telligateTM 微通道板与光阴极实现同步门控,在深紫外段也保持1:108的开关比&bull USB2.0 计算机接口技术参数指标:附件选项:C 接口适配器、F 接口适配器、水冷机IntelligateTM: 优化 的 UV-VUV 区域门控技术( 标准配置)iStarCMOS 相机,更高帧率!ANDOR 的*新的iStar sCMOS 系列像高灵敏度瞬态探测器可提供要求高分辨率,高帧频以及纳秒时间分辨测试的解决方案。2560×2160 分辨率的探测器广泛应用于时间分辨实验的应用领域,例如等离子体分析。做PLIF 实验测试时,可满足快速瞬态现象采集实验,提供多兆赫兹读出速度,USB3.0 接口,以及配置一台完全集成的、软件控制的数字延时脉冲发生器。该系列探测器可应用于各种复杂的试验中,可通过软件对时间和增益进行控制,二代及三代像增强器可配合各种入射窗口光阴极材料。&bull USB3.0 接口: 即插即用&bull 550 万像素高分辨率sCMOS&bull 50 帧每秒全幅帧频,203 帧@512*512 ROI&bull 内置脉冲延时发生器: 功能软件可控&bull 光学快门: 小于2ns 的真实光学门宽&bull *低的插入延时: *低19ns&bull 独特PIV 模式: 两幅连拍*小间隔200ns&bull IntelligateTM 微通道板与光阴极实现同步门控: 紫外关断比优于10-8:1&bull 光阴极开关速率高达500kHz: 高速激光实验中,增加信噪比&bull 独特的Crop 模式: 专门的采集模式,实现*快的图像采集速度&bull GII 及GIII 像增强器可选&bull 热电制冷*低0℃ C: 理想的低光应用领域&bull 实时控制: 用户界面实时采集优化&bull 光阴极干燥气体吹扫端口: 减小EBI,适用于微光测试领域技术参数指标:附件选项:C 接口适配器、F 接口适配器、水冷机行业**的影像采集速度 超快多通道模式读出速度通道数( 中心垂直 )通道高度(h 像素数 )通道间隔(d 像素数 )*快帧速fps212121,967220201,37021547726520121222220202013550121289502020542568052
    留言咨询
  • 产品概述英国阿朗科技公司至今已服务于金属元素成分分析行业近40年。40年间ARUN公司共推出10多款产品,覆盖现场及实验室金属材料检测领域。CALIBUS系列手持式LIBS激光诱导击穿光谱仪是ARUN最新推出的手持产品,有着绝佳的元素分析性能,尤其是C元素检测分析性能优异,是目前分析检测碳元素最稳定的手持光谱仪。产品特性检测范围宽 全谱元素检测,可精准稳定检测C及合金材料中的Li、B、Be元素,填补了XRF的检测盲区;分析能力强 全新高分辨率的光学系统设计,搭配CMOS传感器,使得检测精度更高;无辐射 采用激光诱导击穿技术,没有辐射危险,产品通过《设备使用安全认证》;分析速度快 1s完成分辨牌号,快速分析检测;样品适应性广 无需样品前处理,样品适应性广:不要求导电,不要求消解,不要求大量;易用性高 智能触摸屏,人性化交互界面,操作简单便捷,大大提高工作效率。 应用领域: 冶金制造:CALIBUS手持式LIBS光谱仪优异的定量定性检测能力,能解决客户在冶金制造全过程中的质量控制、材料分类、安全防范、事故调查等检测要求,无论是黑色金属还是有色金属,CALIBUS都可以快速、准确给出准确可靠的测试数据,获得接近实验室级别的分析结果。轻金属材料分析:CALIBUS是一款超高分辨率、宽波段范围的手持激光光谱仪,有着强大的分析能力,能够准确分析以往X射线荧光分析仪不能识别的轻元素,即可对C,Si,Mg,B,Be,Li,Na等原子序数小于13的元素的现场快检,满足一切金属材料检测应用场景。材料可行性鉴定:材料检验是确保金属制品使用合格材质的关键。CALIBUS的出现,使工业生产过程中对金属材料的100%全检替代抽样检验成为现实,只需扣动扳机,元素含量及牌号1秒即可准确清晰显示在彩色触摸屏上,并可适应各种现场检测条件。金属交易:在金属废料交易市场中,进行快速可靠的现场分析检测是非常必要的,CALIBUS能够快速准确的对大量的废旧金属(碳素钢、不锈钢、铸铁、铝合金、铜合金等)进行现场检测和分拣,为购销双方在交易时做出迅速可靠的判断。
    留言咨询

激光诱导荧光光谱仪相关的资讯

  • 大连化物所关亚风、耿旭辉团队研制出高灵敏近红外激光诱导荧光检测器用于甲状旁腺探测
    近日,中科院大连化物所微型分析仪器研究组(105组)耿旭辉研究员、关亚风研究员团队与大连医科大学附属第二医院田晓峰教授、张宁副教授团队,大连海事大学理学院王桂秋教授团队合作,在高灵敏近红外激光诱导荧光检测器(LIF)研制及其在甲状旁腺探测中的应用方面取得新进展。  甲状旁腺(PG)主要调控人体钙磷平衡,大小约为3至8mm,术中辨认非常困难。因此,PG在颈部手术中有误切或漏切的风险。目前,术中PG辨识主要依靠外科医生经验结合病理诊断。近年来,研究表明近红外自荧光探测技术可无创、准确地辨识PG,具有较高的特异性和灵敏度。然而,目前临床应用的探测仪因体积较大、自荧光发光机制不明等原因并未得到广泛应用。  本工作中,合作团队研制了高灵敏近红外光纤式LIF并应用于PG探测。该团队设计了20°夹角光纤探头,减少了探测“盲区”和反射光的收集,相比于共线式集束探头,灵敏度提高了53.4%,短期波动和长期漂移分别降低了61.1%和58.3%;在发射光路中增设二向色镜模块,基线和噪音分别降低了96.7%和92.1%,信噪比提高约9倍。该LIF对CF790染料的检测下限为5.1×10-14mol/L,比已报道的光纤式LIF低数百倍;将研制的LIF原理样机应用于离体病变的PG样本探测,准确率高于文献报道平均水平。目前,合作团队已研制出手持式PG探测器,未来将应用于术中原位PG探测辨别。本研究对推动光纤式LIF技术的发展和PG探测辨别具有重要意义。  耿旭辉、关亚风团队长期从事高灵敏小型LIF及应用研究,采用小型、廉价的激光二极管替代激光器为光源、自主研制的硅基弱光探测器替代进口光电倍增管(PMT)探测荧光,研制出紧凑式共聚焦LIF,对荧光素检测下限为3×10-12M,功耗和开机平衡时间优于进口仪器(Talanta,2018);用高亮度、长斯托克位移荧光探针标记的抗体进行免疫荧光标记,首次定量分析了单个白血病细胞中的active caspase3蛋白,检测下限为7个分子(91pL检测体积内)(Analytical Chemistry,2019);设计了球面二向色反光镜,将检测池放置在球心而非常规的反光镜的焦点上,对荧光素钠检测下限为1.5×10-13M或8.9个荧光素钠分子(98 pL检测体积内)(Analytical Chemistry,2020)。  研究成果以“A Highly Sensitive Optical Fiber Based Near-infrared Laser Induced Fluorescence Detector (LIF) for Parathyroid Gland Detection”为题,发表在《传感器和执行器B-化学》(Sensors and Actuators B: Chemical)上。该工作的第一作者是我所105组联合培养硕士研究生段逸。以上工作得到了辽宁省“兴辽英才计划”青年拔尖人才、中国科学院青年创新促进会、国家自然科学基金等项目的资助。(文/段逸 图/王传亮)  文章链接:https://doi.org/10.1016/j.snb.2022.131879
  • 激光诱导击穿-拉曼光谱分析仪
    成果名称激光诱导击穿-拉曼光谱分析仪(LIBRAS)单位名称四川大学生命学院分析仪器研究中心联系人林庆宇联系邮箱lqy_523@163.com成果成熟度□研发阶段 &radic 已有样机 □通过小试 □通过中试 □可以量产合作方式□技术转让 □技术入股 □合作开发 &radic 其他成果简介: 台式LIBS(左)、便携式LIBS(右) 手持式LIBS 技术背景 作为一种激光光谱分析技术,同其他光谱分析技术相比较而言,激光诱导击穿光谱(简称,LIBS)技术具有诸得天独厚的优势,特别是分析速度快,无需样品前处理,多元素同时分析以及所有元素都可测定等优势,这些优势都已经使LIBS技术逐渐成为一种非常流行的元素分析手段,在冶金地质、航空航天等众多应用领域也逐渐得到尝试性的使用。基于上述技术优点,本中心开发了激光诱导击穿光谱系列仪器,包括:台式LIBS系统,便携式LIBS仪器以及手持式LIBS分析仪,相关仪器的样机已展开多次的优化升级,实现了LIBS仪器的国产化突破。但是,虽然LIBS技术有上述众多优点,但是该技术本身却只是一种原子发射光谱技术,利用该技术也只能对被分析样品进行元素分析,获取被分析物质单一的元素构成信息,不能得到相关组成元素的结构信息,因此,利用单一的LIBS技术无法对样品进行全面系统的检测分析。而在地质勘探、石油录井等实际应用需求中,往往不仅仅要求对组成样品的元素进行分析,更重要的是要获取被分析物的结构信息,特别是关于地层岩石的岩性、结构以及矿物种类的综合信息,在这一点上,单纯靠LIBS技术肯定是无法实现的。因此,开发出一种即可实现元素分析,又同时可实现结构鉴定的快速原位光谱分析技术就显得十分重要。Raman光谱作为一种非破坏性的光谱分析技术,是很具吸引力的。该技术利用低能量激光作用于样品表面,通过接收物质所产生的散射光谱,知道物质的振动转动能级情况,从而可以鉴别物质结构、分析物质的性质。Raman光谱技术可以提供快速、简单、可重复、且无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头测量,一次可以同时覆盖50-4000波数的区间,可对有机物及无机物进行分析。因此,Raman光谱技术和LIBS技术从仪器构成、光路设计到结果分析等方面都有着诸多相同或相似之处,将这两种技术结合在一起,开发出可同时得到原子光谱、分子光谱的激光光谱分析系统将有非常广阔的应用潜力。仪器先进性LIBRAS仪器可用于分析样品的原子光谱与分子光谱的原位同时分析测量,在获得同一微区位置元素组成信息的同时可以得到分子结构的相关信息,为进一步了解物质结构的微观世界提供了强有力的工具。该仪器作为国家重大科学仪器设备开发专项的自主研发成果,不仅填补了国内技术和行业的两项空白,更一举填补了风冷型高能激光系统的世界空白。目前市场上能够同时获取原子和分子信息的测量仪器十分有限,LIBRAS仪器的成功研制将进一步引领科学仪器的发展方向。LIBRAS仪器实现了激光诱导击穿光谱与拉曼光谱联用技术从理论方法到产品实践的跨越,创造性地将常规联用技术中的激光单脉冲能量进行了数量级的提升。该仪器是世界首款整机系统高度集成且无需水冷装置的多功能联用仪器。而且,仪器的体积小,体重轻,结构紧凑,性能参数卓越。LIBRAS仪器能够更好地服务于地质、生物医学及环境污染监测等多个领域,为相关产业提供有效的原位快速分析新装备,降低分析成本,提高生产效率,彰显了该仪器广阔的市场前景及应用空间。仪器关键技术研发1. 独特的光学设计。采用一套光学系统,实现两种不同波长激发的两种不同类型信号的获取,光学系统内无任何移动镜片组件,结构稳,性能强。2. 创造性的高能风冷脉冲激光系统。采用自主研发风冷脉冲激光器作为LIBS光源,单脉冲能量100 mJ,整机无需水冷,体积紧凑。3. 创造性的实现高能激光器的低压低功耗供电。激光器可采用锂电池供电,使仪器的便携化成为可能。性能指标光斑尺寸:LIBS光路100 µ m;Raman光斑20 µ m;分析距离:40 mmLIBS部分:激光波长1064 nm;脉冲激光能量100 mJ;激光频率1 Hz(可联系激发);脉冲宽度8-10 ns;光谱接收范围:可全谱接收(200-800选配);Raman部分:激光波长532nm;能量 20 mW;光谱接收范围:540-750 nm(选配)应用前景:LIBRAS技术是LIBS技术的提升和扩展。由于Raman光谱可以用来研究分子的振动和转动情况,提供物质内部的结构信息,各种简正振动频率及有关振动能级的情况,但在物质所含元素,尤其是次要元素和痕量元素的检测方面,能力及其有限。而在油气开采、地质勘探、冶金、电力生产、环境卫生和深空探测等领域,如果既要检测物质中的主要、微量和痕量元素,也要知晓物质中分子组份和结构信息,单独的Raman技术,以及其他的现有光谱检测技术(比如,电感耦合等离子体发射光谱法、X射线荧光光谱法、气相色谱分析法等)都不能完成任务,只有把LIBS技术和Raman技术有机结合起来才能满足此要求。以油气开采为例:在录井现场完成分析,可以快速的做出解释评价,及时为勘探开发的的决策提供依据,减少了钻井现场等措施的时间,避免决策的失误。通过应用该技术,提高录井解释符合率上升10%以上,每年减少10%试油工作量,仅西南油气田每年可以节约勘探成本5-6亿元人民币。在国内外油气田推广应用,每年可以节约勘探开发成本50-60亿元人民币。降低油气勘探开发成本,扩大油气开发规模,为国民经济的持续发展做贡献。除此以外,例如在冶金、地质等领域,亦可以带来相当巨大的经济效益。知识产权及项目获奖情况:专利1:单脉冲激光源的双波长同轴激光诱导击穿-脉冲拉曼光谱联用系统及方法(发明专利,已提交);专利2:激光诱导击穿光谱与拉曼光谱联用仪自动化测控系统(发明专利,已提交);专利3:激光诱导击穿/拉曼光谱联用分析仪(外观专利,已提交);其他:LIBRAS仪器入选&ldquo 2014中国科学仪器与分析测试行业十大新闻&rdquo 。
  • 第一届光谱技术及应用大会 暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会
    第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会2022 年 12 月 4-6 日 | 上海大华虹桥假日酒店https://b2b.csoe.org.cn/meeting/CSLIBS2022.html 光谱技术是近代光学计量的重要分支,通过对物质光谱的探测、分析来获取物质的组成、结构、含量、运动状态等信息,具有非接触、范围广、多组分、灵敏度高、可连续实时监测等优势。这一技术目前已广泛应用于燃烧诊断、环境监测、工业检测、生物医学、航空遥感、目标探测、能源勘探等诸多领域。为进一步推动光谱技术的应用与融合,探讨我国光谱技术的发展趋势和远景目标,促进光谱技术和仪器的进步与创新,中国光学工程学会将于 2022 年 12 月 4-6 日在上海举办“第一届光谱技术及应用大会暨第九届中国激光诱导击穿光谱学术研讨会暨第六届燃烧诊断研讨会”。会议将邀请 150 余位光谱及其应用领域的知名专家参会,通过学术报告、海报展示、仪器设备展览等形式,就光谱技术的重要科学问题、仪器发展的关键技术问题、最新研究成果及发展趋势等问题展开研讨。总体日程日期时间活动地点12.4周日14:00-20:00签到一楼大堂12. 5周一08:30-12:00大会开幕式 & 大会报告一楼大华厅13:00-13:30海报交流与评选一楼海报区13:30-18:3008:30-18:30专题 1:激光诱导击穿光谱及相关技术一楼文华厅专题 2:原子光谱与质谱专题 3:激光拉曼光谱与激光荧光光谱技术及应用二楼馨华厅专题 4:光声光谱与TDLAS 技术及应用专题 5:红外及太赫兹光谱一楼锦华厅专题 6:超快及瞬态光谱专题 7:燃烧诊断专题 8:环境监测专题 9:工业检测二楼嘉华厅08:30-18:30展桌展示一楼展区12. 6周二08:30-12:0513:30-18:00专题 1:激光诱导击穿光谱及相关技术二楼怡华厅专题 2:原子光谱与质谱专题 3:激光拉曼光谱与激光荧光光谱技术及应用专题 4:光声光谱与TDLAS 技术及应用专题 5:红外及太赫兹光谱二楼祥华厅专题 6:超快及瞬态光谱二楼馨华厅专题 7:燃烧诊断专题 8:环境监测专题 9:工业检测二楼嘉华厅08:30-18:30展桌展示二楼展区12.4-616:00-18:00现场核酸采样一楼核酸区12.4-617:30-19:00晚餐一楼餐厅12.5-612:00-13:00午餐一楼餐厅*日程可能会根据现场情况进行调整详细日程大会场12 月5 日上午08:30开幕式(1)介绍与会嘉宾 (2)主席致开幕辞大会报告08:50陈建民(复旦大学)——大气气溶胶光学特性研究09:20舒嵘(中国科学院上海技术物理研究所)09:50周怀春(中国矿业大学)——用于燃烧及高温光谱/成像诊断的高精度辐射模型10:20合影 & 茶歇10:40刘志(上海科技大学)11:10俞进(上海交通大学)——针对火星就位探测的激光诱导击穿光谱方法研究 会议日程专题 1:激光诱导击穿光谱及相关技术12 月 5 日下午第一场:基础研究+定量化方法主持人:俞进13:30王哲(清华大学)——激光诱导击穿光谱(LIBS)定量化理论方法及应用13:50苏茂根(西北师范大学)——激光等离子体辐射、诊断与应用14:10周卫东(浙江师范大学)——激光诱导空化气泡的演化及其对 LIBS 光谱的影响14:30张大成(西安电子科技大学)—— 激光诱导击穿光谱新技术与器件研究 (CSLIBS2022-01- 027)14:50陈钰琦(华南理工大学)——新型靶增强正交 DP-LIBS 与 OPC-LIBS 的元素分析研究(CSLIBS2022-05-003)15:00尼 洋(中国地质大学(武汉))——Elemental determination in stainless steel via laser- induced breakdown spectroscopy and back-propagation artificial intelligence network (CSLIBS2022-05-009)15:10李小龙(中国科学院近代物理研究所)——激光诱导击穿光谱表征软物质表面力学性能的实验研究 (CSLIBS2022-01-022)15:20茶歇第二场:基础研究+仪器设备+方法主持人:王哲15:50丁洪斌(大连理工大学)——LIBS 基本物理过程及聚变能应用进展16:10郭连波(华中科技大学)——激光诱导击穿光谱基础、仪器及应用研究16:30马欲飞(哈尔滨工业大学)——小型化固体激光器16:50曾和平(华东师范大学)——飞秒光丝非线性相互作用诱导击穿光谱17:10刘小亮( 东华理工大学) —— 飞秒激光诱导击穿光谱技术对石墨中钍的定量分析(CSLIBS2022-05-018)17:20孙天洋(上海交通大学)——基于神经网络的火星模拟和大气压环境 LIBS 光谱的非线性校准迁 移 (CSLIBS2022-01-003)17:30卢渊(中国海洋大学)——基于显微 LIBS 成像技术的贝壳有机成分分析 (CSLIBS2022-01- 017)17:40饶云飞(上海交通大学)—— 光谱选择和随机森林结合的碎石微量元素的灵敏和精准测定(CSLIBS2022-05-030)12 月 6 日上午第三场:基础研究+仪器设备主持人:丁洪斌08:30段忆翔(四川大学)——LIBS 技术与仪器的发展历程—从实验室研发到现场应用08:50汪正(中国科学院上海硅酸盐研究所)——基于微等离子体增强 LIBS 信号研究09:10林庆宇(四川大学)——面向肺癌组织的 LIBS 元素成像技术、装置及方法(CSLIBS2022- 01-006)09:20刘小亮( 东华理工大学) —— 飞秒激光诱导击穿光谱技术对石墨中钍的定量分析(CSLIBS2022-05-018)09:30张倍艺( 上海交通大学) —— 火星模拟气氛和模拟壤中氮元素的灵敏和精准测定(CSLIBS2022-05-031)09:40茶歇第四场:工业应用主持人:舒嵘10:00孙兰香(中国科学院沈阳自动化研究所)——矿浆成分 LIBS 定量分析方法与工业在线应用10:20王茜蒨(北京理工大学)——LIBS 技术在生物医药诊断监测中的应用研究10:40张雷(山西大学)——NIRS-XRF 联用煤质分析方法研究与应用11:00刘玉柱(南京信息工程大学)——Online in situ detection of elements and pollutions in the atmosphere (CSLIBS2022-05-029)11:20刘可( 华中科技大学) —— 基于 MLIBS 技术的挥发性卤代污染物检测方法研究(CSLIBS2022-01-005)11:30崔敏超(西北工业大学)——Rapid analysis of steel powder for 3D printing using laser- induced breakdown spectroscopy (CSLIBS2022-01-008)11:40刘曙(上海海关工业品与原材料检测技术中心)——激光诱导击穿光谱与铁矿石检测(CSLIBS2022-01-010)12 月 6 日下午第五场:其他应用主持人:汪正13:30郑荣儿(中国海洋大学)——深海 LIBS:何去何从13:50周小计(北京大学)——LIBS 在定量应用中的探索研究14:10刘木华(江西农业大学)——PRLIBS 对农产品品质信息分析能力提升方法研究14:30傅院霞(蚌埠学院)——An exploration of matrix effect on optimal acquisition delay for laser-induced breakdown spectroscopy of metal samples (CSLIBS2022-05-001)14:40田野(中国海洋大学)——水下固体靶的激光诱导等离子体诊断及光谱分析 (CSLIBS2022-01-014)14:50陈枫叶(上海交通大学)——LIBS 和机器学习实现火星气氛和模拟壤中碳元素的精确测定(CSLIBS2022-05-032)15:00何洪钰(中国原子能科学研究院)——激光诱导等离子体光谱直接探测气溶胶中的锶元素(CSLIBS2022-01-016)专题 2:原子光谱与质谱 & 专题 3:激光拉曼光谱与激光荧光光谱技术及应用12 月 5 日下午第一场:激光拉曼光谱与激光荧光光谱 I主持人:杨海峰、胡继明13:30胡继明(武汉大学)——拉曼光谱在细胞分析中的应用13:50杨海峰(上海师范大学)14:10朱井义(中科院大连化学物理研究所)14:30高亮(核工业西南物理研究院)——大气压等离子体活性物种激光诱导荧光定量诊断研究14:50于亚军( 中国科学技术大学) —— 基于线扫描和偶氮拉曼探针的快速活细胞成像(CSLIBS2022-03-004)15:10茶歇第二场:原子光谱与质谱 I主持人:侯贤灯、杭纬15:30侯贤灯(四川大学)——原子光谱分析研究15:50杭纬(厦门大学)——高电离电位元素的激光质谱分析技术16:10胡斌(武汉大学)——ICP-MS 单细胞分析16:30吕弋(四川大学)——基于金属稳定同位素标记的生物分析研究16:50郑成斌(四川大学)——碳原子发射光谱及其应用17:10邢志(清华大学)——高纯非导体材料纯度分析方法探索17:30杨杰(中国科学院近代物理研究所)——ⅥB 族原子一氧化物分子(CrO/MoO/WO)电子态结构研究 (CSLIBS2022-02-010)12 月 6 日上午第三场:原子光谱与质谱 II主持人:杭纬、于永亮08:30于永亮(东北大学)——适于微等离子体发射光谱分析的样品引入方式与接口08:50徐明(中国科学院生态环境研究中心)——利用 LA-ICP-MS 成像技术解析间充质干细胞负载金纳米颗粒的肿瘤靶向规律09:10陈明丽(东北大学)——LA-ICP-MS 对动植物组织中元素成像方法研究09:30郭伟(中国地质大学(武汉))——高精度 LA-ICPOES/ICPMS 原位分析技术及古气候中的应用 09:50茶歇第四场:激光拉曼光谱与激光荧光光谱 I主持人:任斌、陈建10:10谭平恒(中国科学院半导体研究所)10:30陈建(中山大学)10:50韩鹤友(华中农业大学)11:10李晓红(西南科技大学)——润湿性表面增强拉曼散射衬底的研究 (CSLIBS2022-04-002)12 月 6 日下午第五场:原子光谱与质谱 III主持人:侯贤灯、高英13:30高英(成都理工大学)——基于钒的光化学蒸气发生及应用13:50蒋小明(四川大学)——微型原子发射光谱仪的放电激发源研制14:10刘睿(四川大学)——金属元素标记均相免疫分析14:30冯流星(中国计量科学研究院)——阿尔茨海默症计量溯源技术研究14:50朱振利(中国地质大学(武汉))——基于等离子体技术的锑元素与同位素分析方法开发15:10张磊(中国科学院近代物理研究所)——MoO 分子光谱中的同位素位移 (CSLIBS2022- 02-007)15:20于尧(中国科学院近代物理研究所)——一氧化钌分子的电子态结构研究 (CSLIBS2022- 02-008)专题 4:光声光谱与TDLAS 技术及应用 & 专题 5:红外及太赫兹光谱12 月 5 日下午第一场:光声光谱技术I主持人:鲁平13:30刘锟(中国科学院合肥物质科学研究院)——光声光谱多组分检测技术研究13:50王强(中国科学院长春光机所)——高灵敏、大动态范围的腔增强光声光谱气体传感技术 14:10陈珂(大连理工大学)——光纤光声传感技术及应用研究进展14:30郑华丹(暨南大学)——新型石英增强光声光谱测声器14:50吴君军(重庆大学)——基于石英增强光声光谱的相变液滴局部蒸汽浓度表征15:10乔顺达(哈尔滨工业大学)——基于吸收加强的石英增强光声光谱技术 (CSLIBS2022-05- 039)15:20茶歇第二场:吸收光谱技术I主持人:王强15:50黎华(中国科学院上海微系统与信息技术研究所)——太赫兹光频梳与双光梳光源16:10姜寿林(香港理工大学深圳研究院)——基于空芯光纤光热光谱法的宽波段多组分痕量气体检测技术16:30王福鹏(中国海洋大学)——基于吸收光谱的海洋原位气体传感技术研究和共性关键问题探讨16:50王如宝(北京杜克泰克科技有限公司)——基于光学麦克风光声光谱技术的环境空气 VOCs检测17:10宋俊玲(航天工程大学)——燃烧场测量探头设计和工程应用 (CSLIBS2022-03-001)17:20梁添添(哈尔滨工业大学)——基于激光光谱技术的氢气/氧气传感研究 (CSLIBS2022-05- 037)12 月 6 日上午第三场:光声光谱技术II主持人:闫明08:30鲁平(华中科技大学)——光声探测技术及应用08:50郑传涛(吉林大学)09:10李磊(郑州大学)09:30许可(朗思科技有限公司)——基于石英增强光声光谱的超高灵敏度气体分析仪器09:50郎梓婷( 哈尔滨工业大学) —— 基于共振腔的石英增强光声光谱气体传感技术研究(CSLIBS2022-05-034)10:00茶歇第四场:吸收光谱技术II主持人:黎华10:30闫明(华东师范大学)——基于光梳的光谱测量技术及应用10:50刘俊岐(中国科学院半导体研究所)——中红外可调谐半导体激光器11:10姚晨雨(山东大学)——空芯光纤 Fabry-Perot 干涉仪解调方法和光热光谱气体检测研究11:30陈卫(中国空气动力研究与发展中心)——可调谐激光器在高超声速流场光谱诊断中的应用与需求(CSLIBS2022-03-002)11:40刘晓楠(哈尔滨工业大学)——基于中红外半导体激光器和光致热弹性光谱的高灵敏度甲烷检 测 (CSLIBS2022-05-038)12 月 6 日下午第五场:红外及太赫兹光谱方法与应用主持人:邵学广、夏兴华13:30夏兴华(南京大学)——等离激元增强红外光谱生化分析13:50姜秀娥(中国科学院长春应用化学研究所)——仿生膜水合及其效应的红外光谱电化学研究14:10臧恒昌(山东大学)——药品连续制造过程中近红外实时评价与放行技术的研究14:30张良晓(中国农业科学院油料作物研究所)——油料油脂质量安全近红外快速检测技术研究14:50陈孝敬(温州大学)——结合 Libs 和线性回归分类对泥蚶重金属污染检测15:10邵学广(南开大学)——近红外光谱分析中的化学计量学方法与应用15:30茶歇第六场:红外及太赫兹光谱仪器研发主持人:邵学广、陈斌15:50陈斌(江苏大学)——低场核磁与近红外光谱联用分析仪的开发与应用探索 16:10李晨曦(天津大学)——光谱成像与太赫兹光谱技术在食品检测中应用16:30兰树明(无锡迅杰光远科技有限公司)——IAS 在线近红外光谱分析仪器开发16:50谢樟华(天津市能谱科技有限公司)——国产红外光谱仪的新机遇和新挑战17:10周新奇(杭州谱育科技发展有限公司)——FTIR 光谱技术产品开发及其应用17:30鲁兵(华中科技大学)——椰糠基质有效氮近红外检测仪设计与试验 (CSLIBS2022-06- 001)专题 6:超快及瞬态光谱12 月 5 日下午第一场:原子、分子与超快光谱主持人:郑俊荣13:25致辞13:30勾茜(重庆大学)——微波光谱探测 Diels–Alder 环加成预反应中间体 13:55兰鹏飞(华中科技大学)——阿秒激光与阿秒时间分辨测量14:20吴成印(北京大学)——超快激光与物质相互作用的新型光源产生及应用14:45郑盟锟(清华大学)——面向实现超冷的绝对基态锂锶分子的精密光谱测量15:10茶歇第二场:超快光谱与理论主持人:郑盟锟15:25蔺洪振(中国科学院苏州纳米所)——和频光谱在电化学能源器件界面表征中的应用15:50刘剑(北京大学)——路径积分刘维尔动力学和超快振动光谱的模拟16:15夏安东(北京邮电大学)——藻胆蛋白光谱红移机理:构象或激子耦合?16:40张贞(中国科学院化学研究所)——气液界面超分子手性自组装动力学及手性传递分子机理 17:05郑俊荣(北京大学)17:30朱海明(浙江大学)——石墨烯-半导体界面超快光谱研究12 月 6 日上午第三场:超快与二维光谱主持人:马骁楠08:30边红涛(陕西师范大学)——受限体系结构及超快动力学研究08:55陈海龙(中国科学院物理研究所)——利用飞秒红外光谱实现二维材料准粒子带隙的非接触测量09:20李东海(中国科学技术大学)——二维光谱显微技术及应用 (CSLIBS2022-07-003)09:45任泽峰(中国科学院大连化学物理研究所)——准二维钙钛矿的本征载流子动力学10:10茶歇第四场:超快光谱与生物相关体系主持人:任泽峰 10:25陈缙泉(华东师范大学)——表观遗传核酸分子的激发态动力学研究10:50丁蓓(上海交通大学)——蓝光受体 BLUF 域质子耦合电子转移机理11:15康斌(南京大学)——Pump-Probe 显微镜和瞬态成像测量的若干尝试 (CSLIBS2022-07- 003)11:40朱一心(杭州善上水科技有限公司) ——一种新型的水合氢离子及其生物功能初探12 月 6 日下午第五场:超快光谱与激发态理论主持人:杨延强13:30李明德(汕头大学)——双键光开关分子纳米晶激发态顺反异构化机制及其超快动力学研究13:55张春峰(南京大学)——分子光电材料的激发态动力学妍究14:20陈雪波(北京师范大学)——镧系化合物势能面交叉控制能量转移动力学研究14:45金盛烨(中国科学院大连化学物理研究所)——瞬态光谱技术及其在半导体材料研究中的应用15:10茶歇第六场:超快光谱与功能材料主持人:金盛晔15:25马骁楠(天津大学)——新型有机发光材料中的激发态化学研究15:50吴凯丰(中国科学院大连化学物理研究所)——胶体量子点自旋超快相干操控16:15王俊慧( 中国科学院大连化学物理研究所) —— 光化学转换动力学调控新机制(CSLIBS2022-07-004)16:40叶树集(中国科学技术大学)——光转换材料构效关系的超快光谱研究17:05杨延强(中物院流体物理研究所)——含能材料冲击响应的时间分辨拉曼光谱技术17:30周蒙(中国科学技术大学)——金团簇相干振动的超快光谱研究17:55结束语专题 7:燃烧诊断 & 专题 8:环境监测 & 专题 9:工业检测12 月 5 日下午第一场:燃烧诊断 I主持人:蔡伟伟、彭江波13:30彭江波(哈尔滨工业大学)——高频 PLIF 燃烧流场测量及数据分析方法研究进展13:50武文栋(上海交通大学)——高温环境中激光诱导等离子体激发过程的能量吸收特性研究14:10雷庆春(西北工业大学)——四维燃烧诊断:从技术到应用14:30齐宏(哈尔滨工业大学)——基于主被动光学层析探测的碳烟火焰温度场与粒径分布场重建研究14:50梁静秋(中国科学院长春光机所)——基于光谱技术的航空发动机涡轮叶片温度及燃气浓度反演研究15:10蔡伟伟(上海交通大学)——金属颗粒燃烧三维形貌、温度、速度测量方法研究15:20常光(中国航空工业空气动力研究院)——用于燃气当量比测量的丙酮/甲苯激光诱导荧光技术研究 (gpcl2021-01-004)15:30陈爱国(中国空气动力研究与发展中心超高速空气动力研究所)——低密度风洞流场的非接触测量需求及进展 (gpcl2021-01-005)15:40张玥(北京航空航天大学)——基于背景纹影法的动态温度场测量(gpcl2021-01-020)15:50茶歇第二场:环境监测与工业检测 I主持人: 梅亮、杨荟楠16:00赵卫雄(中国科学院合肥物质科学研究院)——磁旋转吸收光谱法测量 OH 自由基16:20梅亮(大连理工大学)——基于可调谐二极管激光器的大气环境激光遥感技术16:40楼晟荣(上海市环境科学研究院)——基于激光诱导荧光的城市大气 OH 自由基总反应性测量与应用17:00胡仁志(中国科学院合肥物质科学研究院)——大气 HOx 自由基探测技术研究及应用17:20李天骄(南京理工大学)——纳米材料光点火诊断与应用17:40张志荣(中国科学院合肥物质科学研究院)——冶金、石化等工业领域的光谱检测技术及其应用 18:00杨荟楠(上海理工大学)——基于激光光谱技术的气液两相多参数同步测量及疾病前瞻性诊断研究18:20马柳昊(武汉理工大学)——激光吸收光谱测温技术的谱线选择新策略研究 (gpcl2021-01-010)12 月 6 日上午第三场:燃烧诊断 II主持人:彭志敏、陈爽08:30陈爽(中国空气动力研究与发展中心)——复杂流场光学诊断技术研究进展08:50伍岳(北京理工大学)——跨界面三维层析技术的开发与优化09:10超星(清华大学)——红外光频梳光谱燃烧流场多参数测量方法09:30彭志敏(清华大学)——基于多光谱融合的热工过程气体参数测量理论及应用研究09:50林鑫(中国科学院力学研究所)——激光吸收光谱技术在固液火箭复杂燃烧场测量的应用探讨10:10熊渊(北京航空航天大学)——高速背景纹影测量技术及其应用10:30茶歇第四场:环境监测 II主持人:陆克定、韦玮10:40陆克定(北京大学)——典型光化学观测站中的光学测量技术与挑战11:00郑海明(华北电力大学)——光谱技术在烟气汞连续监测中的应用方法研究11:20韦玮(重庆大学)——腔增强红外光谱技术11:40刘诚(中国科学技术大学)——卫星结合地面靶向遥感 VOCs 排放源12 月 6 日下午第五场:工业检测 II主持人: 姚顺春、褚小立13:30姚顺春(华南理工大学)——激光诱导击穿光谱的煤质检测方法13:50张彪( 东南大学)——基于光场成像的燃烧诊断技术研究14:10褚小立(中石化石油化工科学研究院)——近红外光谱分析技术在炼油工业的应用14:30陈达(中国民航大学)——气体可再生能源在线监测技术与装备开发14:50董大明(国家农业智能装备工程技术研究中心)——水体污染的激光光谱探测方法-从智能传感器到仿生机器鱼15:10马维光(山西大学)——光学反馈线性腔增强吸收光谱技术及其应用15:30梁炫烨(北京航空航天大学)——Mach-Zehnder 干涉法测量丙烷-空气层流预混火焰的火焰传递函数 (gpcl2021-01-018)15:40乔俊杰(重庆大学)——大气压空气直流辉光放电等离子体转动拉曼散射光谱诊断研究(gpcl2021-01-019)15:50熊青(重庆大学)——非热等离子体激光诊断研究 (gpcl2021-01-021)防疫政策:1. 对 7 天内有高风险区旅居史,以及西藏、新疆、内蒙古呼和浩特、河南郑州、广州、重庆、黑龙江绥化市、甘肃省兰州市、青海省西宁市人员,请线上参会;2. 来沪返沪人员须在 12 小时内完成一次核酸检测(可在机场和火车站落地检),并实行三天三检;3. 参会人员须持双绿码及 24 小时核酸检测阴性证明进行会议签到,双绿码即“随申码”和“行程码”绿码,参会期间非必要不离开酒店;4. 组委会将于 12 月 4-6 日每天 16:00-18:00 在酒店一楼设置核酸采样处,其他时间可从大华酒店步行 4 分钟到凯德七宝商业区广场进行核酸采样(每天 09:00-11:30,13:00-17:00, 18:00-21:00),建议会议期间每天都参与做检测;5. 会议期间除用餐外须全程佩戴口罩,做好防护。注:防疫政策可能会实时调整,请关注会议官网的参会须知。会议注册:类型2022 年 10 月 1 日前(含)缴费2022 年 10 月 1 日后缴费普通代表2400 元/人2600 元/人学生代表2000 元/人2200 元/人会议费包括:1、所有会场和展区入场;2、第 2-3 日午餐,第 1-3 日晚餐,会议期间茶歇;3、会议手册、会议投稿光盘、资料袋。会议将提供正规会议费发票(推荐选择电子普票)。注册地址:https://b2b.csoe.org.cn/registration/CSLIBS2022.html付款方式:a) 在线支付(优选):注册完成后,可跳转到在线支付页面,选择“支付宝”在线完成支付;b) 汇款转账:汇款时请务必注明“姓名+LIBS22”,以便核对;c) 可以先注册填写参会信息,再现场缴费开户银行:工行北京科技园支行户名:中国光学工程学会账号:0200296409200177730住宿信息会议地点:上海大华虹桥假日酒店,上海市闵行区七莘路 3555 号会议合作酒店:上海大华虹桥假日酒店住宿协议价 550 元/间•天预订请联系:喻经理,13916973452*预订时请说明是中国光学工程学会光谱会议组委会联系人索尼珂:022-58168515,15122063125sonik@csoe.org.cn 张洁:022-58168510,zhangjie@csoe.org.cn

激光诱导荧光光谱仪相关的方案

激光诱导荧光光谱仪相关的资料

激光诱导荧光光谱仪相关的试剂

激光诱导荧光光谱仪相关的论坛

  • 激光诱导荧光光谱的构建:弱荧光半导体性能初探

    激光诱导荧光光谱的构建:弱荧光半导体性能初探

    [align=center][b][font=黑体]激光诱导荧光光谱的构建:弱荧光半导体性能初探[/font][/b][/align][align=center][font=宋体]魏[/font][font=宋体]巍[/font], [font=宋体]朱倩倩,李莉,李军,李艳肖[/font][/align][align=center][font=宋体]江苏大学[/font][font=宋体]分析测试中心[/font], [font=宋体]江苏[/font] [font=宋体]镇江[/font] 212013[/align][b][font=黑体]摘[/font][font=黑体]要[/font]: [/b][font=宋体]通过激光诱导荧光光谱测试模块的搭建,利用激光诱导荧光光谱对氧化钛、多氧酸盐等半导体固体材料的稳态荧光测试手段,通过多组分调控稳态荧光强度,发现光催化材料的协同作用影响荧光强度,为新型光催化材料体系筛选提供理论指导。将检测模块扩大到物理、化学、生物、医药和材料科学等研究领域。作为学校公共服务平台,支撑了学校的物理、化学、材料、环境等学科的发展。[/font][b][font=黑体]关键词[/font]: [/b][font=宋体]激光诱导荧光;弱荧光[/font][font=宋体];荧光光谱;测试[/font][align=center][b]Construction of laser induced fluorescence spectrum module:Study on properties of weak fluorescence semiconductor[/b][/align][align=center] WEI Wei, ZHU Qian-qian, LI Li, LIJun, LI Yan-xiao[/align][align=center]Analysis &Testing Center, Jiangsu University,Zhenjiang 212013, China[/align][b]Abstract:[/b]Through the construction oflaser-induced fluorescence spectroscopy test module, laser induced fluorescencespectroscopy was used to test steady-state fluorescence of semiconductor solidmaterials such as titanium oxide and polyoxate. Through multi-componentregulation of steady-state fluorescence intensity, it was found that thesynergistic effect of photocatalytic materials affects the fluorescenceintensity, providing theoretical guidance for the screening of newphotocatalytic material systems. The detection module will be expanded to theresearch areas of physics, chemistry, biology, medicine and materials science.As a public service platform for the school, it supports the development ofphysics, chemistry, materials, environment and other disciplines of the school.[b]Key words:[/b] Laser inducedfluorescence Weak fluorescence Fluorescence spectrum test[font=宋体]众所周知,荧光光谱([/font]Photoluminescence Spectroscopy[font=宋体])是研究材料的电子结构和光学性能的有效方法,特别是对于一些缺陷的判断,并且能获得光生载流子的迁移、捕获和复合等信息。分析测试中心的稳态瞬态荧光测量系统中的稳态荧光模块由激发光源、单色器、试样池、光检测器及读数装置等部件组成。采用的激发光源为[/font]75W[font=宋体]的氙灯。该灯通常具有较宽的连续输出波长范围,在稳态荧光光谱仪上的应用最多,通常对于分子荧光检测以及光致发光材料的检测都具有较好的信号,系统信噪比一般为[/font]6000:1[font=宋体],最高可达[/font]10000:1[font=宋体],采样频率:[/font]50000[font=宋体]点[/font]/[font=宋体]秒~[/font]1[font=宋体]点[/font]/100[font=宋体]秒,波长范围从紫外到近红外[/font]185 [font=宋体]~[/font] 1700nm[font=宋体],样品所处的环境温度可调变温条件下荧光测量[/font]77[font=宋体]~[/font] 320K[font=宋体]。在稳态光谱测量中,通过使用光子计数技术,提供最高的微弱信号检出能力,可对荧光物质进行定性检测和定量分析。但是对于荧光信号较弱的半导体固体材料,由于弧光灯光源经单色器分光后,其光强较弱相应发射谱信号也较弱,这时[b][u]很难探测到半导体固体材料的微弱荧光信号[/u][/b]。[/font][font=宋体]光催化材料作为当今国际材料研究领域中的重大科学前沿存在亟待解决的诸多问题,如:由于缺少光催化材料设计理论,认识不足,导致高效光催化材料开发研究进展缓慢。在光催化及光伏材料研究中,对于光诱导电荷分离及其迁移过程的深入认识是一个非常关键的科学问题。通过研究半导体光催化材料的荧光衰减动力学信息,对于理解纳米尺度电荷及能量的传输过程都异常重要。[/font][b] 1[font=宋体]研究背景[/font]1.1[font=黑体]选题背景[/font][/b][font=宋体]江苏大学分析测试中心于[/font]2009[font=宋体]年[/font]12[font=宋体]月购置美国[/font]Photon Technology International[font=宋体]公司(现被日本[/font]HORIBA[font=宋体]公司收购,致力于高性能荧光光谱测量技术和系统的研发与生产)所生产的高级稳态瞬态荧光测量系统(英文名称:[/font]QuantaMaster & TimeMasterSpectrofluorometer[font=宋体],产品型号:[/font]QuantaMaster[sup]TM[/sup]40[font=宋体])。该系统是一套高性能荧光光谱测量系统,用于测试材料的激发发射光谱、磷光[/font]/[font=宋体]荧光寿命、量子化产率、变温及显微荧光测试。主要应用于物理、化学、生物、医药和材料科学等研究领域荧光性能测试。作为学校公共服务平台,该测试系统服务江苏大学相关研究团队的光催化剂的荧光性能分析和评价,近[/font]3[font=宋体]年([/font]2015[font=宋体]年至[/font]2018[font=宋体]年)支撑学校光催化领域发表[/font]SCI[font=宋体]论文[/font]303[font=宋体]篇,含[/font]16[font=宋体]篇高被引论文,总被引频次达[/font]3579[font=宋体],在[/font]web of science[font=宋体]中以“[/font]photocatalyst”[font=宋体](光催化)关键词检索,江苏大学位列全球发文量排名第二位,促使江苏大学在国际光催化领域的发展,支撑了学校的物理、化学、材料、环境等学科的发展(工程学、材料科学、化学、农业科学进入[/font]ESI[font=宋体]排名全球前[/font]1%[font=宋体]),为荧光光谱在若干新型光催化材料设计中的应用提供了重要的理论基础和工艺参数,达到国内领先水平。[/font][font=宋体]与此同时,光催化材料作为当今国际材料研究领域中的重大科学前沿存在亟待解决的诸多问题,如:由于缺少光催化材料设计理论,认识不足,导致高效光催化材料开发研究进展缓慢。在光催化及光伏材料研究中,对于光诱导电荷分离及其迁移过程的深入认识是一个非常关键的科学问题。通过研究半导体光催化材料的荧光衰减动力学信息,对于理解纳米尺度电荷及能量的传输过程都异常重要。伴随着校内样品体系的多样性和测试要求的可选性,运行近十年的稳态瞬态荧光测量系统面临着前所未有的升级挑战。[/font][b]1.2[font=黑体]拟改进的问题[/font][font=宋体]如何探测半导体固体材料的微弱荧光信号[/font][/b][font=宋体]由荧光的发光原理可知,分子荧光光谱与激发光源的波长无关,只与荧光物质本身的能级结构有关,所以,可以根据荧光谱线对荧光物质进行定性分析鉴别。照射光越强,被激发到激发态的分子数越多,因而产生的荧光强度越强,测量时灵敏度越高。一般由激光诱导荧光测量物质的信号比由一般光源诱导荧光所测的灵敏度提高[/font]2~10[font=宋体]倍。利用激光光源强度大,单色性好的特点,可以大大提高荧光测定的灵敏度和检测限,以激光为光源的荧光检测技术被称为[b][u]激光诱导荧光光谱([/u][/b][/font][b][u]Laser-Induced Fluorescence Spectroscopy, LIF[font=宋体]谱)[/font][/u][font=宋体]。[/font][/b][font=宋体]激光诱导荧光光谱(图[/font]2[font=宋体]为核心部件)可用于测量原子与分子的浓度、能态布居数分布、探测分子内的能量传递过程等方面。[/font][font=宋体]激光诱导荧光光谱仪器组成:与普通的荧光检测器一样,激光诱导荧光检测器主要由光源、光学系统、检测池和光检测元件组成,两者最重要的区别是[b][u]激光诱导荧光检测器的光源是激光器[/u][/b]。[/font][font=宋体]核心激光器:激光器是激光诱导荧光检测器的重要组成部分,用脉冲激光为光源,采用时间分辨技术可消除瑞利散射光(半径比光或其他电磁辐射的波长小很多的微小颗粒对入射光束的散射)和拉曼散射光(光波在被散射后频率发生变化)对测定的干扰,同时增加被测成分之间测定的选择性。以上这些特性使激光诱导荧光检测器的信噪比大大增强,显示出最高的灵敏度和较好的选择性。[/font][b]1.3[font=黑体]拟采取的方法[/font][/b][font=宋体]现有的高级稳态瞬态荧光测量系统为多重模块(光源模块、样品室模块、检测器模块)组成,主机光路系统:[/font]X-[font=宋体]型结构(图[/font]1,2[font=宋体]),极易拆卸装载新模块,在改造方面具有独特的优势。搭建以激光为光源的荧光检测技术被称为激光诱导荧光光谱。从仪器各模块的布局来判定,目前稳态瞬态荧光测量系统已拥有样品室、检测器等模块,缺少的是激光器,将购置的新型激光器作为配件装载至测试系统,通过调整光路。采用对应的长通滤光片可实现激光诱导荧光光谱的测试。但是由于激光光源波长单一,因此实际测试中需选取合适的激发波长进行相应的检测。选择合适的波长以应对测试需求。[/font][align=center][img=,690,259]https://ng1.17img.cn/bbsfiles/images/2023/10/202310101625013372_3443_5248244_3.png!w690x259.jpg[/img][/align][align=center][b][font=宋体]图[/font]1. [font=宋体]主机光路系统及光源模块[/font][/b][/align][align=center][img=,690,255]https://ng1.17img.cn/bbsfiles/images/2023/10/202310101625122837_8467_5248244_3.png!w690x255.jpg[/img][/align][align=center][b][font=宋体]图[/font]2. [font=宋体]样品室模块和检测器模块[/font][/b][/align][b] 2 [/b][font=宋体]结果与分析[/font][b]2.1 [font=宋体]设计思路[/font][/b][align=center][img=,645,267]https://ng1.17img.cn/bbsfiles/images/2023/10/202310101625230462_867_5248244_3.png!w645x267.jpg[/img][/align][align=center][b][font=宋体]图[/font]3 [font=宋体]激光诱导荧光光谱测试模块[/font](a)[font=宋体]搭建前[/font] (b)[font=宋体]搭建后[/font][/b][/align][font=宋体]伴随着校内样品体系的多样性和测试要求的可选性,运行近十年的稳态瞬态荧光测量系统面临着前所未有的升级挑战。改进的问题:如何探测半导体固体材料的微弱荧光信号作为主要研究问题。借助江苏大学自制实验仪器设备项目([/font][b]ZZYQSB201910[/b][font=宋体])的资助下[/font][font=宋体],明确激光诱导荧光光谱模块所需激光器的测试要求,利用所购置的配件(样品架,激光光源,载样台等),完成原测试系统的拆卸和搭建。对现有高级稳态瞬态荧光测量系统的样品室模块组成(图[/font]3 (a)[font=宋体]),进行样品室搭建(图[/font]3 (b)[font=宋体]),对小功率光纤耦合激光器的波长进行筛选以应对测试需求,申请发明专利:一种含外接激光光源的高级稳态荧光光谱仪[/font]([font=宋体]发明专利号:[/font]202110297550.4) [font=宋体],利用激光光路搭建以激光为光源的荧光检测技术被称为激光诱导荧光光谱([/font]Laser-Induced Fluorescence Spectroscopy, LIF[font=宋体]谱)。[/font][align=center][img=,534,296]https://ng1.17img.cn/bbsfiles/images/2023/10/202310101625329704_3414_5248244_3.png!w534x296.jpg[/img][/align][align=center][b][font=宋体]图[/font]4 [font=宋体]激光诱导荧光光谱调制模块及测试数据[/font][/b][/align][font=宋体]搭建的激光诱导荧光光谱,可用于测量原子与分子的浓度、能态布居数分布、探测分子内的能量传递过程等方面。对于荧光信号较弱的半导体固体材料,采用激光诱导方式,持续激光光源经单色器分光后,其光强较弱相应发射谱信号也相对增强,通过调节激光调制器(图[/font]4[font=宋体]左所示)探测到半导体固体材料的微弱荧光信号,如图[/font]4[font=宋体]右,测量到三氧化钨,氧化铋及其二者复合材料的荧光信号。[/font][b][font=宋体]代表性案例[/font][/b][font=宋体]:([/font][b][i]ChineseJournal of Catalysis[/i][/b], 2021, 42(1), 87-96.[font=宋体])[/font][align=center][img=,690,306]https://ng1.17img.cn/bbsfiles/images/2023/10/202310101625433210_7114_5248244_3.png!w690x306.jpg[/img][/align][align=center][b][font=宋体]图[/font]5[font=宋体]激光诱导荧光光谱测试模块的应用案例[/font][/b][/align][font=宋体]图[/font]5[font=宋体]左显示了[/font]Zn[sub]0.1[/sub]Cd[sub]0.9[/sub]S [font=宋体]和[/font] 25% MO-ZnCdS[font=宋体]的稳态荧光光谱,可以清晰的看到[/font] 25% MO-ZnCdS[font=宋体]具有更低的荧光强度,说明[/font]25% MO-ZnCdS [font=宋体]在光照激发下产生的光生电子[/font]-[font=宋体]空穴对更不容易发生复合猝灭,而光生电子[/font]-[font=宋体]空穴对的快速复合是限制材料光催化活性的重要因素。[/font]Zn[sub]0.1[/sub]Cd[sub]0.9[/sub]S [font=宋体]和[/font]25% MO-ZnCdS [font=宋体]的时间分辨荧光衰减光谱被呈现在了图[/font]5[font=宋体]右,[/font]Zn[sub]0.1[/sub]Cd[sub]0.9[/sub]S [font=宋体]的平均荧光寿命为[/font] 2.76 ns[font=宋体],[/font]25% MO-ZnCdS [font=宋体]的平均荧光寿命为[/font] 2.76 ns[font=宋体]。[/font]25% MO-ZnCdS [font=宋体]具有更低的平均荧光寿命,说明其光生载流子更容易分离和转移到催化剂的表面。以上结果证明了,[/font]Zn[sub]0.1[/sub]Cd[sub]0.9[/sub]S [font=宋体]在与[/font] MoO[sub]3-x[/sub] [font=宋体]复合形成[/font] 1D/2D Zn[sub]0.1[/sub]Cd[sub]0.9[/sub]S/MoO[sub]3?x[/sub][font=宋体]复合光催化剂后,光生电荷的分离和迁移效率提高了,而光生电子[/font]-[font=宋体]空穴对的复合猝灭被抑制了。这可能是由于一维的[/font] Zn[sub]0.1[/sub]Cd[sub]0.9[/sub]S[font=宋体]与二维的[/font] MoO[sub]3?x [/sub][font=宋体]纳米片之间形成了紧密的界面接触,二者之间形成了异质结构,在两相界面处产生了内建电场,这会促进光生载流子的分离和转移。[/font][b]3[font=宋体]结[/font][font=宋体]论[/font][/b][font=宋体]搭建的激光诱导荧光光谱测试模块,对于荧光信号较弱的半导体固体材料,采用激光诱导方式,持续激光光源经单色器分光后,其光强较弱相应发射谱信号也相对增强,通过调节激光调制器探测到半导体固体材料的微弱荧光信号,筛选激光器以达到探测半导体固体材料的荧光信号。将新功能应用更好地应用于物理、化学、医药和材料科学等研究领域,以满足日益增长的科研测试需求,从而进一步反馈学校科研项目的发展和高质量科技成果的产出,系统的研制将对我国在激光诱导荧光光谱测量方面取得重要进展。[/font][b][font=宋体]参考文献:[/font][/b][1][font=宋体]朱倩倩[/font], [font=宋体]李艳肖[/font],[font=宋体]魏巍;一种含外接激光光源的高级稳态荧光光谱仪。申请发明专利号:[/font]202110297550.4[font=宋体]。[/font][2]Peng, J., Shen, J., Yu, X., Tang, H., Liu, Q. (2021). Construction ofLSPR-enhanced 0D/2D CdS/MoO[sub]3?x[/sub] S-scheme heterojunctions forvisible-light-driven photocatalytic H[sub]2 [/sub]evolution. [b][i]ChineseJournal of Catalysis[/i][/b], 42(1), 87-96.[3]Li, L., She, X., Yi, J., Pan, L., Xia, K., Wei, W., Li, H. (2019). IntegratingCoO[sub]x [/sub]cocatalyst on hexagonal α-Fe[sub]2[/sub]O[sub]3[/sub] foreffective photocatalytic oxygen evolution. [b][i]Applied Surface Science[/i][/b], 469,933-940.[hr/]

  • 毛细管电泳-间接激光诱导荧光

    请教大家,原理上是不是如果被测物没有荧光,只要抬高荧光背景,电泳时就会出负峰呢?我测的4个不同的物质,都没有荧光,在同一个体系跑CZE-间接激光诱导荧光,发现出的色谱图相同,不知怎么破解?求大神科普一下间接激光诱导荧光的知识和经验

  • “激光诱导荧光”方法

    由于激光诱导荧光检测的是与方向性和单色性很强的激发光不同方向、不同波长的发光,因此与其它激光光谱法相比灵敏度高。已有报导可以检测出100个/cm3以下的原子。而对于大多数分子,则可以很容易地检测至106个/cm3。通过对激光调频,可以选择激发跃迁的初始状态和终了状态,因此可以解析分子的十分复杂的谱带。采用脉冲激光作为光源测定时间分辨荧光,可以测定荧光寿命、量子脉冲频谱、驰豫现象等。

激光诱导荧光光谱仪相关的耗材

  • 激光诱导等离子体光谱仪配件
    激光诱导等离子体光谱仪配件是一款欧洲进口的高度安全的激光诱导等离子体光谱仪,采用高度模块化设计,专业为样品分析而研发,是实验室科研和现场检测的理想工具。广泛用于材料分析,元素检测,工业检测,安全检测,反恐和国防等领域。孚光精仪还有更多激光仪可供选择,欢迎前来咨询。激光诱导击穿光谱仪配件特点安全型模块化设计具有世界上最为安全的配置,这套仪器对操作人员的危害几乎为零。特别对于样品室使用防激光辐射的高档光学窗口玻璃,不仅可以让您观看样品的测量,同时又保证您的安全。具有高度的使用灵活性,您可以手持着它进行测量,也可以放置到样品室上测量。中国最大的进口精密光学器件和科学仪器供应商!激光诱导等离子体光谱仪配件特色* 高度模块化和多功能设计,适合实验室和现场多种应用;* 高效率的等离子体采集光学,可配备6通道或8通道光谱采集系统;* 具有多种激光器选项,50mJ@1064nm, 355nm, 266nm, 100mJ@1064nm,355nm,266nm, 还有更多激光器供选择 * 可配备样品室(具有I级激光安全标准)或不配备样品室直接测量(IV级激光安全) * 激光头和样品方室可以多向安装工作;* 具有其他清洗功能(与外界气源连接,可供氩,氮,氦,空气等气体);* 可安装高达8个光谱仪模块覆盖185-1000nm * 激光器电源小型化,非常方便拆卸,搬运;* 软件两年免费升级。孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括光谱仪,激光诱导等离子体光谱仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。更多关于激光诱导等离子体光谱仪参数,光谱仪价格等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
  • LIBS2500+激光诱导衰减光谱仪
    LIBS2500+激光诱导衰减光谱仪LIBS2500+激光诱导衰减光谱仪是一种探测系统,允许进行固体、溶液和气体中元素的实时定性测量。该系统具有光谱宽,分辨率高的特点。系统的光谱分析范围是200-980nm,光学分辨率大约0.1 nm (FWHM)。特点: 宽光谱,高分辨率光谱分析(0.1nm光学分辨率,波长范围200-980nm) 实时定性测量 PPb和皮克灵敏度 可应用材料分析,环境监控,法医和生物医学研究,艺术品修复等等应用: 环境监控(土壤污染,微粒) 材料分析(金属,塑料) 法医和生物医学研究(牙齿,骨骼) 军事和国防(爆炸,生化武器) 艺术修复/保存(颜料,珠宝/古代金属制品)LIBS2500+光谱仪如何工作一个高强度的脉冲激光器被放置在离样品几十厘米到一米的位置,它发出一个10纳秒宽的脉冲激光束,经聚焦后照射到样品表面用于激发样品。当激光发射,激光照射形成高温,从而产生了等离子体。随着等离子体衰减或冷却(激光脉冲发出后~1.0us),等离子体中处于的激发态原子发出与其元素对应的特征光谱。 所有元素的发射光谱都在200-980nm的波长范围内。探测系统最多可以同时使用7个HR2000+高分辨率微型光纤光谱仪进行同时测量(读写数据),每个均有2048像素的线阵CCD。LIBS2500+探测器同时收集200-980nm的光宽谱传送至应用软件显示数据。 宽光谱LIBS技术的优点:传统LIBS探测系统提供小范围的光谱,而LIBS2500+光谱仪是第一个提供宽带光谱分析的系统。由于良好的安全保护,用户可以进行现场实时测量,包括恶劣的工业,化学和生物医学环境,无需样品准备。由于LIBS2500+光谱仪的采用海洋光学的HR2000+高分辨率微型光纤光谱仪,系统具有便于携带,可通过USB端口与电脑相连等特点。 附加LIBS组件SPECIFICATIONSLIBS2500+的激光器 LIBS2500+的激光器可以有两个选择,它们都是激光工业的先导Big Sky的产品。激光烧蚀和等离子体的形成对不同样品都是非常独特的,因此对于不同的样品有不同的能量要求。在多数应用上我们采用Q开关的1064nm Nd:YAG激光器。如果要多种功能,我们建议使用带衰减器的200mJ激光器,它可以根据样品调整激光能量。激光能量和波长的选择将根据材料和允许损害的程度而定。LIBS-LASER采用50mJ CFR Nd:YAG激光器,针对金属和薄膜样品。LIBS-LAS200MJ采用200mJ CFR Nd:YAG激光器,可适用于玻璃和高OH材料。对于液体样本,可以采用双波长激光器,样品中的氧化物质会减缓等离子体的形成,所以需要另一个激光器增强等离子体的形成。其它特性 LIBS2500+光谱仪的使用方便,可与任何32位,兼容USB的Windows电脑连接。通过一个USB端口与PC相连,实现即插即用。我们提供OOILIBS应用软件用于操作LIBS2500+和启动激光。通过OOILIBS应用软件,用户可实现光谱补偿和数据保存。OOICOR相关软件由Florida大学开发可在使用LIBS2500+时提供即时的材料鉴定。LIBS成像模块 LIBS-IM-USB成像模块直接连接在LIBS-SC样品室,用户可放大样品图象,从而在样品上精确地定位。该模块都适合不同的应用领域,包括法医,半导体分析,植物学,生物医学分析,宝石学和冶金学。图象模块可以使用户通过一个CCD相机和PixeLINK(基于Windows的图象捕捉软件)看到样品的放大图象。PixeLINK可以捕捉图象,保存在计算机硬盘上。捕捉到的图象可用于比较分析和记录保存。模块中的CCD相机提供了1280 x 1024像元的分辨率。每个像元为6.0x 6.0微米平方。在1280 x 1024分辨率下相机可以提供了12.7帧/每秒的刷新速度。 图像模块是电脑供电的,不需要外设电源,与笔记本电脑相连时需要外设电源。外设电源的价格包括在模块的价格中。LIBS 系统LIBS光谱仪通道通道不一定需要连续的
  • 355nm紫外激光器
    ?这款进口355nm紫外激光器是355nm固体激光器,也是355nm二极管泵浦激光器,由德国设计制造,355nm紫外激光器是一款性能卓著的脉冲半导体泵浦固体激光器,355nm固体激光器能量可达2uJ @7KHz ,355nm紫外激光器脉宽可达2ns. 355nm紫外激光器非常适合时间分辨荧光测量,微切割,激光诱导荧光,质谱仪(MALDITOF),化学,生物医学等应用。 这款355nm紫外激光器,355nm固体激光器是由孚光精仪进口销售,孚光精仪是中国领先而专业的进口激光器件服务商!提供的这款355nm二极管泵浦激光器先后被中科院上海光机所,浙江理工大学,山东大学,中国工程物理研究院等单位购买。孚光精仪精通光学,服务科学,欢迎垂询.355nm二极管泵浦激光器技术参数:平均功率:10mW脉冲能量:2uJ 微焦 峰值功率:0.5kW脉宽:约为2ns重复频率:0-7KHz光斑模式:单纵模 脉冲抖动Jitter at 10KHz: 光束直径:约为110微米 发散角(全角):约6mrad
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制