光声谱气体监测仪

仪器信息网光声谱气体监测仪专题为您提供2024年最新光声谱气体监测仪价格报价、厂家品牌的相关信息, 包括光声谱气体监测仪参数、型号等,不管是国产,还是进口品牌的光声谱气体监测仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光声谱气体监测仪相关的耗材配件、试剂标物,还有光声谱气体监测仪相关的最新资讯、资料,以及光声谱气体监测仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光声谱气体监测仪相关的厂商

  • 西安华凡科技自主研发生产气体检测仪,主要生产:便携式气体检测仪,泵吸式气体检测仪,单点壁挂式气体检测仪,固定式气体检测仪,咨询:18392161232
    留言咨询
  • 济南隆安电子有限公司是个人安全防护用品(PPE)、电工仪表及气体检测报警仪的专业供应商。我们向客户提供种类繁多的产品,帮助他们的设施正常运作并降低客户的采购本。 我们一直注重于服务,自创立以来,我们的员工充分理解客户的需求并竭尽全力为之服务。可信赖的客户服务代表和专业销售人员,将为客户的采购工作提供全面解决方案。 公司将继续发扬“创新图强 严细求真 高效简明 尊诚重信”的企业精神,进一步加强与广大客户、供应商、合作伙伴及社会各界的合作,为共同开创更加美好的明天携手前进!我们同时提供以下进口的产品:
    留言咨询
  • 公司简介 河北鸣笛电子科技有限公司是一家拥有自身独创品牌与自主研发核心技术,专业致力于气体检测器及安全防护产品的企业。本公司拥有专业的研发团队,掌握关键的核心技术,灵活整合各类资源渠道,严格把控产品质量和完善的售后服务。公司的产品广泛应用于燃气、LNG气站、环保、石油、化工、电力、冶金、制药、能源等工业现场和民用所需防火防爆、预防中毒、空气监测的场所进行气体检测。产品以优异的灵敏度、稳定性、可选择性及人性化的设计得到了广大用户的好评。
    留言咨询

光声谱气体监测仪相关的仪器

  • 仪器简介:• 三十多年应急突发事件检测及气体监测经验• 在世界各地广泛应用于环境监测、工业卫生、应急、安全、疾控、反恐、进出口商检、救援、监察等多各个领域 • 仪器本质安全、响应速度快、操作简单、结构紧凑、方便携带 *便携式红外光谱分析仪,功能强大,实现定量、定性快速分析 *便携式有机(VOC检测)/无机挥发性气体检测仪,独一无二的PID/FID双检测器技术 *手持/在线多组分气体监测仪、测尘仪,满足多种监测要求 *高达八级的便携式微生物采样器,符合NIOSH要求,提供世界参考标准的采样器
    留言咨询
  • 德国Avisoft公司动物声谱分析系统UltraSounbGate 116Hb 51162 Avisoft Bioacoustics声谱分析系统产品介绍:1.通道:1;2.ADC类型:集成的假信号过滤delta-sigmn架构;3.分辨率:16比特或8比特;4.采样率:300,250,214,187.5,166.6,150,125,100,75,62.5,50;5.频率响应(-3dB,外部输入无MIC)20 Hz至140kHz;6.声学监测输入:是(可调到2到30倍采样)音量可调;7.过载指示器(红色LED):是;8.峰值电平表(4个LED):否9.输入灵敏度(最大值):-43.2dbv =41dBU =6.9mVrms;10.输入灵敏度(最小值):-3.2dbv =1dBU =0.69Vrms;11.增益调整电位:40分贝连续范围;12.输入阻抗:50千欧姆;13.模拟输入连接器:xl-5阴极插座;德国Avisoft公司动物声谱系统分析软件Slab pro Avisoft Bioacoustics 10102 Avisoft Bioacoustics声谱分析系统软件产品介绍:1)支持所有的常见声卡和USB音频接口2)打开已由固态/硬盘现场记录的.wav和.bwf文件3)导入使用第三方导入使用第三方录音/处理工具(.WAV.BWF.AIF..SND..AU.各种二进制格式和.txt)记录声音文件4)将图像和测量结果作为文件(.wmf..bmp..tif..txt.htm..xml..sql)导出,通过剪贴板或通过DDE直接导出到Excel5)通过,txt,kml,gpx或shp文件将地理参考现场调查数据、导出到GIS应用程序(包括Google地图/ Google地球,ArcGIS产品,Quantum GIS和许多其他应用程序)6)该软件可以配置为触摸屏操作,以方便其在平板电脑上使用。7)颜色编码须谱图(FFT大小为64-1024点),使用TrueType字体输出高质量频谱图。8)有循环缓冲记录的实时频谱图显示;9)用于去除噪声的数字滤波;10)用于测量谱图结构的灵活光标;11)单点和时间段标签的标签选项;12)多功能自动声音参数测量和分类设施(事件检测,分析,分类和统计); 13)幅度和功率谱,线性预测编码(LPC),自相关和互相关,倒谱,直方图,2D和3D散点图,3D瀑布显示,脉冲密度直方图,使用希尔伯特变换的包络和瞬时频率,使用FFT技术的移频,均方根,用于声谱图比较的声音相似性矩阵;14)用于噪声水平测量的八度音阶和第三音级分析;15超声回波(全谱)超声记录;16)用于生成人工歌曲和鼠交流声的合成器,用于绘制参数演变(基频,包络,谐波,频率和幅度调制)。听鸟声合成。17)通过与模板的谱图互相关自动分类音节;南京欧熙科贸是德国Avisoft公司在中国地区的独家总代理商。欢迎同行和各界人士来电共发展。
    留言咨询
  • GHK-510型温室气体连续监测仪采用激光吸收光谱技术(TDLAS),通过调谐窄线宽半导体激光器波长来扫描气体分子的吸收线,获取分子的高分辨吸收光谱,以实现气体特征参量的反演。可实现CH4,CO2,H2O等气体的连续高精度监测,通过扩展激光器可实现多组分气体在线同步测量。 产品优势 1、高精度高、响应时间块 2、流量稳定,抗干扰性强 3、集成性高,可适配不同的系统 4、运行稳定,运维简单 5、模块化设计适用于各种场合 应用范围 1、温室气体监测 2、医疗呼气诊断 3、科学计量 4、痕量气体监测
    留言咨询

光声谱气体监测仪相关的资讯

  • 自主研发实现精度突破 光谱监测仪精准捕捉温室气体
    合肥蜀山:光谱“听诊器”,精准捕捉温室气体如何从大气中精准检测温室气体?这个问题,来到中国环境谷的安徽岑锋科技有限公司就能得到解答。该企业基于激光光谱检测分析技术开发出了不同类型高精度分析仪器,让光谱监测仪像一个个“听诊器”,把大气中蕴含的温室气体数据精确传感,提升监测敏感度、精确度。自主研发 实现“精度”突破10月26日,在安徽岑锋科技有限公司,车间里的工作人员正在加紧组装、测试专门订制的高精度温室气体光腔衰荡光谱监测仪(CRDS)。设备内密密麻麻分布着不同的线路,还未安装的电子屏显示着上一轮测量的数据。这个不到1米长的长方体盒子里有精心设计的光学腔室,在国内率先实现自主设计及产业化推广,解决了高精度温室气体测量领域仪器设备的“卡脖子”问题。“该类自研的光学腔室会‘魔法’,可让光束在光腔内形成共振反射,即在光腔内实现来回振荡传播,在传播的过程中,遇到目标气体分子后会被吸收。简单地说,这种仪器就像光谱‘听诊器’一样,光在设备内传播的过程犹如气体分子的‘诊断’过程,‘听诊时间’越长,‘诊断’结果越精准越细致,所反映的气体浓度检测也越精确。”工作人员崔芳生一边演示设备一边介绍,传统的检测技术在气体浓度低的情况下可能检测不出来,而这个仪器让多种温室气体实现同步测量,等效光程可达60km,具有高精度、高准确度等特点。公司自主研发生产的另一款基于激光吸收光谱技术(TDLAS)的开路式温室气体分析仪,体积小、重量轻,除了高精度还可保证高频响应。“目前国内或者国外的技术测量频率在20赫兹,我们这款产品能达到100赫兹,就是检测频率每秒钟达到100次,能更加精准的捕捉气流在大气环境下的微弱变化。”崔芳生介绍。技术向国际看齐,应用也日益广泛。高精度温室气体监测仪已经实现量产,目前有二十余台应用在我国西北、西南、东南等区域,用于气象环保、环境监测等实际需求。“追光”不止 做光学仪器设备拓荒者前不久,使用了光腔衰荡光谱技术(CRDS)的高精度温室气体监测仪代表安徽岑锋科技有限公司“出战”,获得了第十二届中国创新创业大赛安徽赛区三等奖。产品凝结着研发团队的技术结晶,也代表着企业的技术成果。这个成立一年多的公司已经获得了3项发明专利、1项实用新型专利,1项外观设计专利和多个软件著作权登记证书,发展势头强劲。该企业核心成员是6位来自中国科学院的光学专业博士,在40余名员工中,研发人员占比在50%左右。“公司是由6位博士组成的技术型团队,大家志同道合,有着共同的理想,就是做好国产光学仪器设备,实现相关领域自主知识产权。”总经理何俊峰博士介绍,产业化之所以能顺利实现,来源于团队每个成员深厚的技术沉淀,“我自己从事激光光谱研究十几年,其他老师也都在相关行业工作多年,公司能在研发、生产、销售整个链条上平稳运行离不开大家长期的技术积累。”开拓领域 面向更广市场成熟的产品、领先的技术,需要合适的平台,才能走向更大的舞台。最近,安徽岑锋科技有限公司向蜀山经开区申请了相关场地,准备在园区内搭建温室气体检测系统,等设备齐全后,将试点进行温室气体检测的实际应用。“线上申请后,工作人员就上门帮助我们在辖区范围找各个部门协调,两三天就找到并且批下来了,效率很高。”何俊峰说。中国环境谷现已聚集环境领域重点企业370余家,通过举办相关论坛、沙龙、学术交流会等方式,向政府部门和行业组织推介企业,积极为园区企业寻找应用场景。
  • 激光痕量气体监测仪的新进展:性能和噪音分析
    激光痕量气体监测仪的新进展:性能和噪音分析(Recent progress in laser?based trace gas instruments: performance and noise analysis ,J. B. McManus M. S. Zahniser D. D. Nelson J. H. Shorter S. C. Herndon D. Jervis M. Agnese R. McGovern T. I. Yacovitch J. R. Roscioli, Appl. Phys. B (2015) 119:203–218)摘要我们用一些近来的数据回顾了使用中红外量子级联激光器,带间级联激光器和锑化二极管激光器的发展。这种监测仪主要用于高精度和高灵敏度测量大气中的痕量气体。在高性能软件的控制下,利用吸收光谱进行快速扫描,集成和高精度拟合。通过中红外波段,实现了出色的灵敏度。Aerodyne监测仪证明了在自然情况下痕量气体的测量精度达到1012级别,可实时测量CO2,CO,CH4,N2O和H2O的同位素。我们还描述信号处理方法,以识别和降低测量噪音。光谱信息分析的原理是将光谱加载到数组中并利用滤波片,傅立叶分析,多元拟合和成分分析进行处理。我们提供一个仪器噪音分析的实例,噪音是由电子信号与光干涉条纹混合形成。引言随着各种中红外单片固态激光器的问世,使用基于中红外激光仪器,对大气痕量气体的高精度测量已经成为常规,包括量子级联激光器(QCL),带间级联激光器(ICL)和基于锑化物的二极管激光器(TDL)。在3μm附近的波长范围内有缺口,但现在,设计人员有更多选择,在3μm附近的波长区域频率使用混合技术。在本文中,我们回顾Aerodyne Research,Inc.(下称ARI)公司使用中红外激光监测仪测量不同的痕量气体,并达到高灵敏度和/或高精度水平。这些仪器基于快速扫描和精确光谱拟合的直接吸收光谱,在高性能软件的控制下,在中红外波段,利用长光程,在减压情况下,通过热电冷却的激光和探测器实现出色的灵敏度。这里介绍了两种仪器:单激光仪器,光程长度最大为76 米;双激光仪器,光程长度最大为210 米。通过仔细选择波长,我们可以用单激光器同时测量多种气体。根据吸收率来说,仪器噪音在1 s的平均值为?5×106,可以测量1012级别大气中的气体]。这些仪器可以在多种环境中使用,包括实验室,偏远现场和移动平台(如卡车,轮船和飞机)。ARI公司仪器介绍及其性能一般来说,对于高浓度气体,几毫米的测量光程可能就足够了;但对于痕量气体来说,则需要数百米光程。Aerodyne气体监测仪仪器使用中红外快速频率扫描,直接吸收光谱并进行精确光谱拟合。仪器在减压池中利用较长吸收光程的新型红外激光源,对多种气态分子提供灵活而直接的高精度测量。光谱仪的基本配置比较简单:首先是激光源,然后是多反腔,最后是探测器。图1显示了这种装置。多反腔有确定的路径长度,符合标准的激光可以传输到检测器,对样品气体的测量基于比尔-兰伯特定律。在许多情况下,激光扫描气体出现多个吸收峰,从而测量多个不同气体。让两道或更多激光通过吸收室,或者使用单个检测器时分复用,可以测量更多的气体。Aerodyne监测仪尽可能使用反射光学元件,光学系统几乎没有色散。通过选择不同波段激光和激光驱动,选择峰值灵敏度不同的检测器来匹配,测量给定单一气体或一组气体。对于不同的测量目的,选择不同的吸收光程。一般多反腔的光程为7–76 米,一般使用宽带透镜;对于浓度非常低的气体,210米光程的窄带高反射率透镜可以提高灵敏度。仪器的优化在过去的几年中,我们持续对仪器进行了改进,比如使用了新型的电流驱动器,它提供了QCL高顺从电压情况下的低噪音电流。我们还设计了低噪音激光驱动和其他电子设备,降低整个系统的噪音。使得平均1s采样情况下,吸收噪音为?5×106,在均时100 s具有更高的精度,这相当于约5×10-7的最终吸收噪音。很多因素使得噪音超过检测器限度,特别是窄带电子噪音和光学干涉条纹。中红外激光微量气体仪器由Aerodyne Research,Inc.生产的操作软件“ TDLWintel”控制,让每条激光可以设置为时分复用。TDLWintel可控制监测仪的操作并实时处理数据。两种激光电流斜率由TDLWintel定义,然后对检测到的信号采样(16位A / D在?1-1.5 MHz下运行),同步求平均,基于HITRAN参数以及测得的温度和压力的曲线,与计算出的吸收值拟合,可以对多达16种气体混合比实时记录。数据可以以10 Hz采样频率记录,最大有效数据率由泵抽速和吸收池的大小决定。实验过程中一些情况,比如阀门开关或背景消减,也可由TDLWintel软件控制。我们展示了单激光(76米光程)和双激光监测仪(76米或者210米光程)的气体测量噪音结果(平均1s),分别在表1和表2中,测量噪音为以空气中的混合比表示,同时提供了噪音的不确定性。根据不同的吸收路径和测量情况,吸收噪音最佳的结果在1s内约为?5×106。仪器适用在各种环境中,无论是在实验室还是在野外实验中。野外现场包括偏远位置或在移动平台(例如轮船,卡车和飞机)上。我们在最近20年在许多野外现场使用过这些仪器。在过去的几年中,Aerodyne “移动实验室”已配备了多种气相仪器(单激光和双激光监测仪)以及测量颗粒物和较重的有机化合物配套仪器。如测量天然气中的甲烷排放,或者测量两种气体示踪物(例如,亚硝酸盐氧化物和乙炔),移动实验室可以直接开到附近,测量示踪气体以及甲烷。另外,通过测量乙烷(常见天然气的成分),我们可以区分来自天然气设施的甲烷和来自生物来源的甲烷。仪器的噪音分析 了解测量噪音源对于保持仪器性能水平至关重要,通常将重点放在最终的噪音源分析和讨论上,例如探测器噪音,激光噪音或散射噪音。其他噪音源,统称为“技术噪音”,可能来自光学和电子方面,并可能是噪音的主要来源。而在在短时间尺度上的噪音可能是更长的时间范围的漂移。不同的噪音源可能表现出不同的功率谱密度(PSD),例如检测器噪音,而Johnson噪音通常具有平坦的PSD(即白噪音),而激光噪音会表现出闪烁噪音(1 / f PSD)。噪音可能会在频谱中产生随机波动,或者它可能具有窄带频率。另一个复杂因素是信号处理算法对噪音信号的响应。对于Aerodyne,混合比噪音是对噪音信号,以及压力和温度变量中多元拟合的结果。了解和减少噪音的第一步是使用Allan–Werle方差工具分析混合比噪音图(方差作为平均时间的函数)以及功率谱,并将噪音划分类型。Allan-Werle方差工具是一种通用工具,可以评估短时噪音和平均时间极限。按类型划分噪音有助于指示其来源。三种常用噪音包括是暗噪音,轻噪音和成比例噪音。 “暗噪音”(即,在检测器被堵塞的情况下报告的混合比)包括检测器噪音,基本电子(Johnson)噪音以及其他多余的电子噪音。“轻噪音”(正常光照水平但吸收深度很小)包括所有暗噪音加激光噪音(1/f,即闪烁噪音和散射噪音),激光驱动电流噪音(产生幅度波动)和干涉条纹的变化。 “比例噪音”(吸收深度较大时看到的多余噪音)包括激光驱动电流噪音,压力和温度噪音以及峰值位置运动结合调谐率误差。频谱数组处理将频谱分解为许多部分,并显示出较多变量。通常应用于频谱数组的处理工具包括减去偏移量,平均值,拟合度,统计量度,变量[p],[q]或这两者的傅立叶变换,相关性,和主成分分析。尽管有很多处理的实例,但是很难提出一个通用的分析方法,帮助我们了解所看到的一切。即使我们“解剖”光谱并找到大的干涉条纹,这不一定意味着干涉条纹是多余噪音的来源,比如干涉条纹不动或它们的频率太高而无法影响拟合。为了确定,我们需要确定导致多余的噪音因素,该因素的短期波动应与混合比的波动匹配。我们通过一个噪音分析的例子说明了分析过程。结果表明,多余噪音是由两种波的混合,即光学干涉条纹和电子信号混合导致的,产生的低频成分,明显影响混合比的测定,而任一单一波则对结果几乎没有影响。结论 我们对当前Aerodyne Research,Inc.生产的微量气体激光测量仪器进行了综述。提供了一组气体,以及同位素比的测量结果。仪器在性能上的改进包括降低了电源和激光驱动噪音。另外,制造工序变得更加精简。目前吸收噪音在1s内达到?5×106。然而,为获得最佳性能,仍然需要对噪音做进一步的探索。本文中的实例显示,多余噪音是由两种波的混合,由光学干涉条纹和电子信号混合导致。仪器的相关优势1. 持续对仪器的改进及噪音的分析,测量痕量气体的精度更高,测量气体达到ppt级别,甚至在10Hz的频率仍然保持极高的精度;2. 一次同时测量多种气体,消除了多台仪器测量时气体产生的系统误差并大大提高效率;3. 仪器适用于多种环境,满足实验室测量,野外远程测量和移动测量需求。 欲了解该产品的更多特点,欢迎咨询联系澳作生态仪器有限公司
  • 有“机遇”更需“给予”,国产温室气体监测仪急需市场机会
    中国共产党第二十次全国代表大会于10月22日上午在人民大会堂胜利闭幕。习近平总书记在报告中指出,大自然是人类赖以生存发展的基本条件。尊重自然、顺应自然、保护自然,是全面建设社会主义现代化国家的内在要求。我们要推进美丽中国建设,坚持山水林田湖草沙一体化保护和系统治理,统筹产业结构调整、污染治理、生态保护、应对气候变化,协同推进降碳、减污、扩绿、增长,推进生态优先、节约集约、绿色低碳发展。近两年国家出台一系列政策,从“十四五”生态环境监测规划、碳监测评估试点工作方案,再到碳达峰碳中和目标的提出,政策明确提出开展温室气体监测和评估,推进碳排放实测技术发展和信息化水平提升等内容。预期在双碳战略下,温室气体监测将成为未来一段时期环境监测的重点,也将为整个环境监测市场带来新的增长点。这个增长点如何把握?仪器信息网为此采访了河北子曰企业总经理杨龙。仪器信息网:当前双碳等一系列政策出台将给环境监测市场带来哪些热点机遇?杨龙总经理:国内“30达峰60中和”的大背景下,温室气体的监测数据的数量和质量显得尤为重要。从国家战略角度出发,国家对温室气体监测设备的国产化进程以及国内自主核心技术的突破予以了高度重视和强力支持,这给国内从事环境监测领域的相关厂家带来了巨大的机遇。仪器信息网:基于当前的大环境,温室气体监测仪器的作用体现在哪里?杨龙总经理:温室气体监测设备的作用体现在以下几点:高精度温室气体监测设备能为我国开展标准化、常态化、高质量区级温室气体排放清单编制工作奠定数据基础,进而为我国全面建立区级温室气体清单并逐年更新,准确掌握各区温室气体排放情况,为碳排放精细化管理提供扎实基础。建立温室气体排放基础数据,强化温室气体排放基础数据积累,完善区级温室气体清单统计体系,有助于推动大气污染物源排放清单与温室气体排放清单协同编制,提高生态管理部门的工作效率。综上,开展减排路径研究、政策制定,均需要高精度的监测仪器进行数据采集。高精度温室气体监测仪器,可为我国碳核算做出数据贡献,也可对各地区区域内温室气体的排放进行实时监测,做到精准化管理等。仪器信息网:关于温室气体监测,目前国内外市场竞争格局是怎样的?有哪些技术被广泛使用? 杨龙总经理:国内温室气体监测领域目前处于测试及初期应用阶段,各厂家应用的技术路线有所区别。可供各个客户选择的仪器其实并不是很多。在高精度温室气体监测领域,基本仍是国产仪器和国外仪器设备的竞争。国外仪器在全球应用广泛,有较强的技术积累。国内仪器厂家需要市场给予机会,促使技术更加完善以及更稳定。目前国内企业以及研究院所广泛应用的技术为:光强衰荡技术和离轴积分技术以及光声光谱技术等。仪器信息网:在这样的竞争格局下,贵公司有哪些技术上的竞争优势?杨龙总经理:我司技术完全自主化,主要部件均系自主开发,技术基本成熟。我司仪器现在已经更新到了第三版,仪器内部除了激光器本身外,均已实现了自主化及国产化,如内部的核心部件腔室反射镜片、探测器、电路控制系统、嵌入式程序、进样系统、信号斩断等。仪器信息网:具体来说贵公司的温室气体监测仪采用什么技术?克服了哪些难题? 杨龙总经理:我公司温室气体监测仪采用光腔衰荡技术。公司原来掌握的是TDLAS技术,在研发期间对光腔衰荡技术、激光斩断以及衰荡信号的调试控制中遇到诸多困难。这些困难,都通过与国内的专家学者进行沟通得以攻克。作为一个以军工产品代工发展起来的企业,公司基本上仍以生产核心产品模块,提供技术服务为主营方式,主要为环保和气象行业内一些优秀企业进行战略合作或者OEM(Original Equipment Manufacturer)。河北子曰产品外型图河北子曰产品内部图监测结果展示:信号斩断10次后的重复性衰荡曲线图(斩断信号稳定且无漂移)仪器信息网:贵公司在温室气体检测产品线目前有哪些产品?杨龙总经理:我司定性为技术型企业,产品以OEM为主。目前公司主要主营方向在光谱和质谱类。现有产品包括:VOCs GC-MS质谱仪、光腔衰荡温室气体监测仪、黑炭仪、高光谱气体成像仪、机动车尾气遥感监测仪器、黑烟车抓拍系统等。仪器信息网:目前,贵公司温室气体监测仪的销售情况如何?有哪些典型的应用领域?杨龙总经理:我司的温室气体监测仪现在基本以战略合作模式居多,同时也包括国外市场。销售业绩在逐步上升阶段,国内环境行业标准出台后预计明年会有更大的提升和落地项目。从客户类型上来说,我们的用户基本集中在三大领域:环境领域、气象领域和学术领域。仪器信息网:贵公司将来重点关注和拓展的方向是什么?当前气体监测与分析领域还有哪些热点?目前已经在开展或将开展哪些气体监测创新仪器/应用的研究?杨龙总经理:我司未来拓展的方向仍然是光谱和质谱两大方向。光谱方向将在后期对高光谱以及多光谱技术进行拓展落地。质谱方向将在后期对高分辨质谱仪以及同位素和源解析工作细化以及生命科学领域进行升级拓展。公司生产车间实照公司4层1000平研发楼实照

光声谱气体监测仪相关的方案

光声谱气体监测仪相关的资料

光声谱气体监测仪相关的试剂

光声谱气体监测仪相关的论坛

  • 光声谱仪器中光声池的高精度气体压力控制解决方案

    光声谱仪器中光声池的高精度气体压力控制解决方案

    [align=center][size=16px][img=石英增强光声光谱和光热光谱技术中的高精密压力控制解决方案,600,393]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130940541042_934_3221506_3.jpg!w690x452.jpg[/img][/size][/align][size=16px][color=#339999][b]摘要:光声池内气体压力的可调节控制以及稳定性是保证光声法高精度测量的关键,但在目前的光声和光谱研究中,对气体样品池内压力控制技术的报道极为简单,甚至很多都是错误的,根本无法实现高精度调节和控制,为此本文提出了可工程化实现的解决方案。基于动态平衡法控制介绍,解决方案采用了高精度真空计、气体流量计、电动针阀和双通道真空压力控制器等,可实现气体样品池的进气流量和真空压力的自动精密控制,并适用于多种气体。[/b][/color][/size][align=center][size=16px][color=#339999][b]===================[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 光声法是基于光声效应的一种光谱技术,气体分子吸收特定波长的调制光辐射能量,由振动基态跃迁到激发态,然后通过快速的辐射跃迁或者无辐射跃迁过程回到基态。 气体分子通过无辐射跃迁过程回到基态会产生热能,导致气体温度的变化,相应地引起气体压强的变化,从而产生声波信号,信号的强弱与入射光强和气体吸收大小成正比,检测声音信号即可间接测定气体浓度。在光声法中气体既是被检气体,又是吸收光辐射的探测器,利用同一光声池检测装置,只要改变光源的波长即可对多种气体进行检测。[/size][size=16px] 随着技术的发展出现了许多新型光声光谱检测技术,但光声池始终是所有光声光谱检测仪器中的核心部件,注入光声池内的被检气体压力是影响光声法测量精度的关键因素之一,主要体现在以下两个方面:[/size][size=16px] (1)气体压力的稳定性对测量精度的影响[1,2]。[/size][size=16px] (2)不同气体和浓度的光声法测量过程中,在一个最佳气体压力下时测量精度最高[3]。[/size][size=16px] 由此可见,光声池内气体压力的可调节控制以及稳定性是保证光声法高精度测量的关键,而在光声池压力控制的所有文献报道中,有些仅简单描述了压力控制基本原理,有些所描述的压力控制方法和装置根本无法实现高精度调节和控制。[/size][size=16px] 如文献[3]采用石英增强光声和光热光谱技术测量痕量一氧化碳气体含量的报道中,仅介绍了光声池进样气体方式和压力控制的原理,整个装置和压力控制结构的简单描述如图1所示,图中所示的光声池压力控制尽管包括了真空泵、针阀、压力传感器和压力控制系统(PCS),但压力控制系统的布置位置并不一定正确,既没有明确具体技术细节,也没有显示出压力控制的自动化能力和控制精度能达到什么水平。同样,许多多其他光声法测试技术的研究报道也多是如此简单介绍,并未看到光声池压力控制的详细文献报道。[/size][align=center][size=16px][color=#339999][b][img=文献[3]光声和光热谱检测系统结构示意图,600,527]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130942538680_3779_3221506_3.jpg!w690x607.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 文献[3]光声和光热谱检测系统结构示意图[/b][/color][/size][/align][size=16px] 在河北大学的发明专利CN111595786B“基于光声效应的气体检测系统及方法”中提出了一种详细的光声池内部压力控制方法[4],其结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=文献[4]基于光声效应检测系统的结构示意图,690,447]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130943224524_1783_3221506_3.jpg!w690x447.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 专利[4]基于光声效应检测系统的结构示意图[/b][/color][/size][/align][size=16px] 在图2所示的光声池压力控制系统中,光声池上设有供气体进入的进气口,进气口通过导管与?30℃的冷肼预浓缩装置相连通,可以去除待测气体中水分的干扰,达到一定的浓缩效果。在光声池上还设有供气体排出的出气口、控制腔体内气压的压力监测口以及压力控制口。在进气口、出气口和压力控制口处均设有单向阀,在出气口和压力控制口处均设有真空泵。在压力监测口设有气体压力传感器,气体压力传感器连接单片机,单片机控制继电器以及一个抽气系统,当腔体内的气压未达到所设置的目标值时,压力传感器传出电信号到控制系统中的单片机来控制继电器闭合,使电机转动,抽气系统运行,保持腔内部的气压值为设定好的目标值,当腔内的气压达到设定目标值时该抽气系统不工作。[/size][size=16px] 由此可见,尽管专利[4]中采用了单片机进行压力的自动控制,但所描述的抽气系统控制是一种最简单的开关式控制方式,这种控制方式在控制精度的稳定性很差,往往会使光声池内的实际压力在设定值上下出现较大波动现象。[/size][size=16px] 另外,这种开关模式在控制过程中存在很大的滞后性,当传感器测量到压力值大于或小于设定值时才发出关闭或启动抽气电机信号,这势必带来控制延迟。而且对于小容积内的气压控制,目前已很少采用调节真空泵转速或开关式真空泵技术,这是因为会很容易影响真空泵寿命。[/size][size=16px] 为了彻底解决光声光谱和光热光谱技术中气体样品池的压力精密控制问题,基于真空压力控制的动态平衡法,即通过自动调节气体样品池的进气和排气流量,使它们能快速达到动态平衡状态,本文将提出以下详细且可工程化实现的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 从研究文献所报道的光声光热法气体池内压力控制中,可以得出以下几项技术指标要求:[/size][size=16px] (1)气体池有一进气口和排气后,其中排气口连接真空泵,真空泵提供负压使样品气体通过进气口流入样品池,样品池的这种结构和气体取样方式则说明样品池内的压力一般应该是一个大气压上下的微负压或微正压,即样品池内的气体压力在500~1000Torr的绝对压力范围内,且要小于进气口压力。[/size][size=16px] (2)在文献[3]中报道了对最佳压力的测试研究,得到的最佳压力为600Torr。由此可见,针对不同气体的光声和光热法测试中,需要根据不同气体样品池的结构和具体被测气体寻找到最佳压力值,由此可保证最佳的测试精度。[/size][size=16px] (3)在文献[2,3]中,涉及到了多种气体混合和进气流量的控制,由此可说明在某些光声和光热法测试中需要具备对进气流量的调节,这也就是说,对于气体样品池而言,既要能调节进气流量,还要能调节气体压力且稳定控制。[/size][size=16px] 针对光声光谱和光热光谱技术中气体样品池的压力精密控制问题,特别是实现上述技术指标和功能,本解决方案所设计的气体样品池压力和进气流量控制系统结构如图3所示。[/size][align=center][size=16px][color=#339999][b][img=光声池气体压力和流量控制系统结构图,690,314]https://ng1.17img.cn/bbsfiles/images/2023/11/202311130943461767_8516_3221506_3.jpg!w690x314.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图3 光声池气体压力和进气流量控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图3所示,整个控制系统主要包含以下几方面的内容:[/size][size=16px] (1)压力控制模式:由于光声池内的压力需要在500~1000Torr的绝对压力范围进行调节和控制,因此解决方案中采用了动态平衡法中的下游控制模式,即恒定进气流量,通过调节排气流量的大小以达到不同的动态平衡,由此来实现不同气体压力的精密控制。进气形式如图3所示可以是单独一种气体,也可以是多种气体混合,各种气体可以通过气体质量流量控制器(MFC)进行流量的精密控制,各路气体进入一个混气罐进行混合后,再注入光声池内。气体的注入则通过排气端真空泵所提供的负压与进气端正压所形成的压力差来实现。[/size][size=16px] (2)压力控制回路:如图3中的蓝色箭头线所示,压力控制回路由1000Torr量程的电容真空计、NCNV-20型电动针阀和VPC2021-2型压力流量控制器组成,其中真空计检测光声池的真空压力并传输给控制器,控制器将传感器数据与压力设定值比较并经过PID计算,输出控制信号给排气电动针阀,实现压力自动恒定控制。[/size][size=16px] (3)流量控制回路:如图3中的红色箭头线所示,流量控制回路由气体流量计、NCNV-120电动针阀和VPC2021-2型压力流量控制器组成,其中控制器通过手动控制方式直接输出控制信号来调节进气电动针阀的开度,使得流量计达到希望值,由此可始终恒定进气流量保持不变。[/size][size=16px] 由此可见,通过图3所示的解决方案控制系统可实现光声池压力和进气流量的独立调节和控制,这种实现的关键部件是电控针阀和双通道压力流量控制器,电控针阀可以快速精密的调节进气和排气流量,而双通道压力流量控制器可直接连接真空计和流量计,实现高精度的真空压力和流量的测量,控制精度能小于读数的±1%,同时还能进行自动PID控制和手动恒定输出控制。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案对现有文献所报道的光声池压力控制方法进行了细化,比较而言,本文所提出的解决方案具有以下优势和特点:[/size][size=16px] (1)本解决方案更具有实用性,并经过了试验考核,按照解决方案可很快的搭建起光声池压力控制系统。[/size][size=16px] (2)本解决方案具有很强的适用性和可拓展性,如通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,可满足光声法和光热法中对样品池气体压力的各种控制要求。[/size][size=16px] (3)本解决方案可以通过高压气源的改变来实现不同样品气体的测量,也可进行多种气体混合后的测试,具有很大的灵活性。[/size][size=16px] (4)解决方案中的真空压力控制自带计算机软件,可直接通过计算机的软件界面操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了光谱设备的搭建和测试研究。[/size][size=18px][color=#339999][b]4. 参考文献[/b][/color][/size][size=16px][1] 陈伟根,刘冰洁,胡金星,等.微弱气体光声光谱监测光声信号影响因素分析[J].重庆大学学报:自然科学版, 2011(2):7-13.[/size][size=16px][2] 张佳薇,谈志强,李明宝,等.气体流量对石英增强型光声光谱检测精度的影响[J].科学技术与工程, 2022(003):022.[/size][size=16px][3] Pinto D , Moser H , Waclawek J P ,et al.Parts-per-billion detection of carbon monoxide: A comparison between quartz-enhanced photoacoustic and photothermal spectroscopy[J].Photoacoustics, 2021, 22:100244.DOI:10.1016/j.pacs.2021.100244.[/size][size=16px][4] 娄存广,刘秀玲,王鑫,等.基于光声效应的气体检测系统及方法:CN202010511763.8[P]. CN111595786B[2023-11-10].[/size][size=16px][/size][size=16px][color=#339999][b][/b][/color][/size][align=center][size=16px][color=#339999][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 全球首台宽幅高精度温室气体监测仪样机完成研制

    [align=center][img=,400,269]https://img1.17img.cn/17img/images/202402/uepic/0d3aa395-8cb6-4b55-8bca-7572e21c5fc4.jpg[/img][/align][align=center][img=,400,293]https://img1.17img.cn/17img/images/202402/uepic/f8ee2c0c-032d-41d9-96d4-513a4e755f66.jpg[/img][/align][align=center]图说:天基碳监测突击队的科研人员利用积分球模拟太阳光谱 新民晚报记者 陶磊 摄(下同)[/align][b]“看清”更多温室气体[/b]碳达峰,深入人心。可做得怎么样,得用科学数据来说话。“从天上往地面看气候变化”,上海技术物理研究所走在了前面,从2008年就率先开展天基温室气体监测技术的预先研究。天上飞着的碳卫星,有好几位不同国家的“前辈”了。高光谱温室气体监测仪,又“炼就”了哪些不一样的绝活?以我国2016年12月发射的全球二氧化碳监测科学实验卫星为例,它通过看“颜色”来识别二氧化碳气体。上海技术物理研究所所长、仪器主任设计师丁雷说,温室气体可不止二氧化碳,还有水汽、甲烷、氧化亚氮等。“看”水是“基本功”,“看”二氧化碳是“进阶本领”各有千秋,而“看”甲烷可是“头一遭”,自然难得多。“要利用宽谱段高光谱方式来对地观测,这就要求监测仪能‘看到’的色彩更丰富、有更多细节,同时还要看得更远。”丁雷介绍。国际上同类仪器的视场幅宽普遍为10多公里,天基碳监测突击队却直接添了个零,要“看”100公里,“能有效缩短对全球和敏感地区的探测周期。”看得广还看得远,数据量随之增多,信息处理难度也陡增。记者了解到,[b]全球首台宽幅高精度温室气体监测仪样机已完成研制。相比国际上同类载荷性能指标,其光学总视场角增加7.3倍左右,光谱分辨率提升一倍,光谱采样率提升50%,信噪比提升30%。[/b][align=center][img=,400,293]https://img1.17img.cn/17img/images/202402/uepic/184c2ea5-a00e-47b6-a30a-11cc72320d41.jpg[/img][/align][align=center]图说:团队对载荷主光轴进行配准讨论[/align][b]技术迭代 队伍传承[/b]和照相机定格山川河流不一样,探测仪“看到”的是“虚”的,太阳高度角、风速、阴天晴天,都会对“所见”造成变化。科研人员获取的数据,得和大气成分做物理上的反演,建立起稳定的数学关系。“我们要把温室气体反演精度提高至1ppm,通俗讲就是,当大气中某一温室气体含量变化超过百万分之一时,监测仪就能发现。”丁雷解释。天基温室气体监测技术,在上海技术物理研究所,接力棒已在四届博士生手中传递过。这支数十人组成的攻关团队,年龄跨度覆盖了“60后”到“00后”,载荷亦不知更新迭代了多少回。光学副主任设计师成龙从攻读博士学位就开始瞄准这项技术,不知不觉已在所里奋斗快十年了,“很幸运参与到国家需要的前沿项目研究中去。”拿探测仪的“体重”来说,为满足科研需求,最初的设计直奔600公斤,可卫星上天也有“承重量”,对探测仪来说是个“既要又要”的难题——得轻些,稳定性还不能降低要求,这可是个无先例可循的创新活儿。机械副主任设计师雷松涛费尽心思,不同零件用上满足各自要求的复合材料,总算“减重”到了300公斤,“不同温度、重力环境下,载荷的结构形变不能超过微米级。”“根据科研任务的安排,研发的温室气体监测仪马上迎来阶段验收。春节期间,恰好是要在真空环境中联合测试。”综合电子学主任设计师张冬冬没觉得假期工作有什么大不了的,“测试需要24小时有人盯着,大家轮流过节,设备不歇。家住甘肃、贵州的科研人员,过了年初三也都陆续回来了。”[align=center][img=,400,303]https://img1.17img.cn/17img/images/202402/uepic/2f770c46-5d79-4180-a4dc-3e952cc3f2a8.jpg[/img][/align][align=center]图说:科研团队在进行真空光校测试[/align][b]准备“小考” “上马”新载荷[/b]一边紧锣密鼓地开展宽幅高精度温室气体监测仪的装校和定标实验,为三月到来的“小考”做好准备;另一头,一台新的载荷也在春节期间“上马”。团队也要“两条腿走路”,还得走得快而稳。“甲烷在平流层和对流层,可能会和不同成分发生反应。若将之作为一个科学问题看待,有很多环节缠绕在一起,以目前的技术手段,较难全面探测。”丁雷展望道,“未来天基温室气体监测必然朝着更多要素、更广范围发展。我们现在看到的是柱状浓度,今后希望能像CT一样,得到温室气体在大气中的垂直分布信息。”[来源:新民晚报][align=right][/align]

  • 【分享】有毒有害气体检测仪在工业中的应用

    在现实情况中,安全和卫生方面的遇到的气体很多都是有机无机气体的混合物。只是由于各种原因,目前我们对于有毒有害气体的认识还更多地集中于可燃气体、可以引起急性中毒的气体(硫化氢、氰氢酸等)、以及某些常见的有毒气体(一氧化碳)、氧气等检测仪上,因此,本文将首先着重介绍这类检测仪,并综合目前的情况对各类有毒有害(无机/有机)气体检测仪的应用提出建议。 有毒有害气体检测仪的分类和原理: 气体检测仪的关键部件是气体传感器。 气体传感器从原理上可以分为三大类: A) 利用物理化学性质的气体传感器:如半导体式(表面控制型、体积控制型、表面电位型)、催化燃烧式、固体热导式等。 B) 利用物理性质的气体传感器:如热传导式、光干涉式、红外吸收式等。 C) 利用电化学性质的气体传感器:如定电位电解式、迦伐尼电池式、隔膜离子电极式、固定电解质式等。 根据危害,我们将有毒有害气体分为可燃气体和有毒气体两大类。 由于它们性质和危害不同,其检测手段也有所不同。 可燃气体是石油化工等工业场合遇到最多的危险气体,它主要是烷烃等有机气体和某些无机气体:如一氧化碳等。 可燃气体发生爆炸必须具备一定的条件,那就是:一定浓度的可燃气体,一定量的氧气以及足够热量点燃它们的火源,这就是爆炸三要素(如上左图所示的爆炸三角形),缺一不可,也就是说,缺少其中任何一个条件都不会引起火灾和爆炸。 当可燃气体(蒸汽、粉尘)和氧气混合并达到一定浓度时,遇具有一定温度的火源就会发生爆炸。我们把可燃气体遇火源发生爆炸的浓度称为爆炸浓度极限,简称爆炸极限,一般用%表示。实际上,这种混合物也不是在任何混合比例上都会发生爆炸而要有一个浓度范围。 如上右图所示的阴影部分。当可燃气体浓度低于LEL(最低爆炸限度)时(可燃气体浓度不足)和其浓度高于UEL(最高爆炸限度)时(氧气不足)都不会发生爆炸。不同的可燃气体的LEL和UEL都各不相同(参见第八期的介绍),这一点在标定仪器时要十分注意。为安全起见,一般我们应当在可燃气体浓度在LEL的10%和20%时发出警报,这里,10%LEL称。作警告警报,而20%LEL称作危险警报。这也就是我们将可燃气体检测仪又称作LEL检测仪的原因。 需要说明的是,LEL检测仪上显示的100%不是可燃气体的浓度达到气体体积的100%,而是达到了LEL的100%,即相当于可燃气体的最低爆炸下限,如果是甲烷,100%LEL=4%体积浓度(VOL).在工作中,以LEL方式测量这些气体的检测仪是我们常见的催化燃烧式检测仪。它的原理是一个双路电桥(一般称作惠斯通电桥)检测单元。在这其中的一个铂金丝电桥上涂有催化燃烧物质,不论何种易燃气体,只要它能够被电极引燃,铂金丝电桥的电阻就会由于温度变化发生改变,这种电阻变化同可燃气体的浓度成一定比例,通过仪器的电路系统和微处理机可以计算出可燃气体的浓度。 直接测量可燃气体的体积浓度的热导式VOL检测器也可以在市场上得到,同时,也已经有了LEL/VOL合二为一的检测器。VOL可燃检测器特别适合于在缺氧(氧气不足)的环境中测量可燃气体的体积(VOL)浓度。 有毒气体既可以存在于生产原料中,如大多数的有机化学物质(VOC),也可能存在于生产过程的各个环节的副产品中,如氨、一氧化碳、硫化氢等等。它们是对工作人员造成危害最大的危险因素。这种危害不仅包括立即的伤害,如身体不适、发病、死亡等等,而且包括对于人体长期的危害,如致残、癌变等等。对于这些有毒有害气体的检测是我们发展中国家应当开始引起充分重视的问题。 表 常见有毒有害气体的TWA(8小时统计权重平均值)、STEL(15分钟短期暴露水平)、IDLH(立即致死量)(ppm)和MAC(车间最大允许浓度)mg/m3。 有毒气体 TWA STEL IDLH MAC 氨气 (NH3) 25 35 500 30 一氧化碳(CO) 25 -- 1500 30 氯气 (Cl2) 0.5 1 30 1 氰化氢 (HCN) 10 4.7 50 0.3 硫化氢(H2S) 10 15 300 10 一氧化氮 (NO) 25 -- 100 -- 二氧化硫(SO2) 2 5 100 15 VOC* 50 100 -- -- 随气体种类不同,其TWA、STEL、IDLH、MAC等值会有一定的不同 目前,对于特定的有毒气体的检测,我们使用最多的是专用气体传感器。它可以包括上面。所列的所有气体传感器,也包括前两章所介绍的光离子化检测仪。其中,检测无机气体最为普遍、技术相对成熟、综合指标最好的方法是定电位电解式方法,也就是我们常说的电化学传感器。 电化学传感器的构成是:将两个反应电极--工作电极和对电极以及一个参比电极放置在特定电解液中(如上图如示),然后在反应电极之间加上足够的电压,使透过涂有重金属催化剂薄膜的待测气体进行氧化还原反应,再通过仪器中的电路系统测量气体电解时产生的电流,然后由其中的微处理器计算出气体的浓度。 目前,可以检测到特定气体的电化学传感器包括:一氧化碳、硫化氢、二氧化硫、一氧化氮、二氧化氮、氨气、氯气、氰氢酸、环氧乙烷、氯化氢等等。 检测VOC检测 器可以使用前章介绍的光离子化检测器。氧气也是在工业环境中,尤其是密闭环境中需要十分注意因素。一般我们将氧气含量超过23.5%称为氧气过量(富氧),此时很容易发生爆炸的危险;而氧气含量低于19.5%为氧气不足(缺氧),此时很容易发生工人窒息、昏迷以至死亡的危险。正常的氧气含量应当在20.9%左右。氧气检测仪也是电化学传感器的一种。 目前在选择有毒有害气体检测仪时的问题: 在我国,由于历史和认识上的原因,我们在选用各类检测仪时存在的问题还比较多,具体体现在: 1) 对可燃气体的检测重于对有毒气体的检测。 2) 对可能引起急性中毒气体的检测重于对可能引起慢性中毒的气体的检测。 由于众多可燃气体泄漏所引起的爆炸事故的血的教训,使人们对于可燃气体检测十分重视,可以讲,任何一个石化、化工厂,绝大多数的危险气体检测仪都是LEL检测仪。但仅配备LEL检测仪对于真正保护工人的安全和健康还是远远不够的。 不可否认的是,大多数的挥发性危险气体都是可燃气体,但是,催化燃烧式的可燃气体检测仪(LEL)并不是对所有的可燃气体检测都是最佳选择。它是专门为检测甲烷设计的,而对其它物质的检测性能比较差。所以,它们可以检测出的除甲烷以外的可燃气体的下限浓度要远远高于它们的允许浓度。 比如:对于苯、氨气等危险有毒气体,单纯使用可燃气体检测仪就是一个十分危险的做法。比如,苯的爆炸下限是1.2%,它在LEL检测仪上的校正系数是2.51,也就是说,苯在一个用甲烷标定的LEL检测仪上的显示的浓度只是其实际浓度的40%!!这样,用LEL可以检测到的苯的最低警报浓度是10%LEL=10%*1.2%*2.51=3.0*10-3,这个浓度同苯的允许浓度5*10-6相比要高近600倍!!。同样,氨在LEL检测仪上得到的警报浓度1.5*10-2也要比其允许浓度2.5*10-5高大约600倍。因此根据所检测气体的不同,选择特定有毒气体检测仪要比单纯选择LEL检测仪更加安全可靠得多。 另外,目前我们对于可以引起急性中毒的气体,比如硫化氢、氰氢酸等的检测较为重视,但对于可以引起慢性中毒的气体,比如芳香烃、醇类等的检测重视不够,其实后者对于工人健康和安全的危害丝毫不逊于可以引起急性中毒的气体!它们可能引起癌变和其它的隐形病症,影响工人的寿命和健康。这种现象的出现,除了认识上的原因以外,以前市场上缺乏合适的、可以检测较低浓度的有机气体检测仪也是一个重要的原因。 随着科学技术水平的发展和人们健康认识的提高,人们已经不满足于仅仅"高高兴兴上班来,平平安安回家去",而是追求着更高的生活质量和生活条件。人们不仅关心着今日的工作,更关心着明天----退休以后的生活。 因此在工业卫生和工业安全工作中要不断地引入新观念、新思路才能不仅要避免眼前的危险发生,而更要注意避免日后悲剧的发生,所有这些,都需要通过法规制定和人们素质的提高得到不断地改善和提高。我们将在下节内容中探讨如何选择和维护各类有毒有害气体传感器。

光声谱气体监测仪相关的耗材

  • iTX六合一气体监测仪电动取样泵
    iTX六合一气体监测仪电动取样泵iTX六合一气体监测仪电动取样泵产品简介:ITX是用途最为广泛的便携式气体检测仪。可根据客户对检测气体种类和数量的需要而配置一至六种智能化气体传感器,可使用单键操作及标定。适用于工业安全、卫生、环保等各个领域。iTX多气体检测仪采用背景光点阵式液晶显示,可以同时显示所有被测气体浓度。该仪器有高亮度光报警以及90dB响亮的声音报警。不锈钢外壳,经久耐用且抗电磁干扰。iTX多气体检测仪具有数据记录功能。数据记录的容量可达18000组、同时记录STEL/TWA数值、峰值读数以及用户名/检测域名。可配用iButton?现场位置识别,用户可以按照需要对24个参数进行设置.这些参数包括安全密码设置,报警值设置以及标定方式设置,仪器出厂时的参数被设定为常规值。性能特点:1、监测1-6种气体,LEL,CH4,CO,H2S,O2,SO2,NO2,Cl2,NO,ClO2,NH3,H2,HCl,PH3,HCN。2、同时显示所有被监测气体性能可靠,使用便捷,操作人员可即时查看所有气体读数,确保设备持续不间断运行3、现场可更换传感器,多达五个可现场更换型传感器为各类应用提供灵活监测。减少相关的运行成本及故障时间;4、LEL/CH4传感器超量程保护功能当采样气体浓度超出100%LEL或5.0%VolCH4时自动关闭LEL/CH4电源,从而延长传感器寿命,确保校准的完整性及低成本的部件更换5、电源(运行时间)。可充电锂离子电池组(常规工作时间为24小时);可更换的AA碱性电池组(常规工作时间为12小时);可更换使用的锂离子及碱性电池组各种电源(包括最新的电池充电技术)为用户提供全天候监测性能;6、外置一体式采样泵(选配)。检测仪可用于密闭空间所需的个人监测及远程采样。使用一体泵时无需额外电池及充电设备7、可记录长达300小时的数据(间隔为1分钟)。超大的数据容量可为一个月以上的长时轮值提供数据存储空间,在内存耗尽前保证数据的连续性8、延时告警功能(103分贝)在高噪音环境下提供危险情况警告,具有外部103分贝听觉及视觉或振动报警功能9、尺寸:121mmX81mmX43mm10、重量:524.5g11、温度范围:-20°C~50°C12、UL实验室(UL)及加拿大标准协会(CSA)-1级,A、B、C、D组危险区域美国矿产安全及健康管理局(MSHA)-仅可安全应用于甲烷/空气混合物技术参数气体符号测量范围分辨率可燃气体LEL50ppm-100%LEL1%甲烷CH40-5%Vol0.1%氧O20-30%Vol0.1%一氧化碳CO0-999ppm1ppm硫化氢H2S0-999ppm1ppm氢H20-999ppm1ppm氧化氮NO0-999ppm1ppm氯Cl20.2-50ppm0.1ppm二氧化氮NO20.2-99.9ppm0.1ppm二氧化硫SO20.2-99.9ppm0.1ppm氰化氢HCN0.2-30ppm0.1ppm氯化氢HCl0.2-30ppm0.1ppm氨NH30-100ppm1ppm二氧化氯ClO20-1.0ppm0.01ppm磷化氢PH30-1.0ppm0.01ppm
  • iTX复合式气体检测仪
    iTX是英思科公司用途最为广泛的便携式气体检测仪。可根据客户对检测气体种类和数量的需要而配置一至六种智能化气体传感器,可使用单键操作及标定。适用于工业安全、卫生、环保等各个领域。 量 程: 可燃气体: 50 ppm~100% LEL,分辨率1% LEL iTX便携式多气体检测仪-可燃气体检测仪 ◆可同时监测1-6种气体,17种传感器可供选择 ◆实地更换传感器 ◆实地更换传感器 ◆带背光的点阵式液晶屏幕显示 ◆可燃气体检测分辨率可达50ppm ◆具有LEL/CH 4 超量程保护功能◆使用锂离子充电电池,运行时间可达24小时 ◆可选配iSP一体化采样泵 · iTX多气体检测仪采用背景光点阵式液晶显示,可以同时显示所有被测气体浓度。该仪器有高亮度光报警以及90dB响亮的声音报警。不锈钢外壳,经久耐用且抗电磁干扰。 · iTX多气体检测仪具有数据记录功能。数据记录的容量可达18000组、同时记录STEL/TWA数值、峰值读数以及用户名/检测域名.可配用iButton现场位置识别.用户可以按照需要对24个参数进行设置.这些参数包括安全密码设置,报警值设置以及标定方式设置.仪器出厂时的参数被设定为常规值。 · iTX可以与一体化iSP采样泵连接,进行远程监测.同时可通过DS2仪器管理台进行日常维护。 技术指标 壳 体:不锈钢外壳 尺 寸: 121 mm x 81 mm x 43 mm 重 量: 524.5 g 传 感 器:可燃气体/甲烷-催化燃烧原理 氧气和有毒气体-电化学原理 量 程: 可燃气体: 50 ppm~100% LEL,分辨率1% LEL 电 源:可充电锂离子电池盒(24小时,配iSP泵运行15小时) 可更换的AA碱性电池盒(12小时) 温度范围: -20~50℃ 湿度范围: 15~95% RH(非凝结) 认 证: 美国和加拿大UL和cUL - Class I, Groups A,B,C,D 美国煤安认证(MSHA) 欧洲CENELEC(ATEX)和澳大利亚-Ex ia s I/IIC T4:IP65
  • 有机气体检测仪
    ToxiRAE Pro PID 个人有机气体检测仪 [PGM-1800] 主要特点: 产品类型: 扩散式PID 检测仪,带数据存储和辅助风扇 检测量程: 0-1000ppm/2000ppm 分辨率: 1ppm/0.1ppm 响应时间: T90 15 秒 尺寸: 118 mm x 60 mm x 30 mm 重量: 235g 电池内置: 可充电锂电池,3.7V,1800m ToxiRAE Pro PID 个人有机气体检测仪 [PGM-1800] 主要特点: 是世界上最小巧的个人VOC 检测仪,能够在不同温度和湿度条件下对各种VOC 进行快速、可靠、精确的检测,适用于存在有毒/可燃气体的危险工作环境,能为现场工作人员提供有效的个人安全防护。 ※ 体积小、重量轻、方便携带 ※ 检测精度高,响应时间短,检测范围宽 ※大屏幕液晶图形显示 ※中文菜单显示 ※ 可充电锂电池,使用时间长 ※ 内置数据存储 ※支持无线数据传输 ※强力声光和振动报警多种报警方式 ※防水防尘的坚固外壳,防护等级高 技术参数 产品类型: 扩散式PID 检测仪,带数据存储和辅助风扇 检测量程: 0-1000ppm/2000ppm 分辨率: 1ppm/0.1ppm 响应时间: T90 15 秒 尺寸: 118 mm x 60 mm x 30 mm 重量: 235g 电池内置: 可充电锂电池,3.7V,1800mAh 充电时间: 小于4 小时 工作时间: 充满电大于12 小时 充电器带: USB 接口的单一充电器/不带USB 接口的五仪器充电器 报警方式: 声音报警95 dB@30cm、红色LED 报、振动报警 显示: 单色LCD 图形显示 背光: 手动,报警时自动 键盘: 2 键 直接读数: 测量值,电池,数据记录状态 采样方式: 扩散式,带辅助风扇 数据记录: 1 分钟间隔可存储3 个月 记录间隔1-3600 秒 标定: 两点标定,可设置标定值 防护等级: IP-54 标定设备: 支持AutoRAE Lite 2 自动标定平台 保护: 标定、报警等限值设置有密码保护 无线传输距离: 100 米 认证: -美国/加拿大:UL / CSA:Class I, Division 1 Groups A, B, C, D -欧洲:ATEX:II 1G Ex ia IIC T4 IECEx:ia IIC Ga T4 -中国:Ex ia IIC T4 电磁兼容: EMC Directive 2004/108/EC R&TTE Directive 1999/5/EC ATEX: 94/9/EC 工作温度: -20° - 55° C 湿度: 0 - 95% 相对湿度(非冷凝) 保修: 一年保修 标准配置: PGM-1800 主机,含传感器 锂电池、充电器、充电底座 标定适配器 操作说明书
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制